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Surface phase transitions in a (1+1)-dimensional SU (2)1 conformal field theory boundary coupled
to a (2+1)-dimensional Z2 bulk
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We design a (2+1)-dimensional [(2+1)D] quantum spin model in which spin-1/2 ladders are coupled through
antiferromagnetic Ising interactions. The model hosts a quantum phase transition in the (2+1)D Z2 universality
class from the Haldane phase to the antiferromagnetic Ising ordered phase. We focus on studying the surface
properties of three different surface configurations when the Ising couplings are tuned. Different behaviors
are found on different surfaces. We find ordinary and two different extraordinary surface critical behaviors
(SCBs) at the bulk critical point. The ordinary SCBs belong to the surface universality class of the classical
3D Ising bulk transition. One extraordinary SCBs is induced by the topological properties of the Haldane
phase. Another extraordinary SCBs at the bulk critical point is induced by an unconventional surface phase
transition where the surface develops an Ising order before the bulk. This surface transition is realized by
coupling a (1+1)-dimensional [(1+1)D] SU (2)1 CFT boundary to a (2+1)D bulk with Z2 symmetry. We find
that the transition is neither a (1+1)D Z2 transition, expected based on symmetry consideration, nor a Kosterlitz-
Thouless-like transition, violating the previous theoretical prediction. This new surface phase transition and
related extraordinary SCBs deserve further analytical and numerical exploration.
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I. INTRODUCTION

A d-dimensional (D) system with (d − 1)-dimensional
[(d − 1)D] surfaces/boundaries can have rich critical be-
haviors. Generally speaking, when the bulk reaches the
disorder-order critical point from the disordered phase, the
surface remains disordered but shows critical singularity in-
duced by the bulk criticality. This is called “ordinary surface
critical behaviors (SCB).” However, if the surface couplings
are sufficiently enhanced, then the surface may order while
the bulk stays disordered if the dimensions of the surface are
larger than the lower critical dimensions dl of the system. This
is a surface transition in the (d − 1)D system with short-range
interactions. The surface exhibits extra singularities at the bulk
critical point, called the “extraordinary SCBs.” As the surface
coupling enhancement is reduced, the surface transition and
the bulk transition meet at a multicritical point where “special
SCBs” show up [1–4]. More recently, a new class of SCBs at
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a bulk critical point, the “extraordinary-log SCBs,” is revealed
for three-dimensional (3D) systems with continuous symme-
try but surface dimensions smaller than dl [5–10].

Classically, these rich critical behaviors are attributed to the
fact that the local environment of a given degree of freedom
near the surface is different from that deep inside the bulk [1].
This general picture of SCBs should also apply to a quantum
critical point (QCP), based on the mapping between a d-
dimensional quantum system and a (d + 1)D classical system.
However, when the quantum mechanism intervenes, exotic
surface states with purely quantum mechanic origin arise. The
surface of the system can be gapless in a symmetry-protected
topological (SPT) phase [11–15], the boundary formed by
dangling spin-1/2 chain of a topological trivial gapped phase
is gapless due to the topological θ term [16–20]. When these
gapless surface modes are coupled to the bulk critical mode
at the (2+1)-dimensional [(2+1)D] O(3) bulk critical point,
exotic nonordinary multicritical SCBs [16,20,21] or extraor-
dinary SCB [22] are present.

One way to understand these exotic quantum SCBs is that
the bulk critical fluctuations yield effective nonlocal interac-
tions in space-time, instead of instantaneous nonlocal interac-
tions, at the boundary, which makes the (1+1)-dimensional
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FIG. 1. The two-dimensional coupled usual ladders. The lattice
is bipartite with sublattices A (yellow circles) and B (blue circles).
(a) Periodic boundary conditions(PBCs) are applied in the x and y
directions. A usual ladder is shown inside the dashed rectangular
box. The Ising interladder couplings J⊥ > 0 are indicated by thin
red lines, the intraladder Heisenberg couplings J1 < 0 by thick black
lines, and the intraladder Heisenberg couplings J > 0 by thick red
lines. (b) PBCs are used in the x direction, while the weak bonds J⊥
are cut to expose the XN surface. (c) PBCs are used in the y direction,
while open boundary conditions are applied in the x direction to
expose the Y surface (d) Periodic boundary conditions are used in
x direction, while cut the strong bonds J1 to expose the XD surface.
Open circles denote spins on the surfaces.

[(1+1)D] SU (2)1 boundary conformal field theory (CFT)
unstable [23]. In particular, when a (1+1)D SU (2)1 CFT
boundary is coupled to the (2+1)D Ising bulk critical fluc-
tuations, it is demonstrated through renormalization group
calculations that, the surface goes through a transition from a
gapless SU (2)1 CFT to an Ising ordered phase before the bulk
actually hits criticality [23]. This surface transition is argued
to be in the Kosterlitz-Thouless-like (KT-like) universality
class (UC), akin to the transition from a Luttinger liquid to
a Z2 valence bond solid (VBS) phase in a purely 1D spin-1/2
chain with both nearest and next-nearest neighbor Heisenberg
interactions [24], rather than a (1+1)D Ising transition.

In this paper, we study the rich universal surface physics of
a quantum spin system using quantum Monte Carlo (QMC)
simulations. We design a (2+1)D quantum spin model (see
Fig. 1) hosting a quantum phase transition in the (2+1)D
Z2 universality class from a topological nontrivial Haldane
phase to an antiferromagnetic (AF) Ising phase. Three dif-
ferent surface configurations, as illustrated in Figs. 1(b)–1(d),
are investigated. We find different surface behaviors on dif-
ferent surfaces. For the surface with gapped surface states in
the bulk Haldane phase, we find ordinary SCBs of the 3D
Ising UC at the bulk critical point. For the surface, which is
ordered throughout the bulk Haldane phase as a result of the
SPT properties, we find the extraordinary SCBs as expected.
Most interestingly, for the surface formed by dangling spins,
which is a (1+1)D SU (2)1 CFT, we find that the surface
orders before the bulk as the Ising couplings increase, which
is consistent with the theoretical prediction. However, our
numerical results find, violating the prediction, that this tran-
sition is neither a (1 + 1)D Ising transition nor a KT-like

transition, pointing to a new universality class. In addition,
at the bulk critical point, the surface undergoes an unconven-
tional extraordinary SCB, with exponents different from the
extraordinary SCBs on the other surface.

II. MODELS AND METHODS

We study the spin-1/2 Heisenberg model on a designed
2D bipartite lattice constructed by coupling usual ladders [25]
with AF Ising interactions; see Fig. 1. We will refer to the
lattice as Ising coupled usual ladders. The Hamiltonian is
given by

H =
∑
j=0

Hj + J⊥
∑
i, j=0

Sz
i,2 j+1 · Sz

i,2( j+1), (1)

where the first sum is over the usual ladders with Hj describ-
ing the jth ladder written as follows:

Hj = J
∑
l=0,1

∑
i

Si,2 j+l · Si+1,2 j+l

+ J1

∑
i

Si,2 j · Si,2 j+1, (2)

where l = 0, 1 denote two legs of the jth usual ladder, J > 0
and J1 < 0 is the intraladder Heisenberg exchange coupling;
The second sum describes the couplings of the neighboring
ladders with the interladder Ising coupling J⊥ > 0.

We set J = |J1| = 1 to fix the energy scale. When J⊥ is
comparable to J , the model is expected in the AF Ising phase.
For the limit J⊥ → 0, the model is adiabatically connected to
the 1D usual ladder, which behaves like a spin-1 chain [25]
and hence the model is tuned into a quasi-one-dimensional
Haldane (Q1DH) phase. These two phases are separated by
a (2+1)D Z2 critical point revealed by our simulations de-
scribed below. In this work, we use the stochastic series
expansion (SSE) algorithm [26–30] to explore the bulk and
surface behaviors. PBCs are applied along both x and y direc-
tions when the bulk properties are studied. In our simulations,
we have reached linear size up to L = 128, and the inverse
temperature scales as β = L. Typically 108 MC samples are
taken for each coupling strength.

III. BULK RESULTS

The bulk transition is associated with the spontaneous
breaking of the spin-flip (Z2) symmetry. The staggered mag-
netization mz

s = 1
L2

∑
i φiS

z
i is used to describe the AF Ising

order with the staggered phase factor φi = ±1 according to
the sublattice. The dimensionless Binder ratio R2 [31,32]
is defined using mz

s as R2 = 〈(mz
s )4〉

〈(mz
s )2〉2 , and the corresponding

Binder cumulant U2 is written as U2 = 1
2 (3 − R2). U2 converg-

ing to 1 with increasing system size indicates the existence
of magnetic order, while approaching zero with increasing
system size implies that the system is in the magnetically
disordered phase.

Figures 2(a) and 2(b) show U2 as functions of J⊥ for dif-
ferent system sizes. Clearly, the model is in the AF ordered
phase when J⊥ is larger than 0.04. Since U2 is dimensionless
at a critical point, the crossings of curves for different sizes
roughly indicate the transition point.
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FIG. 2. Critical properties of the bulk phase transition. (a) Binder cumulant U2 versus J⊥ for different system sizes. (b) shows details around
the crossing point for large system sizes. (c) Data collapse of U2 using ν = 0.64 and J⊥c = 0.040006. (d) Data collapse of m2

s using ν = 0.64,
J⊥c = 0.040006, and η = 0.036. Error bars are much smaller than the symbols.

We adopt the finite-size scaling formula

A(J⊥, L) = Lκ f [(J⊥ − J⊥c)L1/ν, L−ω] (3)

to extract the critical coupling J⊥c and the correlation length
exponent ν, where f (x) is a scaling function with ω > 0 the
effective correction to scaling exponent. For A = U2, which
is dimensionless, κ = 0. One can observe, in Fig. 2(b), that
the crossings of U2 curves for two neighboring sizes shifts to
larger J⊥ as sizes increase as results of the correction to scal-
ing. Such a large correction to scaling can be attributed to the
strong anisotropic nature of this model: the correlation along x
direction is much longer than that along the y direction [33]. It
is possible to reduce this correction to scaling by changing the
aspect ratio of the systems, following [21,33]. In Appendix A,
we present simulation results on systems with aspect ratio
R = Lx/Ly = 4 and β = 4Ly. For these systems, the shifts of
the crossings of U2 curves become much narrower.

The corrections to scaling are included in scaling formula
Eq. (3), which we can fit to our finite-size data U2(J⊥, L).
We do the fitting in an alternative way: we only use data of
sufficient large sizes, i.e., L � 72, in the fitting, for which
the effect of corrections to scaling is neglectable. In such a
case, we expand f (x) to polynomials near the transition point.
We obtain J⊥c = 0.040006(3) and ν = 0.64(1) by fitting the
polynomials to the finite-size data. Figure 2(c) shows a perfect
data collapsing of U2 using the obtained J⊥c and ν.

Next, the squared magnetization, m2
s = 〈(mz

s )2〉, are ana-
lyzed to extract the exponent η. We expect m2

s scales in the
form of Eq. (3) with κ = −(1 + η). f (x) is another scaling
function for sufficient large sizes. Using the obtained J⊥c and
ν, we obtain η = 0.036(3) by expanding f (x) to polynomials

and fitting it to finite-size data of m2
s (J⊥, L). Perfect data col-

lapse using obtained critical properties is shown in Fig. 2(d).
We have also performed similar finite-size scaling analy-

sis on data from systems with R = 4. The obtained critical
point and exponents are consistent with those found for R = 1
systems, indicating that the critical properties of the system
are not affected by the spatial anisotropy. See Appendix A for
details.

Comparing with the best-known exponents of the 3D Ising
UC [34], we conclude that the critical point belongs to the 3D
Ising UC. This also demonstrates that the nontrivial topologi-
cal property of the Haldane phase does not affect the universal
properties of the bulk phase transition, as noticed in Ref. [21].

IV. SURFACE BEHAVIORS

We now investigate the surface behaviors on the XN, XD,
and Y surfaces, respectively. We calculate the surface parallel
correlation C‖(L/2) between two surface spins i and j with
the longest distance |i − j| = L/2 and the perpendicular cor-
relation C⊥(L/2) averaging C(ri j ) between spin i fixed on the
surface and spin j located at the center of the bulk, with ri j

perpendicular to the surface and | j − i| = L/2.
The surface staggered magnetic susceptibility χ1s with re-

spect to the surface field h1 is also calculated through the Kubo
formula [26]

χ1s = L
∫ β

0
dτ

〈
mz

1s(τ )mz
1s(0)

〉
, (4)
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where mz
1s is the staggered surface magnetization

mz
1s = 1

L

∑
i∈surface

φiS
z
i , (5)

where the summation is restricted on the surface, φi = ±1
depending on the sublattice to which i belongs. Based on mz

1s,
we define the surface Binder ratio as

R12 =
〈(

mz
1s

)4〉
〈(

mz
1s

)2〉2 (6)

and the Binder cumulant as [31,32]

U12 = 1
2 (3 − R12). (7)

At the bulk critical point, the scaling of the surface suscep-
tibility χ1s and the squared magnetization are represented by
yh1 the scaling dimension of the surface field h1 [2] :

χ1s = a1L−(d+z−1−2yh1 ) + a2L−1 + · · · , (8)

and

m2
1s(L) = m2

1s + b1L−2(d+z−1−yh1 ) + b2L−1 + · · · . (9)

The two correlations are characterized by two anomalous di-
mensions η‖ and η⊥, respectively;

C‖(L/2) = C‖ + c1L−(d+z−2+η‖ ) + c2L−1 + · · · , (10)

and

C⊥(L/2) = d1L−(d+z−2+η⊥ ) + d2L−1 + · · · . (11)

Here, for our model d = 2 and z = 1; ai, bi, ci and di are
unknown constants; the 1/L terms are the leading correction;
C‖ = m2

1s = 0 in ordinary or special SCBs; and C‖ should
be equal to m2

1s to characterize the ordered surface in an
extraordinary SCB.

The scaling dimensions are related through the following
scaling relations [35]:

2η⊥ = η‖ + η, η‖ = d + z − 2yh1, (12)

where η is the anomalous magnetic scaling dimension of the
bulk critical point.

A. Ordinary SCBs on the XN surface

We first study the surface critical behaviors on the XN
surface exposed by cutting the weak bonds J1, see Fig. 1(b).
The surface is formed by nondangling spins, which are one
leg of the dangling ladder; hence, the spectrum of the surface
is gapped when the bulk is in the Q1DH phase. To study the
surface states, we calculate the surface parallel correlation
C‖(L/2) and observe an exponential decay of C‖(L/2) sup-
porting this spectrum. Figure 3 shows C‖(L/2) at J⊥ = 0.01
and J⊥ = 0.02 sitting in the Q1DH phase. The data can be
fitted using straight lines on a linear-log scale, meaning the
correlation decays exponentially. Fitting the curves with

C‖(L/2) ∼ exp (−L/a), (13)

we obtain a = 18.56(7) at J⊥ = 0.01 and a = 19.35(8) at
J⊥ = 0.02, which means gapped surface state.

At the bulk critical point, we expect the surface to exhibit
critical singularities purely induced by the bulk criticality,

FIG. 3. Surface correlation C‖(L/2) vs system size L in the Hal-
dane phase (J⊥ = 0.01, 0.02). The plot is set on a linear-log scale.
Exponentially decaying with L is observed, meaning the surface
states are gapped.

belonging to the ordinary class. Our numerical results confirm
this expectation.

The numerical result of χ1s as a function of size L is
graphed in Fig. 4(a), and the results of C‖(L/2) and C⊥(L/2)
as functions of L are plotted in Fig. 4(b). We fit the data of
C‖(L/2) and C⊥(L/2) according to Eqs. (10) and (11) and
find statistically sound estimates of η‖ = 1.57(18) and η⊥ =
0.82(8). The finite-size scaling form Eq. (8) supplemented
with a constant c as nonsingular contribution is used to fit
the data of χ1s. The estimate of yh1 is 0.68(7). The obtained
surface exponents satisfy the scaling relations in Eqs. (12)
and agree well with the surface universal class of the ordinary
transition associated with the 3D Ising universality class [4].

B. Extraordinary SCBs on the Y surface

We then study the surface critical behaviors on the Y
surface, illustrated in Fig. 1(c). A 1D usual ladder behaves
like a spin-1 chain [25], and the ground state is described by
the Affleck-Kennedy-Lieb-Tasaki (AKLT) state [36–39]. With
free boundaries, each end of a ladder has one spin-1/2 spinon
located [40].

When the ladders are coupled weakly (J⊥ < 0.040006), the
system stays in the Q1DH phase, and the spin-1/2 spinons
are coupled through Ising couplings, forming an effective AF
Ising chain. This contrasts with the AF Heisenberg chain,
which is a (1 + 1)D SU (2)1 CFT. Therefore, the Y surface
should exhibit AF Ising order. To verify this, we calculate the
Binder cumulant U12 on the surface as functions of J⊥ for
different system sizes, as shown in Fig. 5. At first glance,
it appears that the surface undergoes a phase transition at
around J⊥ ∼ 0.02. We apply the standard (L, 2L) crossing
analysis to estimate the “critical point” [41]. The crossing
points extrapolate to zero for L → ∞, as illustrated in Fig. 6,
indicating the “critical point” does not exist and the surface is
ordered for all J⊥ > 0.

Such surface property can be attributed to the bulk-edge
correspondence of the SPT Q1DH state, which leads to the
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(a)

(b)

FIG. 4. Surface staggered magnetic susceptibility χ1s (a) and the
correlations C‖(L/2) and C⊥(L/2) (b) versus system size L on the
XN surface configurations. The plots are on a log-log scale.

presence of nontrivial surface states that are either gapless or
degenerate and cannot be eliminated if the protecting symme-
tries are preserved [13–15].

When the ordered surface is coupled to the critical bulk,
extraordinary SCBs of the 3D Ising UC are anticipated.

The numerical results of C‖(L/2) and m2
1s(L) as functions

of size L at the bulk critical point are graphed in Fig. 7(b).
Fitting these data according to Eqs. (9) and (10), we ob-
tain C‖ = 0.054(1) and m2

1s = 0.055(2), which are consistent
within error bars. This indicates the existence of a long-range
order on the surface. However, it is difficult to obtain a mean-
ingful estimate of η‖ and yh1. The reason is that η‖ is big, while
yh1 is very small, making it difficult to fit Eqs. (9) and (10) to
the data.

The C⊥(L/2) as a function of L are plotted in Fig. 7(a). The
finite-size scaling form in Eq. (11) is used in the fitting to the

(a) (b)

FIG. 5. (a) Surface Binder cumulant U12 versus J⊥ for different
system sizes. Error bars are much smaller than the symbols. Panel
(b) shows more detailed data around the crossing point.

data C⊥(L/2). Our estimate of the exponent η⊥ = −0.19(3)
with the leading correction 1/L included. The surface singu-
larities are induced by the bulk criticality. These results show
that the surface indeed shows extraordinary SCBs at the bulk
critical point.

C. Unconventional surface transition
and SCBs on the XD surface

The XD surface is exposed by cutting the strong FM bonds
J1, as shown in Fig. 1(d). The surface is a spin-1/2 AF Heisen-
berg chain formed by dangling spins. Therefore, it is gapless
in the Q1DH phase with the couplings to the bulk weak. This
is verified by the power-law decay in C‖(L/2).

Figure 8 shows C‖(L/2) at J⊥ = 0.01 and J⊥ = 0.02 sitting
in the Q1DH phase. We see that C‖(L/2) decays with system

FIG. 6. J⊥(L, 2L) versus 1/L. The standard (L, 2L) crossing
analysis applied to the crossing points J⊥(L, 2L) of U12(J⊥, L). Fit-
ting the crossings with J⊥(L, 2L) = bL−p, we obtain statistically
sound estimates of b = 0.61(8) and p = 0.86(3), suggesting conver-
gence to 0.
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(a)

(b)

FIG. 7. (a) The correlations C⊥(L/2) versus system size L on a
log-log scale at the bulk critical point. (b) Squared surface ferromag-
netic magnetization m2

1 and the correlations C‖(L/2) versus 1/L.

size L in a power law as follows:

C‖(L/2) ∼ L−p. (14)

We find p = 0.90(1) for the J⊥ = 0.01 and p = 0.86(1) for
the J⊥ = 0.02, meaning that surface state is gapless.

According to Mermin-Wagner theorem [42], a gapless AF
Heisenberg chain, which is a (1+1)D SU (2)1 CFT, can-
not spontaneously break the SU (2) symmetry or its U (1)
subgroup. However, if the chain is coupled to bulk critical
fluctuations toward the (2+1)D Z2 UC, which still preserves
the U (1) symmetry, then it should develop an Ising order be-
fore the bulk hits criticality, which is similar to that discussed
in Ref. [23]. Such a transition is not a (1+1)D Ising transition
but in the KT-like UC [11].

Indeed, we find a surface transition before the bulk or-
ders by studying the finite-size scaling of the surface Binder
cumulant U12. Figure 9(a) plots U12 as functions of J⊥ for
different system sizes. Since U12 is dimensionless at a QCP,
the crossings of curves J⊥ ≈ 0.035 for different sizes roughly
indicate a transition point. For coupling larger than 0.035, we
see the Ising order showing. The scaling form Eq. (3) is used
to extract the critical coupling Js

⊥c and the surface correlation
length exponent ν1 for A = U12 and κ = 0. By expanding the

FIG. 8. Surface correlation C‖(L/2) vs system size L in the
Q1DH phase (J⊥ = 0.01, 0.02). The plot is set on a log-log scale.
Power-log decaying with L is observed, meaning the surface state is
gapless.

scaling function into polynomials near the surface transition
point, we find Js

⊥c = 0.03478(8) < J⊥c and ν1 = 0.86(5) by
fitting the polynomials to U12(J⊥, L). Details of the fitting are
presented in Appendix B. Perfect data collapsing is seen in
Fig. 9(b) using the obtained Js

⊥c and ν1.
We then calculate the squared surface magnetization,

m2
1s = 〈(mz

1s)2〉, to extract the anomalous exponent η1 accord-
ing to the scaling form Eq. (3) with A = m2

1s and κ = −η1.
Setting Js

⊥c = 0.03478, we obtain ν1 = 0.88(2) and η1 =
0.6659(7). Within the error bar, ν1 = 0.88(2) is the same
as ν1 = 0.86(5) obtained from U12. Details of the fitting are
available in Appendix B. Perfect data collapsing is seen in
Fig. 9(c) using the obtained Js

⊥c, ν1 and η1.
Our results support that the surface transition is not a con-

ventional (1+1)D Ising transition, but also do not agree with
the KT-like phase transition.

To further characterize the transition, we study the surface
spin stiffness ρ1s which is defined as [43,44]

ρ1s = 〈(N+
x − N−

x )2〉/(βL), (15)

where N+
x and N−

x denote the total number of operators trans-
porting spin in the positive and negative x direction on the
surface. Figure 10(a) shows ρ1s(L) as functions of J⊥ for
different size L.

Suppose the transition is of KT-like, ρ1s(L) at Js
⊥c is ex-

pected to scale as [44,45]

ρc
1s(L) = ρc

1s

(
1 + 1

2 ln(L) + c

)
, (16)

where c is a nonuniversal constant, ρc
1s is a finite spin

stiffness at the transition point in the thermodynamic limit.
However, we find that this scaling form does not fit our
finite-size data of ρc

1s(L). Instead, we find ρc
1s(L) converges

to zero in a power law ρc
1s(L) ∼ L−p with p = 0.18(1), as

shown in Fig. 10(b). Details of the fitting are presented in
Appendix C.
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(a) (b) (c)

FIG. 9. Surface transition before the bulk orders on the XD surface. (a) Surface Binder cumulant U12 versus J⊥ for different system sizes.
(b) Scaling with ν1 = 0.86(5) and Js

⊥c = 0.03478(8) of U12. (c) m2
1s scaled using ν1 = 0.88(2), Js

⊥c = 0.03478 and η1 = 0.6659(7). Error bars
are much smaller than the symbols.

In previous research for quantum systems with O(3)
symmetry, nonordinary SCBs are expected at surfaces with
gapless surface mode due to the merging of gapless surface
mode with the 3D O(3) bulk critical modes. Such nonordi-
nary SCBs can be multicritical special SCBs [16–18,21] or
extraordinary SCBs with surface ordered [22]. For the current
model, the bulk undergoes the 3D Z2 phase transition. When
the system hits the bulk criticality, the Ising ordered surface
is coupled to the (2+1)D Ising bulk critical mode. We thus
expect extraordinary SCBs in the (2+1)D Ising UC, which
should be the same as that on the Y surface. However, we
obtain different critical behaviors from the Y surface, in par-
ticular, we find η⊥ = −0.68(8).

The numerical results of C‖(L/2) and m2
1s(L) as functions

of size L at the bulk critical point are graphed in Fig. 11(b).
Fitting these data according to Eqs. (10) and (9), we obtain
C‖ = 0.0089(4) and m2

1 = 0.0088(2), which are consistent
within error bars. This indicates the existence of a long-range
order on the surface. However, it is also difficult to obtain a
meaningful estimate of η‖ and yh1. The C⊥(L/2) as a function
of L are plotted in Fig. 11(a). The finite-size scaling form in
Eq. (11) is used to fit the data of C⊥(L/2). Our final estimate
of the exponent η⊥ is η⊥ = −0.68(8).

(a) (b)

FIG. 10. (a) The surface spin stiffness ρ1s(L) versus J⊥ for differ-
ent system sizes. The vertical dashed line corresponds to the critical
point Js

⊥c obtained by binder cumulant U12. (b) The plot on a log-log
scale and the line is the fit according to ρc

1s(L) ∼ L−p.

V. DISCUSSION AND CONCLUSION

In this paper, we designed a quantum spin-1/2 model
hosting a quantum phase transition in the (2+1)D Ising uni-
versality class. We have shown that the model exhibits rich
surface properties, including ordinary SCBs on the XN sur-
face, extraordinary SCBs on the Y surface, and in particular

(a)

(b)

FIG. 11. (a) The correlations C⊥(L/2) versus system size L
on a log-log scale at the bulk critical point. (b) Squared surface
antiferromagnetic magnetization m2

1 and the correlations C‖(L/2)
versus 1/L.
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FIG. 12. Binder cumulant U2 versus J⊥ for different system sizes
with R = 4.

exotic surface phase transition and unconventional extraordi-
nary SCBs on the XD surface.

The exotic surface transition refers to the surface order-
ing before the bulk as the Ising couplings increase, which is
different from the surface critical behaviors associated with
the bulk critical point, which occur at the bulk critical point.
This surface transition seems to have critical exponents dif-
ferent from those of the (1+1)D Ising criticality and the
KT transition predicted in previously theoretical work. In a
perturbation theory, one can easily obtain an effective Sz

i Sz
j in-

teraction at the surface from couplings to the bulk fluctuations,
leading to an effective (1+1)D XXZ-type chain with U(1)
symmetry, which should induce a KT-like phase transition
here [46]. However, if the Ising couplings to the bulk are
relevant, then the surface may order before the bulk, but the
transition should be in the (1+1)D Ising UC, which would
lead to the extraordinary SCBs in the 3D Ising UC, similar
to the extraordinary SCBs on the Y surface. Our numerical
results show conflict with these expectations. Therefore, the
unconventional surface transition and extraordinary SCBs ob-
tained here surpass our current understanding, which may hint
at some new scenario of surface critical behavior that desires
further investigations both numerically and theoretically.
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(a)

(b)

FIG. 13. Critical properties of the bulk phase transition for sys-
tems with R = 4. (a) Data collapse of U2 using ν = 0.63 and J⊥c =
0.04001. (b) Data collapse of m2

s using ν = 0.63, J⊥c = 0.04001, and
η = 0.033. Error bars are much smaller than the symbols.

APPENDIX A: BULK CRITICAL PROPERTIES
FOR SYSTEMS WITH ASPECT RATIO R = 4

We present here the simulation results for systems with an
aspect ratio R = Lx/Ly = 4 and inverse temperature β = Lx,
with PBCs applied along both x and y lattice directions to
study the critical properties near the critical point.

Figure 12 shows U2 as a function of J⊥ for different system
sizes. The system with Lx = 64 has the same number of sites
as the system with L = 32 and R = 1. Comparing to Fig. 2,
we see the shifts of the crossings for two neighboring sizes
become much narrower as sizes increase, indicating that the

TABLE I. Fitting U12 without correction-term. Parameters to be
used in fitting from J⊥ = 0.029 to J⊥ = 0.038. Lmin is the minimum
system size used in fitting. Reduced χ 2 (R-χ 2) and p value of χ 2

(P-χ 2) are also listed.

Lmin Js
⊥c ν R/P-χ 2

80 0.035375(8) 0.82(5) 3.22/0.000029
88 0.03507(8) 0.83(5) 1.92/0.00019
96 0.03478(8) 0.86(5) 1.22/0.17
104 0.0347(1) 0.89(6) 1.37/0.09
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TABLE II. Fitting U12 with correction-term. Parameters to be
used in fitting from J⊥ = 0.029 to J⊥ = 0.038. Lmin is the minimum
system size used in fitting. Reduced χ 2 (R-χ 2) and p value of χ 2

(P-χ 2) are also listed.

Lmin Js
⊥c ν R/P-χ 2

80 0.030(5) 1.5(4) 0.99/0.49
88 0.033(2) 0.82(29) 1.57/0.01
96 0.034(2) 0.96(29) 1.23/0.17
104 0.036(2) 0.84(42) 1.62/0.03

correction to scaling due to anisotropy is greatly reduced by
the aspect ratio. We fit the finite-size scaling formula Eq. (3)
to the data of Lx � 64 to extract the critical coupling J⊥c and
the correlation length exponent ν, where f (x) is a scaling
function. For A = U2 which is dimensionless, κ = 0. Expand-
ing f (x) to polynomials near the transition point, we obtain
J⊥c = 0.04001(1) and ν = 0.63(2) by fitting the polynomials
to the finite-size data. Figure 13(a) shows a perfect data col-
lapsing of U2 using the obtained J⊥c and ν.

Next, the squared magnetization m2
s is analyzed to extract

the exponent η. The scaling of m2
s follows the form given in

Eq. (3), with κ = −(1 + η) and f (x) being a scaling function,
ignoring the correction to scaling L−ω. Using the obtained J⊥c

and ν, we obtain η = 0.033(2) by expanding f (x) to poly-
nomials and fitting it to finite-size data of m2

s (J⊥, L). Perfect
data collapse using obtained critical properties is shown in
Fig. 13(b).

Here, the obtained J⊥c = 0.04001(1), ν = 0.63(2), and
η = 0.033(2) from systems with R = 4 are consistent with
J⊥c = 0.040006(3), ν = 0.64(1), and η = 0.036(3) obtained
from systems with R = 1 within the error bars. The larger
error bars for the R = 4 results are due to the fact that the
largest system size used are much smaller than that used for
systems with R = 1.

APPENDIX B: UNCONVENTIONAL SURFACE
TRANSITION AND EXTRAORDINARY SURFACE
CRITICAL BEHAVIORS ON THE XD SURFACE

In the main text, we show that the boundary will go through
a transition from the gapless state to an Ising phase before the
bulk hits criticality.

Here, we first present the details fitting about surface
Binder cumulant U12. We adopt finite-size scaling as derived

TABLE III. Fitting m2
1 without correction-term. Parameters to be

used in fitting from J⊥ = 0.03 to J⊥ = 0.04. Lmin is the minimum
system size used in fitting. Reduced χ 2 (R-χ 2) and p value of χ 2

(P-χ 2) are also listed.

Lmin ν η R/P-χ 2

80 0.88(2) 0.6659(7) 1.58/0.002
88 0.89(2) 0.6638(9) 1.45/0.02
96 0.90(3) 0.662(2) 1.41/0.03
104 0.90(3) 0.662(2) 1.58/0.02

TABLE IV. Fitting m2
1 with correction-term. Parameters to be

used in fitting from J⊥ = 0.03 to J⊥ = 0.04. Lmin is the minimum
system size used in fitting. Reduced χ 2 (R-χ 2) and p value of χ 2

(P-χ 2) are also listed.

Lmin ν η R/P-χ 2

80 0.97(3) 0.54(3) 1.18/0.14
88 0.97(3) 0.55(5) 1.30/0.06
96 0.98(7) 0.57(8) 1.40/0.04
104 0.96(11) 0.57(14) 1.59/0.02

from Eq. (3)

U12(J⊥, L) = f
[(

J⊥ − Js
⊥c

)
L1/ν1 , L−ω

]
=U0 +

k=6∑
k=1

ak
(
J⊥ − Js

⊥c

)k
Lk(1/ν1 )

+ b
(
J⊥ − Js

⊥c

)
L1/ν1−ω + cL−ω, (B1)

to extract the critical coupling Js
⊥c and the correlation length

exponent ν1. Table I shows fitting results without including
effective correction to scaling L−ω, and Table II shows results
with effective correction to scaling L−ω included.

For the squared surface magnetization m2
1, we adopt the

following finite-size scaling formula

m2
1(J⊥, L) = L−η1 f

[(
J⊥ − Js

⊥c

)
L1/ν1 , L−ω

]
= L−η1

(
m0 +

k=3∑
k=1

ak
(
J⊥ − Js

⊥c

)k
Lk(1/ν1 )

+ b
(
J⊥ − Js

⊥c

)
L1/ν1−1 + cL−1

)
, (B2)

to extract the correlation length exponent ν1 and the ex-
ponent η1. We here take the effective correction to scaling

(a) (b)

FIG. 14. The spin stiffness at the critical point, ρc
1s(L), versus

system size L. (a) The plot on a conventional scale and the line is
the fit according to Eq. (16). (b) The plot on a log-log scale and the
line is the fit according to Eq. (C1).
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exponent ω = 1. Without correction-term (Table III) and with
correction-term (Table IV) are obtained.

APPENDIX C: ANOTHER EVIDENCE FOR NEGATING
THE KT PHASE TRANSITION

At the KT phase transition point, the spin stiffness is ex-
pected flows as a function of L as Eq. (16) [44,45]. As shown

in Fig. 14(a), we find that the ρc
1s(L) cannot be fitted by

Eq. (16). We also try to fit the ρc
1s(L) with a power-law,

ρc
1s(L) ∼ L−p, (C1)

and find statistically sound estimate p = 0.18(1) [see
Fig. 14(b)]. All the above results show that the phase transition
is not a KT phase transition.
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