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Attractive Haldane bilayers for trapping non-Abelian anyons
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We study the interplay between intrinsic topological order and superconductivity in a two-component Haldane
bilayer, where the two layers are coupled by an attractive force. We obtain the phase diagram of the model with
exact diagonalization in finite size, and develop arguments to assess the stability of the observed phases in the
thermodynamic limit. Our main result is that a finite critical attraction strength is needed to pair fermions forming
a fractional topological order. This behavior can be harnessed to create clean interfaces between a fractional
topological insulator and a superconductor by gating, wherein non-Abelian parafermionic modes are trapped.
We discuss realization of such interfaces in the bulk of double bilayers of transition metal dichalcogenides by
inhomogenous electrostatic gating, which should mitigate the spurious effects of disorder and crystalline defects
present on physical edges.
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I. INTRODUCTION

A. Motivation and scope

The recent observation of fractional Chern insula-
tors in 3.7◦-twisted MoTe2 homobilayers [1–4] and in a
hBN/pentalayer graphene heterostructure [5] has renewed
theoretical interest in anyonic phases of matter at zero mag-
netic field. For carrier densities below one charge per moiré
unit cell, the phase diagram of these two materials [schemati-
cally depicted in Fig. 1(a)] is dominated by an extended chiral
flavor-polarized metallic phase, whose spontaneous polariza-
tion in a single spin-valley component highlights the enhanced
role of local interactions in the flat moiré band [6], while its
chirality comes from the nonzero spin-Chern number of the
partially occupied band [7,8] and is manifest, e.g., in finite
values of the transverse conductivity or circular dichroism
[1–5]. At certain commensurate fillings, and at temperature
below the interaction-induced flavor gap, additional charge
gaps open and fractional Chern insulators (FCIs) are stabilized
[9–11], as experimentally revealed by a fractionally quan-
tized Hall conductance [3–5]. For twisted transition metal
dichalcogenide (TMD) homobilayers, the interplay and hier-
archy between flavor and charge gaps can be grasped using an
extended Kane-Mele-like model capturing the energetics and
topology of the topmost valence bands [7,8], though the latter
cannot describe some continuum features such as anomalies
[12–14] and only indirectly accounts for microscopic details
that can change the landscape of the observed phase (e.g.
lattice relaxation, or FCI charge gaps) [15–21]. Tuning be-
tween metallic and FCI phases is, in practice, achieved by
electrostatic gating [Fig. 1(b)].

At the moment, all experimentally observed FCIs phases
are Abelian and correspond to the topological order of a

1/3-Laughlin fractional quantum Hall (FQH) state [22] or to
Jain’s principal sequence [23]. A natural question opening up
is the realization of non-Abelian anyons in these moiré plat-
forms [24]. Following proposals originally focused on FQH
bilayers [25,26], the polarized-metallic phase hosting FCIs
sketched in Fig. 1(a) can be envisioned as building blocks
to construct more complicated setups in which non-Abelian
anyons may be trapped and manipulated. More precisely, the
edge of quantum Hall bilayers in which each layer feels an
opposite magnetic field and stabilizes a Laughlin 1/3 topolog-
ical order is predicted to be gapped and host Z3 parafermions
when put in proximity with a superconductor [25–32] [analo-
gous to Fig. 1(c)]. Beyond the fundamental impact of realizing
such non-Abelian anyons, these parafermionic gapped bound-
aries were proved to be sufficient resources for universal
topological quantum computation [33], provided they may be
moved in space to perform braiding operations. Numerical
studies in finite size hinted that weak proximity-induced at-
tractive interactions in the bulk of the Hall bilayer do not spoil
the double Laughlin topological order [34,35]. Instead, the
attraction strength needed to exceed a finite threshold to drive
the system into a superfluid phase is larger than the Laughlin
charge gap but comparable to the bare Coulomb interaction
scale stabilizing the latter.

Our goal is to study a similar interplay between topo-
logical order and superconductivity in lattice systems and
describe pathways to realize non-Abelian boundaries using
two copies of moiré materials, described by Fig. 1(a). For
this, we will introduce a tight-binding toy model known to
capture the energetics and topology of the topmost band of
spin-valley polarized twisted TMD homobilayers [36]. While
inspired by specific moiré heterostuctures, it will be clear
from the methods used, the free parameters of our theory,
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FIG. 1. (a) Schematic phase diagram of moiré semiconductors
featuring a weakly dispersing topological band. Strong local interac-
tions yield a finite flavor gap in a wide range of moiré filling ν � 1
(light red), resulting in a flavor-polarized metal that is destabilized
in favor of FCIs at certain rational fillings. The series of fractions
observed and the exact values of the gaps are material dependent and
provided here as orders of magnitude only. For instance, ν = 1/3 is
not seen in 3.7◦-twisted MoTe2 (dotted line), whereas ν = 2/3 is.
(b) The application of gate potentials can tune between the com-
pressible and insulating phases. (c) We study a model describing
two superimposed copies of a material (a) coupled by a weak local
attractive interaction J , with a stacking favoring polarization of the
copies into opposite spin and chirality. When both copies are in
the polarized metallic phase, the weak attraction drives a Cooper
instability yielding superconductivity (BCS). In contrast, we will
show that the fractional topological insulator made of two FCIs
with opposite chirality (FCI × FCI) is perturbatively immune to such
attractive term: its topological properties remain intact for small J .
The interface between these phases hosts Z3 non-Abelian anyons.

and the interpretation of our results, that our objective is not
a quantitative microscopic description of specific materials.
Our goal is rather the description of the competing forces
at play using a representative model containing the essential
features of the problem. For this, we will include a weak,
local, and phenomenological attractive interaction between
two superimposed copies of the above model, together with
a direct repulsive interaction between them. We shall also
focus on a single commensurate fraction where FCIs appear
in this model, and choose a total filling of ν = 2/3 (i.e., 1/3
in each copy). While this fraction is not observed in the exper-
iments of Refs. [1–5] due to either a small or vanishing flavor
gap or a competing charge density wave [37–40], it remains
perfectly valid in our context where spin-valley polarization
is assumed in each copy and an approximate particle-hole
symmetry holds [41]. This filling has the advantage of being
less sensitive to band-mixing effects that are important at 2/3
filling in twisted MoTe2 [17], but would unnecessarily obscure
the physics described here.

B. Expectations and related works

Let us quickly brush out the different phases expected to
arise in our toy model. To describe the assumed layer-Chern
and layer-spin locking, we introduce a layer pseudoindex � =
±, which determines both the spin of the free charge carriers
and Chern number of the band they occupy: σ� = C� = �.

As discussed previously, for generic fillings of the two
layers ν�, the system in the absence of attraction simply con-
sists of two spin-polarized metals. When the two layers have
similar fillings ν� such that their Fermi surfaces are not too

dissimilar, the system undergoes a Cooper instability resulting
in an s-wave interlayer paired superconducting state in the
presence of an arbitrarily weak attractive potential J [42].
Due to the nonretarded nature of interactions, the gap of the
superconducting state is proportional to �0 ∝ √

EFW e−αW/J

with EF the Fermi energy, W the overall bandwidth, and α an
order one constant [43,44].

This Fermi-liquid instability at infinitesimal values of J
contrasts with the physics when the density of both layers
reach commensurate fractions and realize FCIs. Here, we
shall primarily consider the layer filling ν� = 1/3, for which
the stabilized FCIs fall in the same universality class as the
1/3-Laughlin state [22], and can be understood as band insu-
lators of composite fermions, which are made of one charge
carrier attached to two fluxes [23,45]. Due to their different
C�, particles in both layers bind to opposite fluxes, leading
to a fractional topological insulator (FTI) described by the
K-matrix K = diag(3,−3) [46–48]. Note that the FTI is pro-
tected by an effective time-reversal symmetry that exchanges
the two layers. In some TMD heterostacks, the FTI can be
furthermore protected by U(1) spin symmetry arising from
the strong Ising spin-orbit coupling [24]. The time-reversal
invariant FQH state described by the same K matrix has been
shown to be robust against an attraction of strength smaller
than its gap by exact diagonalization (ED) on small clusters
[34,35]. In the composite fermion language, these results can
be intuitively understood as follows: to bind fermions together
through the attraction J , one first needs to undress them from
their fluxes, which requires an attraction strength greater than
Jc > 0. This argument has been qualitatively corroborated by
a renormalization group (RG) analysis in the context of gap-
less composite Fermi liquid, where attractive interactions need
to overcome a critical value to drive a pairing transition [49].

C. Outline and main results

Our paper is directly connected to the quantum Hall litera-
ture summarized above, but contains insights on the interplay
between pairing and topological order applied to moiré mate-
rials. In more detail, after presenting our model in Sec. II, we:

(1) Show that the essential physics observed in quantum
Hall systems can also occur in lattice models, i.e., in the
absence of magnetic field, and that the expected phases de-
scribed above are all present in the phase diagram that we
obtain on a finite-cluster using exact diagonalization (Sec. III).

(2) Provide arguments identifying which of our finite-size
observations persist in the thermodynamic limit (Sec. IV). For
instance, the need for a finite attraction Jc to pair composite
fermions is proved irrespective of the microscopic model and
beyond finite size using a coupled-wire construction capturing
the universal behavior of the topological order. Our analysis
of thermodynamic properties also conveys that the residual
threefold degenerate phases observed in our numerics, and in
other similar calculations [47], are finite-size effects.

(3) Discuss direct application of our theory to moiré mate-
rial (Sec. V), and provide prescriptions for material realization
of our model (e.g., stacking of the two copies favoring polar-
ization with layer-chirality locking). We also propose a new
method to realize the long sought-after FTI-to-superconductor
interface in the bulk of the sample by spatially changing either
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the strength of attractive interaction or by mere inhomoge-
neous electrostatic gating of the sample [Fig. 1(c)]. In both
cases, the FTI-to-superconductor interface is realized in the
bulk of the heterostructure, thereby bypassing the need for
proximitized coupling and the strong disorder effects induced
by crystalline defects at the edge of the system.

II. MICROSCOPIC MODEL

We consider two superimposed copies of Haldane’s model
[50,51] distinguished by a layer pseudoindex � = ±1, which
we assume decoupled at the single-particle level,

H0 = −
∑
�=±1

3∑
n=1

∑
〈r,r′〉n

(tnei�φn c†
r,�cr′,� + hc),

φ1 = φ3 = 0, φ2 = 2π

3
≡ φ,

8t3 = 3t2 = −t1 ≡ t, (1a)

with 〈r, r′〉n running over nth nearest-neighbor pairs of the
honeycomb lattice with the convention that 〈r, r′〉2 turns right.
Our choice for the phase φ and for the tunneling amplitudes
t1,2,3 are motivated by a recent analysis of magic-angle twisted
TMDs [8,36]; it yields a bandwidth-to-gap ratio of about
1/7 and a Berry curvature standard deviation equal to 	 0.8
times its mean. Other parameters could have been chosen as
long as the resulting bands have similar features [9,52]. Each
Haldane layer describes spin-polarized electrons, which is a
valid description of systems represented by Fig. 1(a) at ener-
gies below the flavor gap induced by intralayer on-site interac-
tions (see Sec. I). We have also assumed that the Chern num-
ber of the lowest band was locked with the layer index C� = �;
the microscopic reasons for this are discussed in Sec. V.

To study the interplay between pairing and topological
order, we introduce a phenomenological local attractive inter-
action of strength J between the layers and account for intra-
and interlayer Coulomb repulsion through positive nearest-
neighbor interaction coefficients V‖ and V⊥, respectively,

H‖ = V‖
∑

�=±1,〈r,r′〉1

nr,� nr′,�, (1b)

H⊥ = V⊥
∑
〈r,r′〉1

nr,+1nr′,−1 − J
∑

r

nr,+1nr,−1, (1c)

with nr,� = c†
r,�cr,� and V‖,V⊥, J > 0. Putative material real-

ization of this model will likely feature (i) a weak effective
attraction coefficient, as any local pairing needs to first over-
come the bare on-site electronic Coulomb repulsion between
the layers, and (ii) interlayer nearest-neighbor interactions
weaker than intralayer ones due to the finite separation be-
tween the two layers. We shall henceforth focus on the regime
J,V⊥ � V‖. The total Hamiltonian

H = H0 + H‖ + H⊥ (1d)

independently conserves the number of particles in the top and
bottom layers. We can therefore diagonalize it after fixing the
carrier density ν� in both layers, which greatly simplifies the
numerical simulations and allows us to access larger system
sizes.

FIG. 2. Representative examples of momentum resolved ED
spectra, obtained for Ncell = 18 and V⊥ = 0.1V‖ for different values
of J . (K1, K2) denote the many-body momenta along the T1/2 direc-
tions. Here, energies are rescaled with respect to the gap �FCI of the
FCI phase from a single layer at ν = 1/3. We also show how the
cutoff ε allows us to differentiate the ninefold, threefold, and singly
degenerate phases.

III. PHASE DIAGRAM AT 2/3 FILLING

In this section, we demonstrate the stability of the bilayer
fractional topological insulator, stabilized for J = V⊥ = 0,
with respect to interlayer interactions. Of particular interest
for applications (see Sec. V), we show that the FTI retains
its topological order for finite attraction strength J < Jc, with
Jc estimated from our finite-size numerics (dashed line in
Fig. 3). As explained in Sec. I, we focus on the total filling ν =
ν+ + ν− = 2/3, where we obtain the phase diagram of the
model using band-projected exact diagonalization in the flat
band limit with up to Ncell = 18 unit cells. This phase diagram
hosts both an FTI and superconducting phases, respectively,
anticipated at small and large J , separated by intermediate
phases featuring three nearly degenerate ground states (see
Fig. 3). Checking which of these phases persist in the ther-
modynamic limit is the focus of Sec. IV.

A. Methods

To determine the phase diagram of the Hamiltonian
Eqs. (1) at filling ν = 2/3 in presence of interactions that
exceeds the small bandwidth of the lowest bands, we perform
band-projected ED in the flat-band limit using the free open-
source software DIAGHAM [53]. To mitigate finite-size effects,

FIG. 3. Ground-state degeneracy DGS of the ground-state man-
ifold of Eqs. (1) for different system sizes Ncell. The anticipated
fractional topological insulator (FTI) and superconductor (SC)
phases are separated by an intermediate threefold degenerate (ITD)
region. The dashed and dotted lines represent the numerically es-
timated boundaries between these phases for Ncell = 18 and should
only be used as guides to the eye.
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we use tilted finite-size clusters with aspect ratios as close to
the thermodynamic value

√
3/2, which corresponds to having

the same number of unit cell along the two primitive vectors
(a1, a2) of the triangular Bravais lattice. The total density ν

and our numerical resources limit the accessible system sizes
to a total of unit cells Ncell � 18, and we will only present data
obtained for Ncell � 12, as no FTIs were observed on smaller
clusters. This leaves three different system sizes, for which we
choose the tilting vectors Ti=1,2 = ni,1a1 + ni,2a2, as defined
in Ref. [54], and the number of unit cell in those directions
Ni=1,2 to be

Ncell N1 N2 n1,1 n1,2 n2,1 n2,2

12 6 2 2 −4 2 2
15 3 5 1 −5 3 0
18 9 2 3 −6 2 2

. (2)

Only the Ncell = 15 aspect ratio significantly differs from√
3/2, which leads to a larger spread of the FTI ground

state manifold in our numerics. The largest Hilbert spaces
considered correspond to a balanced bilayer with 12 particles,
i.e., six in each layer, populating 2Ncell = 36 different one-
body orbitals, and have dimension 	 1.9 × 107 in each of
the Ncell = 18 possible many-body center of mass momentum
sectors.

B. Phase diagram

To investigate the phase diagram, we first determine the
layer polarization Pz = ν+−ν−

ν++ν−
of the ground state by diago-

nalization of Eqs. (1) in all the (ν+, ν−) sectors compatible
with ν = ν+ + ν− = 2/3. Because the model is invariant un-
der an effective time-reversal symmetry T̃ consisting of layer
inversion followed by complex conjugation, we restricted our
attention to the ν+ � ν− sectors, and found the balanced bi-
layer Pz = 0 to be energetically favored for all the parameters
and system sizes considered in our study (see Appendix. A).
We thus set ν+ = ν− from now on.

To quickly identify the phases appearing in our model,
we estimate the ground-state degeneracy DGS of the balanced
bilayer. For this, we choose a coarse energy cutoff ε and count
the number of many-body states whose energy difference with
the ground state is smaller than ε, as represented graphically
in Fig. 2. To determine a consistent cutoff for all system sizes,
we diagonalize the model in the layer-polarized regime ν+ =
1/3 and ν− = 0, where the system behaves as an extended
Haldane model which is known to host an FCI ground state
(see Appendix C), we extract its gap many-body gap �FCI

(independent of V⊥, J , and proportional to V‖ in the flat-
band limit that we are considering here) and arbitrarily set
ε = �FCI/2. With this choice, we obtain the ground-state
degeneracy DGS depicted in Fig. 3, where three regions can
be clearly identified: a ninefold degenerate phase adiabati-
cally connected to the decoupled layer limit J = V⊥ = 0; a
singly degenerate ground state obtained for large attractive
interactions, which emerges for J � 0.25V‖ in our numerical
simulations; and an intermediate threefold degenerate (ITD)
region separating the two previous phases. While these three
phases appear for any choice of ε, their exact boundaries
depend on the cutoff ε. We show in Appendix B that the phase
boundaries obtained in Fig. 3 provide good estimates of those

determined by direct inspection of the numerical spread to gap
ratios, which guided our choice for ε.

The nature of the first two phases is clear from the specific
limit they are connected to: the ninefold degenerate phase is
a FTI connected to the tensor product of two layer-polarized
FCIs related by the effective time-reversal symmetry T̃ ;
the singly degenerate state appears in the limit J > 0 and
V⊥,V‖ = 0 where the system becomes unstable to inter-layer
pairing and becomes a superconductor (SC). This is confirmed
by the spectral flows of the ground-state manifold under a
2π -flux insertion in the direction of T1, which are shown
in Fig. 4. There, we see that the two phases, respectively,
have a periodicity of 3 × 2π = 6π (FTI) and 2π/2 = π (SC),
highlighting the charge e/3 and 2e carried by elementary
excitations in each of these phases [55,56].

The ITD is investigated further in Sec. IV B, where we
argue that it is an artifact of the momentum discretization of
our finite-size clusters [Eq. (2)]. In Appendix F, we provide
additional data for values of V⊥ > V‖ beyond the physical
regime identified in Sec. II, where the system shows signs of
phase separation. Note that a similar tendency to phase sepa-
ration was observed in Ref. [34] for a continuum model based
on Landau levels with opposite magnetic fields to realize the
time-reversal symmetry.

IV. THERMODYNAMIC PROPERTIES

This section is devoted to checking which of the phases
observed on finite-size clusters persist in the thermodynamic
limit. Sec. IV A shows that the FTI ground state manifold
keeps its topological order in the thermodynamic limit for
non-zero attractive interactions in spite of the increasing
spread observed in our finite-size numerical calculations when
J or V⊥ increase. Sec. IV B argues that the intermediate phase
with three nearly degenerate ground states observed in our
finite-size numerics is an artifact of the momentum-space
discretization involved in our numerics and disappears in the
thermodynamic limit.

A. Stability of the topological order

Our numerical simulations on finite clusters corroborate
earlier studies [34,35] suggesting that the FTI order at ν =
1/3 + 1/3 is stable against perturbative attractive interactions,
which confirms our intuitive picture that a finite coupling
strength Jc is needed to undress the composite fermions from
their fluxes and pair the original fermionic degrees of freedom.
To demonstrate the universal character of this observation
and prove that it also holds in the thermodynamic limit,
we now use a coupled-wire construction for the fractional
topological order and show that it is robust to attractive
interactions.

At J = V⊥ = 0, the FTI is the product of two time-reversal
copies of the Laughlin 1/3 state. This state is the prototypical
example of intrinsic topological order captured by a coupled
wire construction [57–59]. As a result, we can describe the
universal features of the FTI using two decoupled copies of
the Laughlin’s 1/3 wire construction, feeling opposite fluxes
(one for each layer) [60–62], as described by the low-energy
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FIG. 4. Flow of the low-energy state of upon ϕ = 0 → 2π flux insertion in the direction of the tilted lattice vector T1 for Ncell = 15,
V⊥ = 0 in FTI phase J = 0.1V‖ (a) and the SC phase J = 0.5V‖ (b). The colors in (a) are guides to the eye highlighting the 6π -periodicity of
the ninefold degenerate ground-state manifold under flux insertion—they carry no physical meaning.

action [63]

S =
∑
�=±

j∈links

∫
dxdτ

[
i�

3π
(∂τϕ j,�)(∂xθ j,�) − H( j,�)

]
, (3)

[∂xθ j,�(x), ϕ j′,�′ (x′)] = 3iπ�δ j, j′δ�,�′δ(x − x′), (4)

where ∂xθ j,� and ϕ j,� are low-energy density and phase
variables, respectively, for layer � that are located on the
link between wire j and j + 1. In the present context, the
Hamiltonian is split in three parts H = HLL + HSG + HJ ,
representing

(1) the low-energy Luttinger liquid on each wire H( j,�)
LL =

K−1
0 (∂xθ j,�)2 + K0(∂xϕ j,�)2 where K0 > 0;

(2) the sine-Gordon mass term HSG = gcos(2θ j,�) com-
ing from allowed interwire tunneling; and

(3) the local density-density attractive interactions of our
model that primarily couple to the low-energy degrees of free-
dom as an on-wire perturbation HJ = −2Jeff (∂xθ j,+)(∂xθ j,−).

In the absence of this last term, namely, Jeff = 0, the
flow of g toward strong coupling together with the com-
mutation relations between the density and phase variables
in Eq. (3) reproduce the desired topological order and cap-
tures its topological quasiparticle excitations [57,58,60–62].
In fact, when Jeff > 0 is small enough, the bosonic the-
ory for density operators obtained after integrating out the
phase variable ϕ remains unchanged when expressed in
terms of charge θc = (θ+ + θ−)/

√
2 and pseudospin θs =

(θ+ − θ−)/
√

2 variables, except for renormalized Luttinger
parameters (Kc/K0)−1 = 3

√
1 − K0Jeff and (Ks/K0)−1 =

3
√

1 + K0Jeff (see Appendix D). Therefore, as long as Jeff <

Jeff
c = K−1

0 , the low energy content of the coupled-wire con-
struction is unchanged and the system remains in the same
topological phase.

While Jeff may differ from the physical attraction strength
J due to the low-energy projection and the phenomenological
nature of the coupled-wire construction, our analysis proves
that the universal topological content of the FTI is robust
against perturbative attractive interaction. Together with the
evidence of a robust many-body gap provided by our finite-
size numerical calculations, this demonstrates the stability
of the FTI against small attractive interactions. Note that
a similar argument holds true for the repulsive interlayer

density-density interactions (change −Jeff to a positive coef-
ficient V eff

⊥ above).

B. Finite-size intermediate threefold degeneracy

We now analyze in more detail the threefold degenerate
intermediate phase appearing in our finite size calculations,
the ITD phase in Fig. 3. We need to say that a similar threefold
degenerate phase was also observed in a repulsive model
[11,64]. If topologically ordered, the ground-state degeneracy
of this phase would only be consistent with a non-Abelian
fractional topological order [47]. Here, we show evidence that
this intermediate region only exists for certain system sizes
and momentum discretizations. This observation hinders the
interpretation of this region as a robust phase with topological
order, but is consistent and easily explained by finite-size level
repulsion on the small momentum-space discretized grids in-
volved in the numerical simulations.

To better understand the finite-size structure of the lattice
considered, we display the full many-body spectrum along
the V⊥ = 0 and J = 0 lines in Fig. 5. When the inter-layer
interaction coefficients V⊥ and J are small, we observe that
the ninefold degenerate FTI ground-state manifold splits into
two degenerate groups. The group with lowest energy contains
three states, the one with higher energy has six, and keeps
increasing in energy until it merges with the many-body con-
tinuum. For larger values of the interlayer couplings, the low
energy group splits again to yield a nondegenerate ground
state and two excited states. The resulting singly degener-
ate state corresponds to the superconductor labeled SC in
Fig. 3. The threefold degenerate intermediate phase is there-
fore rooted into the splitting of the FTI manifold as 9 = 3 + 6
that occurs for small interlayer interaction.

We attribute this behavior to finite-size effects and argue
that the intermediate phase does not appear in the thermody-
namic limit. More precisely, for all finite clusters considered,
the FTI ground states appears in triplets in three distinct
many-body momentum sectors (see Fig. 10 in Appendix C). In
finite size, nearly degenerate states within the same momen-
tum sector experience level repulsion and split more rapidly
than degenerate states originally lying in different momen-
tum sectors. In each of the FTI triplets, the first effect of
interlayer interactions is therefore to lower the energy of a
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FIG. 5. Many-body spectra, with energy measured relative to the ground state, as a function of J at V⊥ = 0 (a) and of V⊥ at J = 0 (b),
obtained for Ncell = 18.

single state through level repulsion, leading to a threefold
degenerate phase whose states occupy different momentum
sectors—which we checked is the case in the ITD.

Following the same reasoning, we expect that any lattice
where all FTI states lie in the same many-body momentum
sector, which includes the system in the thermodynamic limit
[65], will not feature any ITD region but directly transition
from the FTI to the SC. Indeed, the interlayer interaction
would single out only one state from the ground-state man-
ifold (see also additional details in Appendix E). To check
this hypothesis, we performed exact diagonalization of the
model of Ref. [36] using a different set of parameter than
Eqs. (1) for which an FTI with all nine degenerate ground
states appear in the same momentum sector is stabilized on
a 6 × 3 cluster for J = V⊥ = 0—see details in Appendix E.
Increasing J as in Fig. 5(a), we observe no intermediate re-
gions with an approximate threefold degeneracy. The small
region between the FTI and SC phases shows a splitting of
the nine original FTI ground states as 1+8, with the lowest
energy states adiabatically connected to the SC and the other
eight merging into the many-body continuum as J increases.
This additional piece of evidence supports our interpretation
of the ITD region as a finite-size artifact.

V. PHYSICAL REALIZATION WITH STACKED
TWISTED BILAYERS

In this section, we identify two-dimensional heterostruc-
tures that may realize the model Eqs. (1). We then envision
practical ways to create FTI-to-superconductor interfaces
within the bulk of these heterostructures, paving the way for
the clean trapping and manipulation of non-Abelian anyons
(as discussed in Sec. I). In this context, the emergence of
parafermions at the interface has been theoretically demon-
strated several times by studying the low-energy properties of
the FTI edge modes coupled to the superconductor [25–31].
Our goal here is not to repeat those calculations but rather
to identify physical platform where this physics could be
realized.

A. TMD double bilayers

Recalling that twisted transition metal dichalcogenide ho-
mobilayers (tTMDs) spontaneously polarize and realize [6]

a single copy of an extended Haldane model at temperatures
T < �spin for moiré filling below unity [8], we consider two
such tTMDs stacked on top of one another to realize the two
Haldane layers of Eq. (1a). There are only two choices of
twist angles and stacking for which the moiré honeycomb
lattice of the top and bottom tTMDs match, corresponding to
the sequence of twist angles (θ, 0,−θ ) and (θ, π, θ ) between
consecutive layers. These two different stacking configura-
tions, sketched in Fig. 6, differ in the chirality and spin carried
by the moiré bands from the two stacked tTMDs in each
valley.

In the following paragraphs, we examine two mechanisms
for achieving spin polarization with opposite chiralities in the
two tTMDs, and inducing a weak pairing potential between
them. The first and most straightforward one consist in plac-
ing an s-wave superconductor in proximity with the double
bilayer, thereby inducing antiferromagnetic and attractive in-
teractions into the latter. The second mechanism is intrinsic to
the double bilayer, i.e., it does not rely on externally imposed
potentials or proximitization effects. Indeed, we will see that
the perturbative effect of the weak inter-tTMD tunneling is
precisely to energetically favor states of opposite chirality and
to induce a weak inter-tTMD attraction. Both mechanisms
only apply to the (θ, 0,−θ ) configuration, making it a more

FIG. 6. Chern number and spin polarization of the topmost va-
lence band of the two stacked tTMDs (in absence of inter-tTMD
coupling) in valleys K and K ′ for the two sequences of twist angles
(θ, 0, −θ ) and (θ, π, θ ) for which the stacked tTMDs have overlap-
ping moiré honeycomb lattice.
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promising platform to materialize the physics displayed in this
paper.

In realistic settings, the second situation is less likely to oc-
cur as the effective attraction induced by the weak inter-tTMD
tunneling should overcome the bare Coulomb repulsion. The
precise balance in this competition including all forces in-
volved in mediating attractive interactions (e.g., phonons)
goes beyond the scope of the present paper. Here, we do
not provide a detailed microscopic description of the double
bilayer and assume that the band structure of the individual
tTMDs is unaffected by the stacking. Even if the second
and third layers are commensurately stacked (without twist),
lattice relaxations can still renormalize the parameters of our
theory and play an important role [66]. We leave a proper ab
initio study to future work. Nonetheless, at the phenomeno-
logical level, the intrinsic pairing potential existing due to the
weak inter-tTMD tunneling opens a promising route towards
the spontaneous emergence of superconductivity in TMD
heterostructures (see also Refs. [67–69]), and the trapping
of non-Abelian anyons by mere application of electrostatic
potentials.

B. Proximity induced superconductivity

1. Superconducting potential

We first investigate the effect of an s-wave superconducting
pairing potential induced on the heterostructure by proximity
effect. An externally imposed s-wave superconducting pairing
potential will couple to pairs of electrons having (i) opposite
spin, (ii) zero center of mass and hence carrying opposite val-
ley index, and (iii) no orbital angular momentum and therefore
filling bands with opposite Chern numbers. Given these rules,
we observe that the superconducting potential does not couple
the two stacked tTMDs in the (θ, π, θ ) stacking configuration
(see Fig. 6), and we therefore discard this situation from
now on. In (θ, 0,−θ ) double bilayers, the intralayer ferro-
magnetism and superconducting coupling are compatible and
combine to yield states where opposite layers are filled with
electrons with opposite spin, opposite valley, and opposite
chirality (see Fig. 6). This situation is described by the bilayer
Haldane model Eq. (1a), where the residual pairing induced
by the superconducting potential can be phenomenologically
captured by the attractive interaction of Eq. (1c).

2. Gate-defined superconductor-to-FTI interface

Stacked tTMDs with (θ, 0,−θ ) stacking in proximity
to a s-wave superconductor provides a first realization of
our model Eqs. (1). We now discuss how to engineer a
superconductor-to-FTI interface within the bulk of this double
bilayer using this proximity effect. For this, we realize that
the coherence length of conventional superconductors can be
of an order or larger than the typical size of two-dimensional
stacked heterostructures. As an example, supercurrents in-
duced by a ∼250 nm-distant superconducting electrode have
been measured in graphene [70]; a distance that should be
compared with typical moiré lattice constants in the range
∼5 nm.

As sketched in Fig. 7(a), a superconducting electrode lo-
calized on one side of the heterostructure will therefore induce

FIG. 7. Realization of a superconductor-to-FTI interface in the
bulk of the (θ, 0, −θ ) tTMD bilayer using (a) proximity induced
superconductivity and (b) electrostatic gating to tune the density in
presence of an intrinsic pairing in the double bilayer.

a spatially varying pairing potential in the heterostructure. In
Eqs. (1), this would correspond to a nonuniform J (r) coeffi-
cient decreasing with the r distance to the electrode. Setting
the total filling of the heterostructure to ν = 2/3 through elec-
trostatic gating, the system will stabilize a FTI far away from
the electrode where J (r → ∞) 	 0 [labeled FTI in Fig. 3]
and a superconductor in the region where J (r → 0) exceeds
Jc close to the electrode (labeled SC in Fig. 3).

C. Spontaneous emergence due to perturbative
interlayer tunneling

We now argue that the (θ, 0,−θ ) double bilayers may
not necessarily need the application of an external supercon-
ducting potential for the realization of Haldane copies with
opposite chirality nor for the emergence of attractive interac-
tions. Indeed, both of these effects can spontaneously emerge
when we account for the action of the weak inter-tTMD
tunneling. Although perturbatively weak, these effects are
sufficient to drive, for instance, superconducting instabilities
in Fermi liquid states. As stated above, this weak attraction
competes with the bare Coulomb repulsion between the two
stacked bilayers. Our aim here is only to uncover this potential
pairing mechanism, the precise balance between all attractive
and repulsive contributions to the inter-tTMD interaction ker-
nel going beyond the scope of this paper.

Let us first highlight that the tunneling amplitude be-
tween aligned TMD monolayers typically ranges between
5 − 10 meV [71], which is smaller than the interlayer tunnel-
ing of tTMDs. The latter can be estimated by fitting continuum
models to large-scale ab initio calculations of the twisted
bilayer, which has led to a maximum tunneling amplitude of
3 × 23.8 meV = 71.4 meV in the moiré unit cell for twisted
MoTe2 [16]. This stronger hybridization is usually explained
by the important lattice relaxation occurring in the twisted
heterostructures [8,16,17]. For the present discussion, this dif-
ference between tunneling parameters justifies including the
tunneling t⊥ between the two stacked tTMD perturbatively.

1. Pauli-blocking-induced antiferromagnetism

In absence of any inter-tTMD couplings and at filling
ν+, ν− < 1, the two stacked bilayers spontaneously develop
a spin-valley gap �spin and valley-polarize [Fig. 1(a)]. In a
simplified picture, the spin gap can be seen as an energy shift
applied to all single-particle states of the unpopulated valleys.
The inclusion of t⊥ differentiates the cases where polarization
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of the two stacked tTMDs occurs in the same or in opposite
valleys. Indeed, since t⊥ is local, it carries no momentum
and only provides intravalley hoppings. If both tTMDs are
polarized in the same valley, this hopping is Pauli blocked
and has almost no effect on the total energy of the system.
On the other hand, when the two tTMDs are polarized in
opposite valleys, the virtual hopping to states with energy
�spin yields an energy gain δE 	 −(ν+ + ν−)t2

⊥/�spin. This
favors opposite valley polarization in the two stacked tTMDs,
leading to the realization of two Haldane copies with opposite
chirality when the tTMDs are (θ, 0,−θ ) stacked (see Fig. 6).

The previous argument becomes analytically exact in the
chiral limit of tTMD [72,73] at filling ν+ = ν− = 1, the ar-
gument proceeding in a manner exactly analogous to the
description of ferromagnetic states appearing at integer filling
in the chiral limit of twisted bilayer graphene [74]. The phe-
nomenological description given above can also be seen as an
adiabatic evolution away from this exactly solvable point.

2. Short-range attractive potential

In addition to this valley-antiferromagnetic coupling be-
tween the two tTMDs, second-order processes in t⊥ also
induce an effective interaction between the two stacked bilay-
ers. To estimate this contribution, we perform a diagrammatic
expansion within the random phase approximation and eval-
uate all diagrams to lowest order in t⊥ (second order) using
the decoupled tTMD case as zeroth order in the expansion,
which simply corresponds to the intra-tTMD interaction ker-
nel v‖(q). The relevant terms can be represented by the
following diagrams:

(5)

where red and green lines, respectively, correspond to the
bottom and top tTMDs, wiggly lines represent intra-tTMD
interaction, and thick dots stand for inter-tTMD tunneling t⊥
events. If we write the intra-tTMD susceptibility as χ‖(q) [red
and green bubble in Eq. (5), equal due to T̃ symmetry] and
the inter-tTMD one as χ⊥(q) [dotted bubble in Eq. (5)], with
q denoting the exchanged momentum; the above series can
be summed analytically and yields the inter-tTMD interaction
kernel,

v⊥(q) = χ⊥(q)v2
‖ (q)

[1 − χ‖(q)v‖(q)]2
, (6)

whose dependence on and perturbative order in t⊥ is hidden
in χ⊥(q). To identify the nature of this perturbatively induced
inter-tTMD interaction, we set q = 0 and use the leading order
approximation [68],

χ⊥(q) 	 − t2
⊥

�3
spin

, (7)

which sets the sign of v⊥(q → 0) < 0 [all other factors are
perfect squares in Eq. (6)]. This shows that the perturbative

account of t⊥ gives rise to weak attractive interactions between
the two stacked tTMDs, accounted for by the phenomenolog-
ical J in Eq. (1c).

3. Gate-defined superconductor-to-FTI interface

The advantage of this intrinsic and weak pairing potential
is that it dramatically simplifies the experimental requirement
for the realization of a clean superconductor-to-FTI interface
in the bulk of the heterostructure. Indeed, the FTI stabilized
at ν = 1/3 + 1/3 is stable against such weak attractive in-
teractions (as shown in Sec. III). On the other hand, the
Fermi liquids appearing in the tTMD at filling away from 1/3
[Fig. 1(a)[ are unstable against arbitrarily weak attractive in-
teractions. Thus, changing the total density of the bilayer from
ν = 2/3 to ν = 2/3 + x with x > 0 by application of different
gate potentials in two adjacent regions of the heterostructure
will create the desired interface, as sketched in Fig. 7(b).

VI. CONCLUSION

In this paper, we studied the interplay between time-
reversal symmetric fractional topological order obtained by
flux attachment and superconductivity in a lattice model
representative of certain moiré heterostructures. Our finite-
size numerical calculations show that, when two composite
fermion can be coupled by a pairing potential — i.e., when
they carry opposite spin and opposite flux or chirality—they
remain robust against a finite strength of attraction. This
matches earlier numerical observations made in the contin-
uum and in the presence of large and opposite magnetic fields
in two proximitized quantum Hall layers [34,35].

Contrary to other studies, however, we have kept some
direct repulsion between layers V⊥ and show that the results
remain true in the thermodynamic limit using a coupled wire
construction capturing the universal low-energy features of
the topological phase. In a different physical language, this
robustness could be interpreted as the energy needed to unbind
the fluxes from the composite fermions and pair the original
fermions of the theory. A similar result was obtained for gap-
less states of composite fermions using field theory methods.

Our analysis of thermodynamic properties also conveys
that residual threefold degenerate phase observed in our nu-
merics, and in other similar calculations, are finite-size effects.
They come from the finite size of the cluster considered,
which sends the degenerate topological ground state at dif-
ferent many-body momenta, and finite-size level repulsion
within each of these momentum sectors.

Finally, we discussed possible realization of this physics
in double TMD bilayers. We identified the stacking between
the bilayer necessary for the emergence of pairing between
the two stacked copies of the bilayer, and highlighted a pos-
sible route toward spontaneously generated pairing from the
interbilayer tunneling. Tuning either the attraction strength or
density across the bulk of these heterostructures allows us to
create interfaces between the fractional topological order and
a superconducting phase. We hope to study such interfaces
using the methods developed in Refs. [75–81] in the future.

As explained in the Introduction, non-Abelian
parafermions are predicted to be trapped at these interfaces.
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FIG. 8. Layer polarization Lz of the ground state of Eqs. (1) for
different system sizes Ncell. The balanced bilayer is always energeti-
cally favored for the range of the parameters considered.

It is important to note that the transition does not necessarily
occur= at the edge of the system where many stacking faults
and strong disorder exist, but can rather be defined electro-
statically in the bulk of the heterostructure where we expected
smoother behaviors. We also note that, in the quantum
Hall context, non-Abelian phases were predicted to appear
for sufficiently screened on-site interactions [34,82–85]
and may be realized in similar heterostructures as the double
bilayers considered here.

As an outlook, let us highlight that our model and the
realization of a clean superconductor-to-FTI interface through
proximitization with a superconductor [Fig. 7(a)] may find its
realization in simpler systems than the double twisted TMD
homobilayers studied in Sec. V. For instance, the two Haldane
layers of Eqs. (1) could correspond to the two valleys of a sin-
gle TMD homobilayers, which would exhibit a phase diagram
similar to the one presented in Sec. III for a commensurate
total density ν where both valleys are equally populated. This
could describe the phenomenology of twisted MoTe2 bilayers
at moiré filling fraction 4/3, although evidence for FTI be-
haviors at this density have for the moment been lacking. At
different filling of the moiré bands, the interplay of supercon-
ductivity and repulsive interactions could also drive a single
tTMDh into a non-Abelian spin-unpolarized phase where the
multicomponent nature of the system could lead to potentially
richer physics [86,87].
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APPENDIX A: LAYER POLARIZATION

In Fig. 8, we show the layer polarization Pz of the ground
state obtained by exact diagonalization of Eqs. (1) in all the
(ν+, ν−) sectors with ν+ � ν−; the energies in the (x, y) and
(y, x) sectors are equal due to the T̃ symmetry of the model.
The balanced bilayer is always energetically favored for the
range of the parameters and system sizes considered.

APPENDIX B: SPREAD-TO-GAP RATIOS

In Fig. 9, we plot the bare numerical data for the spread
(En − E0) and spread-to-gap ratio (En − E0)/(E9 − E0) for
n = 1, · · · , 8 computed on the Ncell = 18 cluster. Here, En

denotes the nth lowest eigenvalue of the Hamiltonian. In that
figure, an N-fold degenerate ground-state manifold will ap-
pear in light and dark red for n < N and n � N , respectively.
We find very good agreement with the approximate phase
boundaries estimated in Fig. 3 of the main text, which are
overlayed with the data in Fig. 9.

APPENDIX C: LAYER POLARIZED FCI

We here perform a careful finite-size scaling of the gap of
the FCI obtained in the layer-polarized limit ν+ = 1/3 and
ν− = 0 [52], from which the FTI discussed in the main text
derives. This state was identified numerically using a tight-
binding model similar to Eq. (1) in Ref. [6], and we only
highlight its existence for our specific choice of parameters
by displaying the many-body spectra and flux-threading be-
haviors for the three system sizes studied in the main text
[Eq. (2)]. As depicted in Fig. 10, the many-body momenta
of the three degenerate ground states satisfy the FCI counting
rule [65], and they undergo a cyclic permutation under 2π -
flux insertion [89], which together present strong evidence for
the FCI nature of the ground-state manifold.

The layer polarization allows us to access larger system
sizes (up to 36 unit cells), for which we also use tilted cluster
to keep aspect ratios close to

√
3/2 using the tilts

Ns N (1) N (2) n(1)
1 n(2)

1 n(1)
2 n(2)

2 α Aspect
21 7 3 1 −6 4 −3 1 0.866
24 24 1 4 −4 1 5 1 − 5 0.990
27 27 1 4 1 1 7 4 0.898
30 5 6 5 0 1 6 1 0.838
33 33 1 1 −8 5 −7 4 0.922
36 6 6 6 0 0 6 0 0.866

,

(C1)

where we used the notations of Eq. (2). For all accessible
system sizes, we compute the FCI gap �FCI and spread δFCI,
shown in Fig. 11. We extrapolate them to 1/Ncell → 0 using
a linear fit on the Ncell � 15 points, leading to the following
estimate of their thermodynamic values:

�
(Ncell→∞)
FCI 	 8 × 10−3V‖, (C2)

and δ
(Ncell→∞)
FCI 	 0 within error bars of the fit. While small

in units of V‖, the gap of the FCI remains finite and much
larger than its spread, ensuring that the phases observed in
our finite clusters still exist in the thermodynamic limit. Note
that the FCI gap �FCI used as units of energy in the main
text corresponds to the one obtained in finite size, and not the
extrapolated one.

APPENDIX D: CHOICE OF COUPLED-WIRE MODEL
COEFFICIENTS FOR 1/3+1/3 FTI

In this Appendix, we go through the important steps of
the coupled-wire construction of the Laughlin 1/3 topological
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FIG. 9. Spread (En − E0) (a) and spread-to-gap ratio
(En − E0 )/(E9 − E0) (b) obtained for n = 1, · · · , 8 (rows) on
the Ncell = 18 cluster.

FIG. 10. Momentum-resolved many-body spectra (top row) and
spectral flow of the three lowest-lying states (bottom row) charac-
terizing the layer-polarized FCI (ν+ = 1/3 and ν− = 0) for the three
finite-size lattices considered in the main text (different colors). For
the spectral flow, we shifted the data corresponding to the different
sizes by a constant amount to better discern the various curves. As
mentioned in Sec. IV, the three ground states of forming the 1/3
Laughlin FCI appear in distinct momentum sectors.

order from Refs. [57,58] using a special exactly solvable
model that directly leads to Eq. (3) in the main text.

We start from a bosonized description of the decoupled
array of quantum wires, in which each wire w is described
by four bosonic fields ϕ̃w,�(x) and θ̃w,�(x) with x the position
along the compact dimension of the wire and � = ± a layer
index analogous to the one in Eq. (1a). Physically, ϕ̃ and (∂x θ̃ )
fields, respectively, represent the phase and density fluctua-
tions of the fermionic fields near the Fermi energy of the wires
[90]. They satisfy the commutation relations [∂x θ̃w,�, ϕ̃w′,�′] =
iπ�δ�,�′δw,w′ , where the factor of � comes from the fact that the
two layers are related by an antiunitary effective time-reversal
symmetry (T̃ in the main text), which acts as a complex
conjugation and therefore flips the sign of ϕ̃ [60]. In terms
of these variables, the Hamiltonian of the quantum wire array

FIG. 11. Gap (red dots) and spread (green dots) of the FCI ob-
tained in the layer-polarized limit ν+ = 1/3 and ν− = 0 as a function
of the inverse system size 1/Ncell. The aspect ratios are kept close to√

3/2 but are not all equal. Extrapolation to the thermodynamic limit
are highlighted with dashed lines.
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takes the form of coupled sliding Luttinger liquids [58],

HSLL =
∑
w,w′

∫
dx ∂x

⎡
⎢⎢⎢⎣

ϕ̃w,−
ϕ̃w,+
θ̃w,−
θ̃w,+

⎤
⎥⎥⎥⎦

T

M̃w,w′

⎡
⎢⎢⎢⎣

ϕ̃w′,−
ϕ̃w′,+
θ̃w′,−
θ̃w′,+

⎤
⎥⎥⎥⎦, (D1)

where M̃w,w contains both kinetic and intrawire density-
density interactions, while all other M̃w,w′ �=w describe density-
density interactions between wires.

The link variables introduced to capture the Laughlin 1/m
topological order in both layers read [57]

ϕ j,� = ϕ̃w,� + ϕ̃w+1,�

2
+ �m

θ̃w,� − θ̃w+1,�

2
, (D2)

θ j,� = ϕ̃w,� − ϕ̃w+1,�

2
+ �m

θ̃w,� + θ̃w+1,�

2
, (D3)

with j = w + 1/2 a link index. Their commutation relation
is [∂xθ j,�, ϕ j′,�′] = miπ�δ�,�′δ j, j′ , and they correspond to the
fields introduced in Eq. (3) of the main text when m = 3.

In terms of these new variables, the form of the sliding
Luttinger liquid Hamiltonian remains the same albeit with
new matrices Mj, j′ . It is always possible to choose the inter-
action terms in the original theory, i.e., the M̃, such that the
M matrices become local in the link indices Mj, j′ = Mδ j, j′ ;
the recipe for doing so is given in Ref. [62]. In the absence
of any attractive interactions, we choose the diagonal for M =
diag(K0, K0, K−1

0 , K−1
0 ), corresponding to a time-reversal in-

variant conventional Luttinger liquid with parameter K0 on
each links of the wire array. The phenomenological addition
of density-density attractive interaction between the two lay-
ers, as described in Sec. IV A, changes this form to

M =

⎡
⎢⎢⎣

K0 . . .

. K0 . .

. . K−1
0 −Jeff

. . −Jeff K−1
0

⎤
⎥⎥⎦. (D4)

The final ingredient of the coupled-wire construction is the
sine-Gordon mass term provided by correlated single particle
tunneling between wires, which we include in the standard
way [57,58]. It was shown in Ref. [62] that this coupled wire
construction continued to describe a FTI order adiabatically
connected to two copies of Laughlin 1/m order with opposite
chirality as long as the renormalized Luttinger parameters
resulting from Eq. (D4) remained finite (in other words, as
long as the bosonic theory remains adiabatically connected
to the one obtained in the absence of attractive interactions,
Jeff = 0).

We therefore compute the new Luttinger parameters corre-
sponding to the theory Eq. (3) in the main text before turning
on the mass terms (i.e., g = 0). The action following from the
Hamiltonian M and reproducing the commutation relations of
the link bosonic fields is

S j =
∫

dxdτ
∑

�

[
i�

mπ
(∂τϕ j,�)(∂xθ j,�) − K0(∂xϕ j,�)2

− K−1
0 (∂xθ j,�)2

]
− 2Jeff (∂xθ j,+)(∂xθ j,−). (D5)

Integrating out the phase variables ϕ j,�, and introducing the
spin and charge densities,

� j,c = θ j,+ + θ j,−√
2

, � j,s = θ j,+ − θ j,−√
2

, (D6)

yields the bosonic action

S j =
∫

dxdτ

2πK0

∑
α=c/s

(∂τ� j,α )2 + K2
0

K2
α

(∂x� j,α )2, (D7)

leading to the results quoted in the main text for the Luttinger
parameters:

K0

Kc
= m

√
1 − K0Jeff ,

K0

Ks
= m

√
1 + K0Jeff . (D8)

APPENDIX E: ABSENCE OF THREEFOLD PHASE

1. Perturbation theory

We here argue using perturbation theory that the inter-
mediate threefold degenerate phase from Fig. 3 does not
exist in the thermodynamic limit, where all states of the FCI
states |FCI j=1,2,3〉 appear at the same many-body momentum
[65]. In the absence of interlayer coupling, the correspond-
ing FTI states are simply given by the products |ψi j〉 =
|FCIi〉 ⊗ |FCI j〉. Consider a small and generic interlayer in-
teraction in momentum space Hinter = 1

Ncell

∑
q v(q)ρq,↑ρ−q,↓.

Its perturbative effect on the FTI states can be determined by
considering the matrix elements

M jn
im = 〈ψi j |Hinter|ψmn〉

= 1

Ncell

∑
q

v(q)〈FCIi|ρ−q,↓|FCIm〉〈FCI j |ρq,↑|FCIn〉

= v(0)

Ncell
X ∗

imXjn,

Xab = 〈FCIa|ρ0,↑|FCIb〉, (E1)

where we have used the fact that the FCI states all appear at
the same momentum in the second line to restrict the sum to
q = 0. In this form, it is clear that the matrix describing the
perturbative effect of interlayer interactions within the FTI
manifold has rank one and has a single nonzero eigenvalue.
As a result, the interlayer interaction singles out one of the
FTI states from the eight others, and we do not expect a
threefold degenerate phase to appear. Note that when the FCI
(FTI) states are located at three different momenta, a similar
calculation shows that one state is perturbatively singled out
by interlayer interaction in each momentum sector, which
leads to the threefold degenerate phase observed in Fig. 3.
This behavior can be clearly seen in Fig. 2 for small values of
the interaction J < 0.2 (where the interaction can be treated
perturbatively).

Note that this argument does not contradict the exact de-
generacy between the FTI ground states in the presence of
small perturbations. Indeed, the perturbative splitting identi-
fied above involves a single momentum exchange component
q = 0 of the interaction, whose amplitude scales with the
inverse of the number of unit cells Ncell. Our derivation should
henceforth be understood as follows. For large systems close
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FIG. 12. (a) Same as Fig. 5(a) for the model of Ref. [36] with
t (1)
TH = 5t (1)

HH = 10t (3)
HH = δ/2.5 on a 6 × 3 lattice, for which the nine

FTI degenerate ground states (colored for the sake of visibility)
occupy the same momentum sector. (b) Sum of the square overlap
between |� (0)

J 〉, the absolute lowest energy many-body ground state,
and |� (i)

J=0〉 with i = 1, · · · , 9 the nine FTI states at J = 0.

to the thermodynamic limit, a single FTI state is singled out
from the others by interlayer interaction by an amount ∝ N−1

cell
that strictly vanishes when Ncell → ∞.

2. Numerical example

The arguments provided in Sec. IV B and above suggest
that, in finite size, the presence or absence of a three-fold
degenerate region between the FTI and SC phases depends on
the geometry chosen for the calculations. Unfortunately, for
the parameters chosen in Eqs. (1), we were not able to find a
finite-size cluster containing 18 unit cells and featuring an ap-
proximately ninefold degenerate ground state for J = V⊥ = 0.

As explained in the main text, Eqs. (1) are obtained from
the three-orbital model derived in Ref. [36], in which two
orbitals form a honeycomb lattice and a third orbital lives
at the center of the hexagons, after adiabatic elimination of
hexagon-centered orbital due to its larger on-site potential
energy. Taking the original model of Ref. [36] allows us
to obtain, in some regimes of parameters, a more uniform
Berry curvature, that allows us to stabilize the FTI on smaller
finite-size clusters. In particular, we were able to find a FTI
with all nine nearly degenerate ground states in the same mo-
mentum sector on a 6 × 3 lattice using the parameters t (1)

TH =
5t (1)

HH = 10t (3)
HH = δ/2.5 (the notations follow Ref. [36]) and

an equal intraspecies honeycomb-honeycomb and triangular-
honeycomb interaction strength V⊥.

Introducing an on-site attractive interaction J , we observe
a transition from an approximately ninefold degenerate phase
to a nondegenerate phase, as can be seen in Fig. 12(a). In

FIG. 13. Same as Fig. 5(b) for a wider range of V⊥/V‖. Phase
separation is observed for V⊥ � 1.5V‖, probed here by an extensive
degeneracy of the ground state. This is the reason for the slow
increase of the doublet in Fig. 5(b). A similar behavior has been
observed in Refs. [34,91]. Near the transition point V⊥ = 1.5V‖, we
used a finer discretization in V⊥ and diagonalized for a larger number
of low-lying states to better observe the collapse, resulting in a denser
spectrum (shown in red).

between, no sign of an ITD can be observed, substantiating
our perturbative argument and the interpretation of the ITD
as a finite-size artifact. To makes sure that the nondegenerate
ground state is not part of an FTI phase with very strong
spread, we computed its overlap with the nine degenerate
FTIs at J = 0, which is shown in Fig. 12(b). The collapse
of the overlap around J 	 0.5V‖ suggests that the two phases
are distinct in the thermodynamic limit. This strengthens the
claim made in the main text that the transition between the
FTI and the superconductor does not involve any intermediate
phase.

APPENDIX F: PHASE SEPARATION FOR V⊥ > V‖

Figure 13 shows the exact diagonalization spectrum ob-
tained as a function of V⊥ along the J = 0 line of the phase
diagram beyond the physically relevant regimes identified in
Sec. II. For V⊥ < 0.8V‖, this is the data shown in Fig. 5(b).
When V⊥ 	 1.4 − 1.5V‖, we observe a collapse of the many-
body continuum. The phase stabilized beyond this collapse
(V⊥ > 1.5V‖) has one ground state in each of the many-body
momentum sectors. We can therefore understand it as a large
and immobile cluster of particles in real space that can be
translated in the finite-size lattice at small energy cost; a
clear signature of phase separation. Similar behavior has been
observed in Refs. [34,91].
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