
PHYSICAL REVIEW B 110, 115119 (2024)
Editors’ Suggestion

Autoencoder-based analytic continuation method for strongly correlated quantum systems

Maksymilian Kliczkowski ,1 Lauren Keyes ,2 Sayantan Roy,2 Thereza Paiva ,3 Mohit Randeria,2

Nandini Trivedi,2 and Maciej M. Maśka 1
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Solving ill-posed problems is central to a variety of scientific investigations. We focus here on the analytic
continuation of imaginary-time data obtained from quantum Monte Carlo (QMC) simulations to the real
frequency axis, which involves the numerical inversion of a Laplace transform, a well-known ill-posed problem.
We propose an unsupervised autoencoder-type neural network to address this problem, and we show that
our encoder-decoder approach can extract high-quality real frequency spectral functions from imaginary-time
Green’s functions G(τ ). With a deeply tunable architecture we demonstrate, for artificial test data with noise
added, that the autoencoder neural network can locate sharp features of spectral functions, which may be lost
using maximum entropy (MaxEnt) methods currently in use. We demonstrate the strength of the autoencoder
approach by applying it to QMC results for a single-band Hubbard model as a function of density, and we show
that it is more robust against noise in the input G(τ ) compared to MaxEnt. The proposed method is general and
can also be applied to other ill-posed inverse problems.
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I. INTRODUCTION

Solving ill-posed inverse problems is critical across scien-
tific disciplines, where the reconstruction of functions from
indirect or noisy observations presents inherent challenges
[1–3]. Prominent ill-posed inverse problems include, e.g., re-
covering the signal from convoluted or blurred versions [4–7],
reconstructing a function from its Laplace transform [8–11],
determining object properties from scattered waves [12,13],
finding the initial temperature distribution within a material
based on temperature measurements at its surface [14], or re-
constructing a function from a finite set of data. In this paper,
we propose an autoencoder-type neural network as a universal
tool for solving ill-posed inverse problems. To demonstrate
its effectiveness, we apply it to perform analytic continuation,
transforming imaginary-time quantum Monte Carlo (QMC)
data to real frequency. Given its universality, the same scheme
can address various ill-posed inverse problems, e.g., it can be
used instead of the Lucy-Richardson iterative deconvolution
technique [15,16] for spectroscopy data.

Powerful nonperturbative techniques to investigate
strongly correlated quantum systems at finite temperatures,
such as QMC simulations, as well the use of QMC impurity
solvers in dynamical mean-field theory (DMFT) [17] and
cluster-DMFT [18], allow one to compute Green’s functions
G(τ ) and other dynamical correlation functions in the
imaginary-time τ domain. To make contact with experiments,
one needs to transform the imaginary-time data G(τ ) to the
real-frequency spectral function (SF) A(ω).

Given A(ω), one can readily find the corresponding G(τ )
via a Fredholm integral of the first kind [19–21],

G(τ ) =
∫ ∞

−∞
K(τ, ω)A(ω)dω, (1)

where for fermions the kernel K is given by

K(τ, ω) = − e−ωτ

1 + e−βω
(2)

for 0 � τ � β = 1/T , the inverse temperature. Although
it is easy to calculate the integral in Eq. (1), the reverse
transformation–required to relate QMC data to experiments–
is ill-posed, exemplifying an inverse problem. It is highly
susceptible to statistical and numerical errors. Even slight
fluctuations in the input can result in significant discrepancies
in the final result [22]. This makes the problem of analytic
continuation extremely challenging, and due to its importance,
for, e.g., quantum many-body physics, tremendous effort is
being invested into its solution [23].

By discretizing imaginary time τi and frequencies ω j and
introducing notation Gi ≡ G(τi ), Aj ≡ A(ω j ), Eq. (1) can be
rewritten in a matrix form,

�G = K �A, (3)

where �G = (G1, . . . , GN ), �A = (A1, . . . , AM ), and K is an
N × M kernel matrix. The direct approach to determining
A(ω) would be to calculate a generalized inverse of Eq. (3)
[24,25]. However, the difficulties mentioned above usually
render this simple idea unusable. Therefore, different meth-
ods have been proposed, including Padé approximants [26],
stochastic analytic continuation [23,27], sparse modeling
[28–30], spectrum averaging [31], stochastic pole expansion
[32], genetic algorithms [33] and maximum entropy (MaxEnt)
methods [34,35], with the last being the most widely used.
Significant effort has been put into their enhancement, but
the search for a fully reliable method continues. Recently, a
new approach has been introduced using the “Nevanlinna”
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structure of Green’s function [36,37]. This approach under-
takes interpolation rather than searching for a fit that matches
multiple predefined conditions. A robust extension of this
method, called PES, related to projection, estimation, and
semidefinite relaxation, has been proposed in Ref. [38].

In this paper, we demonstrate the efficiency and accuracy
of a different strategy, involving rapidly advancing machine
learning (ML) techniques to tackle this issue. We compare
it with MaxEnt. Neural Networks (NNs) have already been
proposed to obtain A(ω) from G(τ ) [22,39–41], producing
remarkable results compared to MaxEnt. These approaches
were based on a popular type of ML, supervised learning,
where a NN is trained to provide an expected output for a
given input. Since supervised learning requires labeled data,
a large number of SFs must first be artificially generated in
a physically meaningful way. These SFs are then the “la-
bels,” i.e., the expected outputs. The corresponding G(τ )’s are
calculated according to Eq. (1), and pairs [G(τ ), A(ω)] are
used to train the NN. Because this type of NN is trained on
“artificial” SFs, it does not necessarily perform well for real
QMC data. Our approach incorporates supervised learning as
a first (pretraining) step, but ultimately the NN trains on real
QMC data.

The rest of the paper is organized as follows. In Sec. II, we
outline our autoencoder approach, with details of the neural
network architecture, its training, and testing described in
Appendix A. We focus in Sec. III on comparing our autoen-
coder results with MaxEnt, first for synthetic data and then
for determinantal QMC (DQMC) [42,43] data. Details of the
MaxEnt procedure are relegated to Appendix B, and DQMC
details can be found in Appendix C. In Sec. IV we describe
how we can include custom regularization, such as impos-
ing sum rules, in our autoencoder approach. We conclude
in Sec. V by summarizing how the autoencoder approach is
more robust against noise compared to MaxEnt, the method
traditionally used for analytic continuation of imaginary-time
data to real frequency spectral functions.

II. AUTOENCODER APPROACH

Our proposed approach uses an autoencoder, schematically
illustrated in Fig. 1, a feed-forward-type NN in which all
information travels from the input layer to the output layer
through the latent layer. The encoder consists of a NN that
takes as input the imaginary time �G = (G1, . . . , GN ) and pro-
duces the spectral functions SF �A = (A1, . . . , AM ) in the latent
layer. This in turn serves as the input to the decoder, which
simply uses Eq. (3) to produce the output �G′ = (G′

1, . . . , G′
N ).

We can succinctly write this as

(4)

where the symbols and represent the encoder and
decoder parts of the NN, respectively. The NN is then trained
to minimize the difference between G(τ ) and G′(τ ), without
requiring any prior knowledge of A(ω), as described below.

The details of the NN architecture used as the encoder are
described in Appendix A; see especially Fig. 8 and associated
discussion. We should note an important point of differ-
ence with typical applications where the encoder compresses

ENCODER DECODER

FIG. 1. Illustration of the structure of the autoencoder (AE),
where Gi, G′

i, and Ai are elements of vectors defined in Eq. (3) and
used in Eqs. (4) and (5). The function f that performs the inverse
transformation f : �G → �A is represented by the encoder NN defined
by trainable neuron weights {W} for fixed metaparameters, such as
the number of layers in the neural network and the type of activation
function.

information, and thus the latent layer has a size smaller than
the size of the input and output layers. In our implementation,
the size of the latent space is in fact larger than in the input
and output layers, since we want good resolution in frequency
space; however, we will still use the terms encoder and de-
coder for the first and second parts of the AE.1

The only trainable layers in this architecture are in the
encoder, where the NN performs the inverse transformation
�A = f ( �G) (see Fig. 1). This is possible due to the universal
approximation theorem, asserting that a NN of sufficient size
can accurately approximate any piecewise continuous func-
tion [44–46]. To implicitly define function f , the weights
{W} in the NN are determined by requiring that the recon-
structed Green’s function �G′ be as close to the original Green’s
function �G as possible. Since the decoder part performs a
well-posed forward transformation (3), the encoder is trained
to perform the inverse transformation with the SF �A as its out-
put. The natural choice for the loss function to be minimized

1The actual structure is richer, as shown in Fig. 8 and described
in Appendix A 2. In particular, the encoder itself has a narrow
layer with NL = 5, . . . , 200 neurons that acts similarly to the latent
layer in AEs. In analogy to denoising, e.g., photos, this narrow
layer helps to extract important features of Green’s functions from
QMC data with statistical noise. This AE-based extraction method
achieves higher efficiency compared to averaging multiple “snap-
shots.” Consequently, the proposed approach allows shorter QMC
runs to produce SFs that match the quality of MaxEnt SFs obtained
from significantly longer runs. The influence of the width of this
layer on the quality of the SFs is discussed in Appendix A 4.
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stage 1: pretraining stage 2: fine tuning

FIG. 2. Schematic illustration of the two-stage procedure. At
stage 1 artificial spectral functions (SFs) �A0 are used to determine
approximate values of the weights {W}, which at stage 2 are used
as initial values of the encoder part of the autoencoder (AE). At
stage 2 real QMC Green’s functions �G are used to fine-tune {W}.
While stage 1 can be formally represented by an AE, since the
direct transformation is just a matrix-vector multiplication, this stage
falls into the supervised learning category. Stage 2 is unsupervised
learning.

during training is the squared distance between �G and �G′,

χ2 = || �G − �G′||2, (5)

or its obvious generalization in terms of the covariance
matrix [47].

Similar to the MaxEnt method, minimization of χ2 suffers
from the lack of uniqueness. One possibility is to intro-
duce, as in MaxEnt, an additional entropy term, which favors
the similarity of A(ω) to a chosen default model. However,
this introduces an ambiguity in the choice of the default
model and in the competition between χ2 with the entropy
term. Therefore, we propose a different approach that is
described next.

Supervised pretraining and unsupervised learning

Since the forward problem (1) at fixed β does not depend
on a particular physical model, the inverse transformation
should be unique and independent of the nature of Green’s
functions. However, this would require infinite numerical
precision. Moreover, since our approach represents the trans-
formation as a NN, and too many neurons would make
training infeasible, we have to work with an approximate form
of the inverse transformation. We also emphasize that in the
absence of a priori knowledge of the spectral functions A(ω),
the problem is not amenable to supervised learning.

We thus propose the following two-stage procedure for
training the encoder NN illustrated in Fig. 2:

(i) First, the learns general characteristics of SFs us-
ing artificially generated spectral functions. We call this the
pretraining stage.

(ii) Second, we fine-tune the NN weights using G(τ )’s
obtained directly from QMC data. This stage corresponds to
unsupervised learning.

The second stage uses the methodology already outlined
above in (5) to optimize the NN weights starting with initial
weights obtained from the first step. The pretraining stage,
however, needs further discussion, and we turn to that next.

In the pretraining stage, we follow the method of
Refs. [22,39–41] and use “artificial” SFs �A0 modeled as the

sum of a random number of Gaussian peaks. For each SF, we
calculate the corresponding Green’s function �G0 according to
Eq. (3). Then, we use a large set of pairs ( �Gn

0 , �An
0) to train .

In the language typically used for supervised learning, we use
a Green’s function �G0 as a “data point” and the corresponding
spectral function �A0 as a “label,” which is expected at the out-
put layer of the NN. We use calligraphic letters to distinguish
the “artificial” SFs and the corresponding Green’s functions
from the ones obtained in QMC simulations. Formally, by
analogy to Eq. (4), the procedure described above can be
illustrated as

(6)

where now plays the role of a decoder and is trained to
minimize [48]

η2 = || �A0 − �A′
0||2. (7)

However, since is given by Eq. (3) and we know �A, this is
a standard problem of supervised learning, which usually has
a well-defined unique solution.

We call this pretraining, since at this stage the NN does not
learn how to transform real QMC data. Instead, the network
learns general features of SFs. This step is also useful for
addressing the “curse of dimensionality” [49]. Namely, the
pretrained weights and biases of provide suitable initial
conditions for the second stage to prevent backpropagation
from becoming trapped in a suboptimal local minimum. Thus,
in actual training with QMC G(τ )’s according to Eq. (4), we
only adjust already pretrained weights and biases of .

In the MaxEnt approach, prior knowledge of the spectra
is introduced by defining the default model, which is used
to select one of the many solutions to minimization of χ2 in
Eq. (5). In the present approach, the pretraining plays a similar
role. Here, instead, it forces the SFs to be close to a realis-
tic multipeak structure, as opposed to simple default models
typically used in MaxEnt. Once acquired, the weights can be
employed subsequently without the need for recalculation.

While pretraining is the main way to ensure a lack of
ambiguity of the solution, it is easy to apply other techniques
to improve the quality of the SFs obtained. We impose a
limited number of physical assumptions about the SFs, such as
their normalization and non-negativity. The flexibility of NNs
enables the incorporation of any desired regularization. For
instance, we can introduce the entropy term, typically max-
imized in the MaxEnt procedure, as a separate layer within
the NN framework. We explore other possibilities, including
simple L1 and L2 penalties (absolute and squared values of
weights, respectively), as well as more sophisticated regular-
izations based on first- and second-derivative constraints to
ensure the SF’s smoothness. We further follow the idea of
White [50] to incorporate constraints set by spectral moments
that are known analytically. Using the flexibility and power
of NNs, we demonstrate the ability to tackle the challenges
posed by statistical noise and the absence of prior knowledge
of the SF in a more universal manner.

Comparison of the pretraining stage with methods, where
NNs are used to produce SFs, reveals similarities. Indeed, this
stage is what has been proposed in Refs. [22,39–41] in the
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FIG. 3. Testing the robustness of our approach against statistical

errors (details in text). represents the MaxEnt procedure; �AA

( �AM ) denote the SFs obtained within the AE (MaxEnt) methods. The
part denoted as “autoencoder” includes the pretraining and the actual
AE training. We use index “0” for the SFs and Green’s functions used
at pretraining stage to distinguish them from SFs used in the actual
error estimation procedure.

context of supervised learning. However, we claim that the
second stage, based on unsupervised learning, is crucial to
obtain reliable results for QMC data. In Appendix A 4 we
show that errors are much larger for the SFs obtained with

trained only at the first stage (pretrained only) than after
the full procedure (see Figs. 9 and 10).

III. COMPARING PERFORMANCE

Figure 3 shows how the proposed approach has been vali-
dated and compared with the MaxEnt method.

A. Synthetic data

To demonstrate the advantages of the proposed method,
we need measures to evaluate its efficiency and accuracy. The
general scheme of testing the proposed approach is illustrated
in Fig. 3. There is no obvious way to assess the accuracy
of the AE approach. The true SFs corresponding to G(τ )’s
produced by QMC are a priori unknown, and thus we can-
not determine whether the result produced by the AE or by
MaxEnt is more accurate. To overcome this difficulty, we
compare the performance of the AE and MaxEnt on synthetic
noisy Green’s functions, for which the exact SF is known.
Namely, we generate “artificial” SFs of the same nature as
those used in pretraining. Subsequently, we use Eq. (1) to
calculate corresponding G(τ )’s. Finally, we add noise σ that
mimics averaging over different lengths of QMC runs. Various
magnitudes of noise σ are added to G(τ ) to produce a set �Gσ

(for details, see Appendix A). The resulting set of �Gσ ’s is used
to perform the second training stage of the NN [Eq. (4)]. Once
training is complete, we test the AE (MaxEnt) by applying
it on sets �Gσ independent of those used to train the NN and
produce SFs �AA ( �AM). This process is illustrated in Fig. 3.
Since we know the original SF �A, we explicitly calculate the
errors introduced by both the AE and MaxEnt. We define

δ2
A = || �A − �AA||2, δ2

M = || �A − �AM ||2, (8)

where δ2
A and δ2

M measure the AE and MaxEnt errors, respec-
tively.

Panels (a)–(d) of Fig. 4 show examples of SFs obtained
with the AE and MaxEnt for two different noise magnitudes,

FIG. 4. Testing the spectral functions (SFs) predicted by the au-
toencoder (AE) (red solid line �AA) and MaxEnt (blue dashed line
�AM ) from Green’s functions G calculated from a known SF �A0 (solid

black line). Results are shown for two different known SFs [one in
(a) and (c), another in (b) and (d)] and for two values of the noise
σ imposed on artificial Green’s functions [σ1 = 6 × 10−5 in (a) and
(b), σ2 = 6 × 10−2 in (c) and (d)]. The insets show the σ -dependence
of the reconstruction errors δ2

A,M defined in Eq. (8). The cyan circles
indicate the values of σ1 and σ2. We always find the reconstruction
error δ2

A � δ2
M .

σ1 and σ2. Figures 4(e) and 4(f) show the corresponding
dependence of δ2

A and δ2
M on σ . It can be seen that δ2

A is
smaller than or equal to δ2

M for all values of σ , indicating that
shorter QMC runs can be used with the AE method to produce
SFs with the same or greater accuracy than those produced
by MaxEnt. We further demonstrate the impact of noise in
Fig. 5. In panel (d) [(b)] we show the SFs AA(ω) [AM (ω)]
obtained by using AE [MaxEnt] on the Gσ (τ )’s given in panel
(c) for various σ . Comparison of AA,M (ω) with the original
SF A(ω) [Fig. 5(a)] directly highlights the robustness of the
AE to noise. By evaluating the AE’s performance across σ , we
examine the resulting SF’s susceptibility to statistical errors.
We show that, having trained on a broad set of noisy Green’s
functions, the AE adeptly captures crucial SF characteristics
compared to simple averaging. This ability is the main reason
why AEs are used in image denoising [51]. During training,
in addition to learning to transform data to the frequency
domain, the AE learns to distinguish between inherent statis-
tical errors in QMC and key features that define the quantum
system. It can be noted in Fig. 5 that while for σ = 7 × 10−6

(the cyan line) both MaxEnt and AE give accurate results,
for σ = 10−3 (the pink line) the AE reproduces much better
the three-peak structure of the original SF. Therefore, one
can suspect that significantly shorter QMC runs are needed
to generate SFs of similar quality for the AE compared to
MaxEnt. This problem is studied in the next section.

B. QMC data

Next, we test our approach on real QMC data. To do this,
we use single-particle imaginary-time Green’s functions,
obtainable in determinant quantum Monte Carlo (DQMC)
simulation, which are defined as G�k (τ ) =
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FIG. 5. Comparison of the effectiveness of the autoencoder and
MaxEnt to reproduce “artificial” SF. (a) Example of “artificial” SF
A(ω) used to calculate G(τ ) using Eq. (3). Noisy Gσ (τ )’s with
various σ values are shown in panel (c). MaxEnt results AM (ω) are
shown in panel (b) and autoencoder results AA(ω) in panel (d). Both
methods work well for the smallest value of σ = 7 × 10−6, but at
σ = 1 × 10−3 (pink curve) we see that AE performs much better than
MaxEnt in capturing the three peaks in A(ω).

− ∑
σ 〈ĉ�kσ

(τ )ĉ†
�kσ

(0)〉, where �k stands for the particle

momentum vector, and ĉ†
�kσ

(τ ), ĉ�kσ
(τ ) denote fermionic

creation and annihilation operators at imaginary time τ . We
study the Fermi-Hubbard model both at half-filling (μ = 0)
where there is no sign problem and away from half-filling
(μ = 1.5) at intermediate temperatures where the average
sign is 〈s〉 ≈ 0.3 and away from zero so the DQMC is
controlled [52–54]. In particle-hole symmetric form, the
Hamiltonian is given by

Ĥ = − t
∑
〈i, j〉σ

(ĉ†
iσ ĉ jσ + H.c.)

+ U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
− μN̂, (9)

where ĉ†
iσ (ĉiσ ) denotes fermionic creation (annihilation) op-

erators, t is the hopping integral, and U denotes the on-site
Coulomb repulsion. Fermionic number operators are defined
as n̂iσ = ĉ†

iσ ĉiσ , n̂i = n̂i↑ + n̂i↓, N̂ = ∑
i n̂i.

We begin the discussion of the DQMC results by showing
SFs A�k (ω) calculated on a half-filled 16 × 16 system at high
symmetry points of the Brillouin zone in Fig. 6. Both AE and
MaxEnt results are presented, with relatively good agreement
between these two approaches. Similarly, in Appendix C we
show the comparison of the AE and MaxEnt density of states.
However, since in this case the exact SF is not known, it is not
possible to determine which of these results is more accurate.
Therefore, we propose another method to estimate the accu-
racy in the proposed approach. To this end, we compare the
convergence rate of the AE with that of the MaxEnt method.
In analogy to Eq. (8), we define

	2
A(σ ) = ∣∣∣∣ �A∞

A − �Aσ
A

∣∣∣∣2
, 	2

M (σ ) = ∣∣∣∣ �A∞
M − �Aσ

M

∣∣∣∣2
, (10)

FIG. 6. (a)–(d) Spectral functions obtained from DQMC G(τ )
using AE (red) and MaxEnt (blue dashed) for the 2D Hubbard model
with U/t = 8, μ = 0, and β = 2t . Various panels correspond to
momenta marked in panel (b) with open green circles.

where �A∞
A ( �A∞

M ) denotes the SF obtained within the AE
(MaxEnt) method for the number of G(τ )’s sufficiently large
to ensure the SF’s convergence. �Aσ

A and �Aσ
M represent SFs

analogous to �A∞
A and �A∞

M , but they are calculated from a
smaller number of G(τ )’s, which is chosen to give a statistical
error equal to σ . Figure 7 shows the convergence rates for AE
and MaxEnt for half-filling and away from it.

For both fillings, the AE SFs converge much faster than
the MaxEnt SFs, i.e., the AE method can produce the same
quality SFs from more noisy G(τ )’s than the MaxEnt method.
Here, by convergence we mean the noise level σ that leads to
a certain value of the error between Aσ and A∞. This value
of σ is higher for most of the points displayed in Figs. 7(c)
and 7(f), thus suggesting that shorter QMC runs are sufficient
for achieving a desired output quality. We note, however, that
at large σ , the performance might degrade in the AE frame-
work. Nevertheless, our observation indicates that such values
introduce extreme noise levels that lead to the nonphysical
scenario of G(τ )’s changing the sign [see Fig. 5(c)]. Thus,
we conclude that, in practical applications, shorter QMC runs
would be required when using the AE.

IV. CUSTOM REGULARIZATION: SUM RULES

In this section, we elaborate on defining the regularization
for the NN. The part of the AE has to solve the problem
of transforming the input function into a function that, when
integrated, gives the same input function. The transformation
is determined by weights and biases, which are adjusted dur-
ing the training stage. Since this is an ill-posed problem, it
is reasonable to expect that the final values of these weights
and biases will not be optimal, resulting in divergence in the
output of AE from the input.

Training is an iterative process that starts with random
(or pretrained) initial values of the weights and biases, and
therefore the final parameters of the neural network can also
depend on initialization. To minimize this dependence, we
employ a technique to improve the results of a single initial-
ization. Since integration “smooths out” irregularities in the
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FIG. 7. Comparisons of SFs obtained by AE and MaxEnt at half-filling μ = 0 [panels (a)–(c)] and away from half-filling μ = 1.5 [panels
(d)–(f)] at the 
 point in the Brillouin zone. The SFs are overlaid, starting from the shortest QMC runs (highest σ ). A∞

A,M are indicated with
black lines. The convergence rates for half-filling and away from it are shown in (c) and (f), respectively [dotted lines in panels (c) and (f) are
guides to the eye]. The errors 	M,A are defined in Eq. (10). The AE (MaxEnt) results are marked with red inverse triangles (blue triangles). We
average over the errors in G(τ )’s at all τ to obtain σ . We see from panels (c) and (f) that the errors for AE (	2

A) are generally smaller than the
errors for MaxEnt (	2

M ).

integrand function, the output of the part is highly insensi-
tive to high-frequency oscillations or noise in the output of the
encoder part. Consequently, to extract the essential features of
SFs, we incorporate regularization methods commonly used
in inverse problems. These regularization techniques help sta-
bilize and improve the reconstruction process. To this end, the
total cost function is defined as

L = χ2( �G, �G′) +
∑

m

αmηm( �G, �G′; �A), (11)

where the regularization strength αm describes the signif-
icance of the specific regularization function ηm( �G, �G′; �A).
The interplay between different penalty terms enables a more
meaningful solution, especially in situations where the trans-
formation is inherently ambiguous. In the MaxEnt procedure,
as described in the preceding section, the loss L is accompa-
nied by an entropy penalty, which is used to minimize spurious
correlations between the data by introducing a default ref-
erence model. Typically, a stronger regularization leads to a
smoother output during the procedure. A notable advantage of
the AE approach lies in its flexibility to incorporate arbitrary
regularization terms. In particular, we consider physically rel-
evant terms that penalize deviations from the sum rules, which
can be analytically calculated for the Hubbard model up to the
second moment [50]. They are defined as

m0 =
∫ ∞

−∞
dωA(k, ω) = 1, (12a)

m1 =
∫ ∞

−∞
dω ωA(k, ω) = εk − μ + U

2
(n − 1), (12b)

m2 =
∫ ∞

−∞
dω ω2A(k, ω) =

(
εk − μ − U

2

)2

+U

(
εk − μ − U

2

)
n + 1

2
U 2n, (12c)

where εk = −2t (cos kx + cos ky) is the tight binding disper-
sion on the square lattice with only nearest-neighbor hopping
t . In Table I, we compare the deviations of the three lowest
moments of the AE and MaxEnt SFs from the exact values.
While the zeroth moment (normalization of the SF) is rather
precise in both approaches, the errors for the remaining mo-
ments are significantly smaller for the AE.

The moments are enforced by applying penalties that in-
crease as the computed moment for the resulting SF deviates
from its anticipated value. However, this introduces additional
parameters that determine the priority of satisfying the sum
rules in relation to the importance of similarity between �G and
�G′. If the penalties are too small, the AE might neglect the
sum rules; conversely, if the penalties are too large, it could
generate a random function that gives the correct moments.

For some of our results, we have employed hyperparame-
ter optimization techniques such as grid search or Bayesian
search [55]. It should be noted that there may be potential
improvements in the quality of the results by additionally
applying ensemble learning techniques [56].

V. SUMMARY

Due to the completely different schemes used to carry out
the analytical continuation with the proposed method and the

TABLE I. Absolute errors of mth-order moments for various
high-symmetry points in the Brillouin zone, obtained with AE and
MaxEnt from the QMC SFs.

AE MaxEnt

m 
 	 X 
 
 	 X 


0 0.0073 0.0053 0.0009 0.003 0.002 0.0014 0.002 0.0011
1 0.02 0.0012 0.0001 0.0021 0.07 0.024 0.02 0.0055
2 0.61 0.16 0.71 0.12 1.6 1.5 3.6 0.7
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MaxEnt method, it is not possible to make an unambiguous
comparison of the efficiency of these methods in terms of,
for example, calculation time, computer resources required,
or accuracy achieved. Both the AE and MaxEnt methods
require fine-tuning to obtain accurate results. In the case of the
MaxEnt method, we must at least choose the default model
and the “strength” of the entropy term. For the AE method,
we have to decide on the metaparameters (number of layers in
the neural network, the type of the activation function, etc.).
And this process of fine-tuning can depend on models, on
model parameters, on temperature, etc. Additionally, in the
case of QMC data, the target spectral function is unknown and
therefore it is not possible to directly compare the absolute
accuracy of the two methods.

However, despite these difficulties, several advantages of
the AE approach can be clearly identified, which may prove
crucial for obtaining accurate results for highly correlated
systems, especially in areas where massive QMC simulations
are needed to reduce statistical errors. Among these, we can
highlight the following strengths of the proposed method:

(i) In contrast to MaxEnt, where one has to define the
default model, no prior knowledge about the physical nature
of the SFs is needed.

(ii) In the standard approach, MaxEnt is applied to smooth
G(τ )’s obtained by averaged QMC runs. In the AE method,
the NN aims to recognize the meaningful characteristics of
G(τ )’s and distinguish them from statistical noise. Unlike
basic averaging, which requires many noise realizations for
effective denoising, a properly trained variational AE can ef-
ficiently yield results with a few or even just a single image
[51,57]. That is why, in most cases, for larger σ the AE
outperforms MaxEnt. The ability to obtain the same precision
in QMC through shorter simulations is crucial, especially
when the fermion sign problem yields noisier data at lower
temperatures.

(iii) By introducing custom regularization, imposing phys-
ical constraints on the SFs within the AE approach is
straightforward. In addition to non-negativity or smoothness
requirements, one can impose, e.g., the sum rules.

(iv) The AE requires only one training for a given set
of model parameters, such as U or filling, and all momenta
can be trained at the same time, in principle. Further, the
AE does not need to be retrained for small changes in the
model parameters. After the training stage, a few G(τ )’s are
sufficient to produce a reliable SF.

In conclusion, our comparison of the performance of the
AE with the MaxEnt method finds that AE outperforms
MaxEnt in obtaining the specific features in the spectral
function accurately. The AE’s and MaxEnt’s predictions
show similar features; however, we find that the autoencoder
approach exhibits greater robustness to statistical noise. Re-
markably, as a result, the AE can be applied to data from
notably shorter simulations, enabling the study of larger sys-
tems. Our method offers valuable insights into the spectral
properties of quantum systems, particularly when QMC sim-
ulations are computationally demanding.

This work highlights and upholds the potential of using
the AE as a powerful tool for extracting SFs from Green’s
functions, paving the way for advances in condensed-matter
physics and other fields where such spectral analysis is

crucial. We anticipate that the advancement of sophisticated
networks within the rapidly evolving field of ML will in-
corporate and build on the methodology proposed in this
study, leading to a deeper understanding of strongly corre-
lated systems. We notice that numerous diverse ideas, recently
introduced, can be integrated into the framework of this
approach. Moreover, the proposed AE method can also be
applied to other inverse problems, such as those mentioned in
the Introduction. Recently, a similar approach was proposed
as a tool to determine the separability of quantum states [58].
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APPENDIX A: DETAILS OF THE AUTOENCODER
NEURAL NETWORK AND ITS TRAINING AND TESTING

In this Appendix, we describe the methods we use to per-
form the analytic continuation for both artificially generated
Green’s functions and those obtained from the QMC simu-
lation. We briefly describe the NN architecture in terms of
technical details of the trainable part (see Fig. 8). We begin
the discussion by providing the form of the input data. The
SFs presented in the scope of this work have two separate
origins. We introduce both of them in the following subsec-
tions. Namely, we establish the procedure of generating the
pretraining SFs data set in order to validly perform training
on the Green’s functions obtained from the QMC.

1. Pretraining procedure

During the pretraining, defined as a stage of training the
initial weights of the , we introduce a substantial number
of “artificial” SFs { �An}. These are modeled to feature multiple
Gaussian peaks randomly located at various frequencies, each
with random weights,

AGauss(ω) =
∑

i

λi
1√

2πζi
exp

[
− 1

2ζ 2
i

(ω − ωi )
2

]
, (A1)

where λi, ωi, and ζi are random parameters that determine the
shape of the “spectral function” (

∑
i λi = π−1).

As the choice of Gaussian peaks may not be pertinent
and unique, we additionally perform the pretraining using a
random combination of Lorentzian peaks of the form

A(ω) =
∑

i

λi
γi

(ω − ωi )2 + γ 2
i

, (A2)
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FIG. 8. An example architecture of the part of the NN with
N frequency units and M imaginary Matsubara times. Layers are
shown graphically with their corresponding dimensions. Reshape
layers have been omitted for simplicity. The layer names are ac-
cording to Keras API [59]. The network was implemented in the
TensorFlow framework [60].

where the meaning of λi, ωi, and γi is analogous to that of
the parameters in Eq. (A1). Spectral functions of this form
are often observed in physical systems, in which the param-
eter γi indicates a finite relaxation time [17,61]. In Fig. 10
we show examples of results obtained with AE pretrained

with Lorentzian spectral functions. The procedure will be
described more thoroughly in the following sections.

Although the pretraining procedure alone may strongly
depend on the choice of the particular form of A(ω), we argue
that the AE performs well on both of them. Potentially, the
most general approach is to consider a variety of forms and
random parameters for the pretraining data set. This approach
could additionally equip the network with the ability to work
adequately well for distinct input Green’s functions. We note,
however, that the generalization of the network is not the main
goal of this work. In terms of inverse problems, one should
balance between having a general and a highly accurate pre-
diction, focusing on the latter.

After generating a large set of artificial SFs, for each of
them we solve the forward problem, as outlined in Eq. (1), to
compute corresponding Green’s functions { �Gn} at a specified
inverse temperature β. To ensure that these SFs are physically
meaningful, we adhere to the recently proposed generation
procedure by Zhang et al. [22], a method that has been shown
to effectively optimize the weights of the NN. To perform the
pretraining process, we employ pairs of ( �Gn, �An

0), as elabo-
rated in the main text. We introduce statistical noise as random
normal variables N (0, σ 2) for each imaginary-time point τ

within { �Gn}’s. We note that after a binning procedure, the
noise obtained during QMC shall have such a form [62,63].
The variance, denoted as σ , characterizing Green’s function,
which is typically obtained by statistical means from the
QMC, serves as a metric in Fig. 4 to quantify the resilience of
the AE and MaxEnt approaches in the presence of deviations
resulting from finite numerical simulations.

2. Network architecture

In this work, we propose the autoencoder approach to an-
alytic continuation, as described in Eq. (4). While the number
of imaginary times, denoted as M (M = 40 in most cases)
in Green’s functions, and N = 250, 1000 frequencies in the
SFs, impose constraints on the outer layers of the part
of the AE (specifically, the input and the output), the in-
ternal structure of the network architecture is by no means
restricted. Moreover, the part is strictly determined by
the Fredholm integral [Eq. (1)] and can be implemented as
a fully connected, nontrainable dense layer, featuring weights
defined by Eq. (2) and zero bias. The presence of statistical
noise originating from QMC simulations suggests that it is
reasonable to utilize network architectures that are capable of
discriminating between noise and relevant data. The choice
of a network architecture is significant for the autoencoder
performance, and the simplest networks may fail to reproduce
the Green’s functions with high quality. In this context, we
choose to implement a variational autoencoder (VAE) type
network.

VAEs represent a class of NNs that are characterized by
their generative capabilities [64,65]. That is, they model the
distribution of the true data generation by introducing a la-
tent dimension. In this context, there resides a single VAE
within , since the true is determined a priori. VAEs
have been shown to be effective across a spectrum of opti-
mization problems, including anomaly detection [66,67], text
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FIG. 9. Benchmarks of the AE approach in terms of the number of variational parameters using Gaussian artificial SFs [see Eq. (A1)].
(a),(c) SFs Apre obtained with pretrained models only (green lines) (see the upper procedure in Fig. 3 in the main text) and SFs AA

obtained using the proposed unsupervised AE technique (red dashed lines) for the number of imaginary times M = 40 (a) and M = 100
(c). (b),(d) The corresponding Green’s functions. In panels (a)–(d) the “true” Green’s functions G and SFs A are shown with black solid
lines. (e) Reconstruction error for Green’s functions. Inverse triangles are for the pretrained-only model and triangles for AE as a function of
imaginary times number M for different sizes of the AE latent space NL (see Fig. 8). The procedures are performed for N = 1000 frequencies.
Inset: Reconstruction error for single realization of Green’s functions at each imaginary time τ (M = 100). The Green’s functions are taken
akin to panel (d).

classification [68], illness diagnosis and classification [69],
and physical problems [70–73]. The ability of VAEs to faith-
fully characterize each element of the input set through the
latent probability distribution makes them a potentially pow-
erful tool to address inverse problems [74].

In the initial part of , we opt for the use of one-
dimensional convolutional (Conv1D) layers featuring a kernel
of size 3 and a stride of size 1. The application of
one-dimensional kernels allows the network to grasp the
monotonic patterns within the input data. This further con-
tributes to diminishing the impact of noise on Green’s

pretraining only

autoencoder

FIG. 10. The same as in Fig. 9, but for Lorentzian SFs [see
Eq. (A2)]. The procedures are performed for the number of frequen-
cies N = 2000. The number of imaginary times is (a),(b) M = 40
and (c),(d) M = 80.

functions. We adopt the initialization of the weights for the
pretraining procedure akin to He et al. [75]. Batch normal-
ization is applied between Conv1D layers with activation as
a leaky implementation of rectifier linear units (L-ReLU) in
order to avoid overfitting to a single noise realization. The
latent space representation comprises NL = 120 fully con-
nected neurons. We tested various NL values ranging from 5
to 200 [see Figs. 9(e) and 10(e)]. We found that those sizes are
sufficient to extract all the important features of the resulting
SFs. To transform the encoded values within the latent di-
mension, we employ multiple transposed Conv1D (Conv1DT)
layers.

The final output of consists of two fully connected
feed-forward layers, each comprising N units, with the
sigmoid activation function facilitating the normalization con-
dition. Both pretraining and training procedures are executed
using the Adam optimizer [76] with ams-grad enhancement
[77]. For efficient learning, we use the early stopping con-
dition on the validation data set [78]. An example of the
architecture used for the generation of QMC SFs for the
Hubbard model from Eq. (9) is visualized in Fig. 8.

In principle, the architecture allows for performing the
analytic continuation for various momenta �k simultaneously.
As we wanted to make the presentation more accessible, we
only experimented with this idea, but we plan to return to it
for future development. Additionally, to further control the
noise level and input dimensionality, one can approximate
the input Green’s functions using Legendre polynomials, with
the flexibility to make adjustments by manipulating their order
[79]. This approach would allow us to perform the analytic
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continuation regardless of the imaginary-time dimension in
the input Green’s functions. Although we do not currently
employ this technique, it can be easily applied within our
framework. Different architectures and activation functions
remain to be explored in the future.

3. Testing procedure

We illustrate the procedure that we used to compare the
effectiveness of the MaxEnt and AE approaches. Panel (a) in
Fig. 5 in the main text shows an example of an “artificial” SF.
Then, Eq. (1) is used to generate the corresponding Green’s
function. In the next step, a series of noisy Green’s functions
Gσ is generated by introducing random disorder of various
magnitudes σ . Examples are shown in panel (c). An increase
in the noise makes the inverse problem harder to optimize.
This can be seen in panels (b) and (d), which show the results
of the analytic continuation performed with the help of the
MaxEnt and AE methods, respectively. As expected, reducing
the noise level improves the ability of both methods to find
the corresponding spectral function more accurately from the
noisy set { �Gn

σ }. However, the AE method gives more accurate
results for large and intermediate noise levels. This confirms
that shorter QMC runs are needed for AE to obtain the same
accuracy as for the MaxEnt method.

4. Parameter dependence and benchmarks

In this section, we explore the performance of the AE
method as we vary a number of its variational parameters.
Within the architecture used in this work (see Fig. 8), the
natural choices for these parameters are (i) the latent dimen-
sion NL, (ii) the number of imaginary times M, and (iii) the
number of frequencies N . Following the same approach as in
the main text (and as denoted in this Appendix), we conduct
benchmarks using both artificial SFs and those obtained from
real QMC simulation.

In Fig. 9, results obtained using two different NN ap-
proaches (supervised and unsupervised) for the reconstruction
procedure on Gaussian artificial SFs [Eq. (A1)] are compared.
Figures 9(a) and [9(c)] shows the true SFs, marked with solid
black lines, along with the reconstructions obtained using
the ANN according to Eq. (2). The corresponding Green’s
functions G are presented in Figs. 9(b) and [9(d)] with M =
40 (M = 100) imaginary times. Additionally, the red dashed
lines represent the SFs and G(τ )A,Gpre’s obtained with the AE
approach AA, while the solid yellow lines show the results
obtained using a network with pretrained weights only, Apre.
Namely, in the latter, the model has been pretrained on some
other G ′(τ )’s and tested on a new data set of G(τ ) with-
out additional steps, facilitating supervised learning. In this
comparison, we used NL = 50 and N = 1000. Notably, the
proposed AE approach, incorporating an unsupervised train-
ing phase, produces Green’s functions GA that are closer to the
true G than those produced by the only pretrained network.

To further support this claim, in Fig. 9(e) we illustrate the
distance |G − G ′| between the true and reconstructed Green’s
functions for various latent dimensions NL = 5, 10, and 100.
The error naturally decreases with an increasing number of
latent neurons NL. To account for variations, we average the

latter over Nr = 10 artificial SFs. Similar results are also pre-
sented in Fig. 10 for Lorentzian artificial SFs [Eq. (A2)]. The
presentation is analogous to that of Fig. 9. However, there we
used a wider latent layer NL = 50, 100, 200 and N = 2000.
Interestingly, we demonstrate that for such a relatively high
complexity of the network, the reconstruction errors appear
to reach a plateau as NL increases, sometimes resulting in
marginally higher errors.

To additionally evaluate the performance of the proposed
AE framework, in Fig. 11 we use the real QMC data of the
Hubbard model at U = 3, μ = 0 with an increasing num-
ber of imaginary times M. We do this by fixing the inverse
temperature β = 3, that is, reducing the error introduced due
to the Trotter decomposition dτ [42]. Since the number of
imaginary times M determines both the input and output
size of the neural network, varying it effectively alters the
complexity of the network. Figures 11(a), 11(b) and 11(c)
present the SFs A(ω) obtained through Green’s functions from
QMC simulations, depicted in Figs. 11(d), 11(e) and 11(f)
at 
, 	, and X points of the Brillouin zone, respectively.
The training was performed using Nr = 100 snapshots from
the QMC. With different colors and lines, we indicate the
number of imaginary times M. Notably, for all values of M,
the resulting SFs are very similar. This suggests that the AE
can effectively perform analytic continuation regardless of the
size of the input data. In Figs. 11(g), 11(h) and 11(i), we
additionally present the deviations of the spectral moments
m̃i of the reconstructed spectral functions from true mi for
i = 0, 1, 2. The definition of the spectral moments can be
found in Eq. (12).

5. Noninteracting spectral functions

The proposed method for analytic continuation is tailored
for interacting systems, for which a challenge comes from the
difficulty of obtaining the spectral response for large systems,
which remain beyond the reach of current computer clusters.
To address this, we have developed a benchmarking strategy
using the artificial SFs of an arbitrary complication level, as
described in detail in the previous subsections. However, to
additionally validate the proposed method, we complement
the aforementioned benchmarks by using the SFs obtained di-
rectly from the diagonalization procedure of the Hamiltonian
matrix of a well-defined, noninteracting system. For such a
system, it is straightforward to compute the retarded Green’s
function using Lehmann’s representation,

G(z) = 1

z − H
= U

1

−D + z
U T , (A3)

where U is a unitary matrix that diagonalizes the Hamiltonian
H = UDU T and z is a diagonal matrix with each element
equal to z. Subsequently, the above Green’s function is trans-
formed to the momentum space

G(�k, �k′, z) =
∑

�Ri

∑
�Rj

ei(�k· �Ri−�k′ · �Rj )Gi j (z), (A4)

where the summation goes over the real-space vectors of
a specific lattice. Note that the dependence on a single
momentum is valid for translationally invariant systems
only. Since our interest in this work does not extend to
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FIG. 11. (a),(b),(c) SFs A(ω) calculated using the AE method. They are obtained from Green’s functions at high-symmetry points of the
Brillouin zone 
, 	, and X , shown in panels (d), (e), and (f), respectively. Line styles and colors correspond to different numbers of imaginary
times M. Here, the inverse temperature β = 3 is fixed, thus effectively only the Trotter step size dτ changes. (g),(h),(i) Deviations of the
spectral moments of the reconstructed SFs m̃i, for i = 0, 1, 2, from the true moments mi given by Eq. (12).

resolving all properties of the system, we exclusively focus on
equal-momentum Green’s functions, i.e., �k = �k′. The spectral
function A(�k, ω) is determined from the standard formula

A(�k, ω) = − lim
ε→0+

1

π
ImG(�k, ω + iε). (A5)

The spectral functions are then transformed according to
Eq. (3) to obtain the Green’s functions G(τ ). Although the
notion of temperature broadening is insignificant for nonin-
teracting systems (the Boltzmann factors cancel out due to the
lack of interactions), we still require input to the NN in the
form of imaginary-time vectors. Therefore, in what follows
we assume β = 2 and dτ = 0.05 for simplicity. Similarly
to the artificial SF approach, we impose noise σ = 10−5 on
the G(τ )’s. For this benchmark, we choose the Aubry-André
(AA) model [80] in two dimensions [81,82],

Ĥ = −t
∑
nm

[ĉ†
n,m(ĉn+1,m + ĉn,m+1) + H.c.]

+ λ
∑
nm

[cos α(n + m) + cos α(n − m)]ĉ†
nmĉnm, (A6)

in which the potential is a periodic function with a gener-
ally irrational frequency parameter α [set to α = (

√
5 − 1)/2

throughout this study] and the potential strength λ. We assume
the hopping integral t = 1. Typically, a random phase φ is
added to the periodic function, but here it is set to zero.
The AA model describes the incommensurability between the
length of the space-modulation of the on-site potential and the

lattice constant. There exists a self-duality between momen-
tum and real space at a transition point λ = 2 [83]. Below
this value, all wave functions are localized in the momentum
space. In contrast, when λ > 2, the eigenvectors are localized
in the real space. Quasiperiodic systems like this are of great
interest, possessing multiple fascinating topological proper-
ties that they can inherit from higher-dimensional “parent”
models [84]. They also tend to exhibit multifractal spectra
[85]. The AA model is also considered one of the toy models
for understanding the localization phenomenon.

Figure 12 shows the SFs for the AA model resolved at
different momenta �k. The path in the Brillouin zone is se-
lected similarly to Fig. 6. Figures 12(a) and 12(c) show the
SFs obtained by exact diagonalization of the Hamiltonian via
Eq. (A5), while Figs. 12(b) and 12(d) show the SFs A(�k, ω)
calculated using the AE method. The upper (bottom) row
shows the result for the potential strength λ = 0.5 (λ = 2.5),
as marked additionally in each panel. This choice exemplifies
two distinct phases of the AA model.

To simulate the effect of interactions, a relatively high
ε = 0.05 is chosen in Eq. (A5). However, the value is low
enough for the spectral response to remain close to δ-like
sharp peaks. Although we are able to study the noninteracting
Hamiltonian for much larger systems, we fixed the number
of lattice sites Ns = 400 (Lx = Ly = 20) for clarity. No size
effects are visible in the reconstruction performance. The
number of frequencies is set to N = 1000.

We observe a relatively high similarity of the SFs calcu-
lated by the AE to the ones computed exactly, though the
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FIG. 12. Momentum-resolved spectra of the Aubry-André model
[Eq. (A6))] on a square lattice. Panels (a) and (c) show SFs obtained
by exact diagonalization of the Hamiltonian [Eq. (A5)], while panels
(b) and (d) show SFs calculated by the AE method. λ = 0.5 (ex-
tended states) is assumed in panels (a) and (b) and λ = 2.5 (localized
states) is assumed in panels (c) and (d). Brighter colors indicate a
higher magnitude of the SFs. The white dotted lines indicate high-
symmetry points in the Brillouin zone.

former SFs show a slightly higher broadening. This suggests
that the pretraining procedure could be improved by including
a wider set of artificial SFs that encompass δ-like peaks with
a lower spectral weight. Noninteracting SFs included in the
pretraining set could further enhance the efficiency of the AE
framework. The limitation induced by a variety of consider-
ably sharp peaks in the spectrum requires further study.

APPENDIX B: MAXENT PROCEDURE

The maximum entropy method for analytic continuation
uses Bayesian principles to identify the spectral function
which, given some Green’s function data, minimizes the func-
tional

Q = 1
2χ2 − αS[A(ω)]. (B1)

Q is the canonical symbol used for this functional, and its
role is analogous to the loss L in machine-learning techniques.
Minimizing Q is equivalent to performing a chi-squared fit-
ting, regularized by the Shannon entropy term S[A(ω)] =
− ∫

dω A(ω) ln[A(ω)/d (ω)]. The function d (ω) is known
as the default model, which must be chosen by using prior
knowledge about the physical nature of the SF. The parameter
α controls the relative strength between the χ2 and the entropy
terms in Q. If α 
 1, then the MaxEnt method would give
d (ω) as the solution for SF [86].

The primary hurdles in using MaxEnt are the identification
of the appropriate value of α and the appropriate choice of
d (ω). There have been various approaches to choosing α,
including Bryan’s method, which finds the SF that minimizes
Eq. (B1) for a range of α values, then gives an average SF,

weighted by the probability of each α [86]. It is difficult to
choose a default model, since the structure of the spectral
function is a priori unknown. One can use general properties,
such as whether the system is in a conducting or insulating
state, but even these basic properties may be unknown when
studying a model with an incomplete phase diagram.

In this paper, we use the MaxEnt code implemented by
Levy [35]. We treat α with Bryan’s method, using 60 equally
spaced α values in the range 0.1 � α � 20. The SF is cal-
culated with 250 equally spaced frequencies, ranging from
−15 < ωt < 15, where t sets the scale of the hopping energy.
The choice of default model is described in the following
sections.

1. MaxEnt for artificial spectral functions

We perform the MaxEnt procedure for Green’s functions
(Fig. 4), obtained from artificially generated spectral functions
using a uniform default model. This is because there is no
physical intuition that allows us to choose a different model.

2. MaxEnt for DQMC at half-filling

For the Green’s functions produced by DQMC at U/t = 8,
μ = 0, and β = 0.5 (Fig. 7), the default model is chosen to
consist of two Gaussian peaks, centered at ωt = ±5 and both
with a standard deviation of 1. This is due to the repulsive
Hubbard model being likely in a gapped state for these pa-
rameters.

3. MaxEnt for DQMC away from half-filling

A consequence of doping the repulsive Hubbard model
away from the Mott insulating limits is an asymmetry in
the local density of states (LDOS) [87]. With increasing
particle doping, the LDOS spectrum shifts to the left to satisfy
the sum rules. Since the choice of default model is am-
biguous, we perform the analytic continuation with uniform,
Lorentzian, and Gaussian default models, while varying the
width of the last two models. The choice of optimal spectral
functions is based on which default model reproduces the first
three moments of the spectral function the closest, as defined
in Eq. (12).

APPENDIX C: DQMC

Green’s functions shown in this work are produced with
the “bandmott” version of the determinant quantum Monte
Carlo code [88] for the cases with a mild average sign. The
simulation is performed on a square lattice of side length
Lx = Ly = 16. Because of symmetries of the lattice, only the
lower triangular half of the first quadrant is computed. The
inverse temperature is kept at β = 2t (mild average sign) and
β = 3t (〈s〉 ≈ 0.3) and the Hubbard interaction at U/t = 8.
The Trotter error is fixed at 	τ = 0.05 (	τ = 0.075) for the
simulations at β = 2t (β = 3t).

1. DQMC at half-filling

The results at half-filling were obtained using 1000 warm-
up sweeps, performed before the measurement sweeps. Every
next measurement is taken after 10 sweeps through the
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TABLE II. Average particle dopings n and average sign 〈s〉 re-
sulting from the DQMC of the Hubbard model from Eq. (9) away
from half-filling (μ �= 0).

μ 〈s〉 n

1.00 0.9714 1.0237
4.00 0.9324 1.3988

auxiliary fields. With the exception of Fig. 7, all data are pro-
duced from 40 measurements and 100 different trials (ms =
4 × 103 measurements in total). A “trial” refers to one in-
stance of the DQMC system produced by a random initial
seed.

In Fig. 7, the number of measurements is varied, but
all other parameters are kept the same. Separate trials are
produced by different random seeds. The largest error bars,
labeled “σ = 2.5E − 2” in the figure, result from ms = 15
measurements on one trial, “σ = 2.6E − 3” is the result of
ms = 40 measurements on one trial, “σ = 2.8E − 4” is pro-
duced by performing 40 measurements on 100 different trials
(ms = 4 × 103 measurements in total), and “σ = 8.8E − 5”
is produced by performing 40 measurements on 1002 dif-
ferent trials (ms ≈ 4 × 104 measurements in total). The �A∞

M,A
is obtained from the Green’s functions originating from 40
measurements on 3000 different random seeds, so ms = 1.2 ×
105 measurements in total and σ = 4.7 × 10−5. The error
bar on each G�k (τ ) is given by the standard error over the
measurements.

2. DQMC away from half-filling

The QMC simulations away from half-filling were per-
formed with 2000 warm-up sweeps and ms = 5000 mea-
surement sweeps. The measurement of Green’s functions
was done after every 10 measurement sweeps. The Green’s
functions were averaged over runs from 20 independent ini-
tial configurations of the Hubbard-Stratonovich fields. The
MaxEnt was performed at dopings outlined in Table II. The
values are obtained directly from the DQMC simulation.For
the Lorentzian default model, widths of 
 ∈ {0.5, 1.0, 2.0}
were used, whereas for Gaussian default model, widths of
σ ∈ {1.0, 2.0} were used. Out of these, the Gaussian default
model with σ = 2.0 gave the closest results to the sum rules
[Eq. (12)]. We compare both AE and MaxEnt methods for
different dopings in Fig. 13 by showing the density of states
(DOS), i.e., the SFs summed over all momenta, for differ-
ent electron concentrations. The validity of the analytically
continued spectral functions used in Fig. 13 was checked by
calculating the imaginary-time Green’s function by the for-
ward integration [Eq. (1)], which matched Green’s functions
obtained directly from QMC simulations within at most 1%
error.

According to Table I, in Table III we compare the absolute
errors of the spectral moments [Eq. (12)] using the Hubbard

FIG. 13. Density of states calculated with the help of the AE (red
lines) and MaxEnt (blue lines) methods for the Hubbard model from
Eq. (9) at U = 8 on a 16 × 16 square lattice. The procedures were
carried out in three different particle fillings: (a) n = 1.0, (b) n ≈
1.024, and (c) n ≈ 1.399.

model away from half-filling μ = 1.5 and β = 3,U = 8 for
the MaxEnt and AE frameworks. Again, the AE method
outperforms the MaxEnt approach in reconstructing spectral
moments. Nevertheless, the errors accumulated for the second
moment m2 are larger in this case compared to the half-filled
scenario. This suggests that performing the analytic continu-
ation might be generally more challenging for systems away
from μ = 0.

TABLE III. Absolute errors of mth-order moments at the 
 point
in the Brillouin zone, obtained with AE and MaxEnt from the QMC
SFs away from half-filling at μ = 1.5, β = 3, and U = 8.

m AE MaxEnt

0 0.0047 0.0226
1 0.03 0.3130
2 3.19 5.064
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