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Spin-orbit coupling induced orbital entanglement in a three-band Hubbard model
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The effect of the spin-orbit coupling on the ground state properties of the square-lattice three-band Hubbard
model with a single electron per site is studied by a generalized Hartree-Fock approximation. We calculate the
full phase diagram and show that there appear additional orbital-entangled phases brought about by competition
of various exchange channels or by the spin-orbit coupling in addition to conventional states stabilized by
the Kugel-Khomskii mechanism. One of these phases previously proposed to explain magnetic properties of
Sr2VO4 is characterized by vanishing dipolar magnetic moments and antiferro-octupolar ordering. We calculated
microscopic parameters for this material and demonstrate that it is located near a phase boundary of two
orbital-entangled and two conventional antiferromagnetic ferro-orbital states.
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I. INTRODUCTION

The Hubbard Hamiltonian on a square lattice has become
not only one of the most studied models over the past decades,
but has turned out to be a standard test bed for various theoret-
ical methods. Nevertheless, this model still harbors intriguing
physics to be uncovered. Two ingredients—orbital degeneracy
and the spin-orbit coupling—substantially enrich the variety
of physical phenomena described by this model.

Being a very important theoretical concept, the model
is extremely useful for practical applications, and not only
in connection with high-temperature superconductivity of
cuprates, but for many other materials and phenomena in-
cluding the Kugel-Khomskii mechanism of orbital ordering in
K2CuF4 [1,2], unconventional superconductivity in Sr2RuO4

[3], orbital-selective physics in Ca2RuO4 [4], and the spin-
orbit assisted Mott transition in Sr2IrO4 [5]. There are also
other layered perovskites with transition metals forming a
square lattice, which demonstrate intriguing and yet to be
understood physical properties. Examples include the anoma-
lous staircase field dependence of magnetization [6] together
with half metallicity [7–9] and obscure spin state of Co
(electronic configuration 3d5) in Sr2CoO4 [8–12], or Sr2CrO4

(3d2) with a reversed crystal field [13], strong interplay be-
tween spin and orbital degrees of freedom [14], and possible
formation of orbitally ordered states switchable by ultrafast
optical spectroscopy [15] and destroyable by pressure [16].

Another example is Sr2VO4 with V4+ ions having ionic
configuration 3d1. One might expect formation of a long-
range magnetic order at low enough temperature and, indeed,
there is an anomaly in magnetic susceptibility at ∼100 K, but
neutron measurements do not detect any magnetic moment
even at 5 K [17]. μSR experiments evidence formation of an
antiferromagnetic order below 8 K [18]. Various theoretical
models have been proposed to resolve the problem of van-
ishing local magnetic moment in this material. In particular,
Imai et al. found a complicated spin-orbital order and severe
competition between various magnetic/orbital configurations

[19]. Jackeli and Khaliullin put forward an idea of a hidden
magnetic order, when orbital and spin moments are reduced to
zero at each lattice site, and magnetic octupole order instead
[20]. The Jackeli-Khaliullin state is characterized by vanish-
ing dipolar magnetic moment and antiferro-octupolar order
with two nonzero octupolar moments transformed by two
nonequivalent representations. Eremin et al. suggested an al-
ternative state with nonvanishing but compensating each other
orbital and spin moments [21]. Density functional theory cal-
culations by Kim et al. stress the importance of frustration
effects and argue that spin-liquid or spin-glass states can be
realized at very low temperatures [22].

In the present paper we perform a detailed study of a
three-orbital Hubbard model on the square lattice with a
checkerboard order taking into account the spin-orbit cou-
pling and tetragonal crystal-field splitting using a generalized
Hartree-Fock approximation (HFA). Particular attention is
paid to the situation of a single d electron, being characteristic
for Sr2VO4. The ground state phase diagram and physical
properties of each phase are discussed in detail. We show
that Sr2VO4 is in a region of the phase diagram where two
highly unusual states with orbital-entangled wave functions
(one of which is characterized by zero dipolar but finite oc-
tupolar magnetic moment) and two more conventional states
with ferromagnetic (but different antiferro-orbitally ordered
configurations) are realized.

II. MODEL AND METHOD

The Hamiltonian of our model reads

H = Ht + HCF + Hso + HCoulomb, (1)

where the first term describes intersite hopping processes

Ht =
∑

i jmm′σ

tmm′
i j c†

imσ c jm′σ , (2)

where m, m′ = xz, xy, yz numerate orbitals, σ, σ ′ =↑,↓ de-
fine spin projection, and tmm′

i j are hopping amplitudes between
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corresponding orbitals on sites i and j. The second term

HCF = �CF

∑
iσ

c†
i,xy,σ ci,xy,σ (3)

sets up tetragonal crystal-field splitting �CF. The third term
in Eq. (1) describes the spin-orbit coupling with the strength
defined by the corresponding parameter λ,

Hso = −λ
∑
i,mm′

S i;mm′ · lmm′ . (4)

Here three components o = 1, 2, 3 of

S (o)
i;mm′ = 1

2

∑
σσ ′

c†
imσ σ o

σσ ′cim′σ ′ (5)

give (generalized) spin operators, and o = 0 provides infor-
mation about interorbital occupation, σ o are Pauli matrices,
and lmm′ are conventional matrices of orbital momentum in
the basis of cubic harmonics

lx
mm′ =

⎛
⎝ 0 −i 0

+i 0 0
0 0 0

⎞
⎠, ly

mm′ =
⎛
⎝0 0 0

0 0 −i
0 +i 0

⎞
⎠, (6)

lz
mm′ =

⎛
⎝ 0 0 +i

0 0 0
−i 0 0

⎞
⎠. (7)

The minus sign in Eq. (4) is needed to work with the t2g

orbitals, which can be modeled as effective p orbitals (l = 1),
but with opposite sign of the spin-orbit coupling constant; see,
e.g., [23,24].

The on-site Coulomb interaction is taken in the following
form:

HCoulomb = U

2

∑
imσ

nimσ nimσ̄ + U ′

2

∑
i,m �=m′

nimnim′

− JH

2

∑
im �=m′;σσ ′

c†
i,mσ ci,mσ ′c†

i,m′σ ′ci,m′σ

− Jd

2

∑
im �=m′;σ

c†
i,mσ ci,m′σ̄ c†

i,mσ̄ ci,m′σ , (8)

where U (U ′) is the on-site Coulomb intraorbital (interorbital)
interaction parameter, JH is the Hund’s intra-atomic exchange
(in the Kanamori representation [25] U = U ′ + 2JH), pair-
hopping matrix element Jd = JH is a real number, since we
work with real cubic (t2g) orbitals, and nimσ = c†

imσ cimσ and
nim = ∑

σ nimσ are the occupation number operators. The no-
tation σ̄ = −σ is used.

Below we consider the case of a single electron per lattice
site under the assumption that a two-sublattice checkerboard
long-range order is established. In the case of a Mott-Hubbard
insulator with an integer band filling the Hartree-Fock ap-
proximation provides reasonable results [26]. Indeed, in this
case HFA yields correct energy values in the atomic limit,
provided that virtual states are treated correctly within this
method (i.e., essentially Anderson’s kinetic exchange effects).
This approximation was also successfully applied to describe
the electron and magnon spectrum [26] and magnetic phase
diagram of the two-band s-d exchange model [27].

Otherwise, HFA gives only a qualitative estimate of ground
state energy missing a vertex correction to virtual state en-
ergies. However, the quality of HFA indeed depends on the
phases considered and an estimation of its applicability is not
straightforward.

Due to the local character of the Coulomb interaction
Hamiltonian (8), the generalized HFA is fully specified by a
local order characterized by a correlator

Ci
mσ ;m′σ ′ ≡ 〈c†

imσ cim′σ ′ 〉. (9)

See details of the derivation in Appendix B; see Eq. (B8).
We consider the decomposition of the correlator into a

complete set of Pauli matrices

Ci
mσ ;m′σ ′ = ni

mm′σ
0
σ ′σ + mi

mm′ · σσ ′σ , (10)

where

ni
mm′ = 〈

S (0)
i;mm′

〉
, (11)

mi
mm′ = 〈S i;mm′ 〉 (12)

are the components of 4-component (charge-spin) vector
Ni

mm′ (ni
mm′ ,m

i
mm′ ).

Fourier transform of an arbitrary field ϕi can be defined
in a standard way ϕ(q) = (1/N )

∑
i exp(iqRi )ϕ

i, where N
is a number of lattice sites and q is a wave vector. For
two-sublattice valued ϕi one can once again single out two
components of a field ϕ

ϕ(q) = δq0ϕ
u + δqQϕs, (13)

where ϕu (ϕs) is the uniform (staggered) component. We
restrict ourselves to considering a two-sublattice ordering and
take ϕi = Ci

mσ ;m′σ ′ with two components, a uniform (Cu) and
staggered (Cs):

Ci
mσ ;m′σ ′ = Cu

mσ ;m′σ ′ + exp[iQRi]C
s
mσ ;m′σ ′ (14)

(from a mathematical point of view, this limits a class of
the general HFA equation solutions). This approach provides
all two-sublattice long-range order solutions for within HFA.
Thereby, we take into account that the ordering has only two
components (uniform and staggered), see Eqs. (13) and (14),
so that the Fourier transforms of ni

mm′ and mi
mm′ have only

q = 0, Q nonzero contributions (see Appendix B).
Within the Hartree-Fock approximation, the total Hamilto-

nian reads

HMF =
∑

k1k′
1;mm′

∑
σσ ′

([
εmm′ (k1)δσσ ′ + F (0)u

mm′ δσσ ′

−Fu
mm′σσσ ′ − (λ/2)lmm′σσσ ′

]
δk1k′

1

+ [
F (0)s

mm′ δσσ ′ − F s
mm′ · σσσ ′

]
δk1,k′

1+Q
)
c†

k1mσ
ck′

1m′σ ′ ,

(15)

where mean fields F (0)i
mm′ and F i

mm′ generally have complex
orbital structure

F (0)i
mm′ = −(U ′ − 2JH)ni

m′m + Jdn
i
mm′

+ δmm′ (2U ′ − JH)
∑
m′′

ni
m′′m′′ , (16)

F i
mm′ = U ′mi

m′m + Jdm
i
mm′ + δmm′JH

∑
m′′

mi
m′′m′′ , (17)
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and analogous expressions hold for uniform and staggered
components of F (0) and F : this corresponds to the replace-
ment i → u and s in Eqs. (16) and (17) correspondingly.
The detailed derivation of Eqs. (16) and (17) is given in
Appendix B.

From Eqs. (5), (11)–(14), see also Eq. (B28) in Ap-
pendix B, we get the system of mean-field equations in terms
of 4-vectors Nu

mm′ (nu
mm′ ,m

u
mm′ ) and N s

mm′ (ns
mm′ ,m

s
mm′ )

N (o)u
mm′ = 1

2N

′∑
kασ

σ o
σσ ′Fmασ ;m′ασ ′ (k), (18)

N (o)s
mm′ = 1

2N

′∑
kασ

σ o
σσ ′Fmασ ;m′ᾱσ ′ (k), (19)

where o = 0, 1, 2, 3; a prime over sums denotes summation
over the magnetic Brillouin zone and

Fmασ ;m′α′σ ′ (k) =
∑

ν

a∗
mασ ;ν (k)am′α′σ ′;ν (k) f (Eν (k)), (20)

where amασ ;ν are eigenvectors belonging to eigenvalue Eν of
the matrix of the single-electron version of Hamiltonian (15),
see Eq. (B25) in Appendix B, f (E ) = {exp[(E − EF)/T ] +
1}−1 is the Fermi function, and EF is the Fermi level. Within
our HFA approach, the latter is adjusted to set the filling equal
to one electron per site.

We get the expression for the full energy within HFA, E =
〈HMF〉,

E/N = 1

N

∑
kν

Eν (k) f (Eν (k)) − EDC/N, (21)

where residual terms of HFA are absorbed into EDC; see
Eq. (B29) in Appendix B.

The above-presented formalism can be applied in the
case of an arbitrary filling, not only 1/6 occupation (one
electron per site). The filling is controlled only by EF. How-
ever, the quality of an approximation depends dramatically
on whether integer or noninteger filling per site situation is
considered. In the latter case, for large U , strong electron
correlations renormalize the electron spectrum, so that more
elaborated approximations like dynamical mean-field theory
(DMFT) or the Kotliar-Ruckenstein slave-boson approxima-
tion [28] (see also calculations in Refs. [29,30]) should be
employed. In the case of integer filling, HFA is a reasonable
approximation.

Finally, we turn to choice of specific parameters. There
is an intrinsic deformation—elongation of transition metal
octahedra in layered perovskites, which are physical realiza-
tions of a square lattice. This results in such a splitting of
the t2g shell that the xy orbital goes higher in energy (by
�CF) than the xz/yz doublet; see Fig. 1(a). Another structural
feature characteristic for this class of materials is symmetry of
hopping parameters. There is always hopping between the xy
orbitals on nearest-neighbor sites txy/xy = t , but the yz orbitals
overlap (directly or via the pz orbital of a ligand) with its part-
ner only along one of the directions (a bond in Fig. 2), so that
t a
yz/yz = t and t a

xz/xz = 0. The electrons on the last orbital, xz,
can also hop only along half of metal–metal bonds (b bond in
Fig. 2): t b

xz/xz = t and t b
yz/yz = 0. Thus, the explicit expressions

FIG. 1. Illustration of effects of (a) the crystal-field splitting
given by (3) (positive �CF corresponds to elongation of octahedra
surrounding transition metals), (b) the spin-orbit coupling (4), and
(c) their combined action in the case of λ > �CF > 0, which shifts
states of | jeff = 3/2, jz

eff = ±1/2〉 up in energy.

for the band dispersion reads as εxy,xy(k) = −2t (cos kx +
cos ky), εxz,xz(k) = −2t cos kx, εyz,yz(k) = −2t cos ky.

Next-nearest-neighbor hopping t ′ can result in breaking
the nesting condition and prevent a metal-insulator transition
[31,32], provided that (U − 3JH)/t is sufficiently small. But
this case is beyond our consideration.

III. POSSIBLE STATES AND PHASE DIAGRAM: NO
SPIN-ORBIT COUPLING

We start from a somewhat simplified consideration assum-
ing that electrons are localized on particular cubic harmonics,
and then go on taking into account quantum effects which
result in more complex states obtained by the Hartree-Fock
method.

Conventional ferro- and antiferro-orbital states. Without
the spin-orbit coupling and for a large and positive crystal-
field splitting (i.e., with elongated metal-ligand octahedra),
one might expect that in the ground state sites the half-filled xz
and yz orbitals will alternate. There is a hopping between half-
filled and empty orbitals [antiferro-orbital (AFO) order] for
all bonds in this state. This hopping favors ferromagnetic cou-
pling according to Goodenough-Kanamori-Anderson (GKA)
rules [33–35]. Such a state is shown in Fig. 3(a) and Fig. 4(a)
and referred to as FM-AFOxz/yz in what follows. This type of
orbital and magnetic order is favored by Hund’s intra-atomic

FIG. 2. Sketch illustrating overlap of xz/yz orbitals in the crystal
structure of layered perovskites. Transition metals are shown by
brown balls, while ligands are blue. There is an overlap between the
yz orbitals in one of the directions (a). This orbital stays silent in
another direction (b), while the xz orbitals strongly overlap. There is
also overlap between the xy orbitals in both directions (not shown).
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FIG. 3. Sketch illustrating various states for a pair of neigh-
boring sites; corresponding charge-density plots are presented in
Fig. 4. Possible hopping paths for (a)–(d) are shown by dashed lines.
In the FM-AFOxz/yz (ferromagnetic–antiferro-orbital) configuration,
one electron is at the yz orbital, while another one resides at xz, and
hopping from site to site favors FM spin ordering. Very similar is the
situation for FM-AFOxy/1 (xy on one site and |lz

eff | = 1 on another
are occupied). In the AFM-xy state hopping between the xy orbitals
stabilizes AFM order. The other two states, FM-eO and AFO-eO, are
orbital-entangled states. The exact wave functions for them are given
in (23) and (24). We sketched these wave functions via noncomplete
filling of arrows denoting spins; plus and minus signs are used to
show the phase of wave functions. In the last AFM-TM state elec-
trons occupy jz

eff = 3/2 or jz
eff = −3/2 depending on the sublattice

(TM stands for the total moment).

exchange JH and large crystal-field field �CF [35] and real-
ized, e.g., in perovskite YTiO3 [36].

An alternative AFM-xy state is shown in Fig. 3(b) and
Fig. 4(b). Electrons occupy the xy orbital at all sites in this
case. This ferro-orbital (FO) ordering is stabilized by a small
positive or negative �CF and, according to GKA rules, leads
to the antiferromagnetic (AFM) state.

FIG. 4. Charge densities for various electronic states under con-
sideration; see Fig. 3. Two different spins are shown by blue and red.
Gray color is used for AFO-eO, where the spin moment vanishes.

FIG. 5. Ground state phase diagram for the crystal-field splitting
−0.1t < �CF < 1.0t without (a) and taking into account (b) the
spin-orbit coupling. Here JH stands for the Hund’s intra-atomic ex-
change, λ is the spin-orbit coupling constant, t is the hopping, and
Hubbard’s parameter is U = 20t . Sketches of different states are
shown in Figs. 3 and 4. An increase of λ results in an expansion
of AFO-eO phase region to the right, an expansion of FM-eO phase
region upward, and contraction of FM-AFOxz/yz (the directions of
phase boundaries moving are shown by arrows). In (b) black dotted
line shows the result for λ = 0 [the same as in Fig. 5(a)] for the
sake of convenience. Blue circle indicates the region of relevance for
Sr2VO4 parameters (close to JH = 1.6t , �CF = 0.16t); see Sec. VI.

The full phase diagram including these two states obtained
by the Hartree-Fock method is presented in Fig. 5(a). It was
calculated by direct solution of the nonlinear self-consistent
system (independent 71 variables) of Eqs. (18) and (19) com-
paring full energies of different phases in the T → 0 limit;
see Eqs. (21) and (B29). The self-consistency process starts
with choice of initial states and iterative procedure modifying
them. Brillouin zone integration in k space was performed by
triangular method [37] for Ngrid = 40 triangles.

Negative crystal-field splitting �CF (when the xy orbital
gets lower than the xz/yz doublet) obviously stabilizes the
AFM-xy state, but it is realized even for small and positive
�CF. This is because for AFM-xy both electrons tunnel and
lower the total energy for any bond, while for FM-AFOxz/yz

only one electron can hop along each bond (yz for bond a and
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xz for bond b). On the other hand, one can see from Fig. 5 that
the AFM-xy state is destabilized by the Hund’s coupling. In
this case the energy of the excited state Eexc (due the hopping)
is strongly reduced by JH in the case of FM-AFOxz/yz (one
electron is on xz, while another one is on the yz orbital; Eexc =
U − 3JH, if we use the Kanamori parametrization [25]) with
respect to what we have for AFM-xy (both electrons are on
the xy orbital; Eexc = U ).

However, strong Hund’s coupling stabilizes not FM-
AFOxz/yz, but a very different state, with electrons occupying
the xy orbital on sublattice A and an arbitrary superposition
of the xz and yz orbitals with the same spin projection on the
B sublattice. For example, one can chose the following wave
function, ∣∣lz

eff = 1
〉 = − 1√

2
(|yz〉 + i|xz〉); (22)

see in Fig. 3(c) and Fig. 4(c). We note that any other mixture of
the xz and yz orbitals can be used without the spin-orbit cou-
pling. In this FM-AFOxy/1 state we win both by intra-atomic
exchange (in the excited state both electrons have the same
spin) and by a very efficient hopping of electrons on the xy
orbitals. This state is doubly degenerate with respect to spin
[if we take into account the spin-orbit coupling the spin-down
electrons occupy the |lz

eff = −1〉 = (|yz〉 − i|xz〉)/
√

2 orbital
on sublattice B].

FM-eO phase with entangled orbitals (eO). However, hop-
ping can be optimized even further on mixing xy and yz/xz
orbitals (or their linear combinations given by lz

eff = ±1) in
an appropriate way. This new phase is characterized by FM
coupling and referred to as FM-eO. In the case of degenerate
t2g orbitals (�CF = 0) one can find the wave functions for two
sites forming a checkerboard order analytically [38]:

A :
2

3
|xy, σ 〉 +

√
5

3
| lz

eff = 1, σ 〉,

B :
2

3
|xy, σ 〉 −

√
5

3
| lz

eff = 1, σ 〉, (23)

where A and B are two sublattices, and σ stands for spin. It has
to be mentioned that this solution is degenerate with respect
to σ → −σ and lz

eff → −lz
eff inversions separately. However,

for a finite spin-orbit coupling, see below, only the symme-
try (lz

eff , σ ) → (−lz
eff ,−σ ) remains. Second, it is remarkable

that two sublattices differ only by the phase of | lz
eff = 1, σ 〉

component. Finally, in a general case of arbitrary �CF exact
expression for wave functions depends on parameters and
changes in different points of the phase diagram. This is in
contrast to the AFO-eO phase discussed in Sec. IV.

At JH = 0 only AFM-xy and FM-AFOxz/yz are presented:
the critical point is determined by competition of (inter-
site) exchange Jex = t2/U and the crystal-field splitting �CF:
�∗

CF = 2Jex. Stability of the FM-eO and FM-AFOxy/1 phases
is rapidly increased and corresponding regions on the phase
diagram expand as JH increases. Parameters corresponding to
Sr2VO4 at normal conditions are presented Sec. VI. They are
rather close to the phase boundary between the FM-AFOxz/yz,
FM-AFOxy/1, and FM-eO states, but the phase diagram by
itself strongly changes by the spin-orbit coupling as we show
in the next section.

IV. PHASE DIAGRAM AT FINITE SPIN-ORBIT COUPLING

AFO-eO phase stabilized by SOC. Generally speaking,
the crystal-field splitting and the spin-orbit coupling (SOC)
tend to stabilize electrons on quite different orbitals. The first
one prefers real (cubic) wave functions, while the second
prefers complex spherical harmonics (this can be critical, in
particular, for the Jahn-Teller effect [39,40]). The intra-atomic
exchange JH favors a maximal total spin (in our situation
this is important for virtual excited states with two electrons
per site), whereas wave functions stabilized by SOC can mix
different spin components; see, e.g., Eqs. (28) and (29) in
Ref. [35]. Therefore, SOC must affect the phase diagram of
the three-orbital Hubbard model described above.

First of all, SOC is expected to influence the states with
partially filled degenerate xz/yz orbitals, i.e. the situation
shown in Fig. 1(a) corresponding �CF > 0. Indeed, one can
always gain some energy due to the SOC putting our electron
on a linear combination of these orbitals corresponding to
lz
eff = 1; see Eq. (22). This is shown in Fig. 1(c), where the
jeff = 3/2 quartet is split by a positive crystal field on two
Kramers doublets: jz

eff = ±1/2 and jz
eff = ±3/2. The results

of direct Hartree-Fock calculations presented in Fig. 5(b)
demonstrate that even a modest SOC with λ = 0.1t leads to
shift of the FM-AFOxz/yz state to the region of large JH and to
formation of a novel AFO-eO phase, sketched in Fig. 3(e) and
Fig. 4(e). The wave function in this new phase is written in a
very simple form:

1√
2

(∣∣ lz
eff = 1,↑ 〉 ± ∣∣ lz

eff = −1,↓ 〉)
, (24)

where different signs are taken for two different sublattices (A
or B). This AFO-eO state is exactly the state with staggered
order of in-plane confined isospins, found by Jackelli and
Khaliullin in [20]. Dipole spin

Si =
∑

m

S imm (25)

[with generalized spin operator S imm defined in (5)] and or-
bital Li moments vanish at every lattice site 〈Si〉 = 〈Li〉 = 0,
so that only octupole moments remain nonzero and they order
in a staggered fashion, as we will discuss below.

Higher-lying in energy AFM-TM phase. A very different
state was considered in [21]. In particular, the electron can be
localized not on a linear combination of | jz

eff = +3/2〉 and
| jz

eff = −3/2〉 at the given sublattice as in the case of the
AFO-eO state, but it can be described by “pure” ψA = | jz

eff =
+3/2〉 at the A and ψB = | jz

eff = −3/2〉 at the B sublattice.
The latter situation is shown in Figs. 3(f) and 4(f) and dubbed
as AFM-TM (total angular momentum antiferromagnetism).
Spin and orbital momenta exist on each site in this case, but
cancel each other, as explained in [21].

We performed an accurate consideration of the energies
of both AFO-eO and AFM-TM states within the mean-field
approximation for the kinetic exchange Hamiltonian derived
from Eq. (1) in the limit zt  U − 3JH using the formalism
developed in [38] (z is the coordination number; see Ap-
pendix A for details). While both these states are stabilized
mainly by spin-orbit coupling, in the leading (zeroth) order
with respect to λ and �CF the kinetic exchange Hamiltonian
yields that the AFO-eO state has a lower energy than the
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FIG. 6. Ground state phase diagram for large (�CF = 1.0t ;
dashed lines) or infinite (�CF = ∞; solid lines) in terms of JH

and λ. Blue (red) lines show the U = 20t (30t ) case. Two phases,
FM-AFOxz/yz and AFO-eO, are considered.

AFM-TM state due to the explicitly nonsymmetric (with re-
spect to i ↔ j) ferromagnetic exchange contribution in the
effective Hamiltonian

Hnon−symm = − 2JH

(U − 3JH)(U − JH)

∑
i jm

∣∣tm
i j

∣∣2S immS j . (26)

See the derivation in Appendix B. It can be readily shown that
for the AFM-TM state this term is strictly positive whereas
for the AFO-eO state it vanishes (all other terms in the kinetic
exchange Hamiltonian yield the same result for both states).
This analytic result can be compared with direct Hartree-Fock
calculations presented in Fig. 8 in the Appendix A. Both
approaches clearly show that AFM-TM is always higher in
energy than AFM-TM and for small JH this difference is well
described by (26).

Competition of AFO-eO/FM-eO and FM-AFOxz/yz phases.
Coming back to the AFO-eO phase one can notice that SOC
is very efficient in suppression of the standard FM-AFOxz/yz

state even at relatively large JH; see Fig. 5(b). There is a very
similar effect on narrowing the phase region of FM-AFOxz/yz

state and expansion of not only the AFO-eO phase, but the
FM-eO solution with increasing SOC as well.

For comparison, in Fig. 6 we present the phase diagram
in other (JH − λ) variables for a typically (realized experi-
mentally) situation of positive and large �CF. Such a crystal
field shifts the xy orbital upward and this destabilizes the
AFM-xy and FM-eO phases [where electrons occupy the xy
orbital; see Figs. 3(b) and 3(d)], so that only the AFO-eO and
FM-AFOxz/yz states survive. At small and moderate Hund’s
exchange, the AFO-eO solution dominates being stabilized by
finite λ. In contrast, large JH favors the FM-AFOxz/yz state. In-
deed, excited (intermediate) states in the exchange processes
for the FM-AFOxz/yz solution obey Hund’s rule (these are
triplet states like xz↑yz↑). Excited states for the AFO-eO phase
do not completely optimize intra-atomic exchange interaction.

The lowering of �CF favors the FM-AFOxz/yz phase which
changes the phase diagram by expansion of the corresponding
phase region quantitatively, but not qualitatively. However the

properties of the latter state strongly depend on parameter
values, as explained in the next section. Last but not least,
there is a strong influence of Hubbard U on the phase diagram,
which is clearly seen in Fig. 6.

Order parameters. While the FM-AFOxz/yz, FM-AFOxy/1,
AFM-TM, and FM-eO states can be characterized by stan-
dard order parameters—dipole moments 〈Li〉 and 〈S j〉 on
corresponding sublattices i = {A, B}—in AFM-eO both such
parameters vanish, as we have discussed above (hidden
orbital-spin order [20]).

The AFM-eO state is stabilized by strong SOC putting
electrons on the spin orbitals characterized by the total an-
gular moment J (in our case jeff ). It is instructive to consider
expectation values of not only dipole (transforming according
to �4 representation of cubic group), but also quadrupole (�3

and �5 representations) and octupole (�2, �4, and �5 represen-
tations) moments, which can be expressed via corresponding
combinations of J components [41].

Our situation is characterized by the tetragonal symmetry
in which �4 and �5 representations are reducible and direct
calculations show that only two out of seven octupoles, 〈T α

x 〉
and 〈T β

x 〉, transforming over corresponding one-dimensional
irreducible representations, are nonzero for the AFM-eO
state (all dipoles and quadrupoles vanish). There is antiferro-
octupole ordering for both of them (nearest neighbors have
opposite octupole moments). Moreover, on the same lattice
site 〈T α

x 〉 and 〈T β
x 〉 have the same sign.

V. MODIFICATION OF THE KUGEL-KHOMSKII
FM-AFOxz/yz ORDER BY SOC

As shown in the previous section, while SOC generates
new states having different anomalous properties such as van-
ishing dipole magnetic moment, it also modifies conventional
states stabilized by the kinetic exchange. In this section we
consider the evolution of the FM-AFOxz/yz state with increas-
ing SOC.

In Fig. 7 we present decomposition of the occupied state
(obtained by diagonalization of the on-site occupation matrix
for one of sublattices) in cubic harmonics. In the case of very
large crystal field, �CF = ∞, presented in the upper panel of
Fig. 7, we have a conventional FM-AFOxz/yz with the electron
sitting mostly at the xz ↑ orbital (for the second sublattice it
will be yz ↑). The intra-atomic Hund’s exchange works for
this state due to the gradually reducing contribution of other
orbitals caused by a finite SOC, λ = 0.1t .

However, a further increase of λ (up to 0.3t) changes
the situation dramatically. The SOC is nearly incapable of
struggling with a too large crystal field and therefore faintly
affects the xy orbital. In contrast, it mixes the xz and yz
orbitals to form lz

eff = ±1 states with the same spin projection,
(22), which are eigenfunctions of SOC. This allows a gain in
energy as much as possible, both in the crystal field and SOC
contributions, but breaks the first Hund’s rule. As a result, for
fixed λ > 0 there exists a critical J∗

H below which occupations
of xz ↑ and yz ↑ coincide [coefficients at corresponding wave
functions are close to 1/

√
2, see Fig. 7(a), while orbital oc-

cupancies equal 0.5]. The price to pay is a reduced energy
gain due to kinetic exchange. For a finite crystal field, one
observes a quite similar tendency of mixing the xz and yz
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FIG. 7. Absolute value of wave function amplitudes of the
FM-AFOxz/yz state for one of the sublattices depending on JH at
�CF = ∞ (a) and �CF = 1.0t (b), where t is the hopping. Solid
lines correspond to λ = 0.1t , dashed lines to λ = 0.3t , dotted lines
to λ = 0.5t . Contribution of xz ↑ states is shown in violet, yz ↑ in
green, and xy ↓ in red.

orbitals and onset of critical J∗
H; see Fig. 7(b). We also find that

lowering �CF stabilizes the FM-AFOxz/yz state, increasing the
difference in occupation of the xz ↑ and yz ↑ orbitals as well
as a nonvanishing contribution of the xy ↓ state.

VI. APPLICATION TO Sr2VO4

As explained in the introduction section, a physical real-
ization of the three-orbital Hubbard model on a square lattice
with a single electron is Sr2VO4 with quite unusual magnetic
properties, which are still to be understood. We performed
density function calculations of Sr2VO4 taking experimental
crystal structure [17]. Further details are as follows: Approx-
imation for the exchange-correlation potential was chosen
following Perdew, Burke, and Ernzerhof (PBE) [42], the
VASP code [43] was applied, and the projector augmented-
wave method [44] together with integration over tetrahedra
[45] with 405 k points was used; for projection onto a small
Hamiltonian with only t2g orbitals we applied the projected
localized orbitals technique [46]. Some restricted set of orbital
orders and collective excitations above them were considered
within HFA to describe Sr2VO4 in the three-orbital Hubbard
model at particular values of model parameters [47]. However,
the complete ground state phase diagram and some important
states were not considered there.

The hopping between the xz/yz orbitals was found to
be t = 250 meV (very close to the previous estimate [48]),
while the crystal-field splitting within t2g is �CF = 40 meV
(i.e., xy orbital lies higher than the xz/yz doublet), so that
�CF/t = 0.16. The spin-orbit coupling constant for V3+ is
about 30 meV (λ/t = 0.12) [23].

The constrained random-phase approximation (cRPA) has
been used in Ref. [22] to calculate interaction parameters.

For the t2g-only model used in the present work they turn
out be U = 2.7 eV and JH = 0.4 eV (U = 11t , JH = 1.6t)
[49]. In other papers, Hubbard’s U varies from 3 to 5.3 eV
(U = 12 − 21t) [22,50,51], depending on how exactly U is
calculated and what is included in screening channels. One
can see that with these characteristic parameters Sr2VO4 is
situated very close to boundaries of the AFO-eO, FM-eO,
FM-AFOxz/yz, and FM-AFOxy/1 phases; see Fig. 5(b). Thus
suppressed magnetic moment (or its absence) can be related
to formation of orbital entangled AFO-eO or FM-eO states,
depending on the specific parameters realized in the system.

Strictly speaking, the term “entangled” does not mean here
quantum entanglement, but only reflects quantum superposi-
tion at the one-electron level. Although spin-orbit coupling
generally describes the interaction of spin and orbital oper-
ators and mixing of corresponding degrees of freedom, its
impact depends strongly on the specific state: for the AFO-oe
phase it is the main one, and for other phases, it is secondary.
Besides, for the FM-eO phase there is the phase change of t2g

orbital amplitude going from one sublattice to another: two
sublattices differ by this sign only. Obviously, such a mixing
can be taken into account within HFA.

For the sake of completeness, we also performed optimiza-
tion of the crystal structure for uniform and not too high
pressure of 10 GPa (at very high P, the system is expected
to become metallic and the physical mechanism responsible
for magnetism and other physical properties will change). We
found that the crystal field increases to 64 meV; the hopping
turns out to be 295 meV and thus also grows to �CF = 0.22t .
On the one hand, this works for stabilization of AFO-eO
states shifting Sr2VO4 higher and to the left (JH/t effectively
decreases) in the phase diagram of Fig. 5(b). On the other
hand, while in the first approximation atomic-like parameters
JH and λ are not expected to change considerably, it is not a
priori clear how strongly pressure will affect screening of U .

VII. CONCLUSIONS

In this work we considered interplay between different
interactions, which define the ground state properties of the
three-orbital model on a square lattice with a single elec-
tron per site relevant, e.g., for layered perovskites with t1

2g
electronic configuration. The method used—the generalized
Hartree-Fock approximation—is suitable to describe the case
of strong electronic correlations at other integer filling as
well. However, more elaborated approaches such as dynam-
ical mean field theory [52] should be applied in the metallic
regime.

We also consider only the checkerboard order and demon-
strate that even this very particular case has a rich phase
diagram and the spin-orbit coupling changes it dramatically
leading to stabilization of several highly unusual states includ-
ing those where conventional spin moment vanishes and an
exotic order of octupolar magnetic moments appears.

There are five different phases according to present cal-
culations: three conventional states with antiferromagnetic
and ferro-orbital, AFM-xy, and ferromagnetic and antiferro-
orbital orderings, FM-AFOxz/yz and FM-AFOxy/1, stabilized
by the Kugel-Khomskii mechanism and two other orbital-
entangled states—AFO-eO and FM-eO. The ferromagnetic
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FM-eO phase is favored by the intra-atomic Hund’s exchange
and competition of different exchange interaction is ferromag-
netic. Another unconventional state, AFO-eO, is promoted by
the spin-orbit coupling. This phase was proposed by Jackeli
and Khaliullin [20], while the state suggested by Eremin et al.
[21] turns out to be higher in energy.

It is worth noting that a plethora of various states in the
model under consideration is due to two reasons: (1) com-
petition of different interactions (spin-orbit coupling, intersite
and intra-atomic exchanges) and (2) symmetry of the problem,
which makes hopping processes strongly orbital dependent
and anisotropic.

Our consideration can be readily generalized to treat dif-
ferent transition metal compounds with anomalous physical
properties related to the spin-orbit coupling and interplay be-
tween spin and orbital degrees of freedom, e.g., Ba2NaOsO6

[53–56], Ba2CeIrO6 [57], or Ba2CaOsO6 [58–61]. The results
obtained for Sr2VO4 demonstrate that this material lies close
to the region of the phase diagram, where four out of five
states can be realized. Therefore some external perturbation
can be used to change physical properties of Sr2VO4 shifting it
from one to another phase. While most of experimental results
have been obtained in previous decades, physical properties
of this material are still intriguing and remain unexplained.
Present high-precision neutron diffraction experiments with
error bar smaller than 0.6μB [17] might be useful to resolve
the issue with vanishing magnetic moment. In the meantime,
other modern experimental techniques [62–64] can be used to
study possible octupolar order in Sr2VO4.

Theoretically it would be very interesting to include in
consideration not only orbital degrees of freedom and the
spin-orbit coupling as was done in the present paper, but also
to take into account a long-range exchange interaction and
its possible anisotropy, since both have been demonstrated to
play an important role for Sr2VO4 [22].
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APPENDIX A: EFFECTIVE MODEL
IN A MULTIORBITAL CASE

In this Appendix we derive the effective kinetic Hamil-
tonian for arbitrary hopping matrix tmm′

i j generalizing the
classical derivation of Kugel and Khomskii [2]. We con-
sider the Hamiltonian (1) in the case of one electron
per site, treating H0 = HCF + Hso + HCoulomb as the main
Hamiltonian and hopping processes described by Htr as a

perturbation [65],

Heff = PH0P − PHtrH−1
0 (1 − P )HtrP, (A1)

where P is projection operator on the subspace with one elec-
tron at each lattice site. Obviously PHCoulombP = 0 and we
neglect the impact of HCF [see Eq. (3)] and Hso [see Eq. (4)]
on the eigenvalues and eigenfunctions of virtual (excited)
states:

PHtrH−1
0 (1 − P )HtrP ≈ PHtrH−1

Coulomb(1 − P )HtrP .

This approximation is justified by that |�CF|, |λ|  U − 3JH.
Our derivation generalizes the derivation of [66] to the case

of an arbitrary number of orbitals Nd (in the main text Nd = 3).
There have been also other approaches proposed to treat the
same problem within the method of irreducible operators [67].

There are two types of two-electron states at one site:
doubles, characterized by double occupancy of a particu-
lar orbital (there are Nd such states), and pair-orbital states
[2Nd(Nd − 1) = 4 × Nd(Nd − 1)/2; factor 4 originates from
the spin degeneracy]. These two sets of states form invariant
subspaces of HCoulomb.

One can introduce basis functions for the subspace of dou-
bles in the following way,

Ed = U + (Nd − 1)JH : A†
d = 1√

Nd

∑
m

c†
m↑c†

m↓, (A2)

Ed = U − JH : A†
dk =

∑
m

a(k)
m c†

m↑c†
m↓, (A3)

where Eα are the energies (eigenvalues of HCoulomb) of the
corresponding states, k = 1, . . . , Nd − 1, and the coefficients
a(k)

m satisfy the relations
∑

m a(k)
m = 0 and

∑
m a(k)∗

m a(k′ )
m = δkk′ .

We also use the notation a(Nd )
m = 1/

√
Nd, which corresponds

to the wave function A†
d , so that the matrix a(k)

m appears to be
unitary.

For the subspace of pair orbitals, we have

A†
a:mm′ = 1√

2

∑
σσ ′

σ o
σσ ′c†

mσ c†
m′σ ′, m < m′, (A4)

with o = 0, x, y, z, and there are once again two subspaces—
singlet (S) and triplet (T) ones with the energies

ES = U ′ + JH : o = y, (A5)

ET = U ′ − JH : o = 0, x, z. (A6)

As a whole, we have four eigenspaces, for which the pro-
jectors onto the corresponding excited states can be readily
obtained,

Pd = A†
dAd, (A7)

P̃d =
Nd−1∑
k=1

A†
dkAdk, (A8)

PS =
∑
m<m′

A†
y:mm′Ay:mm′ , (A9)

PT =
∑

o=0,x,z

∑
m<m′

A†
a:mm′Aa:mm′ . (A10)

In order to formulate the effective model in the second-
order perturbation theory, we have to take the sum over all
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subspaces of excited states (given by α = d, d, S, T),

Heff = HCF + Hso −
∑

α

E−1
α

×
∑

i jm1m′
1m2m′

2σσ ′
t

m1m′
2

i j t
m′

1m2

ji c†
im1σ

cim2σ ′c jm′
2σ
P jαc†

jm′
1σ

′,

(A11)

where P jα is projector Pα at site j. The last expression de-
scribes processes of the electron transfer from site i, orbital
m2, spin projection σ to site j, orbital m′

1, and the same spin.
Then, we project this excited state onto different subspaces
and move the electron back to the initial site. It is convenient
for further consideration, however, to rearrange c operators
in Eq. (A11) according to the site index. Here and below we
assume that Heff acts on the subspace with one electron at
each lattice site.

Before proceeding to calculating cmσPαc†
m′σ ′ , we present

explicit expressions for some of the projectors via c operators.
From Eq. (A7), one can obtain

Pd = 1

Nd

∑
mm′

c†
m↑c†

m↓cm′↓cm′↑, (A12)

while Eqs. (A2) and (A7) give

P̃d =
∑
mm′

Nd−1∑
k=1

a(k)
m a(k)∗

m′ c†
m↑c†

m↓cm′↓cm′↑

=
∑
mm′

(δmm′ − 1/Nd )c†
m↑c†

m↓cm′↓cm′↑ = Pd − Pd, (A13)

where

Pd =
∑

m

c†
m↑cm↑c†

m↓cm↓ (A14)

is the projector onto subspace of doubles (d). Correspond-
ingly for the triplet pair-orbital state [see definitions (A9) and
(A10)], we have

PT = B + PS (A15)

and

B =
∑

m<m′,σσ ′
c†

mσ cmσ ′c†
m′σ ′cm′σ , (A16)

where the Fierz identity,

3∑
o=0

σ o
σ1σ

′
1
σ o

σ2σ
′
2
= 2δσ1σ

′
2
δσ2σ

′
1
, (A17)

was used.
Next, we calculate cmσPαc†

m′σ ′ from Eq. (A11) separately
for each subspace (omitting the site index j). Equation (A15)
allows us to consider Pα = d, d, S, and B (instead of T).

(i) α = d. From Eq. (A12), we readily find

cmσPdc†
m′σ ′ = 1

Nd

∑
m1m′

1

[
cmσ , c†

m1↑c†
m1↓

][
cm′

1↓cm′
1↑, c†

m′σ ′
]
.

(A18)
Here and below, the terms, which are not bilinear form

in the Fermi operators, are omitted since they are eventually

projected out of the considered state. Thus, we obtain

cmσPdc†
m′σ ′ = (1/Nd )γσ γσ ′c†

mσ̄ cm′σ̄ ′ , (A19)

where γ↑ = +1, γ↓ = −1, and finally one gets the expression
entering Eq. (A11) for d subspace∑

σσ ′
c†

im1σ
cim2σ ′c jm′

2σ
P jdc†

jm′
1σ

′

= (1/Nd )
∑
σσ ′

c†
im1σ

cim2σ ′γσ γσ ′c†
jm′

2σ̄
c jm′

1σ̄
′

= (2/Nd )
(
S (0)

im1m2
S (0)

jm′
2m′

1
− S im1m2

S jm′
2m′

1

)
, (A20)

where S (o)
imm′ is defined by Eq. (5). Without the orbital index,

all its components coincide with the conventional spin (and
number of particles) operators. The conventional charge and
spin operators are obtained by taking trace of S (o)

imm′ over or-
bital indices.

(ii) α = d. Following the same strategy, one can find using
Eq. (A14)

cmσPdc†
m′σ ′ =

∑
m1

[
cmσ , c†

m1↑c†
m1↓

][
cm1↓cm1↑, c†

m′σ ′
]

= δmm′γσγσ ′c†
mσ̄ cmσ̄ ′ , (A21)

and finally, the expression entering Eq. (A11) in terms of
generalized spin operators transforms to∑
σσ ′

c†
im1σ

cim2σ ′c jm′
2σ
P̃ jdc†

jm′
1σ

′

= (
δm′

1m′
2
− 1/Nd

)∑
σσ ′

γσ γσ ′c†
im1σ

cim2σ ′c†
jm′

2σ̄
c jm′

1σ̄
′

= 2
(
δm′

1m′
2
− 1/Nd

)(
S (0)

im1m2
S (0)

jm′
2m′

1
− S im1m2

S jm′
2m′

1

)
. (A22)

(iii) α = B.

cmσBc†
m′σ ′ =

∑
m1<m′

1,σ1σ
′
1

[
cmσ , c†

m1σ1
c†

m′
1σ

′
1

][
cm′

1σ1
cm1σ

′
1
, c†

m′σ ′
]

=
∑

m1<m′
1,σ1σ

′
1

(
δmm1δσσ1 c†

m′
1σ

′
1
− δmm′

1
δσσ ′

1
c†

m1σ1

)

× (
δm′m1δσ ′σ ′

1
cm′

1σ1 − δm′m′
1
δσ ′σ1 cm1σ

′
1

)
. (A23)

Using symmetry of this expression with respect to the orbital
index exchange m1 ↔ m′

1 we obtain

cmσBc†
m′σ ′ = δmm′

∑
m1 �=m

c†
m1σ ′cm1σ

− δσσ ′ (1 − δmm′ )

×
∑
σ1

c†
m′σ1

cmσ1
. (A24)

Finally we obtain∑
σσ ′

c†
im1σ

cim2σ ′c jm′
2σ
B jc

†
jm′

1σ
′

= 2δm′
1m′

2

∑
m �=m′

1

(
S (0)

i;m1m2
S (0)

j;mm + S i;m1m2S j;mm
)

− 4
(
1 − δm′

1m′
2

)
S (0)

i;m1m2
S (0)

j;m′
1m′

2
. (A25)
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(iv) α = S.

cmσPSc†
m′σ ′ =

∑
m1<m′

1

[
cmσ , A†

y:m1m′
1

][
Ay:m1m′

1
, c†

m′σ ′
]
, (A26)

and since

[
Ay:m1m′

1
, c†

mσ

] = (i/
√

2)
[
cm′

1↓cm1↑ − cm′
1↑cm1↓, c†

mσ

]
= i(γσ /

√
2)

(
δmm1 cm′

1σ̄
+ δmm′

1
cm1σ̄

)
, (A27)

we find using m1 ↔ m′
1 symmetry that

cmσPSc†
m′σ ′ = 1

4
γσ γσ ′

∑
m1 �=m′

1

(
δmm1 c†

m′
1σ̄

+ δmm′
1
c†

m1σ̄

)
× (

δm′m1 cm′
1σ̄

′ + δm′m′
1
cm1σ̄ ′

)
. (A28)

Finally, the expression entering Eq. (A11) for the subspace
S is given by∑

σσ ′
c†

im1σ
cim2σ ′c jm′

2σ
P jSc†

jm′
1σ

′

= δm′
1m′

2

∑
m

(
1 − 2δm′

1m

)(
S (0)

im1m2
S (0)

jmm − S im1m2
S jmm

)
+S (0)

im1m2
S (0)

jm′
1m′

2
− S im1m2

S jm′
1m′

2
. (A29)

Using Eq. (A15), we get analogously for the T subspace∑
σσ ′

c†
im1σ

cim2σ ′c jm′
2σ
P jTc†

jm′
1σ

′

= δm′
1m′

2

∑
m

(
3S (0)

i;m1m2
S (0)

j;mm + S i;m1m2S j;mm
)

− 3S (0)
i;m1m2

S (0)
j;m′

1m′
2
− S i;m1m2S j;m′

1m′
2
. (A30)

Combining all the results together and summing over the
excited states, we arrive at a final expression for the effective
Hamiltonian in terms of the generalized spin operators,

Heff = HCF + Hso −
∑

i jm1m′
1m2m′

2

t
m1m′

2
i j t

m′
1m2

ji

{
− 2Jd

[U + (Nd − 1)Jd](U − Jd )

(
S (0)

im1m2
S (0)

jm′
2m′

1
− S im1m2

S jm′
2m′

1

)

+ 2δm′
1m′

2

(
1

U − Jd
− 1

U ′ + JH

)(
S (0)

im1m2
S (0)

jm′
2m′

1
− S im1m2

S jm′
2m′

1

)
+ δm′

1m′
2

((
1

U ′ + JH
+ 3

U ′ − JH

)
S (0)

im1m2

∑
m

S (0)
jmm

+
(

1

U ′ − JH
− 1

U ′ + JH

)
S im1m2

∑
m

S jmm

)
−

(
3

U ′ − JH
− 1

U ′ + JH

)
S (0)

im1m2
S (0)

jm′
1m′

2

−
(

1

U ′ − JH
+ 1

U ′ + JH

)
S im1m2

S jm′
1m′

2

}
. (A31)

For the hopping parameters, which are diagonal in the
orbital space tmm′

i j = δmm′tm
i j , using the Kanamori parametriza-

tion [25] U ′ = U − 2JH, Jd = JH and taking into account that∑
m S (0)

jmm = 1/2, one obtains

Heff =HCF + Hso

−
∑
i jm

tm
i j t

m
ji

[
1

2

(
1

U − JH
+ 3

U − 3JH

)
S (0)

imm

+
(

1

U − 3JH
− 1

U − JH

)
S immS j

]

+
∑

i jm1m2

tm1
i j tm2

ji

[
2Jd

[U + (Nd − 1)JH](U − JH)

× (
S (0)

im1m2
S (0)

jm1m2
− S im1m2

S jm1m2

)
+

(
3

U − 3JH
− 1

U − JH

)
S (0)

im1m2
S (0)

jm2m1

+
(

1

U − 3JH
+ 1

U − JH

)
S im1m2

S jm2m1

]
, (A32)

where Si is defined by Eq. (25).

Below we consider in detail an application of Eq. (A32)
for the calculation of the difference between energies of the
AFM-TM and AFO-eO states (see Fig. 8).

Using the mean-field approximation for the Hamiltonian
(A32) is equivalent to the assumption that � has a two-
sublattice form,

� =
∏
i1∈A

∏
i2∈B

a†
i1

b†
i2
|0〉, (A33)

where |0〉 is vacuum, and site one-electron state a corresponds
to sublattice A and b to sublattice B. Then Ekin = 〈�|Hkin|�〉.
Under this approximation we have to replace charge-spin op-
erators in Eq. (A36) by their averages. So we have to calculate
〈S (0)

imm′ 〉 and 〈S imm′ 〉 to calculate the energy of the state �.
Omitting site index i and writing generally for d = a, b

d† =
∑
mσ

ud
mσ c†

mσ , (A34)

with umσ being arbitrary normalized coefficients, we get

〈
S (o)

mm′
〉
d

= 1

2

∑
σσ ′

σ
(o)
σσ ′

(
ud

mσ

)∗
ud

m′σ ′ . (A35)
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FIG. 8. Total energy difference between AFM-TM and AFO-eO
states for U = 20t , �CF = 0, λ = 0 as obtained by the direct calcu-
lation using Hartree-Fock methods (black solid line) and effective
model for kinetic exchange within the mean-field approximation
developed in Appendix A (red dashed line); see Eq. (26).

Since the xy orbital is not occupied we simplify the ex-
pression (A32) for energy taking into account in the sum over
m1, m2 only diagonal terms (m1 = m2),

Ekin(�) =
∑

i j,m1 �=xy

∣∣tm1
i j

∣∣2

[
−

〈
s(0)

im1

〉
2

(
1

U − JH
+ 3

U − 3JH

)

−
(

1

U − 3JH
− 1

U − JH

)〈
sim1

〉〈S j〉

+ 2JH

(U + 2JH)(U − JH)

× (〈
s(0)

im1

〉〈
s(0)

jm1

〉 − 〈
sim1

〉〈
s jm1

〉)
+

(
3

U − 3JH
− 1

U − JH

)〈
s(0)

im1

〉〈
s(0)

jm1

〉

+
(

1

U − 3JH
+ 1

U − JH

)〈
sim1

〉〈
s jm1

〉]
, (A36)

where the spin s(o)
im ≡ S (o)

imm operator of an orbital m at a site i
is introduced.

Now we consider separately Ekin(�) for TAFM and oe-
AFM states.

(i) AFM-TM order. We assume that

a† = − 1√
2

(ic†
xz↑ + c†

yz↑), (A37)

b† = − 1√
2

(ic†
xz↓ − c†

yz↓), (A38)

so ua,b
mσ = −iδm,xz/

√
2 ∓ δm,xy/

√
2.

We get from Eq. (A35)

〈
s(o)

m

〉
A = 1

4
σ

(o)
↑↑ (1 − δm,xy), (A39)

〈
s(o)

m

〉
B = 1

4
σ

(o)
↓↓ (1 − δm,xy). (A40)

(ii) AFO-eO order.

a† = −1

2
(ic†

xz↑ + c†
yz↑ + ic†

xz↓ − c†
yz↓), (A41)

b† = −1

2
(ic†

xz↑ + c†
yz↑ − ic†

xz↓ + c†
yz↓), (A42)

so ua
mσ = − i δm,xz/2 − γσ δm,yz/2, ub

mσ = −iγσ δm,xz/2 −
δm,yz/2, γσ = +1(−1) for σ =↑ (↓). We get analogously〈

s(o)
m

〉
A,B = 1

4
δa,0(δm,xz + δm,yz ) ± 1

4
δa,x(δm,xz − δm,yz ).

(A43)
Note that for neighboring sites i and j, both orders

〈s(0)
im 〉〈s(0)

jm〉 = 1/16, 〈sim〉〈s jm〉 = −1/16. Therefore all terms
in Eq. (A36) coincide besides underlined term. In the case
AFM-TM order we get 〈Si〉 = (−1)iez/2 with unit vector di-
rected along z axis ez; therefore 〈sim1

〉〈S j〉 = −1/8. This term
has a different nature than another terms in Eq. (A36) since
here total spin exhibits ferromagnetic exchange interaction
with spin of neighbor orbitals (indexed by m1). In the case of
AFO-eO order 〈S j〉 = 0. We find that ferromagnetic exchange
interaction increases the energy of TAFM order making it
less favorable than AFO-eO order due to a delicate effect of
ferromagnetic exchange interaction.

APPENDIX B: INTERORBITAL COULOMB INTERACTION
HAMILTONIAN WITHIN HFA

In this Appendix we present a HFA treatment of the local
Coulomb Hamiltonian HCoulomb (8), Appendix B 1, and use
this for the derivation of the total HFA Hamiltonian, see
Eq. (15), Appendix B 2.

1. Coulomb interaction Hamiltonian treatment

We write the Coulomb interaction Hamiltonian omitting
for brevity site index

HCoulomb = U

2

∑
mσ

c†
mσ c†

mσ̄ cmσ̄ cmσ + Jd

2

∑
m �=m′;σ

c†
mσ c†

mσ̄ cm′σ̄ cm′σ

+ U ′

2

∑
m �=m′σσ ′

c†
mσ c†

m′σ ′cm′σ ′cmσ

+ JH

2

∑
m �=m′;σσ ′

c†
mσ c†

m′σ ′cmσ ′cm′σ . (B1)

This sum is rewritten as

HCoulomb =
∑

β=U,Jd,U ′,JH

Hint[W
(β )], (B2)

where

Hint[W ] = 1

2

∑
mm′m1m′

1σσ ′
Wσσ ′ (mm′; m1m′

1)c†
mσ c†

m′σ ′cm′
1σ

′cm1σ

(B3)
and

W (U )
σσ ′ = U · (1 − δσσ ′ )δmm′δmm1δmm′

1
, (B4)

W (U ′ )
σσ ′ = U ′(1 − δmm′ )δmm1δm′m′

1
, (B5)

W (JH )
σσ ′ = JH(1 − δmm′ )δmm′

1
δm′m1 , (B6)

W (Jd )
σσ ′ = Jd(1 − δσσ ′ ) · (

1 − δmm1

)
δmm′δm1m′

1
, (B7)
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where arguments of W (β )(mm′; m1m′
1) are omitted for brevity.

The HFA treatment of all terms is performed in an equal
way (Hint[W (β )] → HHFA

int [W (β )]) using the Wick theorem:

HHFA
int [W (β )] =

∑
mm′m1m′

1σσ ′
W (β )

σσ ′ (mm′; m1m′
1)

× (
c†

mσ cm1σ

〈
c†

m′σ ′cm′
1σ

′
〉

− c†
mσ cm′

1σ
′
〈
c†

m′σ ′cm1σ

〉) − E (β )
DC , (B8)

where E (β )
DC is introduced to avoid double counting and equals

half of the statistical average of the first two terms.
For the case β = U, Jd the spin projection dependence

reads W (β )
σσ ′ (mm′; m1m′

1) ∝ (1 − δσσ ′ ) and we rewrite σ sums
in Eq. (B8) through generalized density and spin operators,
see Eq. (5),

HHFA
int [W (β )] =

∑
mm′m1m′

1

W (β )
↑↓ (mm′; m1m′

1)

× (
2S (0)

mm1
nm′m′

1
− 2Sz

mm1
mz

m′m′
1

− S+
mm′

1
m−

m′m1
− S−

mm′
1
m+

m′m1

) − E (β )
DC . (B9)

Here for β = U we get from Eq. (B4)

HHFA
int [W (U )] = 2U

∑
m

(
S (0)

mmnmm − Sz
mmm

z
mm

) − E (U )
DC ,

(B10)
and for β = Jd we get from Eq. (B7)

HHFA
int [W (Jd )] = 2Jd

∑
m �=m1

(
S (0)

mm1
nmm1 − Sz

mm1
mz

mm1

) − E (Jd )
DC .

(B11)
For the case β = U ′, JH W (β ) is spin independent, so we
rewrite Eq. (B8)

HHFA
int [W (β )] = 2

∑
mm′m1m′

1

W (β )
↑↓ (mm′; m1m′

1)

× (
2S (0)

mm1
nm′m′

1
− S (0)

mm′
1
nm′m1 − Smm′

1
mm′m1

)
− E (β )

DC . (B12)

Here for β = U ′ we get from Eq. (B5)

HHFA
int [W (U ′ )] = 2U ′ ∑

m �=m′

(
2S (0)

mmnm′m′

−S (0)
mm′nm′m − Smm′mm′m

) − E (U ′ )
DC , (B13)

and for β = JH we get from Eq. (B6)

HHFA
int [W (JH )] = 2JH

∑
m �=m′

(
2S (0)

mm′nm′m − S (0)
mmnm′m′

−Smmmm′m′ ) − E (JH )
DC . (B14)

We write down the final mean-field version of the Coulomb
Hamiltonian as

HHFA
Coulomb = 2

∑
mm′

(
F (0)

mm′S (0)
mm′ − Fmm′Smm′

) − EDC, (B15)

where the contributions from four above-considered terms are
collected together,

F (0)
mm′ = δmm′ [(2U ′ − JH)K + δUnmm]

+ (2JH − U ′)nm′m + Jdnmm′ , (B16)

Fmm′ = δmm′ [JHM + δUmmm] + U ′mm′m + Jdmmm′ ,

(B17)

EDC =
∑
mm′

(
F (0)

mm′nmm′ − Fmm′mmm′
)
, (B18)

where δU = U − U ′ − JH − Jd, where

K =
∑

m

nmm, (B19)

M =
∑

m

mmm. (B20)

Within the Kanamori approximation δU = 0 and we employ
this in the main text.

2. Derivation of HFA Hamiltonian

Below we present details of the HFA approximation for
the Hamiltonian (1), using the results of Appendix B 1 of this
Appendix, restoring the site index i.

We apply the transformation to the Bloch wave functions
in Eq. (9),

cimσ = N−1/2
∑

k

exp(−ikRi )ckmσ , (B21)

and the Fourier transform of Ci
mσ ;m′σ ′ turns out to be

Cmσ ;m′σ ′ (q) = 1

N

∑
k

〈c†
kmσ ck+q,m′σ ′ 〉. (B22)

The result of application of HFA to the Hamiltonian (8) is

HMF
Coulomb =

∑
kk′

∑
σσ ′

∑
mm′

[
F (0)

mm′ (k − k′)δσσ ′

− Fmm′ (k − k′)σσσ ′
]
c†

kmσ ck′m′σ ′, (B23)

where mean fields F (0)
mm′ (k − k′) and Fmm′ (k − k′) are Fourier

transforms of mean fields given by Eqs. (16) and (17).
The treatment of the Hamiltonian (15) is presented below.

We introduce the magnetic Brillouin zone (|kx| + |ky| < π ),
so that for any k1 from the Brillouin zone we have a pre-
sentation k1 = k + αQ, where α = 0, 1. We rewrite Eq. (15)
through the summation over the magnetic Brillouin zone (de-
noted by a prime)

HMF =
′∑

kαα′;mm′

∑
σσ ′

HMF
mσα;m′σ ′α′ (k)c†

k+αQ,mσ ck+α′Q,m′σ ′,

(B24)
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where the k-dependent 3 × 2 × 2 matrix

HMF
mασ ;m′α′σ ′ (k) = {

[εmm′ (k + αQ) + �CFδm,xy]δmm′δσσ ′

+F (0)u
mm′ δσσ ′ − Fu

mm′σσσ ′ − (λ/2)lmm′σσσ ′
}

× δαα′ + [
F (0)s

mm′ δσσ ′ − F s
mm′σσσ ′

]
δαᾱ′

(B25)

is introduced. Here εmm′ (k) sets up the band spectrum, the
explicit expression for which is given in the end of Sec. II.

The Hamiltonian matrix (B25) is diagonalized by the trans-
formation (cf. [68])

ck+αQ,mσ =
∑

ν

amασ ;ν (k)dkν . (B26)

In terms of new Fermi operators dkν , d†
kν

the Hamiltonian has
the form

HMF =
′∑

kν

Eν (k)d†
kν

dkν . (B27)

Then the correlator (B22) can be expressed through the spec-
trum Eν (k) and coefficients amασ ;ν (k):

〈c†
k+αQ,mσ ck′+α′Q,m′σ ′〉=δkk′

∑
ν

a∗
mασ ;ν (k)am′α′σ ′;ν (k) f (Eν (k)).

(B28)

Applying Eq. (B18) we obtain

EDC/N =
∑

q=0,Q

{
(2U ′ − JH)K2(q) − JHM2(q)

+ δU
∑

m

[
n2

mm(q) − m2
mm(q)

]

+ Jd

∑
mm′

[
n2

mm′ (q) − m2
mm′ (q)

]

− (U ′ − 2JH)
∑
mm′

nmm′ (q)nm′m(q)

− U ′ ∑
mm′

mmm′ (q) · mm′m(q)

}
. (B29)
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