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Conformal operator content of the Wilson-Fisher transition on fuzzy sphere bilayers
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The Wilson-Fisher criticality provides a paradigm for a large class of phase transitions in nature (e.g., helium,
ferromagnets). In three dimensions, Wilson-Fisher critical points are not exactly solvable due to the strongly
correlated feature, so one has to resort to nonperturbative tools such as numerical simulations. Here, we design a
microscopic model of Heisenberg magnet bilayer and study the underlying Wilson-Fisher O(3) transition through
the lens of fuzzy sphere regularization. We uncover a wealth of crucial information which directly reveals the
emergent conformal symmetry regarding this fixed point. Specifically, we accurately calculate and analyze the
energy spectra at the transition, and explicitly identify the existence of a conserved Noether current, a stress
tensor, and relevant primary fields. Most importantly, the primaries and their descendants form a fingerprint con-
formal tower structure, pointing to an almost perfect state-operator correspondence. Furthermore, by examining
the leading rank-4 symmetric tensor operator, we demonstrate the cubic perturbation is relevant, implying the
critical O(3) model is unstable to cubic anisotropy, in agreement with the renormalization group and bootstrap
calculations. The successful dissection of conformal content of the Wilson-Fisher universality class extends the
horizon of the fuzzy sphere method and paves the way for exploring higher-dimensional conformal field theories.

DOI: 10.1103/PhysRevB.110.115113

I. INTRODUCTION

Continuous phase transitions and corresponding critical
phenomena exhibit remarkable universal macroscopic prop-
erties. To understand the origin of universality, Wilson and
Fisher first worked out a set of fixed points in the critical O(N )
model (N = 1, 2, 3, . . . ) [1], relevant for phase transitions in
entangled polymers, helium, and Heisenberg magnets [2,3].

Traditionally, the derivation of these universal quantities
has relied on perturbative theoretical methods [1,4,5] and
brute-force numerical simulations on microscopic models [6].
Remarkably, if the fixed point exhibits emergent conformal
symmetry [7], the critical phenomena can be interpreted
within the realm of conformal field theory (CFT) [8,9].
Such understanding is paramount for both high-energy and
condensed-matter physics communities.

On the other hand, the general proof of a phase tran-
sition to be conformal invariance is extremely challenging
[7,10,11], and even the evidence is very limited, especially
in dimensions higher than two dimensions (2D) (or, equiv-
alently, 1 + 1 dimensions). A detour is to compare critical
exponents from experimental measurements [12] and Monte
Carlo simulations [6] with the results obtained by numerical
conformal bootstrap [13–16] which explicitly assumes con-
formal symmetry. An additional evidence is the low-energy
spectra of some discrete lattice models consistently match
critical O(N ) field theory under the ε expansion [17,18].
Moreover, a more compelling evidence is to directly expose
the underlying CFT algebra and operator content. For in-
stance, a celebrated feature of CFT is, for a Hamiltonian living
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on Sd−1 × R space-time geometry, the scaling dimensions
of CFT operators has one-to-one correspondence with the
eigenenergies of CFT states, dubbed as the state-operator cor-
respondence [19,20], which is guaranteed by the conformal
invariance. Nevertheless, the simulation on curved spherical
geometry Sd−1 is very challenging, despite several attempts
using stereographic projection [21] and finite-element dis-
cretization [22]. Very recently, this technical obstacle has been
removed by using the idea of the fuzzy sphere regularization
[23]. By applying this newly developed scheme to the three-
dimensional (3D) Ising critical point, which is equivalent to
the Wilson-Fisher critical model (N = 1) with the discrete Z2

symmetry, the conformal data including the scaling dimen-
sions [23] and operator product expansion (OPE) coefficients
[24] have been unambiguously characterized. With this excit-
ing progress, it is highly desired to apply the fuzzy sphere
microscope to the general O(N ) model (N > 1) with the con-
tinuous symmetry, where the direct evidence of CFT algebra,
e.g., conformal tower structure, has not been demonstrated
before to our best knowledge.

In this paper, we construct a (2+1)-dimensional [(2+1)D]
model on the quantum fuzzy sphere and we show that the
model realizes a continuous quantum phase transition belong-
ing to three-dimensional classical Heisenberg universality
class. The location of critical point is accurately determined
by the finite-size scaling of magnetic order parameter assisted
by the data collapse and crossing-point analysis. Remark-
ably, clear signatures of conformal invariance are observed
at the critical point, through uncovering the emergent state-
operator correspondence. We identify the conserved Noether
current, stress-energy tensor, and relevant conformal pri-
maries and their descendants in the operator spectrum. The
conformal data including the scaling dimensions and the OPE
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coefficients are crucial for understanding of the instability
of this Wilson-Fisher O(3) fixed point, e.g., we demonstrate
that the lowest rank-4 symmetric operator is more likely rele-
vant, pointing to relevance of cubic perturbation. Additionally,
we elucidate that the proposed fuzzy sphere model can be
feasibly generalized to study other O(N) classes (e.g., three-
dimensional XY transition).

II. O(3) TRANSITION ON THE FUZZY SPHERE

The fuzzy sphere regularization [23] describes interact-
ing fermions moving on a sphere with a 4πs magnetic
monopole at the origin [25]. Owing to the monopole, the
kinetic energy of fermions forms quantized Landau levels
and each orbital is described by the monopole harmonics
Y (s)

n+s,m(�) [26] [n = 0, 1, . . . denotes the Landau level index,
and � = (θ, ϕ) are the spherical coordinates]. By tuning the
interactions, the spin degree of freedom of fermions would
undergo a phase transition. To apply the fuzzy sphere to
a critical O(3) phase transition, we borrow the idea from
the prototypical spin- 1

2 Heisenberg bilayer model consisting
of intralayer and interlayer interactions [27–29]. We intro-
duce four-flavor fermions � = (ψ1↑, ψ1↓, ψ2↑, ψ2↓)T with
layer τ = 1, 2 and spin σ =↑,↓ indices living on the fuzzy
sphere [see Fig. 1(a)]. Consequently, we consider a real-space
Hamiltonian

Hint =
∫

d�a,b{U0n(�a)n(�b) + U2n1(�a) · n2(�b)

− U1[n1(�a) · n1(�b) + n2(�a) · n2(�b)]}

− h
∫

d��̂†τ xσ 0�̂,

where the local density operator of layer τ is nτ (�) =
(nx

τ , ny
τ , nz

τ ) = ψ†
τ (�)σψτ (�) and the total density is n(�) =

�†(�)�(�). For simplicity, we consider the potentials to
be short-ranged interactions δ(�1 − �2) and ∇2δ(�1 − �2).
The appropriate parameters of interactions which minimize
the finite-size effect are given in the Appendix A 1. The trans-
verse field strength h controls tunneling effect between two
different layers.

In practice, we consider the second quantization form
of this model by the projecting Hint to the lowest
Landau level (see the Appendix A 1), using ψτσ (�) =

1√
Ns

∑s
m=−s ĉm,τ,σY (s)

s,m(�). Here the number of Landau or-

bitals Ns = 2s + 1 plays the role of system size Ns ∼ R2 (R is
the radius of sphere). We consider the Landau level is filled by
2Ns electrons in total. This model possesses the SO(3) rotation
symmetry of sphere, the global O(3) symmetry, the layer
inversion symmetry Iv : ĉm,α,σ → τ x

αβ ĉm,β,σ , and the particle-
hole symmetry P : ĉm,α,σ → iτ y

αβ ĉ∗
m,β,σ , i → −i, in addition

to the U(1) charge conservation. Numerically, this model
is solved using exact diagonalization and density matrix
renormalization group (DMRG) [30,31]. We perform DMRG
calculations with bond dimensions up to D = 6000, and we
explicitly impose three U(1) symmetries, i.e., spin-resolved
fermion number and z-component angular momentum. For the
largest system size Ns = 12, the maximum truncation error for
the ground state is less than 3.68×10−7.

(a)

(b)

(c) (d)

FIG. 1. (a) Sketches of the bilayer fuzzy sphere model: inter-
acting fermions move on a fuzzy sphere bilayer; and the fermion
is able to tunnel between two layers. (b) A schematic plot of
phase diagram with a critical point separating a paramagnet from
a symmetry-breaking Heisenberg magnet. (c) Finite-size scaling of
order parameter 〈M2

1(2)〉/N
2−�φ
s , where �φ = 0.519 is the scaling

dimension of the O(3) vector field relating to the critical exponent
η = 2�φ − 1. Ns = 2s + 1 is the number of Landau orbitals (i.e.,
Heisenberg spins), which relates to the length scale radius as R ∼√

Ns. (d) The data collapse of the rescaled order parameter according
to f [(h − hc )L1/ν] with ν = 1/(3 − �s ) and �s ≈ 1.595, where hc is
a free fitting parameter. The best fit gives hc ≈ 0.225. (e) Finite-size
scaling of crossing points by a finite-size pair (Ns, Ns + 1) gives rise
to an extrapolated value hc ≈ 0.2248 ± 0.0001.

The phase transition is obtained by the conventional finite-
size scaling of the order parameter [i.e., O(3) vector], which
inspects the spontaneous symmetry breaking

Mτ =
∑
mαβ

ĉ†
m,τ,ασαβ ĉm,τ,β . (1)

Utilizing this order parameter, our calculation confirms a
direct continuous phase transition from ordered Heisenberg
magnet to disordered paramagnet in the proposed model.
At the transition point, the order parameter should scale as
〈M2

τ 〉 ∼ R4−2�φ = N2−�φ

s [6,27,28,32], where �φ ≈ 0.519 28
is the scaling dimension of O(3) vector field [15].
Figure 1(c) illustrates the rescaled order parameter
〈M2

τ 〉/N2−�φ

s with respect to the transverse field strength
h for various Ns. 〈M2

τ 〉/N2−�φ

s is almost unchanged near the
crossing point h ≈ hc, which signals the phase transition
point. The exact value of critical point hc can be obtained
by two ways: (1) hc is the best fitting parameter for the
data collapse as shown in Fig. 1(d), or (2) through the
crossing-point analysis, crossing points for different sizes
tend to an extrapolated value hc, as shown in Fig. 1(e).
Importantly, both analyses give a consistent estimation of
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hc ≈ 0.225, which is taken to be the critical point for the
following discussion. Additionally, we have also computed
the binder cumulant and the lowest-energy gap, finite-size
scaling of which confirms the estimation of hc (see the
Appendix A 2). In a word, the critical behavior of order
parameter shows the critical point in this bilayer fuzzy sphere
model described by the O(3) universality class.

III. OPERATOR SPECTRUM

We now turn to the main results of this paper. The great
advantage to work on the spherical geometry S2 is that we can
unlock the so-called state-operator correspondence [19,20],
i.e., the eigenenergy gap takes the form δEn = En − E0 =
v�n/R, where v is the model-dependent speed of light, and
�n are the scaling dimensions of the CFT operators. There-
fore, we compute energy spectra at the critical point and
compare it with CFT predictions.

To examine if the eigenstates in this proposed model form
representations of 3D conformal symmetry, we analyze the
low-lying spectra according to the following rules: (1) We
rescale the full spectrum by setting the energy-momentum
tensor Tμν to be exactly �Tμν

= 3. (In the Appendix A 5, we
demonstrate the spectrum by rescaling �Jμ

= 2. Both normal-
izations give us a convincing conformal tower structure.) (2)
The lowest-lying energy states that cannot be generated from
other fields are identified as primaries. (3) The descendants are
produced by applying raising ladder operators to the identified
primary states and by matching the quantum numbers. For
example, for a scalar primary O with quantum number (�, S)
[here � is the quantum number of SO(3) rotation symmetry of
fuzzy sphere behaving as the Lorentz spin of the conformal
group and S is the quantum number of global spin rotation
symmetry], its descendants can be written as ∂ν1 . . . ∂ν j�nO,
which takes the scaling dimension �O + 2n + j with quan-
tum number (� + j, S). Figure 2 depicts numerically identified
conformal multiplet (i.e., primary and its descendants) of the
lowest O(3) vector φ, the lowest O(3) traceless tensor t2, the
lowest O(3) scalar s, and the Noether current Jμ. Remark-
ably, we found that the low-lying eigenstates approximately
form representations of the 3D conformal symmetry up to
small finite-size corrections. This is a direct and unambiguous
demonstration of the emergent conformal symmetry of the 3D
Wilson-Fisher O(3) transition. To our best knowledge, such
direct evidence has not been reported before. Additionally,
the numerical discrepancy is typically more significant for the
fields with larger � and larger angular momentum �, which is
attributed to the finite-size effect: The CFT only captures the
low-energy effective theory for our model, and to access large
angular momentum fields requires the simulation on sphere
with large enough radius.

After verifying the emergent conformal symmetry, we
further compare scaling dimensions of the identified pri-
mary operators with the existing data from various methods
[5,6,12,15,16,28,34–36]. As listed the relevant primary op-
erators that we have identified in Table I, overall we find a
reasonable agreement with numerical bootstrap [15,34] and
Monte Carlo data [6], e.g., the averaged discrepancy from the
bootstrap data is less than 1%. Despite the small discrepancy,
the precision is still sufficiently high to further increase the

FIG. 2. Conformal multiplet of several low-lying primary oper-
ators. Scaling dimension � versus Lorentz spin � for (a) the lowest
vector φ, (b) the lowest rank-2 symmetric traceless tensor t2, (c) the
lowest scalar field s, and (d) conserved current Jμ. The plots are
calibrated by the scaling dimension of the energy-momentum tensor
�Tμν

= 3. Solid (open) symbols represent parity-even (-odd) opera-
tors. The dashed horizontal lines are the predictions from conformal
bootstrap, and the discrepancy is relatively smaller for the primaries
and their first descendants.

confidence that the universality class of the transition falls into
the 3D Wilson-Fisher O(3) type. In particular, these data are
crucial to understand the physics of O(3) critical point. For
instance, the lowest rank-4 symmetric tensor operator t4 cor-
responds to the anisotropic cubic perturbation. This operator
is dangerously relevant, according to the existing numerical
computation [33,34]. Our calculation confirms its relevance
�t4 ≈ 2.961(12). Here we notice that the finite-size effect of
t4 is strong since the finite-size value of its scaling dimension
flows from irrelevant to relevant [see Fig. 3(d)]. This strong
flow results from the influence of high-level irrelevant fields.
To resolve this problem, much larger system sizes are needed,
which is beyond the current computational ability.

IV. CORRELATION FUNCTIONS
AND OPE COEFFICIENTS

Aside from the state perspective, we can also study the
operator perspective of the identified primaries. Here let us
take the OPE coefficient fφφs as an example. Since φ relates

TABLE I. Low-lying primary operators identified via state-
operator correspondence on the fuzzy sphere. We only take the
first three digits from the data in literature. For error analysis, see
Appendix A 5.

φ t2 s t3 t4

ε exp [5,33] 0.510 1.232 1.610 2.911
Large N [33] 0.499 1.339 1.301 3.447
Bootstrap [34] 0.519 1.209 1.595 2.039 <2.991
MC [6] 0.519 1.210 1.594 2.039 2.986
Fuzzy sphere 0.524 1.211 1.588 2.028 2.961
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FIG. 3. Finite-size extrapolations of the scaling dimensions of
(a) the lowest vector φ, the lowest rank-2 tensor t2, and the lowest
scalar field s, (b) gap of descendant field �∂μφ − �φ , (c) the lowest
rank-3 tensor t3, and (d) the lowest rank-4 tensor t4. Finite-size ex-
trapolations with system sizes Ns = 6–9 give rise to �φ ≈ 0.524(4),
�t2 ≈ 1.211(8), �s ≈ 1.588(9), �t3 ≈ 2.028(11), �t4 ≈ 2.961(12),
and �∂μφ − �φ ≈ 1.000(1).

to the local operator nτ (�), we have [24]

〈φ|nτ (�)|0〉 = 1

R�φ

(
cφ +

∞∑
n=1

an

R2n

)
, (2)

〈φ|nτ (�)|s〉 = fφφs

R�φ

(
cφ +

∞∑
n=1

ãn

R2n

)
+ · · · , (3)

where the ellipsis denotes the contribution from other pri-
maries and associated descendants. Thus, we can compute
fφφs using

〈φ|nτ (�)|s〉
〈φ|nτ (�)|0〉 = fφφs + ã1 − a1

cφR2
+ O(R−4). (4)

To eliminate the two leading corrections from the descendant
fields �φ,�2φ, we perform a finite-size extrapolation up to
R−4 (i.e., N−2

s ). The results of these two representative OPE
coefficients are shown in Fig. 4(a). Similarly, other OPE coef-
ficients can be extracted within the same method (see Fig. 4(b)
and Appendix A 3).

FIG. 4. (a) Two representative OPE coefficients involving the
scalar primary fφφs (blue) and fsss (green). (b) Three representa-
tive OPE coefficients involving the energy-momentum tensor fφφT

(brown), fssT (red), and the conserved current fφφJ (black). The
finite-size extrapolation is up to R−4 ∼ N−2

s , where Ns = 5–8 data
are from the ED and Ns = 9–10 data are from DMRG.

TABLE II. List of the OPE coefficients from the fuzzy sphere
and comparison with the bootstrap data [15,34]. For error analysis
see Appendix A 5.

fφφs fsss fφφT fφφJ fssT

Bootstrap [34] 0.524 0.506 0.189 0.743 0.580
Fuzzy sphere 0.525 0.507 0.169 0.752 0.578

To quantify the data of OPE, we compare our results with
the numerical bootstrap data [15,34] in Table II. The data are
in overall agreement. The ability to access both scaling dimen-
sions and OPE coefficients together shows the superiority of
fuzzy sphere scheme.

V. SUMMARY AND DISCUSSION

We have constructed a microscopic model of Heisenberg
magnet bilayer living on the space-time geometry S2×R,
which realizes an order-disorder transition belongs to Wilson-
Fisher O(3) universality class. At the phase transition point,
clear evidence of emergent conformal symmetry is observed
by identifying the one-to-one correspondence between CFT
operators and the eigenstates, through which we are able
to identify conformal data including the scaling dimensions
and OPE coefficients of relevant primary operators. This
information is crucial to understand the stability of Wilson-
Fisher fixed point under various perturbations. In addition,
the proposed bilayer fuzzy sphere model can also capture the
essential physics of three-dimensional XY transition belongs
to Wilson-Fisher O(2) class, by properly adjusting the global
symmetry of quantum spins (see Appendix A 1). In this con-
text, this work extends the horizon of the fuzzy sphere scheme
to general Wilson-Fisher universality class with continuous
global symmetry, which demonstrates the vibrancy of this
proposed method. We envision the fuzzy sphere will be a
powerful tool to explore 3D CFTs in more exotic criticalities.

Note added. Recently, we become aware of another work
on XY transition using fuzzy sphere scheme [37].
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APPENDIX

In this Appendix, we will show more details to support
the discussion in the main text. In Sec. 1, we discuss the
spherical Landau levels, then derive the second-quantization
form of the real-space Hamiltonian and connection to Haldane
pseudopotential. We also explain the intuition of fuzzy sphere
bilayer model for general Wilson-Fisher O(N) transitions. In
Sec. 2, we provide more detailed analysis on the finite-size
scaling of physical observables, the binder cumulant U4, and
the lowest-energy gap across the phase transition. We also
calculate the charge gap to demonstrate that the degree of free-
dom in the low-energy region is Heisenberg spin. In Sec. 3, we
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show how to get the OPE coefficients using spin operators and
derive the finite-size scaling forms. Meanwhile, we calculate
and show the result of two-point correlation function of φ in
Sec. 4. In Sec. 5, we present the detail of numerical data and
error analysis.

1. Fuzzy sphere bilayer model

In this section, we will first introduce the Landau levels
on a sphere, then discuss density operators, and use them to
derive the second-quantization form of the real-space Hamil-
tonian. Importantly, we will explain the intuition of the fuzzy
sphere bilayer model, which goes beyond the limitation of the
original (single-layer) fuzzy sphere model and allows us to
access the general Wilson-Fisher O(N) criticalities.

a. Spherical Landau levels

We consider a sphere with radial R, and a 4πs(2s ∈ Z)
monopole located in the center of the sphere. The Hamiltonian
for an electron moving on the surface has only the kinetic
term [25]

H0 = 1

2MeR2
�2

μ, (A1)

where Me is the electron’s mass and �μ = ∂μ + iAμ is the
covariant angular momentum, Aμ is the gauge field of the
monopole. Here we have set h̄ = e = c = 1. Correspond-
ing eigenenergies are known as the famous Landau levels,
En = [n(n + 1) + (2n + 1)s]/(2Mer2), with n = 0, 1, 2, . . .

the Landau level index. The (n + 1)th Landau level has
(2s + 2n + 1)-fold degenerate, and the single-particle states
in each Landau level are called Landau orbitals. The wave
functions for each Landau orbital on LLL are called monopole
harmonics [26]

Y (s)
s,m(�) = Nmeimϕ coss+m

(
θ

2

)
sins−m

(
θ

2

)
. (A2)

Here m = −s,−s + 1, . . . , s − 1, s, the normalization factor
Nm = √

(2s + 1)!/4π (s + m)!(s − m)!, and � = (θ, ϕ) are
the spherical coordinates.

b. Second-quantization Hamiltonian

Here we derive the second-quantization form of the
real-space Hamiltonian. First, we define the total density
operator as

n(�) = �†(�)�(�) = 1

Ns

∑
m1,m2

Ȳ (s)
s,m1

(�)Y (s)
s,m2

(�)c†
m1

cm2 ,

(A3)

where we have used the monopole harmonics Y (s)
s,m(�) derived

above. The angular momentum decomposition of the total
density operator is given by

nl,m = (−1)l
∫

d�Yl,m(�)n(�)

=
√

2l + 1

4π

∑
m1,m2

(−1)3s+m1

(
s l s

−s 0 s

)

×
(

s l s
−m1 m m2

)
c†

m1
cm2 . (A4)

Here, cm = (cm,1↑, cm,1↓, cm,2↑, cm,2↓)T . Here 1 (2) labels the
layer index and ↑ (↓) represents the spin index. Yl,m is the
spherical harmonics. And the angular momentum decomposi-
tion of the local density operator of layer τ is

nτ
l,m =

√
2l + 1

4π

∑
m1,m2

(−1)3s+m1

(
s l s

−s 0 s

)

×
(

s l s
−m1 m m2

)
c†

m1,τ
σcm2,τ . (A5)

Throughout this paper, the notation σ 0 and σ means I and
(σx, σy, σz ).

For any two-body interaction potential U (�a,b) depending
on �a,b on the spherical geometry, it can be expanded in
Legendre polynomials

U (�a,b) =
∑

l

UlPl (�a,b) =
∑
l,m

Ul
4π

2l + 1
Ȳl,m(�a)Yl,m(�b).

(A6)

Taking the first term in the Hint as an example, we can obtain
its second-quantization form as

H0
int =

∫
d�a,bU0n(�a)n(�b)

=
∫

d�a,b

∑
l,m

U 0
l

4π

2l + 1
Ȳl,m(�a)n(�a)Yl,m(�b)n(�b)

=
∑
l,m

U 0
l

4π

2l + 1
n†

l,mnl,m. (A7)

A similar form can be found for the second and third
terms. Finally, our second-quantization form of the real-space
Hamiltonian Hint is given by

Hint =
∑

l

4π

2l + 1
U 0

l

∑
m

n†
l,mnl,m

−
∑

l

4π

2l + 1
U 1

l

∑
m

(
n1†

l,mn1
l,m + n2†

l,mn2
l,m

)

+
∑

l

4π

2l + 1
U 2

l

∑
m

n1†
l,mn2

l,m − h
∑

m

c†
mτ xσ 0cm.

(A8)

The parameter U 0
l ,U 1

l ,U 2
l will be given by the pseudopoten-

tials as shown below.

c. Relationship with the Haldane pseudopotential

The real-space interactions we used in the main text are
connected to the Haldane pseudopotential Vl . For the cases of
δ potential and its derivative, the only nonzero component of
the Haldane pseudopotential is l = 0 and 1, respectively. Sim-
ilarly, we can use the Haldane pseudopotential to reformulate
the Hamiltonian

H0
int =

∑
m1m2m3m4

Vm1m2m3m4

(
ĉ†

m1
ĉm4

)(
ĉ†

m2
ĉm3

)
, (A9)
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and the parameter Vm1m2m3m4 is connected to the Haldane pseu-
dopotential Vl by

Vm1m2m3m4 =
∑

l

Vl (4s − 2l + 1)

(
s s 2s − l

m1 m2 −m1 − m2

)

×
(

s s 2s − l
m4 m3 −m4 − m3

)
δm1+m2,m3+m4 .

(A10)

By comparing the coefficients, we can get the relations be-
tween Vl and Ul ,

Vl = (−1)l
∑

k

(2s + 1)2Uk

(
s k s

−s 0 s

)2{
s s 2s − l
s s k

}
.

(A11)
Here, {s s l

s s k} is Wigner 6 j coefficient. We can use the
unitary condition of 6 j symbol to get

Ul = 2l + 1

(2s + 1)2

∑
l ′

(−1)l ′ (4s − 2l ′ + 1)Vl ′

{
s s 2s − l ′
s s l

}

×
(

s l s
−s 0 s

)−2

. (A12)

Since we only consider short-range Haldane pseudopotentials
V0 and V1, we can obtain

Ul=(2l + 1)
4s + 1

(2s + 1)2
V0 − (2l + 1)

(4s − 1)(l2 + l − s)

s(2s + 1)2
V1.

(A13)

For the Hamiltonian (A8), the parameter U 0
l is set by using

(V0 = 1,V1 = 0), U 1
l is set by using (V0 = 0.55,V1 = 0), and

U 2
l is set by (V0 = 0,V1 = 0.19).

d. Connecting with the O(N) models

In the main text, we have shown a microscopic realiza-
tion of Heisenberg-type model exhibiting Wilson-Fisher O(3)
transition. Here we discuss that the proposed fuzzy sphere
bilayer model has far-reaching extension to realize gen-
eral universality class of Wilson-Fisher O(N ) transition with
N = 1 (Ising), N = 2 (XY), and N = 3 (Heisenberg).

To clarify the construction, we rewrite the density-density
interaction in each layer as (the interlayer interaction does not
specify here)

Hspin,τ = −
∫

d�a,b
[
U1

(
nx

τ (�a) · nx
τ (�b

) + ny
τ (�a) · ny

τ (�b)

+ �znz
τ (�a) · nz

τ (�b)
]
. (A14)

The definition of local density operators is in line with the
main text: the local density operator of layer τ is nτ (�) =
(nx

τ , ny
τ , nz

τ ) = ψ†
τ (�)σψτ (�). Here setting �z = 1 favors the

Heisenberg O(3) symmetry as discussed in the main text,
which preserves the spin rotation symmetry. We refer �z = 1
as Heisenberg point in the following discussion. Further tun-
ing the parameter �z leads to different global symmetry of
effective spin degrees of freedom: (1) �z > 1 (“easy-axis”
condition) leads to an Ising Z2 symmetry; (2) �z < 1 (“easy-
plane” condition) leads to an XY O(2) symmetry.

Moreover, we should be careful on the form of interactions.
For the Heisenberg model in the main text, we choose short-
ranged interactions to be U1 = u1δ(�1 − �2). This form of
interaction is special to achieve O(3) spin because δ(�1 − �2)
potential is always SU(2) symmetric. To realize the XY transi-
tion and Ising transition, one also needs to modify the form of
density-density interaction. In specific, we use the following
form:

U1 = u0
1δ(�1 − �2) + u1

1∇2δ(�1 − �2) (A15)

Tuning the parameters �z and u0
1, u1

1 breaks the spin O(3)
rotation symmetry and produces XY spin or Z2 spin. To
demonstrate it, we compute the energy spectrum of a single-
layer model as a function of �z, in Fig. 5. At the Heisenberg
point, the ground state is (2S + 1)-fold degenerated guaran-
teed by the spin rotational symmetry for quantum spins. For
�z > 1, the ground state is doublet degenerated, related to
the Z2-symmetric-breaking Ising spin. For �z < 1, the ground
state belongs to the XY spin order.

Based on the magnetic orders with different symmetries
established on the fuzzy sphere bilayer model, one can fur-
ther construct phase transitions belong to Wilson-Fisher O(N)
universality class: N = 1 (Ising), N = 2 (XY), and N = 3
(Heisenberg). The Ising transition should be in line with the
existing discussion [23], and the Heisenberg transition has
been studied in the main text. We believe that the XY tran-
sition can be also realized in the fuzzy sphere bilayer model
in a similar way.

Finally, let us make some remarks here. Previously we
have realized a 3D Ising transition on the fuzzy sphere model
with one layer [23] (we dubbed it as single-layer fuzzy sphere
model). The idea is to use a spin-flip transverse field term (i.e.,
involving nx(�) operator) to induce a paramagnetic phase.
Unfortunately, this single-layer fuzzy sphere model cannot
realize the XY or Heisenberg transition. The reason is the
spin-flip transverse field term involving operator explicitly
breaks the spin rotation symmetry, so that a O(2) or O(3)
symmetric paramagnet cannot be created on the single-layer
fuzzy sphere model. Here, to overcome this obstacle, we turn
to construct a fuzzy sphere bilayer model, which is able to
realize the O(N) transition with global continuous symmetry.
In this context, the fuzzy sphere bilayer model is meaningful,
which goes beyond the limitation of single-layer fuzzy sphere
model.

2. Physical observables across the phase transition

In the main text, the critical point of the phase transition
is determined by the scaling of local order parameter. In
this section, we consider two more physical observables, the
binder cumulant U4 and the lowest-energy gap, and study their
finite-size scaling around the phase transition to confirm the
estimation of hc. In the end, we calculate the charge gap to
show that spin is the degree of freedom in the low-energy
region.

The binder cumulant U4 [6] is defined as

U4 = 〈
M4

τ

〉
/
〈
M2

τ

〉2
. (A16)

It is a universal quantity related to the four-point field φ at
the phase transition. Figure 6 shows U4 with respect to the

115113-6



CONFORMAL OPERATOR CONTENT OF THE … PHYSICAL REVIEW B 110, 115113 (2024)

XY O(2) Heisenberg O(3) Ising Z2

0 1 2

0.0

0.5

1.0

1.5

E n
-E

0

Δz

XY IsingΔz

FIG. 5. (Top panel) Fuzzy sphere model can simulate magnetic order with O(N ) symmetry: N = 1 (Ising), N = 2 (XY), and N = 3
(Heisenberg). (Bottom panel) Energy spectra of Hspin,τ as a function of �z. At the Heisenberg point �z = 1, the ground state is (2S + 1)-fold
degenerated. By tuning �z away from the Heisenberg point leads to quantum XY spins or quantum Ising spins.

transverse field strength h for different Ns. Clearly, at small
h the model is the ordered Heisenberg magnet, while at large
h the model is the disordered paramagnet. There is a cross-
ing region h ≈ hc, where different system sizes cross with
each other. The precise value of critical point hc ≈ 0.2167 ±
0.0002 can be determined by the crossing-point analysis
according to the scaling form hc(Ns) = aN−(1/ν+ω)/2

s + b,
shown in Fig. 6 (inset). This is the same analysis as how we
used the order parameter in the main text, while the critical
point is a little smaller.

FIG. 6. The binder cumulant U4 with different system sizes Ns =
4–12. (Inset) Finite-size scaling of crossing points by a finite-size
pair (Ns, Ns + 1), which gives rise to hc ≈ 0.2167 ± 0.0002. The
scaling form is hc(Ns ) = aN−(1/ν+ω)/2

s + b.

Second, we compute the energy gap � between the ground
state and the first excited state for different system sizes
Ns = 4–8, and do finite-size scaling. As one can find in Fig. 7,
below h = 0.232, the energy gap � is smaller than 0, while it
becomes gapped when h exceeds 0.232, which gives rise to
hc ≈ 0.232. Three different physical observables, including
the order parameter in the main text, are largely consistent
with each other.

Third, the original fuzzy sphere model consists of
fermionic degrees of freedom. So one preliminary question to
be addressed in the model design is whether or not the charge
excitation gap is relevant to the discussion of magnetic phase
transition. Here we define the charge gap as �c = E0(N +

FIG. 7. Finite-size scaling of the lowest-energy gap with dif-
ferent h for various Ns = 4–8, which gives us the critical point
hc ≈ 0.232.
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FIG. 8. Finite-size scaling of charge excitation gap with system
sizes Ns = 4–8 at the phase transition point hc.

1, Ns) + E0(N − 1, Ns) − 2E0(N, Ns), where E0(N, Ns) is the
ground-state energy on Ns lowest Landau level orbitals filled
by N electrons. After obtaining the charge gap on each system
size, we perform a finite-size scaling to estimate the charge
gap in the thermodynamic limit. As shown in Fig. 8, the
charge gap at the critical point h = hc is nonzero on all system
sizes, and the value in the thermodynamic limit is also finite.
Thus, we conclude that the spin degrees of freedom undergo
a phase transition while the charge degrees of freedom are
always gapped. And close to the phase transition point the
spin excitation, rather than the charge excitation, dominates
the low-energy excitation.

3. OPE coefficients

This section delves into the nuances of calculating OPE
coefficients, emphasizing the tensor structures and accounting
for finite-size corrections.

a. Tensor structures

In our main text, we have analyzed five OPE coefficients,
namely, fφφs, fsss, fφφT , fssT , and fφφJμ

. These coefficients
correspond to four primary fields: φ, s, Tμν , and Jμ. Here, we
outline their tensor structures:

〈φi(x1)φ j (x2)s(x3)〉 = δi j
fφφs

x2�φ−�s

12 x�s
23 x�s

13

,

〈φi(x1)φ j (x2)T (x3, z)〉 = δi j

fφφT

(
x13·z
x2

13
− x23·z

x2
23

)2

x2�φ−�T +2
12 x�T −2

23 x�T −2
13

,

〈s(x1)s(x2)s(x3)〉 = fsss

x�s
12 x�s

23 x�s
13

,

〈s(x1)s(x2)T (x3, z)〉 =
fssT

(
x13·z
x2

13
− x23·z

x2
23

)2

x2�s−�T +2
12 x�T −2

23 x�T −2
13

,

〈φi(x1)φ† j (x2)JA(x3, z)〉 = −T A
i j

fφφJ

(
x13·z
x2

13
− x23·z

x2
23

)
x2�φ−�J+1

12 x�J−1
23 x�J−1

13

,

(A17)

where z serves as the auxiliary coordinate, devoid of indices,
pertinent to the Lorentz tensor. The indices i, j, and A relate to
the global O(3) structure. Within the OPE linked to the current
operator, the tensor T A

i j functions as the O(3) generators. It is
crucial to recognize that the tensor structures of these OPEs
use the two-point correlators for normalization:

〈φi(x)φi(0)〉 = δi j

x2�φ
,

〈T (x, z1)T (0, z2)〉 =
(

1
2 z1 · z2 − (n · z1)(n · z2)

)2

x2�T
,

〈s(x)s(0)〉 = 1

x2�s
,

〈JA(x, z1)JB(0, z2)〉 = τAB

(
1
2 z1 · z2 − (n · z1)(n · z2)

)
x2�J

.

(A18)

Here, n = x
x denotes the unit vector and τAB = Tr[T AT b] =

2δAB. To recover the explicit indices, one can apply the differ-
ential operator relative to the auxiliary coordinate z:

Dμ = D − 2

2

∂

∂zμ
− zν

∂2

∂zμ∂zμ
− 1

2
zμ

∂2

∂zν∂zν
. (A19)

The operator, exhibiting explicit Lorentz quantum num-
bers �, m alongside O(3) quantum numbers s, sz, can be
formulated as

Os,sz

�,m(x) = nμ1...μ�

(�,m) e(s,sz )
i j... Oi j...

μ1...μ�
(x), (A20)

where nμ1...μ�

(�,m) and e(s,sz )
i j... are Lorentz and O(3) polarization,

respectively. By leveraging the state-operator correspondence,
this operator transforms into the state within the numerical
states, subject to normalization∣∣Os,sz

�,m

〉 = N
(
Os,sz

�,m

)
lim
x→0

Os,sz

�,m(x)|0〉. (A21)

Thus,

N (Os,sz

�,m) = [
lim

x→∞ x2�O (n∗)μ
′
1...μ

′
�

�,m nμ1...μ�

�,m (e∗)s,sz

i′ j′...e
s,sz
i j...I

ν1
μ′

1
(x)

. . . I ν�

μ′
�

(x)〈Oi′ j′...
ν1...ν�

(x)Oi j...
μ1...μ�

(0)〉]−1/2
, (A22)

where I ν1
μ1

(x) = δ ν
μ − 2nμnν comes from the conjugation.

For a deeper insight, let us examine the tensor structure of
the OPE φφJ as a representative example. For comprehensive
tensor structures associated with other OPEs, readers are di-
rected to earlier works [24,38]. The correlators related to φ

and J are

〈φi(x)φ j (0)〉 = δi jx
−2�φ ,

〈JA
μ (x)JB

ν (0)〉 = 1
4δAB(ημν − 2nμnν )x−2�J . (A23)
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Both the Lorentz and O(3) polarizations serve as spherical
tensors for the SO(3) rotation group. Therefore,

e(0,0) = n(0,0) = 1, e(1,0)
z = nz

(1,0) = 1,

e(1,±1)
x = nx

(1,±1) = ∓1/
√

2, e(1,±1)
y = ny

(1,±1) = −i/
√

2.

(A24)

Consequently, the normalization factors for φ and J are

N
(
φ

(1,±1)
(0,0)

) = N
(
φ

(1,0)
(1,0)

) = 1, N
(
J (1,1)

1,0

) = 2. (A25)

Following the same procedure, the OPE of φφJ in
S2 × R is〈

φ
(1,1)
(0,0)

∣∣φ(1,0)(�)
∣∣J (1,1)

(1,0)

〉
= N∗(φ(1,±1)

(0,0)

)
N

(
J (1,1)

1,0

)
lim

x→∞ x2�φ (e∗)(1,1)
i e(1,0)

j e(1,1)
A nμ

(1,0)

× 〈
φi(x)φ j (�)JA

μ (0)
〉

= R−�φ fφφJ cos θ. (A26)

By integrating the angle dependence and taking into account
the angular momentum component

Ol,m =
∫

d� Ȳl,m(�)O(�) (A27)

and the factor R−�φ can be offset by its two-point correlator〈
φ

(1,0)
(0,0)

∣∣φ(1,0)(�)|0〉 = R−�φ . (A28)

In conclusion, the value of fφφJ is

fφφJ =
√

4

∫
d� Ȳ1,0(�)

〈
φ

(1,1)
(0,0)

∣∣φ(1,0)(�)
∣∣J (1,1)

(1,0)

〉
∫

d� Ȳ0,0(�)
〈
φ

(1,0)
(0,0)

∣∣φ(1,0)(�)|0〉

=
√

3

〈
φ

(1,1)
(0,0)

∣∣φ(1,0)
(1,0)

∣∣J (1,1)
(1,0)

〉
〈
φ

(1,0)
(0,0)

∣∣φ(1,0)
(0,0) |0〉 . (A29)

Now we discuss about other OPEs. Since they are both scalar-
scalar-scalar (spin-� = 2 tensor) type, we can directly use
the results in Refs. [24,38] after treating the scalar φi in the
vector representation of O(3). If we choose the s = 1, sz = 0
component of φi, the polarization is just e(1,0)

z = 1 and will not
produce any modification. Finally, we have

fφφs =
〈
φ

(1,0)
(0,0)

∣∣φ(1,0)
(0,0)

∣∣s(0,0)
(0,0)

〉
〈
φ

(1,0)
(0,0)

∣∣φ(1,0)
(0,0)

∣∣0〉 ,

fsss =
〈
s(0,0)

(0,0)

∣∣s(0,0)
(0,0)

∣∣s(0,0)
(0,0)

〉
〈
s(0,0)

(0,0)

∣∣s(0,0)
(0,0)

∣∣0〉 ,

fφφT =
√

15

8

〈
φ

(1,0)
(0,0)

∣∣φ(1,0)
(2,0)

∣∣T (0,0)
(2,0)

〉
〈
φ

(1,0)
(0,0)

∣∣φ(1,0)
(0,0)

∣∣0〉 ,

fssT =
√

15

8

〈
s(0,0)

(0,0)

∣∣s(0,0)
(2,0)

∣∣T (0,0)
(2,0)

〉
〈s(0,0)

(0,0)

∣∣s(0,0)
(0,0)

∣∣0〉 . (A30)

b. Relation to central charge

The relation between OPE coefficients and the central
charge is evident from the study of their correlators. Specif-
ically, the OPE coefficients, denoted by OOT and OOJ ,
can be associated with the central charge CT and the current
central charge CJ . These relationships are determined by the
correlators

〈T (x, z1)T (0, z2)〉 = CT

(
1
2 z1 · z2 − (n · z1)(n · z2)

)2

x2�T
,

〈JA(x, z1)JB(0, z2)〉 = CJτ
AB

(
1
2 z1 · z2 − (n · z1)(n · z2)

)
x2�J

.

(A31)

By referencing Ref. [15], we find the CB prediction values of
the central charge:

fφφT = 3�φ

4
√

CT
≈ 0.1889,

fssT = 3�s

4
√

CT
≈ 0.5805, (A32)

fφφJ = 1√
CJ

≈ 0.7428.

These approximations utilize bootstrap values
from Refs. [15,34], where CT /Cfree

T = 0.9445 and
CJ/Cfree

J = 0.9063. Additionally, theoretical values cited from
Ref. [39] provide Cfree

T = N d
d−1 = 4.5 and Cfree

J = 2
d−2 = 2.

c. Finite-size corrections

In this subsection, we will provide a thorough finite-size
scaling of OPE coefficients [24] from the microscopic spin
operators. Since the lowest O(3) vector φ corresponds to the
local order parameter, and the lowest scalar s = φ2 in the
Wilson-Fisher description using quantum field theory. We will
choose local operator nτ (�) to approach the CFT operator φ,
and n2

τ (�) to approach s. The operator decomposition nτ (�)
generically is

nτ (�) = cφφ(�) + c∂μφ∂μφ(�) + c�φ�φ(�)

+ c∂μ∂νφ∂μ∂νφ(�) + · · · , (A33)

where the first four terms represent the primary φ and com-
ponents of its descendants. More other descendants of φ, and
other primaries and corresponding descendants, included in
. . . . Similarly, the operator n2

τ (�) can be disassembled by

n2
τ (�) = cI I + [css(�) + c∂μs∂μs(�) + · · · ] + · · · . (A34)

Two scaling dimensions are �φ ≈ 0.519 and �s ≈ 1.595,
respectively. Now, we can extract the OPE coefficient fφφs by
〈φ(1,0)

(0,0) |[nτ ](1,0)
(0,0)|s(0,0)

(0,0)〉
〈φ(1,0)

(0,0) |[nτ ](1,0)
(0,0)|0〉 , for which only operators with same quantum

number will contribute:

〈
φ

(1,0)
(0,0)

∣∣[nτ ](1,0)
(0,0)

∣∣s(0,0)
(0,0)

〉
〈
φ

(1,0)
(0,0)

∣∣[nτ ](1,0)
(0,0)

∣∣0〉 ≈cφ fφφsR−�φ + c�φ fφ,�φ,sR−(�φ+2) + c�2φ fφ,�2φ,sR
−(�φ+4) + · · ·

cφR−�φ + c�φR−(�φ+2) + c�2φR−(�φ+4) + · · ·
≈ fφφs + c1

R2
+ c2

R4
+ O(R−6) ≈ fφφs + c1

Ns
+ c2

N2
s

+ O
(
N−3

s

)
. (A35)
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Similarly, fφφs can also be computed by〈
φ

(1,0)
(0,0)

∣∣[n2
τ

](0,0)

(0,0)

∣∣φ(1,0)
(0,0)

〉 − 〈0|[n2
τ

](0,0)

(0,0)|0〉〈
s(0,0)

(0,0)

∣∣[n2
τ

](0,0)

(0,0)|0〉
≈cs fφsφR−�s + c�s fφ,�s,φR−(�s+2) + c�2s fφ,�2s,φR−(�s+4) + · · ·

csR−�s + c�sR−(�s+2) + c�2sR−(�s+4) + · · ·

≈ fφφs + c1

R2
+ c2

R4
+ O(R−6) ≈ fφφs + c′

1

Ns
+ c′

2

N2
s

+ O
(
N−3

s

)
, (A36)

and the finite-size scaling of the OPE coefficient fsss reads as〈
s(0,0)

(0,0)

∣∣[n2
τ

](0,0)

(0,0)

∣∣s(0,0)
(0,0)

〉 − 〈0|[n2
τ

](0,0)

(0,0)|0〉〈
s(0,0)

(0,0)

∣∣[n2
τ

](0,0)

(0,0)|0〉
≈cs fsssR−�s + c�s fs,�s,sR−(�s+2) + c�2s fs,�2s,sR

−(�s+4) + · · ·
csR−�s + c�sR−(�s+2) + c�2sR−(�s+4) + · · ·

≈ fsss + c1

R2
+ c2

R4
+ O(R−6) ≈ fsss + c′

1

Ns
+ c′

2

N2
s

+ O
(
N−3

s

)
. (A37)

The OPE coefficients involving spinning operator are slightly more complicated since one has to carefully deal with the �

dependence. We compute
∫

d� Ȳ2,0(�)〈φ(1,0)
(0,0) |[nτ ](1,0)(�)|T (0,0)

(2,0) 〉 = 〈φ(1,0)
(0,0) |[nτ ](1,0)

(2,0)|T (0,0)
(2,0) 〉. The finite-size scaling of the OPE

coefficient fφφT is given by√
15

8

〈
φ

(1,0)
(0,0)

∣∣[nτ ](1,0)
(2,0)

∣∣T (0,0)
(2,0)

〉
〈
φ

(1,0)
(0,0)

∣∣[nτ ](1,0)
(0,0)|0〉 ≈ cφ fφφT R−�φ + c�φ fφ,�φ,T R−(�φ+2) + c�2φ fφ,�2φ,T R−(�φ+4) + · · ·

cφR−�φ + c�φR−(�φ+2) + c�2φR−(�φ+4) + · · ·

≈ fφφT + c1

R2
+ c2

R4
+ O(R−6) ≈ fφφT + c′

1

Ns
+ c′

2

N2
s

+ O
(
N−3

s

)
. (A38)

Similarly, fφφJ and fssT can be computed by
√

3
〈
φ

(1,1)
(0,0)

∣∣[nτ ](1,0)
(1,0)

∣∣J (1,1)
(1,0)

〉
〈
φ

(1,0)
(0,0)

∣∣[nτ ](1,0)
(0,0)|0〉 ≈ cφ fφφJR−�φ + c�φ fφ,�φ,JR−(�φ+2) + c�2φ fφ,�2φ,JR−(�φ+4) + · · ·

cφR−�φ + c�φR−(�φ+2) + c�2φR−(�φ+4) + · · ·

≈ fφφJ + c1

R2
+ c2

R4
+ O(R−6) ≈ fφφJ + c′

1

Ns
+ c′

2

N2
s

+ O
(
N−3

s

)
(A39)

and √
15

8

〈
s(0,0)

(0,0)

∣∣[n2
τ ](0,0)

(2,0)

∣∣T (0,0)
(2,0)

〉
〈
s(0,0)

(0,0)

∣∣[n2
τ ](0,0)

(0,0)

∣∣0〉 ≈ cs fssT R−�s + c�s fs,�s,T R−(�s+2) + c�2s fs,�2s,T R−(�s+4) + · · ·
csR−�s + c�sR−(�s+2) + c�2sR−(�s+4) + · · ·

≈ fssT + c1

R2
+ c2

R4
+ O(R−6) ≈ fssT + c′

1

Ns
+ c′

2

N2
s

+ O
(
N−3

s

)
, (A40)

respectively.

4. Two-point correlator

In this section, we would like to study the correlator on the
fuzzy sphere. We will use the operator φ as an example. The
decomposition of local operator nτ is following Eq. (A33).
The normalized two-point function of nτ receives its leading-
order contribution from the two-point function of φ:

Gφφ (r, θ ) = 〈0|nτ (r, θ )nτ |0〉
〈φ|nτ |0〉2 + O(R−1)

=
∑2s

l=0 Ȳl,0(θ, 0)Yl,0(0, 0)
〈
0
∣∣[nτ (r)](1,0)

(l,0) [nτ ](1,0)
(l,0)

∣∣0〉
〈
φ
∣∣[nτ ](1,0)

(0,0)

∣∣0〉2
/(4π )

+ O(R−1)

= r�φ

(r2 + 1 − 2r cos θ )�φ
+ O(R−1). (A41)

Figure 9 depicts the two-point correlator Gφφ (r = 1, θ ) by
setting r = 1 as a function of θ . In this case, Gφφ (r = 1, θ )
is a dimensionless function that solely depends on the angle
θ between the two operators. Overall, the finite-size results
approach theoretical expectation as Ns increases. The discrep-
ancy is relatively large at small angle. For θ ≈ π/2 (close to
equator), the different curves almost merge together.

5. Details of numerical data

a. Raw numerical data

In this subsection, we present the data of energy spectra
and corresponding conformal multiplet of various fields in
Table III. Here we only present the data for relevant fields
(� � 3). Importantly, we emphasize that, the operator spec-
trum does not miss any CFT field or contain any extra
non-CFT state in the regime (� � 3). These data are used
for plotting the figures in the main text. For comparison, we
also list the results from conformal boostrap method [15,34].
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TABLE III. Scaling dimensions of fields in O(3) model (� � 3). The data from the fuzzy sphere model (FS) are rescaled by setting
�T = 3. Here Ns = 8 data are from the ED and Ns = 9 data are from the DMRG.

Spin (�) Charge (S) Operator Dimension (CB) Dimension (FS) (Ns = 8) Particle hole (Ns = 8) Three Z2 (Ns = 8)

0 1 φ 0.519 0.521 1 1
0 2 t2 1.210 1.244 1 1
1 1 ∂μφ 1.519 1.496 1 1
0 0 s 1.595 1.595 1 1
1 1 Jμ 2 2.038 -1 1
0 3 t3 2.038 2.150 1 1
1 2 ∂μt2 2.210 2.256 1 1
2 1 ∂μ∂νφ 2.519 2.504 1 1
0 1 �φ 2.519 2.609 1 1
1 0 ∂μs 2.595 2.643 1 1
0 4 t4 2.99 3.229 1 1
2 0 Tμν 3 3 1 1
2 1 ∂νJμ 3 3.138 -1 1
1 1 εμνρ∂νJρ 3 3.018 1 -1

These detailed data give a good quantification for the nu-
merical error. That is, scaling dimensions of the low-lying
fields are quite close to the results of conformal bootstrap,
and the trend towards thermodynamic limit is correct for most
of fields. A rigorous error analysis based on the finite-size
scaling will be presented in the next subsection.

Another interesting point is that almost perfect state-
operator correspondence is manifest in surprisingly small
system sizes, e.g., the numerical data at a given system size
Ns = 8, which is the largest system size that we can reach
using ED, is already close to the 3D CFT data. Here, to further
elucidate that the numerical findings indeed reflect the physics
in the thermodynamic limit, we show the energy spectra on
different system sizes. As one can see the energies on different
system sizes match the prediction of 3D CFT quite well.

A part of data can be accessed in the DMRG computation.
In the DMRG calculation, we explicitly implement three U(1)
symmetries, i.e., z-component angular momentum quantum
number Lz, total electron number n↑ + n↓, and z-component
spin Sz = n↑ − n↓. Making use of the symmetry information
of the different fields, we can simplify the DMRG calcula-

FIG. 9. The angle dependence of the two-point correlator
Gφφ (r = 1, θ ) is plotted for system sizes Ns = 5–12.

tion. For example, to target the lowest O(3) vector field φ,
we can calculate the lowest-energy state in the sector Lz =
0, Sz = 1 (instead of directly targeting higher excited states in
Lz = 0, Sz = 0). Accessing the ground state in different sym-
metry sectors usually gets fast convergence compared with
targeting the excited states. For the DMRG calculations, we
only focus on the low-lying fields, so some of data are missing
in Table III (last column).

b. Error analysis

In this subsection, we present an error analysis of obtained
scaling dimensions. Generally, the typical length scale R, the
radius of fuzzy sphere, should be scaled with the number of
Landau orbitals (i.e., spins) as R ∼ √

Ns. R behaves as the
typical length scale Lx as in the flat space-time lattice model.
To extrapolate the numerical data to the thermodynamic limit
R → ∞, we use the polynomial function fO(R) = fO(∞) +
a1(O)

R + a2(O)
R2 + O( 1

R2 ), and fit the finite-size data using least-
square method. The mean values fO(∞) give the best estimate
of the scaling dimensions in the thermodynamic limit, and the
residual gives the relative errors (see Table IV).

Next, we further analyze the error of obtained OPE coeffi-
cients. The strategy used to estimate errors is explained below.
Following the discussion in Ref. [24], we utilize the different
local operators to estimate the OPE coefficients. (The general
idea is [40] the information of CFT primary field may be en-
coded in different local operators, and it is expected different
local operators should give the same OPE coefficients since
the OPE coefficients should be universal.) First of all, we need
to analyze the operator content of different local operators
based on the symmetries. In short, the following local oper-
ators have significant weights with the primary fields s, φ:

O(3)vector : φ ∼ nτ (�), (A42)

O(3)vector : φ ∼ n2
τ (�)nτ (�), (A43)

O(3)vector : φ ∼ Os(�)nτ (�), (A44)

O(3)scalar : s ∼ n2
τ (�), (A45)
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TABLE IV. Extrapolated scaling dimensions of low-lying primary operators identified via state-operator correspondence on the fuzzy sphere.

φ t2 s t3 t4

Fuzzy sphere (Extrapolated) 0.524 ± 0.004 1.211 ± 0.008 1.588 ± 0.009 2.028 ± 0.011 2.961 ± 0.012

O(3)scalar : s ∼ Os(�) = n(�)n(�) + 0.015 ∗ nτ x⊗σ 0
(�).

(A46)

Using the local operators listed above, we can estimate
the OPE coefficients. For example, when estimating the OPE
coefficient fφφs, one could use two different ways to calculate
it: (1) 〈φ|φ|s〉 [see Eq. (A35)] by using the local operator
φ ∼ nτ (�), φ ∼ n2

τ (�)nτ (�), or Os(�)nτ (�) and (2) 〈φ|s|φ〉
[see Eq. (A36)] by using the local operator s ∼ n2

τ (�) or
s ∼ Os(�). Figure 10 shows the five different estimations.
By extrapolation, the estimated values of fφφs are 0.518 from
〈φ|nτ |s〉, 0.529 from 〈φ|n2

τ |φ〉, 0.532 from 〈φ|Os|φ〉, 0.530
from 〈φ|n2

τ nτ |φ〉, and 0.515 from 〈φ|Osnτ |φ〉. So the mean
value and relative error are estimated to be

fφφs ≈ 0.525 ± 0.007. (A47)

Similarly, the estimated values of fsss are 0.498 from 〈s|n2
τ |s〉

and 0.517 from 〈s|Os|s〉 (see Fig. 10). So the mean value and
relative error are given by

fsss ≈ 0.507 ± 0.010. (A48)

Meanwhile, the estimated values of fssT are 0.594 from
〈s|n2

τ |T 〉 and 0.563 from 〈s|Os|T 〉 (see Fig. 10). Their mean
value and relative error are given by

fssT ≈ 0.578 ± 0.016. (A49)

The estimated values of fφφJ are 0.768 from 〈φ|nτ |J〉, 0.772
from 〈φ|n2

τ nτ |J〉, and 0.715 from 〈φ|Osnτ |J〉 (see Fig. 10).
Their mean value and relative error are given by

fφφJ ≈ 0.752 ± 0.025. (A50)

The estimated values of fφφT are 0.164 from 〈φ|nτ |T 〉, 0.164
〈φ|n2

τ nτ |T 〉, and 0.163 from 〈φ|Osnτ |T 〉 (see Fig. 10). Their
mean value and relative error are given by

fφφT ≈ 0.1685 ± 0.0003. (A51)

We find the estimates of fφφT from three different local opera-
tors are quite close to each other, so the relative error is much
smaller.

At last, we need to emphasize, although the above errors
are not rigorous, we think this is the best way to do the error
analysis [24]. That is, compared with the error in the fitting
process, the relative errors from the fitting using different local

FIG. 10. (Top left) Finite-size scaling of five different quantities to estimate the OPE coefficient fφφs. (Top middle) The OPE coefficient
fsss can be estimated by two different local operators n2(�) and Os. (Top right) The OPE coefficient fssT can be estimated by two different
local operators n2(�) and Os. (Bottom left) Finite-size scaling of three different quantities to estimate the OPE coefficient fφφJ . (Bottom right)
The OPE coefficient fφφT can be estimated by two different local operators n2(�) and Os.
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FIG. 11. Conformal multiplet of several low-lying primary operators. Scaling dimension � versus Lorentz spin � for (a) the lowest vector
φ, (b) the lowest rank-2 symmetric traceless tensor t2, (c) the lowest scalar field s, and (d) conserved current Jμ. The plots are calibrated by
the scaling dimension of the current �Jμ

= 2. Solid (open) symbols represent parity-even (-odd) operators. The dashed horizontal lines are the
predictions from conformal bootstrap, and the discrepancy is relatively smaller for the primaries and their first descendants.

operators are relative larger. So we would like to use this way
to estimate the error of OPE coefficients.

c. Rescale with �Jμ = 2

In this subsection, we introduce an alternative normal-
ization, specifically setting the current �Jμ=2 to analyze the

low-lying spectra (since in 3D with continuous symmetry,
Jμ is also a conserved current). As illustrated in Fig. 11,
the low-lying eigenstates approximately form representa-
tions of the 3D conformal symmetry. This is qualitatively
consistent with conclusion in the main text by fixing
�Tμν

= 3.
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