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Among the variational wave functions for fermionic Hamiltonians, neural network backflow (NNBF) and
hidden fermion determinant states (HFDS) are two prominent classes that provide accurate approximations to
the ground state. Here we develop a unifying view of fermionic neural quantum states casting them all in the
framework of NNBF. NNBF wave functions have configuration-dependent single-particle orbitals (SPO) which
are parameterized by a neural network. We show that HFDS can be written as a NNBF wave function with a
restricted low-rank r additive correction to the SPO times a neural-network generated determinant of an r × r
matrix. Furthermore, we show that in NNBF wave functions, this r × r determinant can generically be removed
when r is less than or equal to the number of fermions, at the cost of further complicating the additive SPO
correction increasing its rank by r. We numerically and analytically compare additive SPO corrections generated
by the product of two matrices with inner dimension r. We find that larger r wave functions span a larger space
and give evidence that simpler and more direct updates to the SPO’s tend to be more expressive and better
energetically. These suggest the standard NNBF approach is preferred amongst other related choices. Finally,
we uncover that the row selection used to select single-particle orbitals allows significant sign and amplitude
modulation between nearby configurations and is partially responsible for the quality of NNBF and HFDS wave
functions.
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I. INTRODUCTION

Simulating quantum many body systems is difficult often
requiring various approximations to make progress. Since the
early history of quantum mechanics, variational approaches
have been one of these core approximations. In the varia-
tional approach, one starts with a parameterized class of wave
functions and searches amongst this class for the lowest en-
ergy state. Hartree Fock, a variational search over the class
of noninteracting wave functions was amongst the earliest
variational approaches for simulating fermions, and works by
optimizing the parameterized single particle orbitals (SPO)
which make up a Slater determinant [1]. Even today, many
of the state-of-the-art approaches for fermions and frustrated
magnets build on top of this noninteracting class dressing
and complementing it in various ways. For example, a stan-
dard class of Fermionic variational wave functions is the
Slater-Jastrow form, �(c) = J (c)�SD(c), where �SD(c) is a
noninteracting Slater determinant and J (c) is a multiplicative
Jastrow factor which adds significant correlation on top of
the Slater determinant [2–4]. The Jastrow factor J (c) has
historically been a strictly positive function taking the form
of an exponential of one and two-body operators J (c) =
exp[−u1(c) + u2(c)]. More recently, with advances in opti-
mization as well as the progress in machine learning (ML)
architectures which approximate a wide class of functions
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[5–18], Jastrows have become more sophisticated and param-
eterized, spanning wave function classes such as correlated
product states, RBM, etc. [13,16–22].

In the context of Fermion systems, to further improve the
expressibility of variational wave functions, recent work has
applied ML architectures to dress the Slater determinant part
of the Slater-Jastrow wave function. Two such paradigms
include the neural network backflow (NNBF) [11–13,23–
25] and the hidden Fermion determinant state (HFDS) [7,8].
NNBF replaces the static set of SPO with a configuration-
dependent set which are generated by a neural network. HFDS
instead works in the paradigm of projected hidden fermions
using neural networks to replace the standard Slater determi-
nant with a larger determinant which includes SPO’s from
an additional projected r hidden fermions. These seemingly
distinct wave functions both achieve similar significant im-
provements to the variational power for fermionic systems.
One cannot help but inquire about the existence of some
underlying mechanism that links these states.

In this work, we investigate explicitly the connection be-
tween NNBF and HFDS. Surprisingly, when the number of
hidden fermions is less then the number of electrons, r � Ns,
HFDS can be written exactly in a NNBF form as a con-
figuration dependent update to the SPO (see Fig. 1). This
set of configuration dependent SPO’s can either be written
as an additive low-rank 2r correction to the static SPO’s or
alternatively as a SPO correction generated from first doing
a rank r additive correction followed by a (right) multiplica-
tive correction. The way these corrections are generated by
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FIG. 1. [(a)–(d)] Visualization of wave functions. Red area are configuration-dependent matrices output from the NN; other colored area
depend on those outputs; black area are optimized but configuration-independent and white area is zero. Same color in a given line are identical
(up to a trivial added identity). Brackets with c in the lower-right indicate row selection of that matrix with configuration c. All wave functions
(including HFDS) can be written in the style of NNBF as an additive correction to the SPO. Additive correction to lower wave functions are
less constrained and this additional freedom is often reflected in better energetics. Note that (c) is formally a subset of (d) even when r > Ls.
(b) is a subset of (c) when the NN for (c) has two additional layers and otherwise we see that both (b) and (c) and (a) and (b) can be optimized
towards each other with low infidelity. The determinant factor in the left-hand side of (b) can be replaced by an exponential Jastrow with
energetics of similar quality. (e) wave-function architecture for various NNBF: fermion configuration c as a set of binary numbers is input
to a feed-forward neural network with two hidden layers. The output from the NN gives the r × Ns-size Cθ (c) and r × r-size Fθ (c) backflow
matrices, which are then combined with the static matrices A and B to form SPO for various NNBF wave functions. The amplitudes from the
wave functions are used to sample new fermion configurations with Monte Carlo.

HFDS involve using the NN output in a slightly complicated
fasion (i.e., taking inverse of some matrices and multiplying
them by others); we numerically demonstrate that these more
complicated low-rank corrections are worse than simply do-
ing a direct low-rank corrections and analytically show that
direct low-rank corrections are always worse than the standard
NNBF. This gives evidence that the type of NNBF induced by
HFDS is less expressive than the standard NNBF when the
number of hidden fermions is less than the physical fermion
number.

When r > Ns, we can no longer view HFDS as just NNBF;
instead, we have to view it as NNBF (still with an additive
rank-r correction to the SPO’s) times an NN-generated r × r
determinant. This multiplicative factor acts like a Jastrow

factor albeit one that can be negative; toward that end, we
call it a determinant factor. We find numerically that (fixing
the NNBF SPO update), using either a determinant factor,
a standard Jastrow factor or a standard Jastrow factor times
an additional configuration-dependent sign given similar en-
ergetics. When we allow the NNBF SPO update to be the
standard (i.e., full rank), we find little to no energetic improve-
ment to including any multiplicative factor.

Finally, we investigate what feature gives NNBF (equiv-
alently HFDS) its effective representability of low-energy
ground states. Toward that end, we rewrite a number of wave
functions as a standard (fixed, nonconfiguration dependent)
Slater determinant times a NN-generated multiplicative factor.
We find that the NN-generated multiplicative factor coming
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from NNBF differs from other similar-looking wave functions
by its rapid oscillations in both sign and magnitude, a feature
that we attribute to the row selection of the determinant in
these wave functions.

II. NEURAL NETWORK BACKFLOW

Both the NNBF and the HFDS build on top of Slater
determinants. A Slater determinant is represented by a set
of Ns single particle orbitals (where Ns is the total number
of fermions), where each of them is scalar-valued function
in space. On lattice systems, the SPO is defined by a vec-
tor on the lattice sites. In the continuum, it is defined by
a fixed set of numbers which specify the three-dimensional
(or two-dimensional) orbitals; this may be coefficients of a
Fourier expansion or points on a tricubic spline. Our work
will focus on the case of the lattice but the argument we make
holds generically where in the continuum the neural network
instead outputs the finite coefficients necessary to generate the
three-dimensional orbitals.

On a discrete lattice the SPO’s are a Ls × Ns matrix A,
where Ls = (2s + 1)L and L is the number of lattice sites
or spatial orbitals and s is the spin of fermions. Let A[c] be
the Ns × Ns matrix generated by taking the rows of A which
correspond to the locations of fermions in a configuration
c (equivalently evaluating the SPO function with respect to
the fermion coordinates in the continuum). The amplitude of
a Slater determinant wave function for c is then �SD(c) =
det A[c].

In NNBF, we instead make the SPO configuration-
dependent,

�(c) = J (c) det(Ãθ (c)[c]), (1)

where the subscript θ are parameters to the neural network
(NN) which takes as input a configuration c and outputs a ma-
trix (or a series of matrices) which is used to construct Ãθ (c).
We will see examples where Ãθ (c) is built from a product or
sum of other matrices and then the neural network outputs the
configuration-dependent matrices from which the product or
sum is taken. Take J (c) = 1 when it is not specified.

The NN needs to be permutation invariant with respect to
the input; in standard NNBF, this network is a feed forward
neural network (FFNN) which takes the input c as an Ls bit
binary number with 1’s at the sites the fermions occupy. To
make comparisons fair, throughout this paper we fix all the
layers (number of layers and layer widths w) except for a
final linear layer whose output changes to be the full set of
relevant matrices (in Sec. V B, we will discuss the possibility
of reconstructing the SPO for one wave function with another
by adding a few more layers, otherwise, we assume the NN’s
have identical architecture).

There are various ways the new SPO can be generated
from the output of the NN. For example, through an additive
correction

Ãθ (c) = A + Mθ (c), (2)

where Mθ (c) is an Ls × Ns matrix. Alternatively, a left ro-
tation, Ãθ (c) = Lθ (c)A (shown in Ref. [11] to be nearly
identical to an additive correction) or a right rotation Ãθ (c) =
AF̃θ (c) can be used to generate the new SPO. Left and right

rotations are qualitatively distinct with left rotations mixing
sites within each individual single particle orbital and right
rotations mixing SPO between each other at fixed site. We
can even compose changes to the SPO doing first an additive
correction and then a right rotation,

Ãθ (c) = (A + Mθ (c))F̃θ (c). (3)

Interestingly, right rotations can be factored out of the
Slater determinant and treated as a determinant factor of
the form

Jdet (c) = det F̃θ (c). (4)

The converse of this is also true: any determinant factor
det Fθ (c) for any Fθ (c) whose size r � Ns can be absorbed
into Eq. (3) by letting F̃ be F padded with the identity up to
size Ns. This will lead us to interchangably treat a determinant
factor and a final right rotation of the SPO as equivalent
(paying attention when necessary that r � Ns) throughout. For
example, the wave function of Eq. (3) will be JNNBF,

�TNNBF =
r�Ns

�JNNBF ≡ Jdet�NNBF. (5)

The NN parameters θ and A are all optimized when applied to
the ground state approximation for Fermionic Hamiltonian.
Later we will consider additional static matrices (e.g., B)
which like A do not depend on the neural network but whose
coefficients are optimized.

III. HIDDEN FERMION DETERMINANT STATES

In HFDS, starting with an Ls × Ns set of SPO’s A, the
HFDS supplements the physical system with the introduction
of r hidden fermions and consequently an additional r single
particle orbitals as well as some number of new sites. The r
additional single particle orbitals on the original “real” sites
are represented by a static Ls × r matrix B and B[c] represents
the rows selected from B corresponding to the real Fermion
configuration.

The evaluation of both the “real” and “hidden” single par-
ticle orbitals on the extra sites is done implicitly. The NN
outputs the value of the original Ns and extra r SPO’s with
respect to the (never explicitly specified) locations of the r
hidden fermions on the hidden sites. This gives the r × Ns

matrix Cθ (c) for the original SPO’s and the r × r matrix Fθ (c)
for the new SPO’s.

This will then give an amplitude, for r hidden fermions of

�r-HF(c) = det

[
A[c] B[c]

Cθ (c) Fθ (c)

]
. (6)

In the case of HFDS [Eq. (6)], the NN parameters θ and
A and B are all optimized when applied to the ground state
approximation for fermionic Hamiltonian.

IV. NUMERICAL METHODS

To support our statements about the relation among the NN
wave functions, we will provide some numerical evidences.
In this section, we will present the numerical methods for
the ground state approximation of the Hubbard model, and
the loss functions we define for mutual learning of wave
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functions, and the quantities for measuring the modulation on
the variational wave-function amplitudes.

A. Model and wave-function architecture

The variational wave functions are optimized to approxi-
mate the ground state of the Hubbard model

Ĥ = −t
∑

〈i, j〉,σ
(ĉ†

iσ ĉ jσ + H.c.) + U
∑

i

n̂i↑n̂i↓, (7)

where ĉiσ (ĉ†
iσ ) is annihilation (creation) operator for spin-σ

(σ =↑,↓) electron on site i, and n̂iσ = ĉ†
iσ ĉiσ is the number

operator. We will consider this model on an L = 4 × 4 square
lattice with periodic boundary conditions on both spatial di-
rections, interaction strength U/t = 8, and 1

8 hole doping, i.e.,
N↑ = N↓ = 7 [26].

The neural network architecture is designed to have two
hidden layers, each with 2048 neurons and ReLU activation
function, parametrized by θ, the set of weights and bias inside
the NN. The output is an oversized array, which is reshaped
into an r × Ns matrix Cθ (c) and an r × r matrix Fθ (c), which,
together with the static matrices (with entries independent of
c) A and B, are used to construct the SPO and correspond-
ing determinant matrices for various types of wave functions
considered in this work [see Fig. 1(e)].

B. Ground state approximation

To optimize the wave functions towards the ground state, in
this work, we use supervised wave function optimization with
Adam [27,28] (SWO-Adam, see Appendix H). Within SWO,
at each so-called imaginary-time step t , we set a target state
|�t 〉 = e−τ Ĥ |�t−1〉 ≈ (1 − τ Ĥ )|�t−1〉 for the present varia-
tional wave function |�t 〉. And a loss function to minimize in
this procedure is defined as the logarithm of the wave function
fidelity:

L = − ln
〈�t |�t 〉〈�t |�t 〉
〈�t |�t 〉〈�t |�t 〉 . (8)

The gradient of Eq. (8) is estimated with Monte Carlo sam-
pling from probability distribution p(c) = |�t−1(c)|2,

∂L
∂θ

≈ 2
∑

{c|p(c)}
�

[
α(c)Tr

(
Ãθ (c)−1 ∂Ãθ (c)

∂θ

)]
, (9)

where the coefficient α(c) is given by

α(c) = |ψ (c)|2∑
{c} |ψ (c)|2 − ψ (c)∗φ(c)∑

{c} ψ (c)∗φ(c)
, (10)

ψ (c) = �t (c)

�t−1(c)
, φ(c) = �t (c)

�t−1(c)
. (11)

By iteratively feeding the estimated gradient Eq. (9) into
Adam optimizer to minimize the loss function Eq. (8) at each
step t , the variational state |�t 〉 is undergoing imaginary time
evolution stochastically, with energy being decreased until
convergence.

The results, in terms of relative energy error to the exact
ground energy for the chosen model E0 = −11.868 [26], are
shown in Fig. 2.

FIG. 2. Variational energy results from ground state approxi-
mation on the Hubbard model (L = 4 × 4, PBC, U/t = 8, N↑ =
N↓ = 7). The two vertical dotted line show the locations of r =
Ns(blue) and r = Ls (pink), and the horizontal dashed line in (a) is
the lowest energy from r-BF at r = Ls from Fig. 6.

C. Mutual learning of wave functions

The mutual learning of wave functions is the optimization
of one wave function |�1〉, e.g., r-JBF (see Sec. V A), towards
the other one |�2〉, e.g., r-HF. Two metrics are defined for this
purpose: one is the wave-function fidelity

Fwf = 〈�1|�2〉〈�2|�1〉
〈�1|�1〉〈�2|�2〉 (12)

and the other is the square distance between the SPO’s

Lspo = 1

S

∑
{c}

|Ã1(c) − Ã2(c)|2, (13)

where Ã1/2(c) are the Ls × Ns-size SPO matrices generated
from |�1/2〉 for configuration c, and S is the number of sam-
ples in {c}. This latter metric is only applicable when both
ansatz generate SPO’s. We also defined the SPO fidelity as

Fspo =
∑
{c}

det(S1(c)†S2(c)) det(S2(c)†S1(c))

det(S1(c)†S1(c)) det(S2(c)†S2(c))
(14)

to measure the average overlap between the SPO’s for each
configuration c.
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These metrics are used as the distances between two wave
functions, and the target states are those from the ground state
approximation for Hubbard model.

D. Amplitude modulation

To give an estimate for how rapidly various wave func-
tions oscillate both with respect to the magnitude and sign,
we compute the following for different parts of the wave
function f (c).

Given a Markov chain for Monte Carlo sampling from
wave function |�〉, we collect all the configuration samples
from this chain removing successive identical configurations,
such that the remaining ones in the set {c j}J

j=1 have the
neighboring samples differing by the position of exactly one
fermion, i.e., |c j − c j+1| = 2 for all c j . We then consider
ln fratio( j) ≡ ln f (c j+1) − ln f (c j ) with a particular focus on
its average real and imaginary pieces, i.e.,

Fmagn = 1

J

J∑
j=1

|� ln fratio( j)|2, Fphase = 1

J

J∑
j=1

|
 ln fratio|2,

(15)

which are taken over the sample set {c j}J
j=1. These quantities

are independent of the norm of the wave function and allow
separate estimates of the magnitude and phase oscillations.

V. COMPARISON BETWEEN WAVE FUNCTIONS

We start by rewriting HFDS with r hidden fermions in
a somewhat different form. Without loss of generality, we
assume that Fθ (c) is invertible for all c (see Appendix A).
Then we can rewrite Eq. (6) as

�r-HF(c) = det(Fθ (c)) det((A − BFθ (c)−1Cθ (c))[c]). (16)

In the parlance of NNBF, the r-HF wave function is neural
network backflow with an additive correction of the form

Ãθ (c) = A − B(Fθ (c))−1Cθ (c) (17)

multiplied by a determinant factor Fθ (c) (alternatively an ad-
ditive correction composed with a right-rotation with F ).

This formula can be derived either directly by working with
determinants of block matrices; or alternatively by using the
matrix determinant lemma and computing the change in the
determinant between the (padded with identity) matrix A[c]
and the matrix (A + BCθ (c))[c].

r-HF then is a form of NNBF but does differ from the
most standard Jastrow-NNBF in two ways. First, there is
a somewhat nonstandard “Jastrow factor” consisting of the
determinant of a r × r matrix, which can be negative. We will
want to address two questions about this determinant factor:
(a) is it preferable to use a determinant factor compared to a
more basic (possibly also NN-inspired) Jastrow; (b) does the
addition of a determinant factor on top of NNBF span a larger
class of wave functions than no multiplicative factor at all.
Second, we will be interested in understanding the difference
in the additive corrections between r-HF and standard NNBF.
Allowing the NNBF to use as its multiplicative factor an r × r
determinant and fixing the NN’s to the same depth and width,
we want to ascertain whether using the NN output for matrices
C and F which are multiplied as in Eq. (17) to generate the
additive SPO is better then just outputting M directly.

A. Comparisons of additive corrections

We will address these in reverse order starting first with
comparing the additive correction between r-HF and JNNBF.

To make progress on this, it will also be useful to define a
closely related wave function

Ãθ (c) = A + BCθ (c) (18)

as well as its determinant-factor multiplied form r-JBF (equiv-
alently r-TBF). r-JBF differs from r-HF in that it directly uses
the outputted matrix Cθ (c) whereas r-HF uses (Fθ (c)−1)Cθ (c).

If we consider Eq. (17) or (18), we see that the additive
correction to the SPO is the product of an Ls × r matrix (B)
and an r × Ns matrix, (F−1

θ
Cθ or Cθ), resulting in a low-rank

additive correction of, at most, rank r. As generically the rank
of the additive correction to JNNBF will be full rank (i.e., Ns),
almost none of the JNNBF SPO’s will be representable by
either Eq. (17) or (18) when r < Ns. On the other hand, we can
show every additive SPO generated by r-JBF can also be gen-
erated by JNNBF. This is done by converting the r-JBF neural
network (even for r > Ls) into a JNNBF neural network of
the same size by first increasing the r-JBF neural network by
one linear layer (encoding B in the weights) so that it outputs
Mθ (c) and then compressing the two final linear layers into
a single linear layer. This results in a JNNBF wave function
with the same initial layers. Notice, it is also straightforward
to see that Ls-JBF and JNNBF span the same space (let B
be the identity) and that (r + 1)-JBF contains r-JBF (but the
converse is generically not true when r < Ns). In Fig. 2, we
also see evidence of this numerically as the energy of r-HF (or
r-JBF) decrease monotonically with r out to, at least, r = Ls

with the most significant decreases at r < Ns. See Appendix B
for more explicit arguments for these descriptions.

Analytically proving whether r-HF is strictly included in
JNNBF is made difficult by the F−1 term. That said, JNNBF
is almost certainly larger than r-HF (for r � Ls) as we expect
on general grounds that r-JBF and r-HF span a very similar
(if not identical) space. In fact, in the w → ∞ limit they do
span the same set of configuration-dependent SPO’s under the
assumption of universal approximation theorem for arbitrary-
width NN [29]. At finite w, we have numerically considered
low-energy (with respect to the 4 × 4 Hubbard model) r-JBF
and r-HF states. In Fig. 3, we show the fidelity after mutual
learning between r-HF and r-JBF (r � Ns) by maximizing the
wave-function fidelity Eq. (12). We found that r-HF and r-JBF
can be optimized towards each other (in both directions) so
that their infidelity is lower then 10−2. This is consistent also
with finding their optimized energies being very close with
r-JBF being slightly lower other than at r = 2. Unsurprisingly,
we find that JNNBF finds lower-energy variational states than
both r-JBF and r-HF at all r, as shown in Fig. 2.

This leaves us with the following situation:

r-HF ≈ r-JBF, (19)

r-JBF ⊂
spo

(r + 1)-JBF ⊂
spo

Ls-JBF =
spo

JNNBF, (20)

r-HF ⊂
spo

JNNBF : w → ∞, (21)
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FIG. 3. Wave-function fidelity from mutual learning of different
wave functions by maximizing the wave-function fidelity: optimiza-
tion of r-HF towards r-JBF (red circle), and 2r-BF (red square);
r-JBF towards r-HF (blue circle), and 2r-BF (blue diamond); 2r-BF
towards r-HF (green square), and r-JBF (green diamond). The target
states are from the low energy space of Hubbard model (L = 4 × 4,
PBC, U/t = 8, N↑ = N↓ = 7).

where we use the notation ⊂
spo

to indicate one class of wave

functions contains the same set of SPO’s as the other class
(a strictly stronger inclusion than the wave functions being
the same). Notice that Eq. (20) is also true if we remove the
determinant factor from each term.

B. Benefit of multiplicative factor on neural network backflow

In the previous section, we argued that when dressed with
a determinant factor, the additive corrections being used by
JNNBF were generically a superset of the additive correction
of other wave functions such as r-HF and r-JBF whose ad-
ditive corrections had restricted rank. In this section, we will
consider whether multiplying by a determinant out front—i.e.,
the determinant factor—is important at all—i.e., is NNBF
identical, in some limits, to JNNBF.

To make progress on this, we will actually start by focus-
ing on comparing r-JBF (or r-HF) with r-BF. To make this
comparison, we will take the r-JBF (r-HF) wave functions
and rewrite them as a BF wave function with a different ad-
ditive correction—i.e., we will have the multiplicative factor
absorbed into the additive correction.

When r � Ns, we can rewrite (see Appendix C for details),
these wave function as

�r-HF/JBF = det((A − B′C′
θ (c))[c]), (22)

where

B′ = [−A1 B], (23)

and

C′
θ (c) =

⎧⎪⎪⎨⎪⎪⎩
[

F − I 0
F−1C1F F−1C2

]
, for r-HF[

F − I 0

C1F C2

]
, for r-JBF

(24)

FIG. 4. Replot of the energy data from Fig. 2 for comparison
between r-JBF (blue) and 2r-BF (green). In addition to the re-
sults for previous model (L = 4 × 4, PBC, U/t = 8, N↑ = N↓ = 7)
(circle markers), the results from a larger lattice (L = 4 × 8, PBC,
U/t = 8, N↑ = N↓ = 14) (square markers), and results for small-size
NN (width=10) (empty circle markers) are displayed as well.

are of size Ls × 2r and 2r × Ns, respectively. Notice that this
means each r-JBF (r-HF) wave function can be written as
a slightly more complicated additive correction of rank 2r.
As both 2r-BF and r-JBF can be written as a neural network
backflow with rank-2r additive corrections, this suggests that
they might span a similar space of wave functions. Gener-
ically, we might expect that 2r-BF actually spans a larger
space because the 2r × Ls SPO’s are completely general for
2r-BF while for r-JBF (r-HF) the upper right r × (Ns − r)
corner of the additive correction is forced to be zero. In the
w → ∞ limit, it is strictly true that 2r-BF contains the (deter-
minant absorbed) SPO’s of both r-JBF and r-HF (but not the
converse).

Unsurprisingly, we find that energetics of 2r-BF and r-JBF
are similar on both 4 × 8 and 4 × 4 Hubbard models (see
Fig. 4) with 2r-BF being slightly lower in energy.

Moreover, through numerical fidelity matching of the low
energy states (see Fig. 3), we find that 2r-BF can represent
both r-JBF and r-HF with infidelities less then 10−2 for all r.
In the case of r-JBF, essentially this tells us that 2r-BF can
output the matrix C1F from r-JBF where previously it was
only outputting F and C separately. The converse (r-JBF and
r-HF matching 2r-BF) also achieves infidelities less then 10−2

except at r = 1 where the fidelity matching is worse in that
direction.

We even attempt to go beyond just fidelity matching and
try to directly optimize the SPO distance between 2r-BF and
r-JBF by optimizing the 2r-BF wave function (the opposite
is not possible because of the zeros). In Fig. 5, we also show
the results from mutual learning by minimizing the SPO dis-
tance Eq. (13). Notice that optimizing SPO distance is more
strict than optimizing the wave-function fidelity, as there is a
significant amount of degree of freedom for the SPO to give
the same amplitude during the operations of the row selection
and determinant evaluation. Hence, in Figs. 5(b) and 5(c), we
further show the SPO fidelity and the wave-function fidelity
that are consistent with the SPO distance in Fig. 5(a). In some
limit, optimizing the SPO distance and the fidelity are closely
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FIG. 5. (a) Square distance of SPO’s per configuration and matrix element, (b) SPO fidelity (1 − Fspo in the plot) and (c) wave-function
fidelity (1 − Fwf in the plot) from mutual learning of different wave functions by minimizing the SPO distance: optimization of r-HF towards
r-JBF (red circle); r-JBF towards r-HF (blue circle); 2r-BF towards r-HF (green square), and r-JBF (green diamond). The target states are
from the ground state approximation for Hubbard model (L = 4 × 4, PBC, U/t = 8, N↑ = N↓ = 7).

related (i.e., their respective infidelities become zero at the
same time), but they do probe the closeness of wave functions
in different ways. For example, it is possible to have low
SPO-distance but not super-high fidelity because even if the
SPO distance is small, its contribution to the fidelity can be
amplified by large values generated from the inverse of the
row-selected SPO (see Appendix D for a detailed discussion
of this). We find that the 2r-BF can match the SPO’s quite
successfully at all r’s for r-JBF and at r � 4 for r-HF.

While the above numerical experiments are performed by
fixing the NN for all the wave functions, we can also ask
whether there are “minor” architectural changes to the FFNN
for 2r-BF which would allow for an exact reconstruction of
other wave functions. We demonstrate an example of this
reconstruction in Appendix E where we write a r-JBF wave
function as a r-BF wave function with two additional layers
(with different activation functions) and widths expanded only
by an extra factor of r.

It is worth mentioning that it is also possible to reconstruct
r-HF from 2r-BF by adding a few more layers to the FFNN,
where we can use adjugate formula to obtain the inverse
of F , i.e., F−1 = adj(F )/ det F . However, this involves the
evaluation of determinants within the NN, and it will require
widths on the order of r! number of neurons if implemented
directly via the definition of determinant making this direct
approach impractical (we know that the evaluation of deter-
minant can be done in O(n3) steps, but this will require many
more layers within the NN). Nevertheless, the fidelity and the
energetics from Fig. 2 indicate that even without any change
in architecture, r-JBF or NNBF are already as expressive as
r-HF and effective in approximating the ground state without
the necessity of F−1 to be included in the additive correction.

We now directly consider the relation between NNBF and
r-JBF/r-HF. On the one hand, when 2r < Ls, almost none
of the NNBF SPO’s will be representable by either of these
two wave functions. On the other hand, we already know that
all the 2r-BF wave functions are representable by NNBF and
given the evidence that 2r-BF is a superset of r-JBF, this
suggests that all (r � Ns) r-JBF have (determinant absorbed)
SPO’s that are representable by NNBF; this is rigorously
true for w → ∞. This argument also suggests that JNNBF
and NNBF should span the same space for all r � Ns. Upon

optimization (see Fig. 2), we find that their energetics are
extremely close with very minimal r dependence in JNNBF
out to r = Ns (surprisingly actually even for r > Ns there is
still very little r dependence). We again attempt to match the
fidelity of r-JNNBF with NNBF; This optimization is done
through Ls-BF which is equivalent to NNBF. In Fig. 6, we
show the fidelity after learning r-JNNBF (r � Ns) with Ls-BF,
and the comparison between energy after the optimization.

1×

FIG. 6. Results of mutual learning of Ls-BF towards r-JNNBF
by maximizing the wave-function fidelity. (a) Wave-function fidelity
(b) variational energy after the optimization. The horizontal lines in
(b) is the lowest energy of Ls-BF after the optimization.
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And we find an infidelity of essentially 10−5 for all r, sug-
gesting that NNBF really does contain JNNBF.

The conclusion of this section is that including a determi-
nant factor which multiplies an NNBF wave function seems to
not increase the space of wave functions spanned by NNBF,
and increases the space of wave functions spanned by r-BF up
to 2r-BF when r � Ns. When the number of hidden fermions
is very large - more then the number of actual fermions, it is
less clear whether the determinant factor should have addi-
tional benefit although in practice we see almost no decrease
in energy for JNNBF at r > Ns (see Fig. 2).

C. Exponential Jastrow versus determinant factor

What we have seen in the previous section, is that the
determinant factor matters very little for JNNBF, but does
increase the “rank” or accessible matrix size of BF from r
to 2r. Also, when r > Ns, formally the determinant factor can
be important. If one is going to use a multiplicative factor to
enhance the wave function, it is worth considering whether the
determinant factor is better than a more standard alternative
of a Jastrow factor. In particular, a reasonable comparison is
to use an exponential Jastrow where the term being expo-
nentiated also comes from NN; we call this class of wave
functions expJBF. Like a standard Jastrow, we have that there
is always a positive correction to the determinant backflow.
We can additionally test whether this is important by one more
multiplicative factor, expJsBF which multiplies the Jastrow
factor by an additional NN-generated scalar that is allowed
to be positive and negative.

In this section, we primarily compare the energetic of these
wave functions, to numerically check which have lower en-
ergy on our prototypical 4 × 4 Hubbard model [see Fig. 2(b)].
We find that the energy of expJBF and expJsBF are almost
identical although the signed version gives slightly better re-
sults at large r. In comparison against JBF, we find that at
small rank, we get lower energy from the exponential Jastrows
than the determinant factor; this relationship seems to switch
at large enough r.

A plausible mechanism for this difference is that the role
of the Jastrow or the multiplicative factor is to be able
to introduce exponentially large separation between differ-
ent configurations. An exponential Jastrow naturally has this
ability; the determinant factor essentially emulates this ex-
ponential separation through the product of the respective
matrices eigenvalues. At low r, it is restricted in the num-
ber of such terms in the product and has trouble matching
the exponential Jastrow. This all said, the difference between
the various multiplicative factors are tiny especially when r
is large, and it is not clear that one should take those tiny
differences at this level seriously. The high-level result is that
some multiplicative factor marginally improves a restricted
form of the NNBF wave function, but different reasonable
multiplicative factors lead to essentially the same marginal
improvement; there seems to be nothing fundamentally spe-
cial or powerful about the determinant factor.

D. Determinant factor versus effective determinant factor

Throughout this paper, we have been making a somewhat
artificial distinction between the determinant factor and Slater

determinant pieces of the wave functions. There is a sense
in which one could make a different decomposition of the
wave functions we have been considering, by writing the
wave function as a fixed Slater determinant by an additional
“effective determinant factor.” In particular, we can write all
the wave functions considered so far as

�(c) = det(A[c]) det(F̄ (c)), (25)

where F̄ absorbs the rest of the wave function except the static
Slater determinant part A[c]. Notice that (1) F̄ will depend on
the NN in some way and (2) unlike all the other multiplica-
tive factors we have considered, the matrix F̄ for which we
are taking the determinant of may involve row selection. In
particular, we can write NNBF as

�NNBF(c) = det(A[c]) det(I − CA[c]−1B[c]) (26)

and r-HF as

�r-HF(c) = det(A[c]) det(F − CA[c]−1B[c]). (27)

Naively, it is not obvious why (or if) these wave functions
should be superior to a Slater determinant dressed with a
determinant factor, i.e., F̄ = Fθ (c) which we call JSD. Nu-
merically, we have examined this wave function and find JSD
is much worse in energy than any of the NNBF-type wave
functions. It is naively surprising that the NN in JSD is unable
to learn Fθ (c) = det(I − CA[c]−1B[c]) at our given width;
notice in the w → ∞ limit JSD could learn that Fθ (c).

To understand the mechanism for this distinction, let us
first look at the determinant factor det F (c). The NN, as well
as the determinant function, is a smooth function where small
change of the input value will only cause a small change to
the output; the determinant factor will not change drastically
as the input c moves between the nearest configurations. How-
ever, the amplitude of the exact ground state is not necessarily
a smooth function of the configurations, thus is likely to go
beyond the modulation ability of a determinant factor at mod-
erate w.

On the other hand, the effective determinant factor from
NNBF det(I − CA[c]−1B[c]), has the presence of A[c]−1B[c],
which is essentially not a smooth function of input configu-
rations due to row selection and will impose a drastic change
on top of the smooth change from the NN, making it possi-
ble to capture the pattern from the true ground state, while
still maintaining the generalization ability of the NN even at
small w.

We can explicitly test and quantify whether the effective
determinant factor with row selection generates significantly
stronger modulation than directly using the NN output as a
determinant factor. To accomplish this, we want to look at the
difference in amplitudes for configurations that are “nearest
neighbors” (see Sec. IV D for details).

Here the following quantities will be considered: (1)
f (c) = det Fθ (c), where det Fθ (c) is the determinant factor
from the definition of wave-function ansatz, e.g., the one from
Eq. (16); (2) f (c) = det F̄ (c), the effective multiplicative
factor obtained by factoring out the static Slater determi-
nant part of the wave function, e.g., det F̄ (c) = det(Fθ (c) −
Cθ (c)A[c]−1B[c]) for r-HF; (3) f (c) = Sk j (c), the matrix ele-
ment from the SPO.
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FIG. 7. (a) Samples of fratio for the effective determinnat factor from r-HF and r-JSD (r = Ns) along a Markov chain. (b) The average square
norm of the real part of f ′. (c) The average square norm of the imaginary part of f ′. In (b) and (c), the results for the defined multiplicative
factors (F ) and the effective multiplicative factors (F ′) are plotted for all the wave functions considered in this paper. The wave functions are
from the ground state approximation for Hubbard model (L = 4 × 4, PBC, U/t = 8, N↑ = N↓ = 7).

First, we look at a prototypical example for F̄ of both
r-HF and r-JSD at r = Ns where we measure the ratio
of nearest-neighbor amplitudes of the effective determinant
factor, fratio(c j ) = det F̄ (c j+1)/ det F̄ (c j ) for random config-
urations sampled from |�(c)|2.

In Fig. 7(a), we can readily see an obvious distinction
between the fratio, from r-HF and r-JSD. More specifically, the
ratios from r-JSD show that the determinant factor, det F̄ =
det Fθ , modulates the wave-function amplitude in a weak way
for both the sign structure and the magnitude. In contrast, the
effective determinant factor from r-HF modulates both the
magnitude and the sign structure in a strong way.

We can further quantify this modulation by computing the
real and imaginary components of the log-ratio ln fratio(c j )
which act as an effective derivative, and the norms of them
measure the modulation on the magnitude and sign structure,
respectively. Using the logarithm importantly lets us see rapid
relative changes in the amplitude even when | fratio| � 1. In
Figs. 7(b) and 7(c), we again observe a sharp distinction
between the effective determinant factors and determinant
factors from all types of the wave functions considered in this
work. Note that the larger the norm is, the stronger the mod-
ulation is, so that the modulation from effective determinant
factor is nearly exp(0.75) ≈ 2.1 times stronger, based on the
differences of the average norms in Figs. 7(b) and 7(c), than
the determinant factor on both magnitude and sign structure.
Interestingly, we can also observe from Figs. 7(b) and 7(c) that
at lower rank, the effective determinant factor modulations
from r-HF, r-JBF and r-BF are weaker than their counterparts
at higher rank, which is consistent with their relatively higher
energies in Fig. 2.

Alternatively, we compute the log-ratio of the matrix ele-
ments from SPO, and show the mean and variance over these
Ls × Ns elements in Fig. 8. From them, we can extract some
information about the modulation on the SPO from various
types of wave-function ansatz. Although the construction of
SPO does not involve the row selection as the wave-function
amplitude, we still observe weaker modulations from JSD.
The mean for JSD is always lower than those from NNBF-
type wave functions, in both magnitude (real part of log-ratio)
and sign (imaginary part of log-ratio) modulation, indicat-
ing that on each SPO element, JSD changes the values in a

relatively weaker way. Moreover, the smaller variance from
JSD shows that JSD impose a more uniform modulation over
the entire SPO, suggesting that JSD is less capable of iden-
tifying which part of SPO is worth stronger modulation than
the rest.

Considering the geometry for the SPO, it is easy to see that,
in the cases of r � Ns, the SPO of JSD is always within the
linear space spanned by the column vectors from the static
matrix A, while NNBF is dynamically changing the space for
the SPO given different configuration inputs. In Appendix G,
we demonstrate that it is impossible for JSD to reproduce the
SPO from NNBF.

Overall we see that the effective determinant factor with
row selection imposes stronger modulation on the wave func-
tion amplitudes, achieving better performances on ground
state approximation. The investigation on SPO also suggests
that NNBF produces a broader class of SPO that goes beyond
the representability of Slater-Jastrow type wave functions,
indicating that NNBF is likely to be a better ansatz candidate
for Fermionic systems.

VI. SUMMARY AND OVERVIEW

In this work, we have considered a series of different
NNBF wave functions and their relation with HFDS. We show
that HFDS can be written in the NNBF form with an r × r
determinant factor, det Fθ (c), and an additive correction to the
SPO of the form BFθ (c)−1Cθ (c), where F−1C is an r × Ns

matrix [see Fig. 1(a) bottom and Eq. (16)]. This is not of
full rank for r � Ns and is to be contrasted with the standard
NNBF where the full-rank additive correction (an Ls × Ns

matrix) is generated directly.
The determinant factor piece turns out to not be critical for

NNBF wave functions: it can be replaced by an exponential
Jastrow which achieves similar (and often better) energetics
[see Fig. 2(b)] or alternatively when r � Ns it can be absorbed
into the additive correction to the SPO resulting in a new
more complicated additive correction BC′, where C′ is now
“taller” by size r [see right-hand side of Figs. 1(a) and 1(b)]
and Eqs. (22)–(24).

We are then left comparing various different additive
corrections of the form BC′ where C′ is generated from
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FIG. 8. The average norm of effective derivative on the SPO elements for r-HF, r-JBF, 2r-BF and r-JSD. (a) The mean of Fmagn over all
the SPO elements; (b) the mean of Fphase; (c) the variance of Fmagn over all the SPO elements; (d) the variance of Fphase; and the wave functions
are from the ground state approximation for Hubbard model (L = 4 × 4, PBC, U/t = 8, N↑ = N↓ = 7).

various combinations of neural network output. Two general
principles appear here. First and unsurprisingly, larger r is
better until r = Ls. Larger r allows access to more flexibility
in the matrices that can be generated including, out to r = Ns,
access to higher rank matrices. Beyond r � Ls, we can reduce
additive corrections to r = Ls. Secondly, the different ways
we have considered to use the NN output to produce a C′ of
size 2r (i.e., r-JBF, r-HF, 2r-BF, etc.) all are roughly similar
in energetics and expressibility and, where they differ, favor
the states which are simpler, more direct, and more generic
updates (i.e., 2r-BF). In particular, we see that r-HF and r-JBF
are empirically very close energetically [with a slight edge to
r-JBF, see Fig. 2(a)] and that we can optimize them towards
each other with relatively low infidelity in each direction (see
Fig. 3). 2r-BF is consistently lower in energy than both r-JBF
and r-HF (see Fig. 4) and optimizing toward and from 2r-BF
can be done with low infidelity (see Fig. 3). In the limit of
large width, 2r-BF can represent any SPO in r-JBF and r-HF;
and with two extra layers can represent any SPO in r-JBF
at finite width. Amongst the various NNBF wave functions,
these two principals suggest that using standard NNBF is
better energetically and likely spans the space of all the other
wave functions we have considered when r � Ns. For r > Ns,
it likely makes sense to use NNBF with either an exponential
Jastrow or determinant factor (although the improvement in
energy even then is somewhat marginal).

NNBF and HFDS have both been successful in capturing
highly accurate ground states. We compare a wave function
JSD which is similar on the surface, a determinant factor times
a Slater determinant, and find that it is significantly worse.
To help understand what aspects are endowing NNBF with
its particular advantage, we rewrite all our wave function as
a (nonconfiguration independent) Slater determinant times an

“effective determinant factor” and then compare properties of
these effective factors. In cases, such as NNBF and HFDS
where the effective determinant factor involves row selection,
we see that both the sign and amplitude are rapidly oscillating
as a function of configuration, something which does not
happen at moderate width for JSD. This suggests that some of
the advantage of NNBF is coming from the ability to rapidly
change the wave function.

Unlike the tensor network ansatz, which are well under-
stood in terms of entanglement [30–35], the development
of neural quantum states (NQS) largely relies on heuristic
experiments, and lacks a comprehensive understanding for
the underlying principles [23,36–41]. We hope our work
paves the way for unifying various types of NQS and iden-
tifying the crucial components for an efficient wave function
ansatz, which, in turn, may lead to the discovery of more
accurate and scalable NQS.
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APPENDIX A: VALIDITY OF EQ. (16)

In Sec. V, we write down the transformed wave-function
expression for HFDS, Eq. (16), by assuming that the backflow
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matrix Fθ (c) is invertible. Here we are proving that even if
originally Fθ (c) is not invertible for all the configuration input
c’s, we can always construct an exact transformation (without
changing the amplitude output or the neural network architec-
ture) on HFDS, such that

(1) Fθ (c) is invertible for all c’s when the backflow matrix
[Cθ (c) Fθ (c)] for r-HF is at least rank r.

(2) Equation (16) is still valid for all c’s when there ex-
ists backflow matrix [Cθ (c) Fθ (c)] for r-HF with rank less
than r.

Given the original HFDS wave-function form

�r-HF(c) = det

[
A[c] B[c]

Cθ (c) Fθ (c)

]
. (A1)

We can divide the configuration basis sets into two disjoint
sets: invertible set V whose elements c give invertible Fθ (c),
and uninvertible set V̄ with uninvertible Fθ (c), or equivalently,
det Fθ (c) = 0. The underlying reason for det Fθ (c) = 0 is that
the r × r matrix Fθ (c) is made up of less than r, say, rc, lin-
early independent vectors. Performing Gaussian elimination
on the columns of Fθ (c), we will end up with

Fθ (c) → [ f̃1,θ (c) f̃2,θ (c) · · · f̃rc,θ (c) 0 · · · 0],

(A2)

where { f̃ j,θ (c)}rc
j=1 are r-dimensional column vectors. Because

of the presence of zero vectors in Eq. (A2), we get the un-
wanted det Fθ (c) = 0 and uninvertible Fθ (c). Nevertheless,
suppose that a c ∈ V̄ has backflow matrix [Cθ (c) Fθ (c)] is
of rank at least r, but unfortunately has rank-deficient Fθ (c)
as given by Eq. (A2), we can mix it with new linearly in-
dependent vectors from Cθ (c) to remove those zero vectors,
such that Fθ (c) is full-rank and invertible. To do so, we in-
troduce an (Ns + r) × (Ns + r) mixing matrix K , which is
upper-triangular with 1’s on the diagonal:

K =

⎡⎢⎢⎣
1 k12 · · · k1,Ns+r

0 1 · · · k2,Ns+r

0 0 . . .
...

0 0 · · · 1

⎤⎥⎥⎦. (A3)

We right multiply the r-HF matrix with this mixing matrix K ,
the result of which will be transparent if we rewrite the r-HF
matrix in terms of column vectors:

[A[c] B[c]Cθ (c) Fθ (c)]K

= [h1 · · · hNs f1 · · · fr]K

= [h1 · · · hNs f 1 · · · f r], (A4)

where

hm =
m−1∑
j=1

k j,mhj + hm, (A5)

f m =
Ns∑
j=1

k j,Ns+mhm +
m−1∑
j=1

kNs+ j,Ns+m f j + fm. (A6)

Effectively, the K matrix adds to each column vector a lin-
ear combination of previous ones. By choosing appropriate
matrix entries for K , the right multiplication of K would
increase the rank of Fθ (c) up to r (full-rank) via adding new
column vectors from Cθ (c). As long as those c ∈ V̄ satisfy the
condition that the backflow matrix [Cθ (c) Fθ (c)] is of rank
at least r, there always exists some column vector from Cθ (c)
to mix in to make Fθ (c) full-rank.

Moreover, as K is an upper-triangular square matrix with
constant entries (not dependent on c), and det K = 1, this mix-
ing will not change the wave-function amplitude of HFDS.
The practical realization on HFDS for this mixing is simply to
add one more linear layer with weights constructed from K to
the output layer of the NN that generates the backflow matrix.
This new linear layer can just be absorbed into the last layer
of the original NN, as a result, this mixing can be achieved by
simply adjusting the weights and bias on the original output
layer even without changing the NN architecture.

Since the effect of the mixing matrix K is to mix new
vectors into Fθ (c), the choices for the nonzero entries of K
are almost generic, as long as it circumvents the situation
where the mixing accidentally decreases the rank for those
originally full-ranked Fθ (c), c ∈ V . But this only happens for
a zero-measure set in the parameter space defining K , which
can be excluded from the determination of K .

At last, we consider the situation where the backflow ma-
trix has rank less than r, which indicates that there are not
sufficient column vectors from Cθ (c) to make Fθ (c) full-rank,
such that Fθ (c) is always rank-deficient, i.e., det Fθ (c) = 0 no
matter what mixing matrix K we have chosen. In this case, not
only the columns of the r × (Ns + r) backflow matrix are lin-
early dependent, but the rows are also linearly dependent. As a
consequence, the r-HF matrix for HFDS is rank-deficient, and
will give zero amplitude from its determinant. Nevertheless,
Eq. (16) is still valid, since it also gives zero amplitude as the
original HFDS amplitude, due to det Fθ (c) = 0. Although it
brings with an ill-defined F−1 in the expression, in practice,
this none-valued output can be replaced with 0 during pro-
gramming without affecting the performance.

In fact, this mixing procedure is also able to bring Fθ (c)
away from rank-deficient regimes of θ, where Fθ (c) has
extremely small but nonzero singular values and F−1 has ex-
tremely large entries, via, for example, optimizing the entries
of matrix K with some proper loss function. By doing so,
the learning of r-HF with r-JBF or r-BF will be practically
easier.

APPENDIX B: EXPLICIT CONSTRUCTION
FOR SUBSET SPO

In Sec. V A, we give statements on the relation between
SPO’s from different classes of wave-function ansatz. Here
we provide explicit construction of SPO to support some of
these statements.

(1) We start with r-HF ⊂
spo

(r + 1)-HF for any r. Recall

that the SPO for r-HF is given by A − BF−1C, which is
an Ls × Ns matrix; it is straightforward to see that it can be
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reproduced in the class of (r + 1)-HF, by letting

A′ = A, B′ =

⎡⎢⎢⎣B

0
0
...

0

⎤⎥⎥⎦, (B1)

C′ =
[

C
0 0 · · · 0

]
,

F ′ =

⎡⎢⎢⎢⎢⎣ F

0
0
...

0
0 0 · · · 0 1

⎤⎥⎥⎥⎥⎦, (B2)

such that A′ − B′F ′−1C′ = A − BF−1C for any c. Note that
the constant elements on the backflow matrices C and F can
be constructed by assigning the weights on the final linear
layer to those positions as 0 and the bias as the corresponding
constant values (0 or 1 here).

Similarly, we can also show that r-JBF ⊂
spo

(r + 1)-JBF

and r-BF ⊂
spo

(r + 1)-BF, using the same construction as r-HF

(Eqs. (B1) and (B2)), such that A′ − B′C′ = A − BC for
any c.

(2) Next, we show that for any r, including the cases of
r � Ls, we have r-JBF ⊂

spo
Ls-JBF and r-BF ⊂

spo
Ls-BF, both of

which amount to showing A′ − B′C′ = A − BC, where B′, C′
are now matrices of size Ls × Ls and Ls × Ns, respectively.
Copy the neural network generating C for r-BF or r-JBF and
add one more linear layer on top of it. The weights and bias
of this additional layer are given by

W(mn)(kl ) = δnlBmk, b(mn) = 0, (B3)

where we use the matrix index (mn), (kl ) to index the weights
and bias. The output of this new linear layer will directly give
us the Ls × Ns matrix C′ = BC, because

C′
mn =

∑
k,l

W(mn)(kl )C(kl ) + b(mn) =
∑

k

BmkCkn ≡ (BC)mn.

(B4)

Note that this additional linear layer (W ′, b′) can be absorbed
into previous linear layer (W, b) for C simply by W ← W ′W ,
b ← W ′b + b′. As we have gotten C′ = BC, this construction
is completed by the assignments of A′ = A and B′ = ILs .

(3) Here we demonstrate that, given an NNBF that outputs
matrix M [see Eq. (2)], we can generate an Ls-BF, that outputs
matrix C, such that BC = M.

We start by rewriting a general Ls-BF where we absorb B
into the NN, which amounts to adding one more linear layer
with weights as

W ′ =

⎡⎢⎢⎣
B 0 · · · 0
0 B · · · 0
...

...
. . .

...

0 0 · · · B

⎤⎥⎥⎦, (B5)

where this is an Ns × Ns block matrix; We can combine it
with the weight matrix from previous linear layer W which is

given as

W =

⎡⎢⎢⎣
W1

W2
...

WNs

⎤⎥⎥⎦, (B6)

where Wh, h = 1, 2, . . . , Ns (H is the width of last hidden
layer) are arbitrary r × H matrices. Now the resulting weight
W ′′ = W ′W is still a generic (LsNs) × H matrix with no con-
straints, because each block of W ′′ is given by

W ′′
h = BWh (B7)

and is of full-rank Ls as B and Wh are of size Ls × r and r × H ,
respectively, with r � Ls. We can assume B is of full rank
Ls (if not, it can be brought to full rank by mixing with A,
see Appendix A), such that there are complete sets of linearly
independent vectors within it. Finally, the arbitrary choice of
Wh enables W ′′

h to be any Ls × H matrix.
The reverse direction of the relation between NNBF and

r-BF (r � Ls) is also true by simply choosing a common basis
set as B for each Wh.

APPENDIX C: ABSORPTION OF DETERMINANT
FACTOR INTO SPO

In this section, we show the derivation for the absorption
of determinant factor into SPO for r-HF and r-JBF.

For r � Ns, we embed the r × r matrix Fθ (c) in an Ns ×
Ns block-diagonal matrix with identity on the extra diagonal
block

[Fθ] →
[

Fθ 0
0 INs−r

]
≡ F̃θ. (C1)

This leaves the wave-function amplitude unchanged, since
det F = det F̃ , but allows us to multiply the two square matri-
ces from the determinant factor and from the SPO’s together
before the determinants are computed

�r-HF(c) = det Fθ (c) det((A − BF−1
θ (c)Cθ (c))[c])

= det F̃θ (c) det((A − BF−1
θ (c)Cθ (c))[c])

= det[(A − BF−1C)F̃ [c]]

= det[(A + A(F̃ − I ) − BF−1CF̃ )[c]]. (C2)

From Eq. (C2), we see a new SPO matrix of size Ls × Ns. Next
we transform it into BF.

After writing C in terms of block matrices as well, i.e.,

C = [C1 C2] (C3)

where C1 and C2 are of size r × r and r × (Ns − r), respec-
tively, we have

BF−1CF̃ = BF−1[C1 C2]

[
F 0
0 I

]
= B[F−1C1F F−1C2].

(C4)
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Meanwhile, with A also in block matrix form, i.e.,

A =
[

A11 A12

A21 A22

]
= [A1 | A2], (C5)

where A1 and A2 are of size Ls × r and Ls × (Ns − r), re-
spectively, A11 and A21 are of size of r × r and (Ls − r) × r,
respectively, etc, we have

A(F̃ − I ) =
[

A11 A12

A21 A22

][
F − I 0

0 0

]
=

[
A11(F − I ) 0
A21(F − I ) 0

]
= A1[(F − I ) 0]. (C6)

Combining Eq. (C4) and Eq. (C6) together, we eventually
obtain

�HF(c) = det

[
A[c] B[c]

Cθ (c) Fθ (c)

]
= det((A − B′C′

θ (c))[c]), (C7)

where

B′ = [−A1 B], C′
θ (c) =

[
F − I 0

F−1C1F F−1C2

]
(C8)

are of size Ls × 2r and 2r × Ns, respectively.
Likewise, for r-JBF, we have

�JBF(c) = det(Fθ (c)) det((A − BCθ (c))[c])

= det((A − B′C′
θ (c))[c]), (C9)

where

B′ = [−A1 B], C′
θ (c) =

[
F − I 0
C1F C2

]
(C10)

are of size Ls × 2r and 2r × Ns, respectively.

APPENDIX D: RELATION BETWEEN WAVE-FUNCTION
FIDELITY AND SPO DISTANCE

In Fig. 5, we observe that at r = 1, 2, though the SPO dis-
tance Eq. (13) is small [Fig. 5(a)], the wave-function fidelity
Eq. (12) is relatively worse [Fig. 5(b)], compared with larger
r cases. In this section, we will look into this observation by
showing the relation between the wave-function fidelity and
the SPO distance.

Within VMC, the wave-function fidelity can be
calculated as

Fwf =
(

1
S

∑
{c}

�(c)
�(c)

)2

1
S

∑
{c}

(
�(c)
�(c)

)2 , (D1)

where S is the size of sample set {c} sampled from |�(c)|2. As
�(c)/�(c) is close to 1 here, we rewrite it as

�(c)

�(c)
≡ 1 + x(c). (D2)

FIG. 9. Comparison between the approximate results Eq. (D6)
for the wave-function fidelity and the exact results from VMC. The
target wave functions are r-JBF from ground state approximation,
and 2r-BF and r-HF are optimized towards the target wave functions
by minimizing the SPO distances.

For most of c, we should have |x(c)| � 1. We relate x(c) to
the SPO distance component with Taylor expansion around
�(c) up to the first order,

x(c) = det Ā(c)

det Ā0(c)
− 1 ≈

∑
jk

Ā0(c)−1
k j (Ā(c) − Ā0(c)) jk,

(D3)

where Ā(c) and Ā0(c) are the square matrices in the determi-
nant wave-function form of |�〉 and |�〉, respectively. Note
that the truncation in Taylor expansion is one of the sources
of error for our final approximation formula, which can
nonetheless be systemically improved by including higher-
order terms.

In the following, we will perform Taylor expansion up to
the second order on wave-function fidelity as well. The first-
order term will vanish as Fwf = 1 is a stationary point. After
defining

x = 1

S

∑
{c}

x(c), x2 = 1

S

∑
{c}

x(c)2 (D4)

and |x| � 1, |x2| � 1, we can either use chain rule to obtain
the Hessian as

δ

δĀ(c′) j′k′

δ lnFwf

δĀ(c) jk
= 1

S2
Ā0(c)−1

k j Ā0(c′)−1
k′ j′ (1 − Sδc,c′ ) (D5)

or directly expand on lnFwf in terms of x and x2, we obtain the
approximation formula for lnFwf, the deviation from perfect
fidelity Fwf = 1, as the variance of x(c),

lnFwf ≈ x2 − x2. (D6)

In Fig. 9, we examine the accuracy of Eq. (D6) by comparing
with the exact results from VMC.
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FIG. 10. Probability distributions of ‖x(c)‖2 and |x(c)|2 at r = 1 and 14(Ns ). The corresponding SPO distance and wave-function fidelity
are given in the legends.

We also found that x2 � x2. Then by just comparing x2

with the SPO distance Eq. (13), which we rewrite as

Lspo = 1

S

∑
{c}

‖x(c)‖2 = 1

S

∑
{c}

∑
jk

|Ā(c) − Ā0(c)|2jk, (D7)

we can see that wave-function fidelity is effectively a weighted
average of SPO distance on each element, with the weights
given by Ā0(c)−1 from the target state. Further evidence is
shown from the comparison between Figs. 10(a), 10(c) and
10(b), 10(d) where the difference of wave-function fidelity is
affected not only by the SPO distance, but also the target wave
function.

APPENDIX E: RECONSTRUCTION OF r-JBF WITH 2r-BF

Despite the existence of matrix multiplication within
r-JBF, it is possible to reconstruct r-JBF rigorously from 2r-
BF with feed-forward neural networks still. In this section we
show it explicitly.

First, with the feed-forward neural network that generates
backflow matrices Cθ (c) and Fθ (c) for r-JBF, we add an acti-
vation function a(x) = ln(x) to this layer (note that originally
for r-JBF, this layer does not have activation function on it.
Also note that for the case where x = 0, we can nonethe-
less replace it with x + ε, ε � 1, which will not affect the
subsequent steps). Now, we have the output from this mod-
ified layer as ln Cjk ( j = 1, 2, . . . , r; k = 1, 2, . . . , Ns), and
ln Flm (l, m = 1, 2, . . . , r). In the following, we will work on
the first r columns of ln C, i.e., ln C1, in order to reproduce
C1F with feed-forward neural network. As for the remaining
ln C2, we construct the weights and bias as an identity map,
and the nonlinear activation function introduced later will
bring ln C2 back to the original C2 from r-JBF.

Next, we add one more layer to this neural network,
whose activation function is a(x) = exp(x), bias are 0’s, and

weights are

W [C]
(xyz)( jk) = δx jδzk, W [F ]

(xyz)(lm) = δzlδym, (E1)

where x, y, z = 1, 2, . . . , r, such that the output from this
layer is

Dxyz = exp

⎛⎝∑
jk

W [C]
(xyz)( jk) ln C1, jk +

∑
lm

W [F ]
(xyz)(lm) ln Flm

⎞⎠
= C1,xzFzy.

(E2)

At the end, we add one more linear layer with nonzero
weights as

W( jm)(xyz) = δ jxδmy (E3)

such that the output is

C̃1 =
∑
xyz

W( jm)(xyz)Dxyz =
∑

z

C1, jzFzm ≡ (C1F ) jm. (E4)

Overall, by introducing two more layers of widths
r2(Ns + r) and r(Ns + r) to the original neural network for
r-JBF, we are able to reproduce the backflow matrices with
2r-BF. Therefore we have analytically proved that r-JBFis a
subset of r-BFat finite w if we allow r-BF to have additional
layers.

APPENDIX F: COMPUTATIONAL COST

In this section, we give the computational cost for ob-
taining the amplitude from various types of NNBF wave
functions.

Let us start with NN part. The input size is Ls, and the
output size is rNs + r2, and assume the width of NN is w, then
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FIG. 11. (a) Energy and (b) fidelity [associated with the loss function Eq. (8)] from r-HF at r = 64 during SWO optimization (τ = 0.018)
with optimizer SGD (red), momentum (blue), and Adam (green) for Hubbard model (L = 4 × 8, PBC, U/t = 8, N↑ = N↓ = 14).

the computational cost due to the matrix-vector multiplication
is given by O(w2 + wLs + wr2 + wrNs).

Next, the cost of the evaluation of determinant is

r-HF : O((Ns + r)3) = O
(
N3

s + r3),
r-BF : O

(
rN2

s + N3
s

)
,

r-JBF : O
(
r3 + rN2

s + N3
s

)
. (F1)

In Appendix E, we show that to reproduce r-JBFfrom
2r-BF, we can add two more layers of width r3 + r2Ns and
rNs + r2, this will give an extra cost as O(r3(Ns + r)2) =
O(r3N2

s + r5).

APPENDIX G: FAILURE OF SPO MATCHING
WITH JSD TOWARDS NNBF

In this section, we illustrate the impossibility of matching
the SPO of NNBF with JSD for rank r � Ns, thus, combining
with the numerical evidences Figs. 2(b) and 8, we conclude
that NNBF represents a broader space of SPO.

For simplicity, we consider the case of Ns-JSD and Ns-BF.
Since the NN generating the back flow matrices has linear
layer as the last layer, there are constant matrices b in the
backflow matrices, then we rewrite the SPO as

SJSD(c) = AJSDFJSD,θ (c)

= AJSDbJSD + AJSDF̃JSD,θ (c),

SBF(c) = ABF − BBFCBF,θ (c)

= ABF − BBFbBF − BBFC̃BF,θ (c). (G1)

In order to match the SPO, SJSD(c) = SBF(c), we have to solve
the following equations for static matrices:

AJSD = −BBF,

AJSDbJSD = ABF − BBFbBF. (G2)

However, the second equation above is an over-determinant
equation, so there is no exact solution for bJSD, unless ABF −
BBFbBF falls into the linear space spanned by the column
vectors of AJSD. However, this special case is not generically
true for the BF wave function we are considering.

In conclusion, we have showed that it is impossible for JSD
to reproduce the same SPO from BF.

APPENDIX H: SUPERVISED WAVE-FUNCTION
OPTIMIZATION

In this section, we provide detailed information on the
SWO method, including the derivation for the gradient for-
mula (9), we use for NNBF (and its variants) and comparison
between various optimizers.

To begin with, we note that SWO is a first-order opti-
mization method for variational wave function to undergo
imaginary time evolution in a stochastic way. As already
mentioned in Sec. IV, at each imaginary-time step t , we set
the target state as the state evolved by imaginary time τ ,
i.e., |�t 〉 = e−τ Ĥ |�t−1〉 ≈ (1 − τ Ĥ )|�t−1〉, where τ needs to
be small enough for the latter approximation to be valid.
In practice, we notice that the energy can be minimized
successfully with τ < 1/Et=0, where Et=0 is the variational
energy of randomly initialized state.

To derive the gradient formula Eq. (9), we first take
derivative of the loss function Eq. (8) with respect to the
parameter θ,

∂L
∂θ

= −∂θ〈�t |�t 〉
〈�t |�t 〉 − ∂θ〈�t |�t 〉

〈�t |�t 〉 + ∂θ〈�t |�t 〉
〈�t |�t 〉

= −
∑

c(∂θ〈�t |c〉)〈c|�t 〉∑
c〈�t |c〉〈c|�t 〉 −

∑
c〈�t |c〉(∂θ〈c|�t 〉)∑

c〈�t |c〉〈c|�t 〉

+
∑

c(∂θ〈�t |c〉)〈c|�t 〉 + ∑
c〈�t |c〉(∂θ〈c|�t 〉)∑

c〈�t |c〉〈c|�t 〉 . (H1)

This expression is exact since we are summing over all the
configurations c. Next, we use the sample set {c|p(c)} from
probability distribution p(c) = |�t−1(c)|2 to replace the exact
summation. Then, for example, the first term of Eq. (H1) ends
up as ∑

c(∂θ〈�t |c〉)〈c|�t 〉∑
c〈�t |c〉〈c|�t 〉 =

∑
c

(∂θ〈�t |c〉)〈c|�t 〉
p(c) p(c)∑

c
〈�t |c〉〈c|�t 〉

p(c) p(c)

≈
∑

{c}
(∂θ〈�t |c〉)〈c|�t 〉

p(c)∑
{c}

〈�t |c〉〈c|�t 〉
p(c)

=
∑

{c}
(∂θ〈�t |c〉)〈c|�t 〉
〈�t−1|c〉〈c|�t−1〉∑

{c}
〈�t |c〉〈c|�t 〉

〈�t−1|c〉〈c|�t−1〉
. (H2)
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As we are optimizing over determinant wave-function
form, i.e., �θ (c) = det Ãθ (c), we can further simplify the
derivative term in Eq. (H1) as

∂�(c)

∂θ
= ∂ det Ãθ (c)

∂θ
= det Ãθ (c)Tr

(
Ãθ (c)−1 ∂Ãθ (c)

∂θ

)

= �(c)Tr

(
Ãθ (c)−1 ∂Ãθ (c)

∂θ

)
. (H3)

After defining the amplitude ratio φ(c) and ψ (c) as Eq. (11)
to simplify the notations, we factor out the derivative part, and
put together all the other factors as a coefficient α(c) given by
Eq.(10), then we end up with the gradient estimation formula
Eq. (9). That only the real part of gradient is taken is because
the parameter set θ are real numbers and each term in Eq. (H1)
is accompanied with its complex conjugate.

Finally, we note that, as SWO is a first-order optimiza-
tion method, it can be further improved with ML optimizers,
such as Momentum-based gradient descent, Adam, etc. In
Fig. 11, we compare the performance from gradient descent
(GD), momentum, and Adam within SWO on the ground state
approximation with r-HF. It turns out that SWO-Adam is
more efficient than other two optimizers, as it optimizes the
fidelity to a higher value at each step, so as to minimize the

energy faster than the other two optimizers. Henceforth, we
use SWO-Adam for optimization in our numerical tests.

APPENDIX I: NOTATIONS

In Table I, we give a summary for the notations used in this
paper.

TABLE I. Table of Notations.

c Ls-size binary vector
θ Parameters (weights and bias) of neural networks
A Ls × Ns constant matrix
A[c] Ns × Ns matrix from row selection on A based on c
B Ls × r constant matrix
B[c] Ns × r matrix from row selection on B based on c
Cθ (c) r × Ns backflow matrix from neural networks,
Fθ (c) r × r backflow matrix from neural networks,
r-HF �(c) = det(Fθ (c)) det((A − BFθ (c)−1Cθ (c))[c])
r-JBF �(c) = det(Fθ (c)) det((A − BCθ (c))[c])
r-BF �(c) = det((A − BCθ (c))[c])
r-JNNBF �(c) = det(Fθ (c))�Ls-BF(c)
r-JSD �(c) = det(Fθ (c)) det A[c]
r-expJBF �(c) = exp( fθ (c))�r-BF(c)
r-expJsBF �(c) = exp( f1,θ (c)) cos( f2,θ (c))�r-BF(c)
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