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Geometrical nonlinear Hall effect induced by Lorentz force
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The recently discovered nonlinear Hall (NLH) effect arises either without external magnetic field (type-I) or
with an in-plane magnetic field (type-II). In this work we propose a new type of geometrical nonlinear Hall
effect with an out-of-plane magnetic field (type-III) induced by the combination of Lorentz force and anomalous
electronic velocity. The type-III NLH effect is proportional to the more refined structures of Bloch wave
functions, i.e., the dipole moment of square of Berry curvature, thus becoming prominent near the band crossings
or anticrossings. Our effective model analysis and first-principles calculations show that gate-tuned MnBi2Te4

thin film under uniaxial strain is an ideal platform to observe this effect. Especially, giant unidirectional
magnetoresistance can occur in this material, based on which an efficient electrical transistor device prototype
can be built. Finally, a symmetry analysis indicates that type-III NLH effect has unique symmetry properties
stemming from Berry curvature square dipole, which is different from other previously reported NLH effects
and can exist in a wider class of magnetic crystals. Our study offers paradigms for nonlinear electronics.
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I. INTRODUCTION

The Hall effects, as one of the most long-history and yet
paradigmatic phenomena in condensed matter physics, have
been extensively studied due to their underlying rich physics
[1–3]. Interestingly, the Hall effects can have two very differ-
ent physical origins: they can be induced by the Lorentz force
in the external magnetic field, or result from the electronic
band geometry and topology [4,5]. Prominent examples of
the latter include the quantum Hall effect in a strong mag-
netic field [6,7] and its anomalous version without a magnetic
field [8–10], which have provided valuable insights into the
nontrivial electronic structures related to the momentum space
textures (i.e., curvature and metric) of Bloch wave functions,
and have triggered exotic applications in many other systems
[11–14]. The former, at lower magnetic fields, is classical and
does not rely on Bloch wave function textures [4].

On the other hand, the recently discovered nonlinear
anomalous Hall (NLAH) effect has stimulated the interest
of nonlinear electronic transport and optoelectronic studies.
This effect connects the nonlinear response coefficients with
some geometrical or topological properties of Bloch wave
functions, and has promising applications, including second
harmonic generation, radio-frequency ac-dc rectification, and
terahertz detection, among others [15–49]. The NLAH effect
refers to the Hall current jH ∝ E2 in response to the driving
electrical field E without external magnetic field as shown in
Fig. 1(a), which we dub type-I nonlinear Hall (NLH) effect
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and is related to the dipole moment of Berry curvature or
quantum metric. More recently, another type of nonlinear
planar Hall effect was proposed with jH ∝ E2B where the
Hall current jH, driving electrical field E , and magnetic field
B lie within the same plane [50,51] as shown in Fig. 1(b),
which we call type-II NLH effect and corresponds to the Berry
connection polarizability. In the standard Hall geometry, as
shown in Fig. 1(c), the ordinary linear Hall effect induced
by Lorentz force usually dominates, with the Hall current
jH ∝ τ 2EB (where τ is the relaxation time), and resultant
ordinary Hall conductivity depends only on the carrier density,
independent of the electronic wave function properties [4,52]
(see also Appendix A). However, the nonlinear properties of
the Lorentz force-induced Hall effect have not been explored
so far. This raises a straightforward question: does a Lorentz
force-induced NLH effect exist, and could this NLH effect
further connect the measurable quantities with any refined
intrinsic properties of Bloch electrons, beyond just the carrier
density like the ordinary Hall effect?

In this paper we show that the Lorentz force together
with the Berry-curvature-induced anomalous velocity [5,53]
can lead to a new type of geometrical NLH effect (type-III)
with jH ∝ τE2B, which is in lower power of τ compared to
the ordinary Hall effect and is related to the more refined
geometrical properties of Bloch wave functions, offering a
straightforward method to investigate this more intricate ge-
ometrical properties in materials. Different from the type-I
NLH effect induced by either Berry curvature dipole (BCD)
[18,21] or quantum metric dipole [17,27,33], the proposed
type-III NLH effect here results from the Berry curvature
square dipole, which dominates in topological materials with
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FIG. 1. (a)–(c) Schematic setups of type-I, type-II, and type-III NLH effects, respectively. In the NLH effects, a transverse dc signal can
be generated through a longitudinal ac input. (d) Fermi surface shift induced by the Lorentz force FL and anomalous velocity vA in the type-III
NLH effect.

large Berry curvature and can exist in a broader class of
magnetic point groups. Based on effective model analysis
and density functional theory (DFT) calculations we find
sizable type-III NLH conductivity in gate-tuned MnBi2Te4

double septuple layers (SLs) under moderate uniaxial strain.
Moreover, we also find giant unidirectional magnetoresistance
(UMR) effect in this material system without strain, which can
be utilized to build an electronic transistor device prototype.
Finally, a symmetry analysis is carried out to identify all mag-
netic point groups that allow the existence of our NLH and
UMR effects. The unique symmetry properties of Berry cur-
vature square dipole can help us find some systems that allow
only type-III NLH while forbid type-I NLH effects mentioned
above. Our findings pave the way for further investigation on
this new type of nonlinear Hall effect and possible electronic
device applications.

II. THEORY AND ANALYSIS

A. Theory of type-III NLH effect

To understand the origin of type-III NLH effect, we
start from the well-known anomalous Hall current of
solids [4,5,54]:

jH = −e2

h̄

∫
dk

(2π )d
E × � f , (1)

where E is the external driving electrical field; � = i〈∇kuk| ×
|∇kuk〉 is the Berry curvature with |uk〉 being the periodic part
of the Bloch wave function; f is the electronic occupation
number; and d refers to the spatial dimension. According to
Eq. (1), the linear anomalous Hall conductivity is totally de-
termined by the electronic Berry curvature at thermodynamic
equilibrium, which is finally determined by the unperturbed
electronic wave function of occupied states. Thus, in order to
get nonlinear Hall effects, one must consider the field-induced
perturbation effect on either the electronic wave function |uk〉
or the distribution function f . The NLH effects corresponding
to the former one is an intrinsic material property which can
be expressed in terms of Berry connection polarizability and
quantum metric tensors [17,26–28,33,36].

On the other hand the perturbation on the distribution func-
tion f can be determined by the Boltzmann equation under
relaxation time approximation:

− f − f0

τ
= k̇ · ∇k f + ṙ · ∇r f + ∂t f (2)

with f0 = [e(εk−εF )/kBT + 1]−1 being the equilibrium Fermi-
Dirac distribution function. Combined with the semiclassical
equation of motion of electrons [5,55], the nonequilibrium

contribution to the nonlinear Hall current can be derived as
(see details in Appendix B)

j̃
NLH = −e2

h̄

∫
dk

(2π )d
E × �δ f , (3)

δ f = f − f0 = −τ (FE · ṽ + FL · vA)
∂ f0

∂εk
+ O(τ 2). (4)

Here FE = −eE is the electrical force, and ṽ = v + vM is
the total group velocity, with vM = ∇k(−mk · B)/h̄, and v =
∇kεk/h̄ the ordinary group velocity of electrons. The ordi-
nary group velocity part in the first term on the right-hand
side of Eq. (4) corresponds to the Berry curvature dipole
contribution to the nonliner anomalous Hall effect [18], and
has been extensively studied in inversion-symmetry-breaking
nonmagnetic materials [19–21].

The second term, on the other hand, is the Lorentz-force-
induced contribution which is seldom discussed before and
will be the focus of this paper hereafter. Here, FL = −ev × B
refers to the Lorentz force which is perpendicular to the group
velocity. Therefore, the Lorentz force does not induce energy
shift in nontopological materials with zero Berry curvature.
However, in topological materials the velocity of electrons
acquires an anomalous term vA = (−e/h̄)E × � induced by
the Berry curvature effects [5]. The FL · vAτ can be viewed as
the energy shift induced by the Lorentz force and anomalous
velocity which is generally nonzero and generates the Fermi
surface shift shown in Fig. 1(d). It should be noted that the
magnetic moment-related part in the first term on the right
hand side of Eq. (4) is of the same order O(τE2B) as the
Lorentz force-induced one but exhibits relatively small magni-
tude [56]. Therefore, we will focus only on the Lorentz-force
part.

Equations (3) and (4) demonstrate a new type of NLH
effect induced by the combination of Lorentz force and the
anomalous velocity. Given that FL ∝ B and vA ∝ E, the NLH
current is proportional to τE2B and it can be expressed in
a compact form as jNLH

α = ∑
β,γ ,λ σ NLH

αβγλEβEγ Bλ with σ NLH
αβγλ

being the NLH conductivity whose expression is given by

σ NLH
αβγλ = e4τ

h̄2

∫
dk

(2π )d

∑
κ

εαβκ�κ

(
vγ �λ − δγλ

∑
μ

vμ�μ

)

× ∂ f0

∂εk
, (5)

where Greek indexes represents Cartesian coordinates, εαβκ

is the Levi-Civita tensor, and δγλ is the Kronecker symbol.
Recall that the group velocity v is odd under both inversion
symmetry (P) and time-reversal symmetry (T ) while the
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Berry curvature � is even under P but odd under T so σ NLH
αβγλ

exists only when P and T are simultaneously broken.
In addition to the intrinsic contribution from Berry curva-

ture, disorder scatterings, such as skew scattering and side
jumps, also play a role in linear Hall conductivity [57–59].
These scatterings are naturally expected to influence the non-
linear Hall (NLH) conductivity as well [60]. The impact of
disorder scattering is highly dependent on carrier density: it
is minimal when the Fermi energy is near the band edge
but becomes significant as carrier density increases [22].
Conversely, Eq. (5) demonstrates that the NLH conductivity
proposed here is proportional to the square of the Berry cur-
vature on the Fermi surface. This indicates its prominence in
small-gap topological materials when the Fermi level is close
to the band edges. The stark contrast between the contribu-
tions from Berry curvature and disorder scatterings helps to
distinguish the mechanisms behind NLH conductivity through
electronic doping effects.

B. Berry curvature square dipole

For 2D materials lying within the xy plane, in order for
the Lorentz force to take effect, the magnetic field must have
a z component. This is reflected by the fact that the NLH
conductivity σ NLH

αβγλ is nonzero only when λ = z, which is
dramatically different from the nonlinear planar Hall effect
[50,51]. Moreover, the second term on the right hand side of
Eq. (5) vanishes for 2D materials because v ⊥ �. Thus, the
NLH conductivity can be rewritten as

σ NLH
yxxz = −σ NLH

xyxz = e4τ

h̄3

∫
dk

(2π )2

(
∂kx �

2
z

)
f0, (6)

σ NLH
xyyz = −σ NLH

yxyz = −e4τ

h̄3

∫
dk

(2π )2

(
∂ky�

2
z

)
f0, (7)

while other components are zero. The above expressions show
that the NLH conductivity is proportional to the dipole mo-
ment of square of Berry curvature over occupied states, which
is defined as

D(n)
α =

∫
dk

(2π )2

(
∂kα

�n
z

)
f0 (8)

with n = 2. Because D(n)
α behaves like a vector within

the 2D plane, the NLH conductivity shows a pecu-
liar angular dependence: for applied electric field E =
E (cos θ, sin θ, 0), the NLH conductivity is determined by
σ NLH(θ ) = (e4τ/h̄3)(D(2)

x cos θ + D(2)
y sin θ ). It should be

noted that D(2)
α is different from the ordinary BCD, i.e., D(1)

α

first proposed in Ref. [18]. Under vertical mirror symmetry,
D(1)

α behaves like a pseudovector which should be perpendic-
ular to the mirror plane, while D(2)

α behaves like a real vector
and should be parallel to the mirror plane. Moreover, D(2)

α is
expected to become more prominent than D(1)

α near the band
crossings and anticrossings due to the large Berry curvature.

III. RESULTS AND DISCUSSIONS

A. Effective model analysis

We take the 2D massive Dirac model as an example to
demonstrate the behavior of NLH conductivity here. Without
loss of generality, we consider σ NLH

yxxz here as an example. A

FIG. 2. (a), (b) Band-resolved σ NLH
yxxz of the two-band model

Eq. (9) for (a) vt = 0 and (b) vt = 0.5v0, respectively. Fixed param-
eters h̄v0 = 1 eV · Å and m = 0.2 eV are used for both calculations.
Red (Blue) circles indicate positive (negative) values. For untilted
model the positive and negative values cancel exactly for any Fermi
energy εF thus giving zero σ NLH

yxxz , whereas the tilted model can have
nonzero σ NLH

yxxz . (c) Calculated σ NLH
yxxz as function of εF with fixed

m = 0.2 eV but varying vt . The maximum values of σ NLH
yxxz occur

near the band edges where Berry curvature becomes large. (d), (e)
Calculated maximum σ NLH

yxxz for varying vt and m. Large σ NLH
yxxz is

favored by large vt and small m.

nonzero σ NLH
yxxz requires the breaking of mirror symmetry Mx.

The minimal effective model can be expressed as

Hk = h̄vt kx + h̄v0(kxσx + kyσy) + mσz (9)

with v0 being the group velocity, m being the mass term, and
vt being the tilting parameter to break P , T , and Mx sym-
metries. The band dispersion and Berry curvature are εsk =
h̄vt kx + s

√
h̄2v2

0k2 + m2 and �z = −s mh̄2v2
0

2(h̄2v2
0 k2+m2 )3/2 (s = ±

represents the upper or lower band), respectively, with a band
gap of 2|m|. For small tilting, we can derive that σ NLH

yxxz (εF ) =
e4τm2v2

0vt

8π |εF |5 (1 − 3m2

|εF |2 ) + O(v2
t ) with |εF | � m to ensure nonzero

density of states [56]. The maximum σ NLH
yxxz occurs at the band

edges |εF | = m, and the value is proportional to m−3 which is
prominent in small-gap materials.

Figure 2 shows the numerical results for the effective
model. For the untilted model, the band resolved σ NLH

yxxz
exhibits opposite values between k and −k which gives van-
ishing σ NLH

yxxz for any εF , so finite tilting is necessary to get
nonzero σ NLH

yxxz [Figs. 2(a) and 2(b)]. The calculated σ NLH
yxxz

increases with increasing vt and the maximum values occurs
near the band edge [Fig. 2(c)], which is consistent with the
analytical result. Figures 2(d) and 2(e) show the calculated
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FIG. 3. (a) Crystal structure and Brillouin zone of MnBi2Te4

double septuple layers (SLs). The red arrows refer to the antifer-
romagnetic order between adjacent SLs. The crystal and magnetic
structure has PT symmetry. E⊥ refers to externally applied vertical
electric field which breaks P . (b), (c) Band structures of MnBi2Te4

double SLs with (b) E⊥ = 0 and (c) E⊥ = 0.022 V/Å, respectively.
The inset of (c) shows the schematic distribution of tilted Dirac
cones related by C3z symmetry. (d) Calculated conductivity σ NLH

as a function of fermi energy εF in strained MnBi2Te4 double SLs
with electric field, same as that in (b) or in MnBi2Te4 double SLs
without strain. (e) Calculated σ NLH as a function of fermi energy εF

in strained MnBi2Te4 double SLs with electric field same as that in
(c). For details of the calculation methods, see [56].

maximum σ NLH
yxxz with varying vt and m favoring large tilting

and small band gap.

B. Candidate material

According to the effective model analysis, P- and T -
breaking materials with small band gap (i.e., near the
topological phase transition) favor large NLH conductivity.
MnBi2Te4 is a recently discovered layered topological antifer-
romagnet which attracts extensive research of interest because
of its unique axion dynamics and versatile topological phase
transitions [61–63]. Remarkably, recent studies have shown
the gate-tunable topological properties of MnBi2Te4 thin film
[64] with multiple Dirac Fermions near the Fermi energy
under suitable vertical electric gating field. Figure 3(a) shows
the crystal structure and Brillouin zone of MnBi2Te4 double
septuple layers (SLs). A vertical electric field E⊥ breaks the
PT symmetry, thus giving rise to finite Berry curvature. With-
out the vertical electric field, MnBi2Te4 with double SLs is a
topologically trivial insulator with spin degeneracy protected
by PT [Fig. 3(b)]. Applying the vertical electric field will
split the energy bands and reduce the band gap [56]. As
increasing E⊥, the band gap closes at about a critical field
E⊥ = Ec = 0.022 V/Åwith a tilted Dirac cone at the Fermi
level [Fig. 3(c)]. Due to the threefold rotational symmetry
C3z, there are three tilted Dirac cones whose tilting direc-
tions are related by C3z. Therefore, the net NLH conductivity
vanishes [Fig. 3(d)]. By applying an external uniaxial strain,
the C3z is broken and a nonzero NLH conductivity arises.

FIG. 4. (a) Calculated �xxxz in gated MnBi2Te4 double SLs with
different vertical electric field E⊥ = ±Ec or E⊥ = 0. (b) Schematic
of I-V curve with different values of E⊥. (c) Schematic view of
the transistor device prototype, where the critical electric field with
positive (negative) value corresponds to the forward (backward) con-
ducting case while the zero electric field corresponds to the insulating
case.

Figure 3(e) shows the calculated σ NLH
yxxz as a function of Fermi

energy εF with a large peak which favors further experimental
measurement.

C. Unidirectional magnetoresistance

In the presence of external magnetic field, in addition to
the NLH effect discussed above, there is another intriguing
transport phenomenon that the longitudinal conductivity σ

changes with the direction of current, which is called electrical
magnetochiral anisotropy or unidirectional magnetoresistance
(UMR) effect, and has the same order O(E2B) with NLH.
The UMR effect in gated MnBi2Te4 double SLs can be
described by current- and magnetic-field-dependent conduc-
tivity σαβ ( j, B) = σ 0

αβ (1 + ∑
γ ,λ �αβγλ jγ Bλ) with σ 0

αβ being
the ordinary Drude conductivity and �αβγλ being an intrinsic
material property. Based on a semiclassical equation of mo-
tion, the UMR is dominated by the Berry curvature on the
Fermi surface, which is confirmed by the analytical results
in a 3D Weyl model [56]. Figure 4(a) shows the calculated
�xxxz under perpendicular electrical field E⊥ = ±Ec. The cal-
culated UMR shows sharp peaks of about 2 × 104 m A−1 T−1

around εF = 0, and its sign reverses with the direction of
E⊥, which means the magnitude of electrical conductivity
changes dramatically for a sample under current j ≈ 1 µA/cm
and Bz = 1 T. Such a nonlinear conductivity can be used to
realize an electrical transistor device prototype under a small
gating field V0 which induces E⊥ = ±Ec [Figs. 4(b) and 4(c)].
Besides, we find that NLH effect can exhibit sizable signals up
to moderate temperature, however, UMR effect survives only
in the low-temperature regime [56].
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TABLE I. Table of magnetic point groups classified by the ex-
istence or absence of Lorentz force induced NLH, BCD induced
NLAH, and intrinsic nonlinear Hall effect (INHE), where

√
means

at least one component of the tensor is nonzero.

Magnetic point groups NLH BCD INHE

−6, 6′/m, −6m2, −6m′2′, 6′/mmm′, 23,
√

✗ ✗

m′ − 3′, 432, 4′32′, −43m, −4′3m′, m′ − 3′m,

m′ − 3′m′

6′, 6′22′, 6′mm′ √ √
✗

−1′, 2′/m, 2/m′, m′mm, m′m′m′, 4/m′,
√

✗
√

4′/m′, 4/m′mm, 4′/m′m′m, 4/m′m′m′,
−3′, −3′m, −3′m′, −6′, 6/m′, −6′m′2,

−6′m2′, 6/m′mm, 6/m′m′m′

11′, 21′, m1′, 2221′, mm21′, 41′, −41′, ✗
√

✗

4221′, 4mm1′, −42m1′, 31′, 321′,

3m1′, 61′, 6221′, 6mm1′

1, 2, 2′, m, m′, 222, 2′2′2, mm2, m′m2′,
√ √ √

m′m′2, 4, 4′, −4, −4′, 422, 4′22′, 42′2′,
4mm, 4′m′m, 4m′m′, −42m, −4′2′m,

−4′2m′, −42′m′, 3, 32, 32′, 3m, 3m′, 6,

622, 62′2′, 6mm, 6m′m′

D. Symmetry analysis

Now we analyze the symmetry properties of NLH and
UMR effects. The UMR generally requires inversion symme-
try breaking and can exist in all noncentrosymmetric magnetic
point groups. On the other hand, the NLH effect is more com-
plicated. Type-III NLH effect has a different physical origin
from the BCD induced NLAH and the intrinsic nonlinear
Hall effect (INHE), both of which belong to the type-I NLH
effect, thus has different symmetry requirements. By careful
analysis, we give the list of magnetic point groups that allow
the existence or absence of type-III NLH effect, along with
that of BCD and INHE, as shown in Table I which is obtained
based on the magnetic tensor symmetry module implemented
in Bilbao Crystallographic Server [65]. It should be noted
that BCD is fully forbidden by the coexistence of a mirror
symmetry (which forbids the diagonal parts of BCD) and a
rotation symmetry (which forbids the off-diagonal parts of
BCD), and the case is similar for INHE which origins from
quantum metric dipole, while type-III NLH effect is related
to the Berry curvature square dipole which can at least have
nonzero diagonal elements in the presence of a mirror sym-
metry. Obviously, we can find some magnetic groups where
our type-III NLH exists but BCD induced NLAH and INHE
are forbidden (the first row of Table I). There are also some
magnetic groups that allow BCD but forbid type-III NLH
effect, which all have time reversal symmetry (the fourth row
of Table I). Additionally, from Table I, we can clearly see that
the type-III NLH effect can exist in a wider range among all
the magnetic point groups (69 of 122 magnetic point groups
allow type-III NLH) than BCD and INHE (53 of 122 magnetic
point groups allow BCD and INHE). This broader range may
benefit further experimental investigation and verification.

IV. SUMMARY

We propose a theory of a type of nonlinear Hall effect,
which stems from the combination of the Lorentz force and
anomalous velocity. Based on first-principles calculations, we
show MnBi2Te4 double SLs as an ideal candidate with signif-
icant NLH conductivity. Interestingly, a giant UMR effect is
also predicted in this material system with full electrical tun-
ability, which may be useful for developing a new generation
of high-performance electrically switchable transistor without
PN junction. Our symmetry analysis further shows that this
NLH effect can exist in a wider range of magnetic point
groups compared to previously reported mechanisms, which
may facilitate further investigations into these effects. Our
finding highlights the important role of the Lorentz force in
exploring the more refined electronic structure and topology
of materials, which may have been previously overlooked.
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APPENDIX A: DERIVATION OF ORDINARY HALL
(OH) CONDUCTIVITY

In this section we derive the expression of ordinary Hall
(OH) conductivity for a nearly free electronic gas model that
supports a parabolic band. For a nearly free electron gas
(without Berry curvature or orbital magnetic moment), the
semiclassical equation of motion is

h̄k̇ = − eE − eṙ × B,

ṙ =v = 1

h̄
∇kεk. (A1)

The Boltzmann transport equation is

(∂t + k̇ · ∇k + ṙ · ∇r) f = − f − f0

τ
,

i.e.,

[1 + τ (∂t + k̇ · ∇k + ṙ · ∇r)] f = f0. (A2)

Because τ is usually small, the above Eq. (A2) can be formally
solved as

f = [1 + τ (∂t + k̇ · ∇k + ṙ · ∇r)]−1 f0

=
+∞∑
l=0

[−τ (∂t + k̇ · ∇k + ṙ · ∇r)]l f0

=
+∞∑
l=0

fl , (A3)

where fl ∝ τ l is the lth order perturbation term for the distri-
bution function. For the steady and uniform distribution, i.e.,
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∂t f = ∇r f = 0, the expression of fl can be simplified as

fl = (−τ k̇ · ∇k)l f0. (A4)

Now we can derive the expression of OH conductivity
based on Eqs. (A1) and (A4). Substituting Eq. (A1) into (A4),
we get the first order term as

f1 = eτ

h̄
(E + v × B) · ∇k f0

= eτ

h̄
(E + v × B) · h̄v

∂ f0

∂εk

= eτE · v
∂ f0

∂εk
. (A5)

From Eq. (A5), we can see that Lorentz force FL = −ev × B
does not enter into the first-order term because it is perpendic-
ular to the group velocity v. As a result, it does not induce a
Fermi surface shift. The second order term is

f2 = −τ k̇ · ∇k f1

= eτ

h̄
(E + v × B) · ∇k

[
eτE · v

∂ f0

∂εk

]

= e2τ 2

h̄
(E + v × B)

·
[
∇k(v · E )

∂ f0

∂εk
+ (E · v)

∂2 f0

∂ε2
k

h̄v

]
. (A6)

We focus on the Lorentz-force induced terms in Eq. (A6)
which will lead to the OH conductivity:

fOH = −τ 2 e2

h̄
(v × B) · ∇k(v · E )

∂ f0

∂εk

= τ 2 e2

h̄
[∇k(v · E ) × B] · v

∂ f0

∂εk

= τ 2e2v ·
[

1

m∗ E × B
]
∂ f0

∂εk
, (A7)

where the dispersion relation of nearly free electron gas εk =
h̄2k2

2m∗ and the inverse effective mass ( 1
m∗ )αβ = 1

h̄2
∂εk

∂kαkβ
have

been used. Thus, the ordinary Hall current is expressed by

jOH = −
∫

dk
(2π )d

ev fOH

= −e3τ 2

m∗

∫
dk

(2π )d
vv · (E × B)

∂ f0

∂εk
. (A8)

For isotropic 3D electron gas, the OH effect can be expressed
as jOH = σ OHE × B with the ordinary Hall conductivity cal-
culated as

σ OH = −e3τ 2

m∗

∫
dk

(2π )3

v2

3

∂ f0

∂εk

≈ e3τ 2

3m∗(2π )3

∫
dk

h̄2k2

(m∗)2
δ

(
εF − h̄2k2

2m∗

)

= 2e3τ 2

3(m∗)2(2π )3

∫ +∞

0
dk 4πk2 k2δ(kF − k)

2kF

= 4πe3τ 2

3(m∗)2(2π )3
k3

F , (A9)

where kF = √
2m∗εF /h̄ is the Fermi wave vector, and ∂ f0

∂εk
≈

−δ(εF − εk) has been used in the above derivation. On the
other hand, the carrier density is

nF =
∫

dk
(2π )3

f0 =
∫ kF

0
dk

4πk2

(2π )3
= k3

F

6π2
. (A10)

By substitute Eq. (A10) into (A9), we get the familiar expres-
sion of OH conductivity as

σ OH = e3τ 2nF

(m∗)2
. (A11)

Two key points about the ordinary Hall effect:
(i) It is of second order in τ ;
(ii) It relies only on the band dispersion relation εk and is

independent of the Bloch wave function |uk〉.

APPENDIX B: DERIVATION OF TYPE-III NONLINEAR
HALL (NLH) EFFECT

In this section, we derive the expression of NLH effect
based on semiclassical equation of motion of electrons includ-
ing Berry curvature and orbital magnetic moments:

h̄k̇ = −eE − eṙ × B,

ṙ = 1

h̄
∇kεM − k̇ × �, (B1)

where εM = εk − m · B (m refers to the orbital magnetic
moment), and � is Berry curvature. Equation (B1) can be
solved as

Dk̇ = − e

h̄
E − e

h̄
ṽ × B − e2

h̄2 (B · E )�, (B2)

Dṙ = ṽ + e

h̄
E × � + e

h̄
(ṽ · �)B, (B3)

with ṽ = 1
h̄∇kεM being the modified group velocity, and D =

(1 + e
h̄� · B)−1.

We expand the distribution function f in a power series of
relaxation time τ as f = f0 + f1 + f2 + · · · with fn ∝ τ n and
f0 = [e(εk−εF )/kBT + 1]−1 being the equilibrium distribution
function. According to the Boltzmann equation, i.e., Eq. (2)
of the main text, we have

fn = − τ k̇ · ∇k fn−1, (B4)

for spatially uniform E and B. Substituting Eq. (B2) into
Eq. (B4) we can derive the first-order term f1 as

f1 = τ

D

[
e

h̄
E + e

h̄
ṽ × B + e2

h̄2 (B · E )�

]
· ∇k f0

= τ

D

[
e

h̄
E + e

h̄
ṽ × B + e2

h̄2 (B · E )�

]
· (∇kεM )

∂ f0

∂εM

≈ τ

D

[
eE · ṽ + eṽ × B · ṽ + e2

h̄
(B · E )(� · ṽ)

]
∂ f0

∂εk

≈ τ

D

[
eE · ṽ + e2

h̄
(B · E )(� · v)

]
∂ f0

∂εk
, (B5)

where v = 1
h̄∇kεk is the group velocity. On the third line

of Eq. (B5) we have used the approximation ∂ f0

∂εM
≈ ∂ f0

∂εk
and

on the last line we have substituted some ṽ terms by vk
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by omitting a O(B2) term in f1. For small magnetic field,
D ≈ 1 − e

h̄� · B. Thus the expression of f1 up to linear order
of B can be simplified as

f1 = τ

[
eE · ṽ

(
1 − e

h̄
� · B

)
+ e2

h̄
(B · E )(� · v)

]
∂ f0

∂εk

= τ

[
eE · ṽ − e2

h̄
(E · v)(� · B) + e2

h̄
(B · E )(� · v)

]
∂ f0

∂εk

= τ

[
eE · ṽ − e2

h̄
(v × B) · (E × �)

]
∂ f0

∂εk

= −τ (FE · ṽ + FL · vA)
∂ f0

∂εk
, (B6)

with FE = −eE, vA = (−e/h̄)E × �, and FL = −ev × B.
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