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In two-dimensional electronic lattices, changes in the topology of the Fermi surface (Lifshitz transitions) lead
to Van Hove singularities characterized by a divergence in the electronic density of states. Van Hove singularities
can enhance the effect of electronic interactions, providing a platform to explore novel correlated electronic
states. In this work, we investigate the emergence of topological Chern bands on the surface of three-dimensional
topological insulators, which host higher-order Van Hove singularities that are characterized by the power-law
diverging density of states. These singularities can arise from the interplay between a time-reversal-breaking
Zeeman field induced by proximity to a ferromagnetic insulator and a time-reversal-invariant moiré potential
on the surface electrons, created by quintuple layer misalignment in a family of topological insulators such as
Bi2Se3 and Bi2Te3, which host a single surface Dirac fermion. We establish the onset of Chern bands near charge
neutrality with Chern numbers C = ±1 that also possess a manifold of higher-order Van Hove singularities on the
moiré Brillouin zone valleys controlled by the Zeeman and moiré potential energy scales, unveiling a platform to
realize exotic Lifshitz transitions in topological bands. Furthermore, we show that the strong peaks in the density
of states in the vicinity of Lifshitz transitions give rise to characteristic features in the low-temperature intrinsic
anomalous Hall conductivity, yielding a path to probe Van Hove singularities in Chern bands through anomalous
transport measurements.
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I. INTRODUCTION

In two-dimensional systems, topological changes in the
Fermi surface, known as Lifshitz transitions [1], are marked
by saddle points in the energy dispersion, which give rise to
Van Hove singularities (VHSs) where the density of states
has a logarithmic divergence [2]. Van Hove demonstrated that
these singularities are generic features of two-dimensional
periodic systems, and the existence of saddle points in the pe-
riodic energy dispersion ε(k) is topological in origin and can
be understood within the framework of Morse theory. Recent
progress in the synthesis of new classes of two-dimensional
materials along with the possibility of engineering electronic
band structures has renewed interest in characterizing elec-
tronic states near VHSs. In particular, the enhancement of
interaction effects due to the large accumulation of electronic
states in the vicinity of VHSs has been studied as a fruitful
setting to characterize Fermi liquid instabilities in cuprates
[3–5], doped graphene [6–9], Hofstadter systems [10,11], and
moiré graphene superlattices [12–21].

A physically rich scenario occurs when the energy
dispersion of electronic bands supports higher-order saddles,
giving rise to higher-order Van Hove singularities (HOVHSs)
characterized by stronger power-law divergence of the density
of states [22,23]. While previous studies of HOVHSs have
mainly focused on the properties of time-reversal-invariant
bands, the interplay between HOVHSs and time-reversal-
broken Chern bands was recently highlighted as a path
towards new electronic phases [24,25]. In particular, Ref. [24]
mapped the landscape of VHSs of Haldane Chern bands
on the honeycomb lattice [26] and demonstrated that, under
inversion symmetry, the system supports a pair of HOVHSs in

the two valleys of the Brillouin zone, which, under repulsive
interactions, give rise to a rich phase diagram containing
pair density wave superconductivity and a Chern supermetal
state. These developments highlight the importance of
identifying new electronic platforms supporting Chern bands
with HOVHSs.

In this work, we present an approach to design Chern bands
that support HOVHSs. Our mechanism combines the breaking
of time-reversal symmetry and the presence of a moiré pattern
in a system that hosts a single Dirac cone. Specifically, we
provide a route to realize Chern bands supporting HOVHSs on
the surface of three-dimensional (3D) topological insulators
(TIs) [27–29].

Recent experiments have revealed that a moiré pattern can
emerge on the surface of topological insulators that host a
single Dirac fermion when the crystals are grown using the
technique of molecular beam epitaxy (MBE). In the case of
Bi2Te3 [30] a small in-plane rotation of the top layer (facili-
tated by Cu dopants that reduce the interlayer coupling) results
in the emergence of a triangular moiré superlattice constant
≈13 nm [31]. Moreover, on Bi2Se3 [32] grown using MBE on
a substrate, superstructures with lattice constants ≈10 nm can
be constructed from the direct lattice mismatch of the crystal
with substrates like graphene [33], FeSe [34], Au(111) [35],
hexagonal boron nitride (hBN) [36], and In2Se3 [37]. The
interplay of Dirac surface states with a time-reversal-invariant
moiré surface potential reorganizes the surface states into
a sequence of moiré bands hosting satellite Dirac fermions
[38,39]. Furthermore, near charge neutrality, one of these
time-reversal-invariant bands can support a pair of HOVHSs
with cubic dispersion on each of the valley points ±K of the
moiré Brillouin zone [38].
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We explore the effects of a Zeeman field on these HOVHS
states near charge neutrality. The addition of a Zeeman field
significantly modifies the characters of the HOVHS band near
charge neutrality. First, the Zeeman field gaps out this band,
resulting in a pair of topological bands with Chern numbers
±1 near charge neutrality. Second, the Zeeman field behaves
as a control knob for the character of the Lifshitz transition.
Specifically, while the time-reversal-symmetric pair of HOV-
HSs occurs for a fine-tuned value of the moiré potential V
[38], the Zeeman field gives rise to a line HOVHSs in the
(V, h) plane. Remarkably, we uncover simple expressions for
these lines of HOVHSs in a Chern band for moiré potentials
with C3 and C6 rotation symmetries, and we estimate that
this HOVHS manifold could be within experimental reach for
certain TI systems. These results establish a promising route
to achieve higher-order Lifshitz transitions in time-reversal-
broken TI surface states.

The existence of exotic Lifshitz transitions in topological
Chern bands raises the prospect of exploring new interactions
between Van Hove singularities and band topology. Along
these lines, we establish a connection between Lifshitz transi-
tions and the quantum geometry of Chern bands through the
intrinsic part of the anomalous Hall conductivity σ int

xy [40–42].
The intrinsic Hall anomalous Hall contribution arises from
nonzero Berry curvature of the Bloch states, which leads to an
anomalous Hall velocity [43–45] when charges are coupled
to an electric field. In the low-temperature limit, we show that
dσ int

xy /dμ is proportional to the average Berry curvature on the
Fermi surface and the density of states at the Fermi energy.
In particular, this relationship implies a diverging behavior
in dσ int

xy /dμ as the chemical potential μ is tuned across the
Lifshitz transition, a salient feature that could be observed in
low-temperature transport experiments when the anomalous
Hall response is dominated by Berry phase effects.

This work is organized as follows. In Sec. II, we present a
model for the realization of HOVHSs on moiré surface states
of 3D TIs, relying on the interplay of a moiré potential and
a uniform Zeeman field. We analyze two moiré hexagonal
superlattices and discuss the effects of inversion symmetry
(Sec. II A) and inversion symmetry breaking (Sec. II B) on the
properties of HOVHSs. The low-energy theory is described
by Chern bands with Chern numbers ±1 hosting HOVHSs
in the moiré Brillouin zone valleys. In Sec. III, we describe
a connection between Lifshitz transitions and the quantum
geometric properties of Chern bands by showing that the
divergence in the density of states in Van Hove singularities
imprints on the intrinsic quantum anomalous Hall response,
and we discuss this effect for the HOVHS Chern bands on
the TI surface, as well as other Chern bands supporting log-
arithmic VHSs. We conclude with a discussion and outlook
in Sec. IV.

II. HIGHER-ORDER VAN HOVE SINGULARITIES

In this section, we describe a mechanism to obtain Chern
bands supporting HOVHSs which relies on a system described
by a single Dirac fermion coupled to a periodic potential and a
time-reversal-breaking uniform Zeeman field. Notably, these
three ingredients can be realized on the surface of a 3D TI such
as Bi2Se3 or Bi2Te3 subject to a moiré pattern in proximity to

a ferromagnetic insulator. As such, we henceforth focus on
this system described by the Hamiltonian

Ĥ =
∫

d2r ψ̂†(r)H ψ̂ (r), (1a)

where ψ̂T (r) = (ψ↑(r), ψ↓(r)) is the two-component spinor,
with ψσ=↑,↓(r) being the electron annihilation operator, and

H = vF ẑ · (−i ∇ × σ ) + V (r)σ0 + hzσz, (1b)

where vF is the Fermi velocity, σ = (σx, σy, σz ) are the
Pauli matrices, σ0 is the identity matrix, and h̄ = 1. V (r) =
V (r + R) (where R is a translation vector) is a time-
reversal-invariant periodic superlattice potential, and hz is a
time-reversal-breaking uniform Zeeman field. The low-energy
theory depends upon three energy scales: the effective band-
width vF /a, where a is the superlattice constant; the strength
of the moiré potential V ; and the Zeeman energy scale hz.
Henceforth, we work in rescaled units in which the low-
energy physics is determined by the dimensionless parameters
V a/vF and hz a/vF .

In TIs such as Bi2Te3 and Bi2Se3, the moiré pattern can
emerge when the crystals are grown using MBE. For Bi2Te3

with a Fermi velocity of approximately 0.3 eV nm [30], a
small in-plane rotation of the top layer, which is facilitated
by Cu dopants that reduce the interlayer coupling, results in
the emergence of a moiré triangular superlattice with lattice
constant a ≈ 13 nm [31]. In Bi2Se3 with a Fermi velocity of
0.4 eV nm [32] grown using MBE on a substrate, superlattices
with periodicity a ranging from 2 to 7 nm can be constructed
from the direct lattice mismatch of the crystal with substrates
like graphene [33], FeSe [34], Au(111) [35], hBN [36], and
In2Se3 [37].

Since the single-particle Hamiltonian (1b) is invariant un-
der translations by a lattice vector R of the moiré superlattice,
the eigenvalue equation for the Bloch states reads

H�n,k = En,k�n,k, (2)

where the two-component spinor �n,k(r) = eik·rUn,k(r), with
Un,k(r + R) = Un,k(r). From Eq. (2) it follows that

HkUn,k(r) = En,kUn,k(r), (3a)

where

Hk = vF [ẑ · (−i∇ + k) × σ] + V (r)σ0 + hzσz. (3b)

We numerically diagonalize Eq. (3) for a total of 242
bands. One of our main findings is that the reconstructed
Dirac spectrum obtained from Eq. (3) contains a Chern band
near charge neutrality supporting cubic HOVHSs with a
power-law-diverging density of states ρ(ε) ∼ |ε|−1/3, where
the energy scale of the HOVHSs is set to zero.

The appearance of HOVHSs in this topological band is
controlled by hz and V . The energy scale hz corresponds to
the Zeeman gap opened in the Dirac spectrum, which can be
experimentally realized in heterostructures where the 3D TI
surface is coupled by the proximity effect to a ferromagnetic
insulator (FMI). Experimental realizations of the TI-FMI het-
erostructure of quintuple layered 3D TIs, such as Bi2Se3 and
Bi2Te3, and FMIs with comparable lattice constants, such as
EuS [46,47], MnSe [48,49], MnTe [50], and Y3Fe5O12 [51],
present evidence of broken time-reversal symmetry (TRS) on
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FIG. 1. Schematic illustration of the experimental realization of
a 3D TI surface with a relative twist between the top quintuple layers,
as shown in the inset, in proximity to a ferromagnetic insulator that
breaks TRS.

the TI surface. Leveraging these experimental conditions, we
propose a path to realizing moiré Chern bands on the TI sur-
face by coupling 3D TIs in which there is an in-plane rotation
of the top quintuple layers with an FMI with a comparable
lattice constant, as shown in Fig. 1.

The point group symmetries of the moiré potential play
an important role in the structure of the higher-order Lifshitz
transitions. To address the role of point group symmetries, we
consider two classes of superlattice potentials with C6 and C3

symmetry. In the C6 symmetric case, the HOVHS appears as
a pair in the ±K valleys, as shown in Sec. II A. Breaking the
C6 symmetry down to C3 results in a single HOVHS located
at either the K or −K valley, as discussed in Sec. II B. In what
follows, we study each of these cases separately.

A. C6 symmetric moiré potential

We consider Dirac electrons under the effect of the C6

periodic moiré potential, as shown in Fig. 2(a),

V6(r) = 2V
3∑

j=1

cos(G j · r), (4)

where G j = 4π√
3a

[ − sin ( 2π j
3 ), cos ( 2π j

3 )] are the reciprocal
lattice vectors and V is the strength of the lattice potential.
This potential has invariance under threefold rotations and
inversion symmetry since V (r) = V (−r). Without a Zeeman

field, the potential given in Eq. (4) yields a gapless spec-
trum that supports a band with a pair of HOVHSs at the
±K valleys of the moiré Brillouin zone when the strength of
the potential V0 = 1.36vF /a [38]. Despite this higher-order
Lifshitz transition, these bands remain topologically trivial
due to time-reversal symmetry. At V = V0, the higher-order
saddle point in each valley carries a topological index of
−2 corresponding to the winding of the vector field ∇kε(k)
around the higher-order saddle point [52,53].

To achieve a topological band supporting HOVHSs, time-
reversal symmetry is broken with the Zeeman field induced by
the proximity effect. On turning the Zeeman field on for V =
V0, the higher-order saddle point splits into four critical points,
of which three are ordinary saddle points with a topological
index of −1 and the remaining one is a local extremum with
a topological index of 1, such that the sum of the topological
indices 3 × (−1) + 1 = −2 remains conserved. At the same
time, the lowest pair of conduction bands acquires an energy
gap and Chern numbers of ±1 [54], as shown in Fig. 2(b).

Remarkably, we notice that these split critical points (i.e.,
three conventional VHSs and one extremum) can be merged
together again at ±K to generate a HOVHS in the Chern band
marked in red in Fig. 2(b) by adjusting either V or hz. We
uncover a line in (hz,V ) parameter space, shown in Fig. 3(a),
where the C = 1 band supports pairs of HOVHSs. This line in
(hz,V ) parameter space obeys the relation

V6(hz ) = V (0)
6 + � h2

z , (5)

where V (0)
6 = V6(hz = 0) = 1.36vF /a and � ≈ 0.05 is a fit-

ting parameter. The quadratic scaling between hz and V is
observed for hz values ranging from 0 to ≈2vF /a. As a result,
for moiré surface states with lattice constant a ≈ 10 nm and
Fermi velocity vF ≈ 300 meV nm, the parameters hz and
V , which can be employed to tune the HOVHSs, follow the
scaling relation given in Eq. (5) for hz as large as 60 meV

To understand the relation given by Eq. (5), we study the
energy dispersion around the K valley,

ε(p) ≡ E (p + K ) − E (K ) = αp2 + β
(
p3

x − 3px p2
y

)
, (6)

FIG. 2. (a) Contour plot of the C6 symmetric potential V6(r), given in Eq. (4), with superlattice constant a. (b) Band structure of the model
given in Eq. (1b) with the C6 periodic potential for (hz,V ) = (0.5, 1.38) in units of (vF /a) to the left. The mini Brillouin zone is shown in the
center. The isolated band shown in red carries the Chern number C = 1, and it supports HOVHSs at the ±K points, as indicated by the peak in
the DOS shown on the right. The green dashed line denotes the energy at the ±K points, where the DOS diverges.
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FIG. 3. (a) Parameter space plot showing the values of the Zeeman mass hz and the lattice potential strength V that correspond to HOVHSs
located at the ±K points of the BZ. The (hz,V ) pairs follow a scaling relation given by Eq. (5). The contour plots of the Fermi surfaces
corresponding to the regions V > V6(hz ), V = V6(hz ), and V < V6(hz ) are shown in the insets, where the dashed black lines indicate the
boundaries of the FBZ and the solid black lines show the Fermi surfaces passing through VHSs. (b) α(hz,V ) obtained using Eq. (7) plotted in
the hz-V6 parameter space. The thick black curve indicates the α(hz,V ) = 0 line, which, as expected, coincides with the hz-V curve shown in
(a) that corresponds to the emergence of HOVHSs at the ±K points.

where p = (px, py) is the momentum in the vicinity of the
valley. The momentum dependence of the dispersion equa-
tion (6), expanded up to third order, is dictated by the point
group symmetries of the hexagonal lattice. From this, we
obtain the critical points ∇pε(p) = 0 and characterize their
behavior by computing the Hessian H = det[∂pi∂p j ε(p)].

While the gradient of the dispersion vanishes for p ∈
{(0, 0), ( −2α

3β
, 0), ( α

3β
,± α√

3β
)}, the corresponding Hessian

H = 4(α2 − 9β2 p2) evaluated at each of the four afore-
mentioned critical points vanishes only when the coefficient
α = 0, which implies the vanishing of the term quadratic in
momentum. Thus, the scaling relation (5) characterizes the
points in the (hz,V ) parameter space for which the quadratic
in momentum coefficient α(hz,V ) = 0, so that the energy
dispersion around K can be described by a third-order polyno-
mial ε(p) ≈ β(p3

x − 3px p2
y ), corresponding to a HOVHS with

a diverging density of states ρ(ε) ∼ 1
|ε|1/3 [22].

Furthermore, in the range of (hz,V ) values where we ob-
serve the quadratic scaling given in Eq. (5), the parameter
α(hz,V ) can be well approximated by the empirical form

α(hz,V ) = α0 ln

[
V

V6(hz )

]
, (7)

where α0 ≈ 0.4 and V6(hz ) is given by Eq. (5). The mani-
fold of (hz,V ) values for which α(hz,V ) vanishes is denoted
by the black curve in Fig. 3(b). When the strengths of the
potential and of the Zeeman energy deviate from condition
(5), the HOVHS splits into three ordinary saddle point VHSs

for p ∈ {( −2α
3β

, 0), ( α
3β

,± α√
3β

)} and a local extremum at p =
(0, 0). Under small deviations δV of the moiré potential and
the Zeeman energy from (hz = 0,V = V6), a perturbative ex-
pansion of the coefficient α(hz, δV ) to lowest order yields
α(hz,V ) ≈ c1 δV + c2 h2

z , where a linear term in hz vanishes

due to inversion symmetry. Then the condition α(hz, δV ) = 0
yields Eq. (5).

Apart from the high concentration of the density of states,
the bands supporting HOVHSs display another interesting
feature. As shown in Fig. 4, the real-space wave functions
for the energy states at the HOVHS and projected on the
±K valleys are particularly polarized on two sublattices that
form a honeycomb lattice localized between the maxima of
the moiré potential. This sublattice polarization behavior is
observed along the HOVHS line given by Eq. (5) and high-
lighted in Fig. 4 for (hz,V ) = (0.5, 1.38). We note that this
sublattice polarization in the vicinity of HOVHSs on the TI
surface states is a feature observed in other two-dimensional
tight-binding systems such as in Haldane Chern insulators
tuned to higher-order Lifshitz transitions [24] and kagome
bands [55,56].

FIG. 4. Real-space wave function of the up (left) and down
(right) spin electrons with momentum K on the HOVHS band of the
C6 symmetric model with (hz,V ) = (0.5, 1.38) in units of (vF /a).
The difference in the maximum amplitude of the up and down spins
can be attributed to the broken TRS. The maxima of the lattice
potential are denoted with black dots.
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FIG. 5. (a) Contour plot of the C3 symmetric potential V3(r), given in Eq. (8), with superlattice constant a. (b) Band structure of the model
given in Eq. (1b) with the C3 periodic potential with (hz,V ) = (0.5, 0.83) in units of (vF /a) (left) and the corresponding DOS (right). The
sharp peak in the DOS at the K point indicates the presence of HOVHSs, while the shorter peak right above it in energy points towards the
conventional VHS around the K ′ point. Here, the lowest conduction band (shown in red) that carries a Chern number of −1 hosts HOVHSs
located at the K points.

B. C3 symmetric moiré potential

We investigate the effects of breaking inversion symmetry
such that V (r) 	= V (−r) by adding a contribution to the C6

symmetric lattice potential given in Eq. (4) that yields a po-
tential with C3 symmetry:

V3(r) = 2V
3∑

j=1

[cos(G j · r) − cos(G j · r + φ)] (8)

for any φ 	= 0, π . Subsequently, we narrow our focus to the
specific case where φ = 2π

3 , as depicted in Fig. 5(a).
In the absence of the Zeeman field, the C3 symmetric model

supports a gapless spectrum of moiré bands, in which we
uncover one band supporting a pair of HOVHSs in the moiré
Brillouin zone valleys when the strength of the moiré potential
V (0)

3 = V3(hz = 0) = 0.802(vF /a). The existence of a pair of
valley HOVHSs follows from TRS degenerate states at ±K
despite breaking of inversion symmetry by the potential (8).

On turning the Zeeman field on with V = V (0)
3 , the HOVHS

splits into three conventional VHSs located around each of
the K and −K points of the lowest conduction band which
carries a Chern number of −1, as shown in Fig. 5(b). By
adjusting the lattice potential strength or the Zeeman field, the
conventional VHSs can merge back into a HOVHS. However,
due to the breaking of inversion symmetry, this HOVHS is
located in either one of the valleys. This situation is analogous
to the effect of an inversion-breaking sublattice potential on
the Haldane Chern insulator model that can lead to a single
HOVHS in one of the valleys [25].

Similar to what we did in Sec. II A, we characterize the
(hz,V ) parameter space for which the C = −1 band supports
HOVHSs in one of the valleys. For the K valley HOVHS, we
uncover the relation between the moiré potential and Zeeman
field,

V3(hz ) = V (0)
3 + �1hz + �2h2

z + �3h3
z , (9)

in terms of numerically fitted coefficients (�1, �2, �3) ≈
(0.033, 0.039, 0.007), where hz and V are measured in units of
(vF /a). We note that unlike in the case discussed in Sec. II A,

the breaking of inversion symmetry allows for terms with
odd powers in hz. Furthermore, while (hz,V3(hz )) corresponds
to a higher-order saddle point at the K point, (hz,V3(−hz ))
corresponds to the one at the −K point. In Fig. 6(a), we plot
these curves and the character of the Fermi surface contours
at and in the vicinity of the higher-order Lifshitz transitions.
Equation (9), which describes the condition for the coefficient
α(hz,V ) in Eq. (6) to vanish, can be well approximated by

α(hz,V ) = α0 ln

[
V

V3(hz )

]
, (10)

where α0 ≈ 0.4 for hza/vF < 2. Similarly, the Hessian van-
ishes at the −K points when α(hz,V ) = α0 ln[V/V3(−hz )],
with α0 ≈ 0.4. Thus, we have established a mechanism to
create and access a larger landscape of HOVHS topological
bands with Chern number C = ±1, which occur through the
interplay of a moiré potential and a uniform Zeeman field
coupled to the surface states of a 3D topological insulator.
In the next section, we discuss an important feature in the
anomalous Hall response implied by the existence of Van
Hove singularities in Chern bands and apply it to the case of
conventional and higher-order VHSs.

III. INTRINSIC ANOMALOUS HALL CONDUCTIVITY
NEAR LIFSHITZ TRANSITIONS

In this section, we discuss the manifestation of Lifshitz
transitions in the context of anomalous transport in a Chern
band. We establish a general result that relates the diver-
gence in the density of states associated with VHSs to
the low-temperature differential anomalous Hall response, as
expressed in Eqs. (17). While the discussion in this section ap-
plies generally to Chern bands, we specifically explore this
connection for the HOVHSs characterized in Sec. II.

In Chern bands, the presence of nonzero Berry curvature of
the Bloch states leads to an anomalous Hall velocity [43–45]
when charges couple to an electric field, giving rise to the
intrinsic anomalous Hall effect [40–42]. While for a filled
Chern band insulator this leads to a quantized Hall conduc-
tivity in units of e2/h, in a partially filled Chern band, the
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FIG. 6. (a) Parameter space plot showing the values of the Zeeman mass hz and the lattice potential strength V that correspond to HOVHSs
located at the K (blue) and K ′ (green) points of the BZ. The (hz,V ) pairs that support HOVHSs located at K (K ′) follow a scaling relation V3(hz )
[V3(−hz )] given by Eq. (9). The contour plots of the Fermi surfaces corresponding to the regions V < V3(hz ), V = V3(hz 	= 0), and V > V3(hz )
are shown above, and those corresponding to the regions V < V3(−hz ), V = V3(−hz 	= 0), and V > V3(−hz ) are shown below. When hz = 0
and V = V (0)

3 , we find HOVHSs located at both the K and K ′ points, as in the case of the C6 symmetric lattice potential. Here, the dashed
black lines indicate the boundaries of the first moiré Brillouin zone, and the solid black lines show the Fermi surfaces passing through VHSs.
(b) α(hz,V ) obtained numerically from the expression given in Eq. (10) (top) and from the Taylor expansion of the energy dispersion around
the K points (bottom). The thick black curve indicates the α(hz,V ) = 0 line, which, as expected, coincides with the hz-V curve corresponding
to the emergence of HOVHSs at the K point shown in (a).

intrinsic anomalous Hall conductivity σ int
xy can be continu-

ously tuned by the electronic filling of the Chern band, and it
probes the Berry phase contribution of the occupied electronic
states. In particular, when the Fermi energy crosses a Lifshitz
transition in a Chern band, the large peak in the density of
states entailed by the change in the topology of the Fermi
surface suggests that the anomalous Hall response may cor-
respondingly manifest some distinct properties. Furthermore,
this distinct behavior should be a generic feature of Chern
bands, provided the sharp features in the density of states are
not significantly rounded by disorder and thermal broaden-
ing. Thus, we hereafter discuss the character of the intrinsic
anomalous Hall response of Chern bands at low temperatures
and in cases where the anomalous Hall effect is dominated
by the intrinsic contribution [42], where we uncover a char-
acteristic feature relating the anomalous Hall conductivity
and the density of states. Specifically, in the T → 0 limit,
we show that d σ int

xy /d μ diverges when the Fermi energy μ

crosses the scale of logarithmic and power-law Van Hove
singularities. Also, in what follows, we assume that the system
remains a Fermi liquid as the Fermi energy crosses a Van Hove
singularity.

To establish these connections, we consider an isolated
Chern band described by Bloch states |uk〉 with energy
dispersion ε(k) and nonvanishing Berry curvature �(k) =
∇k × Ak, where the Berry connection Ak = i 〈uk|∇k |uk〉.
This system is characterized by the intrinsic anomalous Hall
conductivity [40]

σ int
xy (μ; T ) = e2

h

1

2π

∫
d2k �(k) fμ;T (ε(k)), (11)

where the integral extends over the first Brillouin zone, e
is the charge of the electron, h is Planck’s constant, and

fμ;T (ε(k)) = (e
ε(k)−μ

kBT + 1)
−1

is the Fermi distribution at tem-
perature T and chemical potential μ.
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FIG. 7. (a) Intrinsic anomalous Hall conductivity σ int
xy and (b) differential anomalous Hall response

dσ int
xy

dμ
at zero temperature plotted as a

function of the Fermi energy μ for the Chern band supporting HOVHSs at (hz,V ) = (0.5, 1.38) in units of (vF /a). The dashed red line denotes
the energy at which the HOVHS occurs, μ∗. The differential anomalous Hall response exhibits a power-law divergence around μ∗, as given
in Eq. (17b), with ν = 0.39 ≈ 1/3 and κ+ = κ− = 0.43. (c) Intrinsic anomalous Hall conductivity σ int

xy and (d) differential anomalous Hall

response
dσ int

xy

dμ
at zero temperature plotted as a function of the Fermi energy μ for the lower energy band of the Chern insulator model defined

on a square lattice of lattice constant a, H = (vF /a)[sin kxσx + sin kyσy + (m − cos kx − cos ky )σz] at m = 1.5, where it supports the VHS at
μ∗ = −1.5(vF /a) (denoted by the red dashed line) and carries a Chern number of 1. The differential anomalous Hall response exhibits a log
divergence around μ∗, as given in Eq. (17a), with � = 1.35(vF /a) = 0.45× bandwidth and ρ0 = 0.58

vF /a . Note that in (a) and (c), as the Fermi
energy reaches the top of the band, the total Hall conductivity approaches 1, the Chern number of the corresponding band.

In the T → 0 limit, Eq. (11) becomes

σ int
xy (μ; 0) = e2

h

1

2π

∫
d2k �(k)�[μ − ε(k)], (12)

where �(x) is the Heaviside step function signaling a sharp
separation between occupied and empty electronic states. This
contribution varies continually with the Fermi energy μ when
the Fermi energy lies between the minimum and maximum of
the Chern band.

Insight can be obtained by considering differential anoma-
lous Hall conductivity, which measures the slope of σ int

xy as a
function of Fermi energy,

dσ int
xy (μ; 0)

dμ
= e2

h

1

2π

∫
d2k �(k)δ[μ − ε(k)]. (13)

Equation (13) shows that at T = 0, the differential anomalous
Hall conductivity gets its contribution from states at the one-
dimensional Fermi surface manifold ε(k) = μ.

Upon normalizing by the density of states at the Fermi
energy,

ρ(μ) =
∫

d2k δ[μ − ε(k)], (14)

Eq. (13) reads

dσ int
xy (μ; 0)

dμ
= e2

2πh
〈�〉FS ρ(μ), (15)

where

〈�〉(μ) ≡
∫

d2k �(k)δ[μ − ε(k)]∫
d2k δ[μ − ε(k)]

(16)
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defines the average of the Berry curvature on the Fermi
surface.

Equation (15) provides an insightful connection between
the average Berry curvature (which is the imaginary part of
the quantum metric tensor), the density of states, and the
anomalous Hall transport, which can be, in principle, explored
to read out the Berry curvature by scanning the Fermi energy
of the band. Moreover, let us consider the behavior of Eq. (15)
in the vicinity of a Lifshitz transition occurring at energy
μ∗. In this case, if 〈�〉(μ∗) 	= 0 (which we expect to occur
typically in a Chern band), the differential anomalous Hall
conductivity is dominated by the Van Hove singularities in the
density of states, resulting in the following asymptotic forms
of the conventional and higher-order Lifshitz transitions:

dσxy(μ; 0)

dμ
≈ e2

2πh
〈�〉(μ) ρ0 ln(�/|μ − μ∗|)︸ ︷︷ ︸

Conventional Lifshitz transition

, (17a)

dσxy(μ; 0)

dμ
≈ e2

2πh
〈�〉(μ)

�(μ − μ∗)κ+ + �(μ∗ − μ)κ−
|μ − μ∗|ν︸ ︷︷ ︸

Higher-order Lifshitz transition

,

(17b)

where ν is a positive exponent and κ± are coefficients for
μ � μ∗ and μ � μ∗. Equation (17) establishes a general
connection between differential anomalous Hall response and
Lifshitz transitions in Chern bands.

In Fig. 7, we plot dσ int
xy /dμ and σ int(μ) as a function of

the Fermi energy μ for two representative cases, namely, the
Chern bands holding HOVHSs discussed in Sec. II and a two-
band model Chern insulator model supporting logarithmic
VHSs [57,58]. In Figs. 7(a) and 7(b), we observe that the cubic
power-law divergence in the DOS for the topological insulator
moiré surface Chern bands gives rise to a pronounced peak in
dσ int

xy /dμ [Fig. 7(b)], which then reflects a characteristic slope
in σ int

xy [Fig. 7(a)] as the system undergoes a Lifshitz transition
at μ = μ∗, which is indicated by the red dashed lines. In
Figs. 7(c) and 7(d), we perform a similar analysis for a Chern
band with conventional logarithmic VHSs. In both cases, the
characteristic behavior of Eq. (17) is confirmed despite some
numerical rounding introduced by the finite-size grid.

To account for the effects of thermal broadening, we obtain
from Eq. (11) the temperature dependence of the differential
anomalous Hall conductivity

d σ int
xy

d μ
(μ; T ) = e2

2π h

∫
d2 k �(k)

× 1

kB T

[
2 cosh

(ε(k) − μ)

2 kB T

]−2

, (18)

where the last term in the integral accounts for the temperature
dependence of the Fermi distribution.

In Fig. 8 we plot the temperature dependence of the dif-
ferential anomalous Hall conductivity (18) for the TI surface
state discussed in Sec. II A for the Chern band supporting
a pair of HOVHSs. As expected, for temperatures equal to
or greater than the bandwidth T � T0 ∼ �/kB, where � is
the bandwidth, thermal effects strongly destroy the effect of
the VHSs. However, with the decreasing of the temperature

FIG. 8. Differential anomalous Hall conductivity
dσ int

xy

dμ
plotted

against the Fermi energy μ for the HOVHS band with (hz,V ) =
(0.5, 1.38) in units of (vF /a) for different values of temperature T
that are labeled on the plot. The temperature T is scaled with T0 =
(v f /a)/kB, where kB is the Boltzmann constant and vF /a ≈ 30 meV
[30,31]. The yellow dashed line denotes the energy at which the

HOVHS occurs, μ∗. The peak in
dσ int

xy

dμ
associated with the HOVHS

gets progressively stronger as the temperature decreases.

substantially below the bandwidth scale, the peak in
d σ int

xy

d μ

becomes progressively more pronounced, allowing for the
identification of a VHS and asymptotically tending to a sharp
peak as in the T → 0 limit described by Eq. (17).

IV. DISCUSSION AND OUTLOOK

In this work, we identified a mechanism to create time-
reversal-broken topological Chern bands that host higher-
order Van Hove singularities on the surface of a 3D
topological insulator. We showed that these HOVHSs in topo-
logically nontrivial bands can emerge from the interplay of a
time-reversal-breaking Zeeman field induced by the proxim-
ity to a ferromagnetic insulator and a time-reversal-invariant
moiré potential induced on the surface electrons of a three-
dimensional topological insulator. The latter can naturally
occur through the misalignment of the quintuple layers in
Bi2Se3 and Bi2Te3, which is responsible for the onset of a
nanometer-scale moiré potential. Employing exact diagonal-
ization and symmetry analysis, we demonstrated that tuning
of the Zeeman and moiré potential energy scales gives rise
to a manifold of higher-order Lifshitz transitions in the moiré
Brillouin zone valleys. This setting opens a direction for future
exploration of correlation effects associated with the presence
of strong density of state singularities in moiré Chern bands
on the surface of topological insulators.

Moreover, our analysis of HOVHSs, which focused on the
surface of 3D TIs characterized by a single Dirac cone, offers
a compelling opportunity for extension to two-dimensional
(2D) materials that exhibit multiple Dirac fermion flavors,
such as twisted bilayer graphene [59–61] and transition metal
dichalcogenides [62,63]. Extending our mechanism to such
2D materials, where each Dirac cone can be treated as an
independent or isolated one, would be particularly interesting.
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Additionally, our mechanism lays the groundwork for future
research into designing Chern bands with HOVHSs, beyond
the constraint of a single Dirac cone.

Furthermore, we identified a characteristic signature in
the intrinsic anomalous Hall response as the Fermi surface
crosses a Lifshitz transition. Specifically, the rate of change
of the anomalous Hall conductivity as a function of the
Fermi energy dσ int

xy /dμ displays a pronounced peak at low
temperatures due to the large accumulation of states near
the VHSs, which tracks the logarithmic and power-law
divergences in conventional and higher-order Lifshitz
transitions, respectively. In the moiré surface Chern bands
studied in this work, this entails a power-law divergence in
dσ int

xy /dμ as the temperature tends to zero. This relationship

opens a route to experimentally probe VHSs and Chern bands
through transport measurements, and it would be not only
applicable to the HOVHSs on the surface of a topological
insulator but also to a wider class of Hofstadter-Chern
bands [12,64–77] and zero-field Chern bands in moiré
heterostructures [78–82].
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