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Steady illumination of a noncentrosymmetric semiconductor results in a bulk photovoltaic current, which
is contributed by real-space displacements (“shifts”) of charged quasiparticles as they transit between Bloch
states. The shift induced by interband excitation via absorption of photons has received the prevailing attention.
However, this excitation-induced shift can be far outweighed (�) by the shift induced by intraband relaxation,
or by the shift induced by radiative recombination of electron-hole pairs. This outweighing (�) is attributed
to (i) time-reversal-symmetric, intraband Berry curvature, which results in an anomalous shift of quasiparticles
as they scatter with phonons, as well as to (ii) topological singularities in the interband Berry phase (“optical
vortices”), which makes the photovoltaic current extraordinarily sensitive to the linear polarization vector of the
light source. Both (i) and (ii) potentially lead to nonlinear conductivities of order mA V−2, without fine-tuning
of the incident radiation frequency, band gap, or joint density of states. A case study of BiTeI showcases the
anomalous shift and optical vorticity in a realistic material.
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I. INTRODUCTION

Light that is harvested for large-scale power transmission
needs to be rectified, i.e., converted from electromagnetic
waves at solar frequencies to a direct or low-frequency cur-
rent. Rectification in a noncentrosymmetric, nonmagnetic
semiconductor results in a bulk direct current that is propor-
tional to the radiation intensity, in the lowest-order response.
This bulk photovoltaic current has a contribution attributed
to an asymmetry in the fermionic quasiparticle distribution
[1–3] and a second contribution attributed with the real-space
displacements (or “shifts”) of quasiparticles as they transit
between Bloch states; cf. Fig. 1 [4,5].

The shift induced by interband excitation via absorption
of photons—in short, shiftexc—has received the prevailing
attention. However, the steady photovoltaic current is also
contributed by a shift induced by recombination of electron-
hole pairs, as well as a shift induced by intraband relaxation
via scattering with phonons or impurities. Both shiftrec

and shiftintra have been emphasized by Belinicher-Ivchenko-
Sturman (BIS) in their kinetic theory of the shift current,
which accounts for the steady, nonequilibrium quasiparticle
distribution [5]. In contrast, shiftrec and shiftintra have been
ignored in all recent literature, which either (a) disregarded re-
laxation completely [6–12], (b) were agnostic about the nature
of the relaxation mechanism, e.g., by naive relaxation-time ap-
proximations [13–16], or (c) adopted relaxation mechanisms
that are unrealizable in experiments, e.g., by scattering with
a “fermionic bath” [17–19].1 The one-sided interpretation
of shift currents as a dissipationless “hot carrier effect” [9]

1(d) Barik and Sau have considered electron-phonon scattering as
a relaxation mechanism for the shift current [20]. However, they
assumed without justification that phonon-mediated scattering does

cannot explain the vanishing photocurrent in the low-
temperature polar phase of organic charge-transfer complexes
[21]. To recapitulate, excitation, recombination, and relax-
ation induce shifts that may counteract or synergize, and a
complete model of the kinetic processes is required to quanti-
tatively predict the steady photovoltaic current [22].

While the shiftintra/shiftrec currents have been explored
for simplified models of piezoelectrics and pyroelectrics [5].
there has not been an attempt to relate the shiftintra/shiftrec

currents to notions of quantum wave-function geometry that
have revitalized the condensed-matter field. Here, we iden-
tify scenarios (unimagined by BIS) in which the shiftintra or
shiftrec current dominates over the shiftexc current by an order
of magnitude. Such dominance is attributed to two quantum
geometric properties of the Bloch wave function, namely
(i) time-reversal-symmetric, intraband Berry curvature [cf.
Fig. 2(a)], which results in an anomalous shift of quasipar-
ticles as they are scattered with phonons, and (ii) topological
singularities in the interband Berry phase known as “optical
vortices” [cf. Fig. 2(c)], which make the photovoltaic current
extraordinarily sensitive to the linear polarization vector of the
light source.

Both effects (i) and (ii) will be demonstrated in model
Hamiltonians with generic values of the joint density of states
and without assuming a semimetallic band gap. The nonlinear
conductivities in our models are of order mA V−2 without
fine-tuning of the incident radiation frequency,2 as illustrated

not result in a shift. A detailed criticism of the recent literature is
provided in Appendix C 3.

2In contrast, a number of proposals for large shift currents (at low
frequencies) have relied on small [23] or vanishing [24–26] band
gaps, which makes for a questionable application to solar cells.
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FIG. 1. (a) The kinetic processes of excitation, relaxation, and recombination in a steady state of a homogeneously illuminated semicon-
ductor. (b) These kinetic processes can be recast as loops in energy-momentum space if one views a hole as an electron going backward in
time. To each transition between Bloch states we associate a shift of a wave packet in real space, as illustrated representatively by the dashed
arrows in panel (c); the net shift over all possible loops results in the steady shift current.

in Figs. 2(b) and 2(d). For comparison with a prototypical
ferroelectric, the nonlinear conductivity of PbTiO3 has a max-
imum (over frequency) of 0.05 mA V−2 when only shiftexc is
accounted for [8].

The paper is outlined as follows: As a preliminary step to
substantiating these results, Sec. II first reviews BIS’s kinetic
theory for the shift current [5] and several salient properties of
the nonequilibrium distribution of photoexcited carriers [27].
In addition, we will formalize an underappreciated distinction
between the transient and steady shift currents; in particular,
the transient shift current in intrinsic semiconductors will be
shown to be identical to the current calculated by Kubo-type
perturbation theories (e.g., by Kraut and Baltz [4,13] and by
Sipe and Shkrebtii [6]), which assume a weak perturbation
from thermal equilibrium. The difference between the steady
and transient shift currents will turn out to be the sum of the
shiftintra and shiftrec currents. Section III demonstrates the rel-
evance of shiftintra in the presence of time-reversal-symmetric
intraband Berry curvature. Section IV demonstrates the rele-
vance of shiftrec in the presence of optical vortices. Because
Sec. III also introduces our method of calculating the shift
current via loops, we recommend that Sec. III be read before
Sec. IV. Section V showcases the importance of both shiftintra

and shiftrec in the 3D polar semiconductor BiTeI, which has
an appreciable Berry curvature as well as optical vorticity.
Finally, Sec. VI summarizes our results, gives directions to
finding photovoltaic material with the desired wave-function
geometry, comments on experimental discrepancies between
the transient and steady photovoltaic current, elaborates on
the notion of loop currents, and discusses the potential of
shift-current materials for solar-cell applications.

II. KINETIC THEORY OF THE SHIFT CURRENT

The BIS kinetic theory presupposes that carrier-optical-
phonon scattering (rather than carrier-carrier scattering) is
the dominant mechanism of energy relaxation for photoex-
cited carriers in the “active region.” A carrier is said to
be in the active region if its energy (defined with re-
spect to the conduction-band/valence-band extremum for

an electron/hole) exceeds the optical phonon threshold:
E > h̄�o, as illustrated by the yellow energy intervals in
Fig. 3(b). The dominance of carrier-optical-phonon scattering
over carrier-carrier scattering occurs for not-too-high carrier
densities, which is typical of most continuous-wave laser ex-
periments [27,28].

The BIS formula for the shift current can be compactly
expressed as

j = −|e|
V

∑
B,B′,m

Sm
B′←B

(
Am

B′←B − Em
B←B′

)
;

B = (bk), B′ = (b′k′) m = (qp), (1)

with |e| the absolute value of the electron charge, V the
volume of the medium, and B = (bk) a collective label for
a Bloch state in band b with wave vector k.

∑
B,B′,m sums over

all possible quasiparticle transitions (B′ ← B) mediated by a
boson of mode m; m = (qp) is specified by a bosonic wave
vector q and a bosonic branch/band p. S and A − E , which
appear in the summand of

∑
B,B′,m, will be explained in turn.

The shift vector Sm
B′←B is the real-space displacement of

a Bloch quasiparticle as it transits from B to B′, by way of
absorbing/emitting a boson of mode m. For phonons,

Phonon : Sm
B′←B = −(∇k + ∇k′ ) argV m

B′,B + Ab′b′k′ − Abbk

= −S−m
B←B′ , (2)

with V m
B′B being the electron-phonon matrix element [cf.

Eq. (C17)], Abb′k = 〈ubk|i∇kub′k〉cell the Berry connection,3

and −m = (−qp) being the momentum-reversed partner of
m = (qp).4 For a photonic mode m with linear polarization

3ubk denotes the cell-periodic component of the Bloch function; the
inner product 〈x|y〉cell involves an integral over the intracell coordi-
nate; cf. Eq. (C3).

4In the BIS paper, all mode indices were omitted from their
phononic shift, and their electron-phonon-matrix element was never
explicitly defined, but one may guess that Sk′−k,p

bk′←bk
in our notation

corresponds to Rb(k′, k) in their notation.
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FIG. 2. Panels (a) and (b) derive from a model Hamiltonian
with intraband Berry curvature, and (c) and (d) derive from a
different model Hamiltonian with optical vortices. In panel (a), a
time-reversal-symmetric distribution of intraband Berry curvature
is plotted as a color field, with yellow (blue) representing posi-
tive (negative) curvature. Panel (b) plots the nonlinear conductivity,
which is defined though ja = σa

ω|Eω|2, with Eω the amplitude of an
incident electric wave of frequency ω, assuming that the light source
is unpolarized. The black curve represents the net conductivity σy

ω,
while the red, green, and blue curves represent the components of
σy

ω contributed by interband excitation, intraband relaxation, and
interband recombination, respectively. The intraband component is
manifestly dominant. (c) When a Bloch quasiparticle (with wave
vector k) is optically excited from the valence to the conduction
band, the quasiparticle is displaced by a k-dependent shiftexc vector
[Eq. (3)]; the circulation of this vector field has a quantized contri-
bution attributed to optical vortices. (d) The black curves represent
σ

y
�x,ω for an �x-polarized light source vs σ

y
�y,ω for a �y-polarized light

source; the blue curve represents the recombination component of
σ

y
�x,ω, which dominates the total current.

vector εm,

Photon : Sm
b′k←bk = −∇k arg εm · Ab′bk + Ab′b′k − Abbk

= −S−m
bk←b′k. (3)

We have assumed that the photon wavelength greatly exceeds
the lattice period; within the dipole approximation, photon-
mediated transitions are vertical ≡ k-preserving [cf. the red
and blue lines in Fig. 3(b)], and the shift vector depends
on m = (qp) only through εm. For this reason, we often use
Sm

b′k←bk ≡ Sεm
b′k←bk synonymously, when m is photonic. Equa-

tion (3) is henceforth referred to as the photonic shift vector,
and Eq. (2) as the phononic shift vector. In either case, the
sign of the shift vector is inverted if the Bloch labels are inter-
changed and the bosonic wave vector simultaneously inverted:

q → −q, reflecting that forward and backward transitions (be-
tween the same pair of Bloch states) result in opposite shifts.

For either type of boson, Am
B′←B (Em

B←B′ ) is the transition
probability rate for absorbing (emitting) a boson of mode m.
As explicitly written in Eqs. (A3) and (A5), both A and E
have the Golden Rule forms that are familiar from Dirac’s
perturbation theory [29]. In particular, Am ∝ Nm and Em ∝
(Nm + 1), with Nm the average occupancy of the boson m. For
phonons, Nm is assumed to follow the Planck distribution with
lattice temperature Tl ; for photons, Nm is a sum of thermal and
nonthermal contributions, with the latter being generated by
the light source. Additionally, both A and E depend on the
quasiparticle distribution functions fB in a manner consistent
with Pauli’s exclusion principle: Am

B′←B ∝ (1 − fB′ ) fB and
Em

B←B′ ∝ (1 − fB) fB′ . Consequently, j = j[ fB, Nm] depends
on fB and Nm through A and E ; however, the dependence on
Nm will subsequently be made implicit: j[ fB,−−Nm], to simplify
notation.

Our expression for the shift current is derived in Ap-
pendix C 1 and is slightly more general than the expression
presented in the BIS paper [5], in that ours allows for inter-
band, phonon-mediated transitions while theirs does not.

Let us consider three scenarios for the quasiparticle and
bosonic distributions:

(I) No source. Without photoexcitation by a source, quasi-
particles, phonons, and photons are all thermalized with an
equilibrium temperature T0, and Eq. (1) manifestly vanishes
due to detailed balance: Am

B′←B = Em
B←B′ ; cf. Eq. (A15).

(II) Transient state. This balancing is disrupted when
the light source is switched on. At the onset of radiation,
the quasiparticle distribution retains its equilibrium value (the
Fermi-Dirac function f T0

B ), but the nonthermal photons drive
a transient current jtran = j[ f T0

B ], which is purely attributed to
vertical, interband transitions throughout the excitation sur-
face, as illustrated in Fig. 3(a). The excitation surface (ES)
is defined as the surface in the Brillouin zone where the
difference in conduction- and valence-band energies equals
the source photon energy: Eck − Evk = h̄ω. The meaning of
being “purely attributed” is that the sum over all quasiparticle
transitions [in Eq. (1)] is contributed nontrivially only by
vertical transitions throughout the excitation surface, i.e., the
value of j[ f T0

B ] does not change if the summation
∑

k,k′ is
restricted such that k = k′ lies on the excitation surface:5

jtran = j
[

f T0
B

] = j
[

f T0
B

]
k=k′∈ES. (4)

If the nonthermal photons are well approximated by a classical
electromagnetic wave, then j[ f T0

B ] reduces to the Kraut-Baltz-
Sipe-Shkrebtii formula [4,6,13] calculated by Kubo-type
perturbation theory, as demonstrated in Appendix C 3.

(III) Steady state. For t  τrec ∼ 1 ns (a typical timescale
for radiative interband recombination [27,30]), the transient
current evolves to a steady current: j[ fB], with the nonequi-
librium distribution fB being the steady solution to a kinetic
equation encoding all the processes in Fig. 1(a); cf. Ap-
pendix B 2. The difference between the equilibrium f T0

B and
the nonequilibrium fB is caricatured in Fig. 3(a) versus 3(b).

5This is proven more elaborately in Appendix E.
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(b) Steady (c)

excitation surface 

(a) Transient

excitation surface 

FIG. 3. (a) The excitation process in a transient state of a homogeneously illuminated semiconductor. White dots against a black
background represent hole carriers. The purple ellipse should be understood as a cross-section of an ellipsoidal excitation surface. Panel
(b) represents the steady state; yellow and blue energy intervals indicate the active and passive regions respectively. (c) A representative
illustration of the quasiparticle distribution fck in the conduction band, with fE being the average of fck for all k satisfying Eck = E . The inset
displays the same function fE in the active region, but with a much finer scale for the horizontal axis. The shape of this distribution is supported
by theoretical models (cf. Appendix B 2) and hot-carrier photoluminescence spectroscopy (e.g., Fig. 25 in Ref. [28]).

Henceforth, j[ f ] and j[ f T0 ] will be our shorthand for the
steady and transient currents, respectively.

While in principle the BIS formula [Eq. (1)] for j[ f ] sums
over all possible quasiparticle transitions, it is worthwhile in
practice to identify the predominant transitions that make an
outsized contribution to the summation; throughout this work,
our use of “predominant” should be understood as signifi-
cantly contributing to the steady, nonequilibrium shift current.

It is simplest to consider the predominant transitions in
an intrinsic, direct-gap semiconductor, with Eck − Evk mini-
mized at a single wave vector: Eckext − Evkext = Eg. The band
gap is assumed to exceed the optical phonon energy (Eg 
h̄�o), such that phonon-mediated transitions are intraband;
cf. the green curves in Fig. 3(b). A typical electron–optical-
phonon scattering time is τ o ∼ 100 fs [31,32]. The lattice
temperature is assumed to be small (kBTl � Eg, h̄�o), so that
the emission of optical phonons outweighs the absorption.
Supposing that carriers are optically excited into the active
region with energy Eexc, then the transitions illustrated in
Fig. 3(b) predominate. Indeed, the vast difference in relax-
ation timescales—τ o �� τrec [27,28]—favors fast, intraband
transitions by emission of optical phonons with energy �
h̄�o; carriers quickly relax into a passive region, defined as
the energy interval near a band extremum where the carrier
energy E < h̄�o [cf. the blue interval in Fig. 3(a)]; carriers in
the passive region can no longer relax via optical phonons, and
they remain in the passive region until they are annihilated in
the slower process of radiative recombination.6 The majority
of photoexcited carriers are thus contained within the passive
region, with a steady distribution that depends on whether
electron-electron scattering or electron–acoustic-phonon scat-
tering is the dominant mechanism for energy relaxation in
the passive region [Fig. 3(c)]. However, fine-grained details

6Auger recombination empirically occurs at much higher photoex-
cited carrier densities than the present consideration [27].

about the carrier distribution within the passive region do not
matter when estimating the shift current, because the optical
phonon threshold h̄�o is typically a small fraction of the band
gap Eg, and Eg is the energy scale for significant variations
of the energy-dependent shift vectors.7 For additional details
on the predominant relaxation mechanisms in a direct-gap
semiconductor, we refer the reader to Appendixes A and B.

By decomposing the BIS formula [Eq. (1)] according to
the three classes of transitions sketched in Fig. 1(a), one
obtains j[ f ] = jexc + jintra + jrec, which is the precise mean-
ing of the shiftexc, shiftintra, and shiftrec currents mentioned
colloquially in the Introduction. To clarify, the intraband
current is extracted from Eq. (1) by restricting the band
summations

∑
b,b′ by the condition b = b′: jintra = j[ f ]b=b′ ;

the excitation-induced current is extracted by restricting the
wave-vector summations

∑
k,k′ with the condition that k =

k′ lies on the excitation surface: jexc = j[ f ]k=k′∈ES; and the
recombination-induced current jrec restricts k = k′ to lie
outside the excitation surface. Explicit expressions for the
threefold decomposition of j are given in Appendix A 4.

7The majority of recombination transitions occur at k points close
to kext and contained within the passive region. Each recombination
transition is associated with a photonic shift Sε

vk←ck [Eq. (3)], which
may as well be approximated as Sε

vkext←ckext
, because the variation

of the photonic shift vector within the passive region is small. Like-
wise, the current induced by phonon-mediated transitions within the
passive region is outweighed by the current induced by phonon-
mediated transitions outside the passive region, assuming that the
active region is much bigger than the passive region. This assumption
holds for most radiation frequencies, because h̄�o is a tiny fraction
of the bandwidth. To formalize this discussion, one may split the line
integral in Eq. (9) to a short-line integral within the passive region
and a long-line integral within the active region; the long-line integral
dominates, because the Berry curvature typically varies on the scale
of Eg  h̄�o.
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Let us argue that jexc in a steady state is well approxi-
mated by jtran in a transient state. Our argument relies on
the following property of the nonequilibrium quasiparticle
distributions: for all k ∈ ES, fck � 1 and (1 − fvk) � 1, as
illustrated by the inset in Fig. 3(c). The smallness of fck and
(1 − fvk) originates from the slowness in optical excitations
compared to the fastness of inelastic collisions by carrier-
carrier and carrier-phonon scatterings. In other words, despite
the continuous generation of electron-hole pairs by photon ab-
sorption, inelastic scattering processes are so efficient that the
nonequilibrium carrier distribution (over the excitation sur-
face) never builds up to significance; this statement is derived
rigorously in Appendix E. Thus for the purpose of com-
puting the excitation-induced current ( jexc = j[ f ]k=k′∈ES) in
a nonequilibrium state, one may as well input the equilib-
rium distribution: jexc ≈ j[ f T0 ]k=k′∈ES, since it also holds that
f T0
ck � 1 and (1 − f T0

vk ) � 1, assuming kBT0 � Eg. Recalling
a similar expression for the transient current in Eq. (4), we
deduce that jtran ≈ jexc, implying that jintra + jrec is precisely
what is missed from previous Kubo-type theories [4,6,13] that
purport to calculate a steady shift current.

III. ANOMALOUS SHIFT

In connection to jintra, our first main result is that the
phononic shift induced by small-angle, intraband scattering
is expressible in terms of the intraband Berry curvature:

Phonon : Sm
bk′←bk = Sano

b;k′←k + O(δk3),

Sano
b;k′←k = �bkave × δk, (5)

with the curvature defined as �bk = ∇ × Abbk; kave =
(k + k′)/2 and δk = k′ − k are the average and difference in
quasiparticle wave vectors, and δk = ||δk||. The anomalous
shift (Sano) is purely a geometric property of the quasiparticle
wave function, and is insensitive to the nature of the electron-
phonon coupling; such coupling affects the shift current only
through the transition rate; cf. Eq. (A3).

Our use of “anomalous” evokes a comparison with
the anomalous velocity correction in the semiclassical
equation of motion [33,34], which gives an anomalous
displacement: δrano = �bk × δk for a wave packet of Bloch
states in band b. In the photovoltaic context, δk is driven
by a phonon-induced electric field rather than an externally
applied field. Indeed, phonons in noncentrosymmetric
semiconductors induce macroscopic electric fields, which
cause the electron-phonon matrix element V m

bk′,bk to diverge as
δk → 0 [35]. In the self-consistent-field approximation [36],
V m

bk′,bk = f m
δk〈ubk′ |ubk〉cell plus asymptotically irrelevant terms;

f m
δk diverges as 1/δk for “polarization scattering” [37,38]

with optical phonons, and as 1/δk1/2 for “piezoacoustic
scattering” [39] with acoustic phonons.8 (With the possible

8The explicit expressions for f m can be found in equation (3.12)
of Ref. [36] in the case of “polarization scattering,” and in the sum
of (3.15) and (3.16) for the case of “piezoacoustic scattering.” In the
general case, f m may have an anisotropic dependence on δk, but this
does not affect the power exponent of the divergence. In the case of
optical phonons, the divergence is cut off by a minimal δkcut which is

exception of small-gap semiconductors, the polarization
and piezoacoustic scatterings typically dominate [35] over
the deformation scattering [40].) Let us substitute V m

bk′,bk in
Eq. (2) with its asymptotically dominant contribution. Since
the symmetrized derivative of any function of δk vanishes, we
are led to evaluate (∇k + ∇k′ ) arg 〈ubk′ |ubk〉cell = ∇kave (Abbkave ·
δk) + O(δk3). Subsequently applying the identities
(∇kave × A) × δk = (δk · ∇kave )A − ∇kave (A · δk) and Ak′ −
Ak = (δk · ∇kave )A + O(δk3), one obtains the anomalous shift
in Eq. (5).9

The anomalous shift induces a large jintra if the excita-
tion surface encloses a time-reversal-symmetric distribution
of Berry curvature. The minimal model to demonstrate this ef-
fect is quasi-two-dimensional, meaning that the band energies
and cell-periodic wave functions |uB〉cell are approximately
independent of one component of k, say, kz. Let us consider
a quasi-2D excitation surface that encircles a 2π -quantum
of Berry flux (2π = ∫∫

�z
ckdkxdky) in the positive-kx half-

plane [yellow region in Fig. 4(d)]; by time-reversal symmetry,
the same excitation surface must encircle a (−2π )-quantum
of Berry flux in the negative-kx half-plane [cyan region in
Fig. 4(d)]. In short, we simply say that the excitation surface
encloses a time-reversal-symmetric Berry flux of 2π .10

How do jintra, jexc, and jrec compare in this minimal
model? Before getting too quantitative, one may gain some
qualitative insight from comparatively evaluating shiftintra,
shiftexc, and shiftrec for the representative electron-hole tra-
jectory in Fig. 4(a), which describes the photoexcitation of an
electron-hole pair at kexc on the excitation surface, the relax-
ation of the excited electron (hole) in the conduction (valence)
band, and recombination at kext. Viewing a forward-moving
hole as a backward-moving electron, this electron-hole trajec-
tory becomes an oriented electron loop, which we denote as
loop[kexc]. This loop concatenates two interband links with
two intraband pathways, pc(kexc) and pv (kexc), which cor-
respond, respectively, to the conduction and valence band;
cf. Fig. 4(b). The net shift associated with this loop, which
we call the shift loop ≡ Sloop[kexc], is the summation of shift

determined by the minimal optical phonon energy h̄�o; because h̄�o

is much smaller than typical bandwidths, δkcut is much smaller than
the Brillouin-zone period. The author of Ref. [36], Vogl, dropped
the factor 〈ubk′ |ubk〉cell from all their long-wavelength expressions
for the electron-phonon matrix element [including (3.12), (3.15), and
(3.16)], based on the fallacious belief that 〈ubk′ |ubk〉cell = 1 + O(δk2)
can be chosen as a gauge choice for the wave function. The error in
this belief is explained in Appendix J.

9Appendix I describes an alternative derivation of the anomalous
shift by identifying −∇kave (Akave · δk) + Ak′ − Ak as a line integral
of the Berry connection over an infinitesimally thin parallelogram
centered at kave. This somewhat demystifies the appearance of the
Berry curvature. Just as the intraband anomalous shift vector is
expressible in terms of geometric quantities over an intraband loop
in momentum space, so is the excitation shift vector (generalized to
nonvertical transitions) expressible in terms of geometric quantities
over an interband loop [41,42].

10In the quasi-2D context, the time-reversal-symmetric Berry flux
is defined as

∫∫
�z

c�(kx > 0)dkxdky, with �(kx > 0) a projector to
positive values of kx.
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FIG. 4. Viewing a closed electron-hole trajectory [panel (a)] as an electron loop [panel (b)]. (c) An electron loop with a nonunique
relaxation pathway. (d) Top-down view of the same electron loop in panel (b). The excitation surface encloses a 2π flux of Berry curvature (�z

ck)
in the yellow region, and a negative 2π flux in the cyan region. (e) The time-reversed counterpart to the loop in panel (d). (f) Approximating
the relaxation pathways as geodesic paths.

vectors over all one-electron transitions that make up the
loop:11

Sε
loop[k] = Sε

exc,k + Srec + Sintra,k, (6)

Sε
exc,k = Sε

ck←vk, (7)

Srec =
∫

dλq̂
∑2

p=1 |εqp · Acvk|2 Sεqp

vk←ck∫
dλq̂

∑2
p=1 |εqp · Acvk|2

∣∣∣∣
k=kext

, (8)

Sintra,k =
∫

pc (k)
�c × dk +

∫
pv (k)

�v × dk. (9)

The first line [Eq. (6)] represents the threefold decomposi-
tion of the shift loop into its excitation, recombination, and
intraband components. Assuming the light source is linearly
polarized with polarization vector εs, the shift loop depends on
εs through the excitation-induced Sexc; cf. Eq. (7) with Eq. (3).
The recombination shift Srec [Eq. (8)] is an average of the pho-
tonic shift vector over all possible modes of the spontaneously
emitted photon: that is to say, fixing the photon energy by
h̄c|q| = Eckext − Evkext , one averages over all directions for q
(parametrized by the solid angle λq̂) and over all transverse
polarizations εqp; this average is weighted by the transition
rate, which is proportional to the square of the interband Berry
connection by the Golden Rule; cf. Eq. (A5). Finally, we have
taken the liberty of approximating the summation (over small
momentum jumps) as line integrals over pc and pv .

Let us argue for our minimal model that no symme-
try enforces Sintra = 0. Being quasi-two-dimensional implies
that only the z component of �c/v,k is nonzero. As illus-
trated in Fig. 4(d), both relaxation pathways (pc and pv) lie
in the k-region with positive Berry curvature (�z

c) for the
conduction-band states. In the two-band approximation, the
Berry curvatures of conduction- and valence-band states sum
to zero: �z

ck = −�z
vk [43], but this does not imply a cancel-

lation in Eq. (9), because pc and pv are oppositely oriented.
There is also no cancellation with the time-reversed loop,
which is indicated by T ◦ pc and T ◦ pv in Fig. 4(e): under

11A general definition of the shift loop is given in Eq. (D14), which
applies beyond direct-gap semiconductors.

time reversal, �z
c → −�z

c, but the orientation of T ◦ pc is
opposite to that of pc. In the absence of symmetry-enforced
cancellations, one expects that an anomalous shift current is
a generic consequence of enclosed, time-reversal-symmetric
Berry flux. This does not violate any symmetry principle,
because optical excitation creates a nonequilibrium state with
an arrow of time; this arrow manifests in the orientation of
our loops. Our argument for the anomalous shift is widely
generalizable: one may imagine a greater variety of enclosed
time-reversal-symmetric Berry flux for which the line inte-
grals in Eq. (9) are nonvanishing, and such imagination need
not be restricted to semiconductors.

Moving beyond qualitative arguments, we would like to
quantify the current for our quasi-2D semiconducting model.
However, a brief diversion is required to explain the calcula-
tional method we invented. Our method introduces the affinity
shift loop as a figure of merit for the shift current:

ASLεs,ω = 〈
fvck|εs · Acvk|2Sεs

loop[k]

〉
ω

; fvck = fvk − fck,

(10)

with 〈· · · 〉ω meaning to average over all k on the excitation
surface:

〈	(k)〉ω =
∫

d3k

(2π )3

δ(Ecvk − h̄ω)

JDOS↑
	(k);

Ecvk = Eck − Evk. (11)

JDOS↑ stands for the joint density of states for quasiparticles
of one spin orientation:

JDOS↑ =
∫

d3k

(2π )3
δ(Ecvk − h̄ω). (12)

What is being averaged in Eq. (10) is the shift loop
weighted by the rate of optical excitations, with εs the po-
larization vector of the light source; by Fermi’s Golden Rule,
this rate is proportional to |εs · Acvk|2, which we will refer to
as the optical affinity. The shift loop is defined in Eqs. (6) and
(9), with pc(kexc) [pv (kexc)] chosen to be the unique oriented
path that (i) connects kexc → kext (kext → kexc), and (ii) is
tangential to vck = ∇kEck (vvk = ∇kEvk) at all points along

115108-6



ANOMALOUS SHIFT AND OPTICAL VORTICITY … PHYSICAL REVIEW B 110, 115108 (2024)

the path. We refer to pb (with b = c or v) as a geodesic path.12

If EB is an isotropic function of k, then the geodesic path
is simply the Euclidean-straight path connecting kexc to kext;
cf. Fig. 4(f). The motivation for geodesic paths is that the
predominant relaxation pathways [Fig. 4(d)] do not deviate
far from being geodesic [Fig. 4(f)]: each time a quasiparticle
in the conduction band emits an optical phonon, the likeli-
est transition involves the smallest wave-number change δk
[Fig. 4(a)], since the electron-phonon matrix element diverges
as 1/δk2 [36]; minimizing δk = ||k′ − k|| with the constraint
Eck − Eck′ = h̄�o is approximately equivalent to k − k′ being
parallel to vck, given that the optical phonon energy h̄�o is
small compared to typical bandwidths.

Defining the shift conductivity through j[ f ] = σεs,ω|Eω|2,
with j[ f ] the steady shift current given by the BIS formula
[Eq. (1)], and [E (r, t ) = εsEωei(q·r−iωt )+ complex conjugate]
being the incident electric wave, the shift conductivity relates
to our figure of merit through

σεs,ω ≈ −1.53 mA V−2 ASLεs,ω

Vcell

2JDOS↑

(VcelleV )−1
, (13)

with 1.53 mA V−2 = 2π |e|2/h̄V in SI units, and Vcell being
the volume of the primitive unit cell.13 Because the shift
loop is threefold decomposable according to Eq. (6), one may
likewise decompose

σε,ω = σexc
ε,ω + σrec

ε,ω + σ intra
ε,ω , (14)

with σexc
ε,ω matching the Kraut-Baltz-Sipe-Shkrebtii formula

[4,6,13] from Kubo-type perturbation theory; cf. Ap-
pendix C 3.

Our relation between the shift conductivity and the
affinity shift loop [Eq. (13)] holds at low temperature
(kBTl � h̄�o, Eg) and for small optical phonon energy (com-
pared to the band gap and the largest energy of photoexcited
carriers).14 The right-hand side of Eq. (13) should be un-
derstood as an approximation to the BIS formula [Eq. (1)];
the major error in this approximation originates from fixing
pb to be a geodesic path, hence we refer to Eq. (13) as the
geodesic approximation to the shift conductivity. In reality, an
electron excited at kexc follows multiple relaxation pathways
[as caricatured in Fig. 4(c)] which deviate from being geodesic
and narrow. The geodesic approximation is therefore justi-
fied to the extent that small-angle scattering dominates over

12Construct the four-momentum (P0, P1, P2, P3) =
(Eck/||vck||, h̄kx, h̄ky, h̄kz ) and introduce the Lorentzian metric gμν ,
with g11 = g22 = g33 = −g00 = −1. Then pc(kexc) can be viewed as
a path Pμ(λ) that minimizes the action

∫ 1
0

√
[−gμν

dPμ

dλ

dPν

dλ
]dλ, given

that the end points of the path are fixed to kexc and kext.
13Equation (13) applies to direct-gap semiconductors in which a

single conduction and a single valence band are optically excited
in the vicinity of a single extremal wave vector kext. In direct-gap
semiconductors with multiple valleys/pockets (indexed by v), such
as transition-metal dichalcogenides, the total shift conductivity is
proportional to

∑
v ASLvJDOSv .

14The largest energy of photoexcited electrons is represented as
Eexc − Ec,kext in Fig. 3(c).

large-angle scattering.15 A benchmarking of the approxima-
tion will be presented.

While other groups have attempted to optimize the shift
conductivity by maximizing the JDOS [44], we adopt a
wave-function-centric approach in maximizing the affinity
shift loop. Assuming a generic value for JDOS↑ ≈ (VcelleV )−1,
||ASLεs,ω|| ∼ Vcell implies a conductivity of order mA V−2.

Returning to our quasi-2D model, we now demonstrate that
the intraband component [cf. Eq. (9)] of the affinity shift loop
is indeed comparable in magnitude to Vcell:

||〈( fvk − fck)|εs · Acvk|2Sintra,k〉ω|| ∼ Vcell. (15)

We adopt two heuristic approximations for a back-of-the-
envelope calculation, namely that (i) the excitation surface
is circular with radius kr = π/2a (assuming Vcell = a3), and
(ii) in the absence of unusually small band gaps,16 the 2π

Berry flux is roughly homogeneous over the yellow semicircle
enclosed by the excitation surface; cf. Fig. 4(d). Because
�z

ck = −�z
vk (in the two-band approximation) and pc =

−pv (presuming an electron-hole symmetry Eck = −Evk),
the anomalous contribution to the shift loop simplifies to
Sintra,kexc = 2

∫
pc (kexc ) �

z
ck�z × dk, with pc(kexc) a straight path

connecting kexc to kext = (0, 0, 0). Sintra(kexc) = −16a�y/π if
kexc = (kr, 0, 0) and vanishes if kexc = (0, kr, 0); from this,
one deduces that the average of Sintra,kexc over all kexc on
the excitation surface is comparable to −a�y. Assuming that
fvkexc − fckexc ≈ 1 (cf. Sec. II), and that the interband con-
nection is generic-valued, |εs · Acvkexc |2 ∼ a2, one finds 〈|εs ·
Acv|2Sintra〉ω ∼ −Vcell�y, leading to Eq. (15).

It is of interest to demonstrate that our crudely derived
conclusion holds true in a precise calculation for a model
Hamiltonian:17

H (k) = −Eo(z†σz) · σ, z =
(

k̃x − k̃3
x /6

k̃y + i
(
Q̃ − k̃2

x − k̃2
y

)/
2

)
,

Eo = 1

P̃

h̄2

m f a2
. (16)

σ = (σ1, σ2, σ3) is the vector of Pauli matrices; k̃ j = k ja (for
j = x, y, z) is a dimensionless wave number, with a = 5 Å a
generic value for the lattice period; m f is the free-electron
mass; P̃ and Q̃ are dimensionless Hamiltonian parameters.
Assuming that Q̃ < 2, Eq. (16) is the Hamiltonian of a direct-
gap, quasi-2D semiconductor with band gap Eg = EoQ̃2/2,
effective masses mx = my = P̃m f /(2 − Q̃), mz = ∞ (for both
electrons and holes), and JDOS↑ ≈ P̃/(8 − 4Q̃) in units of
(VcelleV )−1. We choose Q̃ = 1 and P̃ = 4, such that JDOS↑ ≈
1 is generic-valued.

15The BIS formula [Eq. (1)] reduces asymptotically to the geodesic
approximation [Eq. (13)] in the limit of vanishing scattering angle,
as proven in Appendix D 5.

16The Berry curvature only exhibits significant variations over a
lengthscale that is comparable to the inverse of the band gap.

17This k · p model can be extended to a tight-binding model by rec-
ognizing certain terms as Taylor-series coefficients for trigonometric
functions.
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FIG. 5. Characterization of a quasi-2D model [Eq. (16) with Q̃ = 1] with a time-reversal-symmetric Berry flux. Panel (a) plots the Berry
curvature as a colored background, with a color legend (on the right) specifying the value of �z

ck/(Vcell )2/3; the black ellipses represent
excitation surfaces for two source photon energies: h̄ω = 2.4E0 and 0.8E0, with Eo ≈ 76 meV. Panel (b) shows the ω-dependence of the
time-reversal-symmetric Berry flux enclosed by the excitation surface. The black curve in panel (c) represents the polarization-averaged affinity
shift loop [(1/2)

∑
εs∈{�x,�y} ASLy

εs,ω
/Vcell] vs ω; the colored curves represent the threefold decomposition of the polarization-averaged affinity

shift loop: excitation (red), intraband relaxation (green), and recombination (blue). The shift conductivity σ
y
�x,ω (and its threefold decomposition)

is calculated in the geodesic approximation in panel (d), and in the isoenergy symmetric approximation in panel (e).

The model Hamiltonian has been chosen because it
realizes a time-reversal-symmetric Berry flux of 2π =∫∞
−∞

∫∞
0 �z

cdkxdky [45–47], as illustrated in Fig. 5(a). The
time-reversal-symmetric Berry flux enclosed by the excita-
tion surface varies from roughly 0.7(2π ) (for h̄ω = 2.4E0) to
0.2(2π ) (for h̄ω = 0.8E0); cf. Fig. 5(b). The case of h̄ω =
2.4E0 is not unlike the caricature we drew in Fig. 4(d).

The quasi-two-dimensionality and reflection symmetry
(x → −x) of our model imply that only the y-component
of the shift current can be nontrivial. We have numeri-
cally computed the y-component of the affinity shift loop
via Eqs. (6) and (10) for the chosen model parame-
ters.18 Figure 5(c) plots the polarization-averaged affinity
shift loop [(1/2)

∑
εs∈{�x,�y} ASLy

εs,ω
] with respect to h̄ω in

the interval [0.8E0, 2.4E0]; the threefold decomposition of
(1/2)

∑
εs

ASLy is also illustrated. For a broad range of
frequencies (h̄ω > 1.3E0) where the encircled time-reversal-
symmetric Berry flux exceeds 0.4(2π ), the intraband compo-
nent not only exceeds the excitation component by an order of
magnitude, but it also carries an opposite sign. These values
for the affinity shift loop translate [via Eq. (13)] to a shift
conductivity ≈4 mA V−2 for an unpolarized light source, as
illustrated in Fig. 2(b) for the same frequency range.

To benchmark the geodesic approximation that has been
used in all conductivity calculations thus far, we also com-
puted σ

y
�x,ω via the more traditional method of numerically

simulating a steady quasiparticle distribution fB that sets the
collisional integral to zero, and then inputting fB into Eq. (1);
the detailed procedure is described in Appendix C 2. Be-
cause this procedure is numerically intensive, we resorted
to approximating fB as an iso-energy-symmetric function of
k, meaning fbk is constant over isoenergy k-surfaces of Ebk.
Figures 5(d) and 5(e) show the same quantity σ

y
�x,ω calculated

in the geodesic and iso-energy-symmetric approximations, re-
spectively. It is reassuring to see semiquantitative consistency
in the values of the shift conductivity and all its components,

18The computation was simplified by setting fvk − fck = 1 in
Eq. (10) for reasons explained at the end of Sec. II. We have also
approximated the geodesic paths as straight [cf. Fig. 4(f)], since the
energy-momentum dispersion is roughly isotropic.

especially at lower photon frequencies where the isoenergy
symmetric approximation is better justified.19

IV. OPTICAL VORTICITY

Having demonstrated the dominance of the intraband
current jintra in the presence of time-reversal-symmetric in-
traband Berry curvature, this section will demonstrate the
dominance of the recombination-induced current jrec in the
presence of optical vortices—topological singularities in the
interband Berry phase.

Before discussing vortices properly, we first consider a
vortexless scenario in which the photon-mediated current
components cancel out: jexc + jrec ≈ 0. In understanding how
this cancellation happens, it will become apparent that vortic-
ity is one route to prevent such a cancellation. Let us then
hypothesize a scenario in which the photonic shift vector is
roughly independent of the light polarization, and roughly ho-
mogeneous in the k-region enclosed by the excitation surface.
This would imply that the shift vector at excitation [Eq. (7)] is
opposite to the shift vector at recombination [Eq. (8)], leading
to a cancellation of the excitation- and recombination-induced
currents; cf. Eqs. (10) and (14).

The contrapositive implication of this thought experiment
is that for jexc + jrec to be significant, the photonic shift at ex-
citation must differ from the photonic shift at recombination.
With great circulation comes great differences. The circu-
lation of the photonic shift vector is defined by integrating
Eq. (3) over a loop ∂� in k-space:∮

∂�

Sε
ck←vk · dk

2π
= −

∮
∂�

∇k arg[ε · Acvk] · dk
2π

+
∫

�

(�ck − �vk) · d2�

2π
. (17)

19The k-dependent transition rate for optical excitation [cf.
Eq. (A5)] becomes increasingly isoenergy-asymmetric at higher
frequencies: the standard deviation of |Ax

cv|2 (over the excitation
surface at frequency ω) increases from 8.6% (of 〈|Ax

cv|2〉ω) at h̄ω =
0.8E0 to 23.8% at h̄ω = 1.5E0.
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FIG. 6. (a) Circulation of the photonic shift vector S�x
ck←vk associated with the intraband Berry curvature for our model Hamiltonian in

Eq. (16), with Q̃ = 1. The curvature is represented with the color legend in Fig. 5(a). (b) The magenta line represents a singularity in the
interband Berry phase, i.e., an optical vortex. (c) Optical vortices appear as points (represented by magenta crosses) in a 2D closed k-manifold
parametrized by k1 and k2.

The last term is derived by Stokes’ theorem, and it corre-
sponds to a generically nonquantized20 circulation associated
with the intraband Berry phase, as illustrated in Fig. 6(a)
for our model Hamiltonian in Eq. (16), with Q̃ = 1. Beyond
our model Hamiltonian, the possibility exists for an integer-
quantized circulation stemming from the preceding term,
which involves the interband Berry connection [48,49]. One is
led to consider an optical vortex—a line in three-dimensional
k-space where (i) ε · Acvk = 0, and (ii) the argument/phase of
ε · Acvk winds nontrivially as k is varied along any infinites-
imal loop linked to the vortex line, as representatively illus-
trated by the black curve in Fig. 6(b). It is worth distinguishing
between �x-vortices (where Ax

cvk = 0) and �y-vortices (where
Ay

cvk = 0). Because Ax
cvk = 0 does not generally imply Ay

cvk =
0, one type of vortex may occur independently of the other.

Consider the shift current in a quasi-2D model where
�y-vortices are absent [Fig. 7(b)], but the excitation surface
encircles a pair of �x-vortices that are mutually related by
time reversal and mirror reflection [Fig. 7(a)].21 Figure 7
is derived from the model Hamiltonian in Eq. (16) with a
different set of parameters: Q̃ = −1 and P̃ = 12, but fixed
JDOS↑ ≈ (eVVcell )−1.

Just as for the model studied in Sec. III, only the
y-component of the shift conductivity (σy

�x,ω) is symmetry-
allowed to be nonzero. σ

y
�x,ω for an �x-polarized light source

is calculated via Eqs. (6)–(13), and is shown in Fig. 2(d)
to be dominated by its recombination component. The same
figure shows the difference between σ

y
�x,ω and σ

y
�y,ω to be of

order mA V−2. This represents an extraordinary sensitivity
of the shift current to the source polarization, and motivates
(σ�x,ω − σ�y,ω) as an experimental indicator of �x-vorticity. More
generally, for a quantity B(εs) that depends on the source

20With the inclusion of crystallographic symmetry and for a sym-
metric choice of ∂�, it is possible for the Berry-flux term to be
integer-quantized, which makes the circulation of the shift vector a
topological invariant [48].

21That optical vortices come in time-reversed pairs was proven in
Ref. [48].

FIG. 7. Characterization of a quasi-2D model with a pair of
�x-vortices, whose k-locations are indicated by pink dots in panels
(a), (c), and (e). Panels (a) and (b) depict the photonic shift vector
field Sεs

ck←vk, with εs = �x and �y, respectively. In panels (c) and (d),
the red ellipse represents the same excitation surface; the arrows
on the ellipse represent the vectors |εs · Acvk|2Sεs

ck←vk for k on the
excitation surface. In panels (e) and (f), the size of the red dots
indicates the magnitude of |εs · Acvk|2 for k on the excitation surface;
the jagged blue line represents a predominant relaxation pathway
from the excitation surface to the extremal wave vector: kext = 0.
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polarization, we refer to B(�x) �= B(�y) as a linear disparity
in B.22 The remainder of this section aims to demystify the
large linear disparity in σ

y
εs,ω, and the dominance of the

recombination-induced current when εs = �x.
Let us first understand the linear disparity in the excitation

component of the conductivity; cf. Eq. (14). Recall that σexc
εs,ω

is proportional to a weighted average of the photonic shift
vector over the excitation surface, which we have denoted
as 〈|εs · Acvk|2Sεs

ck←vk〉ω; cf. Eqs. (6)–(14). A major effect
of �x-vorticity without �y-vorticity is that the orientation of
|Ax

cv|2S�x
c←v , viewed as a vector field over k-space, tends to be

more disordered than the vector field |Ay
cv|2S�y

c←v .23 In particu-
lar, along the excitation surface, the orientation of |Ax

cv|2S�x
c←v

exhibits rotations, which are more pronounced than that of
|Ay

cv|2S�y
c←v , as comparatively illustrated in Figs. 7(c) and

7(d). Ceteris paribus, the average of a rotational vector field
is smaller than the average of an irrotational vector field,
hence ||〈|Ax

cv|2S�x
c←v〉ω|| < ||〈|Ay

cv|2S�y
c←v〉ω|| and |�y · σexc

�x,ω| <

|�y · σexc
�y,ω|.

A different argument is needed to understand the linear
disparity of the intraband conductivity: σ

intra,y
εs,ω in Eq. (14).

For an �x-polarized source, the photon-mediated transition rate
depends anisotropically on the orientation of kexc; in particu-
lar, |Ax

cv|2 is suppressed on segments of the excitation surface
that are closer to the vortex, where Ax

cv = 0; cf. Fig. 7(e). For
a �y-polarized source, the photon-mediated transition rate is
also anisotropic but in the opposite sense: |Ay

cv|2 is suppressed
near the mirror-invariant line (kx = 0), where Ay

cv = 0 by a
dipole selection rule; cf. Fig. 7(f).24 The opposite senses of
anisotropy imply that the predominant intraband relaxation
pathways are roughly parallel to the ky axis for an �x-polarized
source [Fig. 7(e)], and parallel to the kx axis for a �y-polarized
source [Fig. 7(f)]. Ceteris paribus, this implies a larger �y ·
σ intra

�y,ω for a �y-polarized source, because the y-component of the
anomalous shift [Eq. (5)] is proportional to the x-component
of the momentum transfer: �y · Sano

bk′←bk = �z
bkave

δkx.
A final argument explains the dominance of the

recombination-induced current jrec over the excitation-

induced current jexc for an �x-polarized source. Unlike jexc,
jrec is insensitive to the vortex-induced disordering in the ori-
entation of S�x

c←v . To understand why, recall that the majority
of recombination transitions occur at k points close to the
extremal wave vector kext and contained within the passive
region; cf. Sec. II and Eq. (A32). Each recombination tran-
sition is associated with a photonic shift Sεm

vk←ck, which may
as well be approximated as Sεm

vkext←ckext
, because the passive

region typically occupies a tiny fraction of the Brillouin-zone
volume. For the same reason, it is presumed that the optical
vortex does not intersect the passive region. It follows that
jrec depends on Sεm

vkext←ckext
but not on the vortex-induced dis-

order in S�x
ck←vk. To wrap up the argument, the vortex-induced

orientational disorder in S�x
c←v diminishes σexc

�x,ω but not σrec
�x,ω;

ceteris paribus, ||σrec
�x,ω|| > ||σexc

�x,ω||. This explains how “great
differences” (between the excitation and recombination shifts)
result from a “great circulation” (induced by a vortex).

To recapitulate, we have qualitatively argued that �x-
vorticity leads to σrec

�x,ω dominating over σexc
�x,ω, as well as

bringing about a linear disparity of both jexc and jintra.25 These
arguments are quantitatively supported by model calculations
detailed in Appendix F; here, we will just summarize the
salient conclusions: σ�x,ω is dominated by the recombination-
induced current; σ�y,ω is dominated by the excitation-induced
and intraband currents; the signs of σ

y
�x,ω and σ

y
�y,ω dif-

fer over a broad range of frequencies; the linear disparity
in the conductivity is large: |σy

�x,ω − σ
y
�y,ω| ∼ mA V−2 [cf.

Fig. 2(d)], assuming a generic value for the JDOS; the
current response to unpolarized light is slightly smaller:
|σy

�x,ω + σ
y
�y,ω|/2 ∼ 0.1 mA V−2; all these results hold without

fine-tuning of the incident radiation frequency.
To find optical vortices in model Hamiltonians and realistic

materials, let us develop the close relationship between vortic-
ity and Berry curvature that has been suggested by Eq. (17):
for any closed 2D k-manifold � (which can be a two-toroidal
or two-spherical cut of the 3D Brillouin zone), we establish
a general theorem relating the Chern numbers (Cv,Cc) of
the valence and conduction bands to the net optical vorticity
(Vortε):

Chern-vorticity theorem: Cc − Cv = Vortε =
∑
vortex

∮
∂ vortex

∇k arg[ε · Acvk] · dk
2π

. (18)

Vortε is the net circulation of the interband Berry phase
over all ε-vortex points in �, and ∂ vortex is an infinites-
imal loop surrounding each ε-vortex point as illustrated in

22In contrast, linear birefringence results from a linear disparity
in the first-order-in-Eω conductivity, which is associated with an
alternating current.

23The vector norm of |Ax
cv|2S�x

c←v is not singular: as k approaches
the vortex center, the quantized circulation implies S�x

ck←vk → ∞, but
this divergence is compensated by |Ax

cvk|2 → 0 [48].
24The conduction-band states transform in a different representa-

tion of mirror than the valence-band states, as detailed in Appendix F.

Fig. 6(c).26 This theorem is derived by setting � to be a
closed manifold in Eq. (17), such that the area integral of �c

simplifies to the Chern number Cc of the conduction band, and

25Vorticity also results in a linear disparity of jrec due to the absorp-
tion coefficient being proportional to 〈|εs · Acv|2〉ω, but this is not a
large effect in our model.

26An equivalent and manifestly gauge-invariant expression is
Vortε = ∑

vortex

∮
∂ vortex Sε

ck←vk · dk/2π , with the photonic shift vector
defined in Eq. (3). This expression differs from Eq. (18) only in
the line integral of Acc − Avv over ∂ vortex; this integral vanishes
because ∂ vortex is an infinitesimal loop and Acc − Avv is smoothly
defined at the vortex point; cf. Fig. 17 in Appendix G.
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FIG. 8. Panel (a) shows the Berry curvature vector field in the kz = 0 plane for the model Hamiltonian in Eq. (19) with Hamiltonian
parameter m′ = m − Aλ2 = ±0.044 eV. Panel (b) plots the photonic shift vector fields (S�z

c←v and S�x
c←v) in the kx+ − kz half-plane for m′ =

−0.044. The shift vectors circulate around optical �z-vortices (�x-vortices), which are represented by magenta (navy) crosses. (c),(d) For m′ =
−0.044 eV, we plot the shift conductivities (�z · σ�z and �z · σ�x) and their threefold decomposition. Panel (e) plots the �z · σ�z and its intraband
component versus Eg. Panel (f) plots �z · σ intra

�z against 1/Eg, with negative Eg corresponding to the trivial side of the topological phase transition.

that of �v to Cv; the line integral of the shift vector over ∂�

vanishes, but the line integral of the interband Berry phase
is contributed by the circulation around each vortex point,
as elaborated in Appendix G. The next section employs the
Chern-vorticity theorem to identify vortices in BiTeI.

V. CASE STUDY OF BiTeI

To demonstrate the effects of the anomalous shift and opti-
cal vorticity in a realistic material, we present a case study of
BiTeI, a 3D polar, layered semiconductor with P3m1 space-
group symmetry [50,51]. The large atomic number of Bi
correlates with a large Rashba-type spin-orbit coupling [51]
and the proximity of BiTeI to a Z2 topological insulator [52].
A previous study [23] of BiTeI by Tan and Rappe exhib-
ited the enhancement of �z · σexc

�z for �z parallel to the polar
axis, assuming the band gap |Eg| was made small (by hydro-
static pressure), and further assuming the photon frequency
was fine-tuned to be comparably small: ω ≈ |Eg|/h̄. This en-
hancement of �z · σexc

�z originates from the divergence of the
band-edge optical affinity at the phase transition (Eg = 0)
between the trivial and topological insulator; across this tran-
sition, �z · σexc

�z changes sign. Our case study demonstrates the
following:

(i) The just-mentioned topological phase transition guaran-
tees the existence of large Berry curvature [cf. Fig. 8(a)] and
optical vortices [Fig. 8(b)], as per the Chern-vorticity theorem
in Eq. (18).

(ii) For photon frequencies such that the excitation sur-
face is close to the optical vortex, the phonon-mediated �z ·
σ intra

ε dominates over the photon-mediated �z · (σrec
ε + σexc

ε )
[Fig. 8(c)], due to the excitation surface enclosing a larger
volume of one-quasiparticle Bloch states with nontrivial Berry
curvature.

(iii) Conversely for smaller frequencies (ω ≈ |Eg|/h̄) such
that the excitation surface encloses a negligible amount of
Berry curvature, it is �z · (σrec

ε + σexc
ε ), which dominates over

�z · σ intra
ε . The net current is nonvanishing despite �z · σrec

ε and
�z · σ intra

ε opposing each other [Fig. 8(d)], due to an asymmetry
of the photon polarizations in the excitation and recombina-
tion processes.

(iv) The recombination shift depends strongly on the
symmetry of the Hamiltonian at the wave vectors of recombi-
nation. For BiTeI, a chiral symmetry reduces |�z · Srec| to about
a third of the lattice period, which makes the recombination
shift current smaller than the other two components.

(v) Because the k-locations of optical vortices depend
on the light polarization [Fig. 8(b)], we find that �x-vortices
suppress the anomalous shift more effectively than would �z-
vortices, resulting in a linear disparity of the shift conductivity
(|�z · σ�z − �z · σ�x| ∼ 0.1 mA/V2) at higher frequencies.

(vi) If the topological phase transition is induced by tuning
the band gap |Eg| to zero at a fixed photon frequency, the
discrete change in wave-function topology manifests as a sign
change of the steady shift current j[ f ]. The reason for this
sign change is that j[ f ] is dominated by the phonon-mediated
jintra, which changes sign [Fig. 8(e)]; the previously calculated
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FIG. 9. On the left: the box is a 3D Brillouin zone containing a toroidal excitation surface (outlined in red), a pair of �z-optical vortex loops
(magenta dotted lines), and a pair of �x-optical vortex loops (navy dotted lines); the leftmost E -vs-k plot shows the band structure of BiTeI with
the kinetic processes of excitation (red arrows), intraband relaxation (green), and recombination (blue). On the right: an O(2) rotation symmetry
allows us to focus on the kx+ − kz half-plane, which contains a massive Dirac fermion in two momentum dimensions; the cross-section of the
toroidal excitation surface is a circle (colored red) in the half-plane; the cross-section of vortex loops is vortex points (indicated by magenta
and navy crosses). The dark blue and purple arrows represent diametrically opposed geodesic paths for intraband relaxation.

sign change of jexc (by Tan and Rappe [23]) is irrelevant.
The sign change of jintra is concomitant with a divergence of
the band-edge intraband Berry curvature at the phase transi-
tion, which results in an approximate (1/Eg) divergence of
the low-temperature �z · σε [Fig. 8(f)], with negative (positive)
Eg referring to a semiconductor (with band gap |Eg|) on the
topologically trivial (nontrivial) side of the phase transition.
The (1/Eg) divergence of �z · σε is cut off when Eg becomes
comparable to the thermal energy (kBTl ) or to an energy scale
representing trigonal warping; the latter scale is estimated [23]
to be about 10 meV.

It may be seen from (ii) and (iii) that the winner in the
competition (between shiftintra, shiftrec, and shiftexc) depends
sensitively on the photon frequency, to the extent that the
net shift conductivity changes sign in the transition from
a photon-dominated shift current (at low frequency) to a
phonon-dominated shift current (at high frequency); cf. the
black curve in Figs. 8(c) and 8(d). This exemplifies a general
principle: because band wave functions can depend strongly
on energy, the shift current can depend sensitively on the pho-
ton frequency. Point (v) exemplifies a general principle that
optical vorticity makes the shift current sensitive to changes
in light polarization. Point (vi) suggests the bulk photovoltaic
effect can provide smoking-gun evidence of the topological
phase transition in BiTeI. Such evidence is presently lacking:
though it has been alleged that BiTeI is pressure-tunable to a
phase transition, the experimental corroborations of this alle-
gation (namely, a minimum of the resistivity [53] or variations
of the quantum oscillation frequency [54]) cannot be directly
interpreted as a change in wave-function topology.

To substantiate our results, we employ an effective Hamil-
tonian for the four low-energy, spin-split bands of BiTeI:

HBiTeI = h̄v(λτ1σ3 − τ2k · σ) + Mτ3σ0;

M = (m − Ak2); k2 = k2
x + k2

y + k2
z , (19)

with τ1,2,3 and σ1,2,3 being Pauli matrices for the orbital
and spin degrees of freedom, respectively; τ0 and σ0 are

identity matrices, and A = 0.5 eVÅ
2
, h̄v = 0.7 eVÅ, λ =

0.25/(h̄v) = 0.357 Å
−1

are ab initio–derived [23] parameters.

The spectrum of this model is given by

E = ±
√

M2 + (h̄v)2
[
k2

z + (k⊥ ± λ)2
]
, k⊥ ≡

√
k2

x + k2
y ,

(20)

with each choice of either ± determining four energy levels
E1 � E2 < E3 � E4 as illustrated in Fig. 9, with correspond-
ing eigenstates |u1k〉, |u2k〉, |u3k〉, and |u4k〉. When m is tuned
to the critical value mc = Aλ2 (possibly by hydrostatic pres-
sure [23]), the band gap vanishes with a concomitant energy
degeneracy (E2 = E3) along a loop defined by k⊥ = λ and
kz = 0. The circular shape of this loop reflects the O(2) ro-
tational symmetry of the Hamiltonian.27

Away from the topological phase transition (m �= mc), the
Berry curvature of |u2k〉 is a circulating vector field illustrated
in Fig. 8(a), with the circulation flipping in orientation when
m′ = m − mc changes sign. Because this circulation is O(2)-
rotation symmetric, it may be understood by focusing on a
single 2D slice of the Brillouin zone, say, the slice with ky = 0
and kx > 0, which we henceforth call the kx+ − kz half-plane
(see Fig. 9). This half-plane is intersected by the energy-
degenerate loop at k0 = (λ, 0, 0); by Taylor-expanding HBiTeI

around k0 and projecting onto bands 2 and 3, we obtain an
effective Hamiltonian for a massive Dirac fermion in two
momentum dimensions:

H ′ = (m′ − h̄v′qx )γ3 + h̄v(qxγ1 + qzγ2);

h̄v′ = 2Aλ; qx = kx − λ, qz = kz, (21)

with γ1,2,3 being Pauli matrices of the reduced Hilbert space.
Detailed derivations of H ′ can be found in Appendix H. It is

27The SO(2) rotational symmetry of the Hamiltonian manifests
as R̂θ HBiTeI(k)R̂−1

θ = HBiTeI(gθ k), with R̂θ = eiθτ0σ3 , and with gθ k
obtained from k by a rotation of angle θ around the z axis. This
SO(2) rotational symmetry is approximate; we neglect a trigo-
nal warping whose energy scale is estimated [23] to be about
10 meV. Time-reversal symmetry is represented by T̂ = iτ3σ2K ,
with K implementing complex conjugation. The Hamiltonian term
proportional to τ1σ3 breaks both mirror [z → −z; M̂z = iτ3σ3] and
[(x, y, z) → (−x, −y, −z); P̂ = τ3] parity symmetries.
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known that the massive Dirac fermion is characterized by a
large Berry curvature �

y
ck = −�

y
vk for k in a “hot spot” of

width (band gap)/h̄v; assuming this width is small compared
to the linear dimension of the Brillouin zone, the Berry flux
through the half-plane changes by 2π when m′ changes sign:∫

half-plane �
y
ckdkxdkz = π sgnm′ [55].

This jump of the Berry flux indicates the presence of
optical vorticity on at least one side of the phase transition,
meaning for either m′ > 0 or m′ < 0. This is because as
m′ is tuned from 0− (negative infinitesimal) to 0+ (positive
infinitesimal), the net vorticity Vortε of the half-plane must
change discontinuously by +2 for any ε, according to the
Chern-vorticity theorem in Eq. (18).28 This topological ar-
gument is verified by our numerical calculations: As shown
in Fig. 8(b), for m′ < 0, two �z-vortices (�x-vortices) are ob-
served on the kx+ − kz plane, as highlighted by magenta (navy)
crosses. This indicates the presence of a pair of �z-vortex (�x-
vortex) loops as illustrated in Fig. 9 when m′ < 0.29 While the
locations of �x-vortex loops can only be determined numeri-
cally, direct calculations reveal that the �z-vortex loops reside at

λ = k⊥, kz = ±kz� with kz� =
√

λ2 − m/A. (22)

In contrast, there is no vorticity for m′ > 0. The circulation
of the photonic shift vectors in Fig. 8(b) implies that both �z-
vortex (�x-vortex) loops have vorticity −1, which is consistent
with the theorem’s prediction that Vortε changes by +2.

The combination of Berry curvature and optical vorticity
results in the threefold decomposition of the shift current
being highly sensitive to the photon frequency and polar-
ization. Focusing first on z-polarized light, the only nonzero
component of the shift current [allowed by O(2) symmetry]
is the z component. Figure 8(e) illustrates the threefold de-
composition of the shift conductivity �z · σ�z for a range of
frequencies, including low frequencies that are comparable
to |Eg|/h̄, as well as higher frequencies where the excitation
surface approaches the pair of �z-vortex loops, as illustrated in
Fig. 9.

We focus first on the high-frequency regime, where the
optical affinity |�z · Acv|2 is reduced in the vicinity of the zeros
of �z · Acv . Ceteris paribus, a reduction of the affinity would
depress each of �z · σexc

�z , �z · σrec
�z , and �z · σ intra

�z , according to
Eq. (10). This depression is observed in Fig. 8(e) for both
�z · σexc

�z and �z · σrec
�z ; in contrast, �z · σ intra

�z is enhanced rather than
depressed, for two reasons:

(a) The nonuniformity of the optical affinity (over the
excitation surface) favors �z · σ intra

�z . On the one hand, Fig. 9

28Strictly speaking, the half-plane is not a closed 2D k-manifold,
which precludes a direct application of the Chern-vorticity the-
orem. However, nearly the same logical considerations apply:
the eigenstates |ubk〉 continuously depend on m′ except for k =
k0 (the band-touching point), thus when m′ is tuned from 0−

to 0+, the photonic shift vector Sε
ck←vk is invariant for k on

the boundary of the half-plane. This implies that the change in
2
∫

half-plane �
y
ckdkxdkz/(2π ) equals the change in Vortε, across the

topological phase transition.
29Due to the SO(2) symmetry, �y-vortex loops are related to �x-vortex

loops because |�y · Acv (R4k)| = |�x · Acv (k)|, where R4 is the fourfold
rotation in momentum space.

shows that the optical affinity is more greatly reduced for
large |kz| (closer to the vortex) than it is for small |kz| (further
from the vortex), implying that the predominant relaxation
paths are proximate to the kx axis. On the other hand, only
those relaxation paths (for which dk is perpendicular to �z)
result in a large anomalous shift: �z · � × dk. Bringing both
hands together, �z-vorticity preserves the horizontal relaxation
paths, which have a large anomalous shift, and deactivates the
vertical relaxation paths which nevertheless have a negligible
anomalous shift.

(b) A higher photon frequency implies that the excitation
surface encloses a larger volume of quasiparticle Bloch states
with nontrivial Berry curvature, and this results in a larger
anomalous shift. For an intuitive understanding, consider re-
formulating the intra-conduction-band30 contribution to the
affinity shift loop [Eq. (10)]∑

P

(
|�z · Acv|2−P

∫
−P

+ |�z · Acv|2P
∫
P

)
�z · �ck × dk, (23)

with P and −P representing diametrically opposed geodesic
paths in a cross section of the torus enclosed by the excitation
surface (as representatively illustrated by arrows in the blue
and yellow semicircles of Fig. 9); |�z · Acv|2±P is the optical
affinity evaluated at the intersection of ±P with the excitation
surface, and

∑
P integrates over all pairs of ±P such as to

entirely fill the torus. From Eq. (23), one deduces that the
anomalous interband contribution (to the affinity shift loop)
increases with increasing photon frequency, because one inte-
grates the Berry curvature over increasingly wider paths.31

Conversely, for smaller frequencies (ω ≈ |Eg|/h̄), the ex-
citation surface lies closer to the extremal wave vectors
kext but further away from the vortex loops; then it is
the photon-mediated �z · (σrec

�z + σexc
�z ) that dominates over the

phonon-mediated �z · σ intra
�z [cf. the trends in Fig. 8(e)], due

to the Berry dipole moment vanishing as the volume (en-
closed by the excitation surface) shrinks [Fig. 8(g)]. �z · σexc

�z
and �z · σrec

�z oppose each other but do not cancel out, because
the excitation shift �z · S�z

c←v is larger in magnitude than the
recombination shift �z · Srec.32

In comparing the shift conductivities for �z- versus �x-
polarized light [Fig. 8(e) versus Fig. 8(f)], the starkest

30The total interband contribution to the affinity shift loop is twice
of Eq. (23), due to �ck ≈ −�vk.

31The increase of �z · σ intra (with respect to frequency) saturates
when the excitation energy (measured from the conduction-band
minimum) becomes comparable to the band gap: Eexc − Ec,kext ∼
|Eg|, as illustrated in Figs. 8(c) and 8(d). After all, this energy interval
contains the Berry curvature “hot spot.”

32This is explained by Srec being a weighted average of
Sε

vkext←ckext
over all possible polarization vectors ε of the sponta-

neously emitted photons [cf. Eq. (8)]. Moreover, �z · S�x
vkext←ckext

= �z ·
S�y

vkext←ckext
= 0 due to a chiral symmetry [τ2σ3HBiTeI(kx, ky, 0)τ2σ3 =

−HBiTeI(kx, ky, 0)], which is elaborated in Appendix H. This ex-
emplifies a general principle that the recombination shift strongly
depends on the symmetry of the Hamiltonian at the wave vectors
of recombination. For BiTeI, chiral symmetry reduces |�z · Srec| to
about a third of the lattice period, whereas for the two-band model in
Eq. (16), the symmetries of reflection and quasi-two-dimensionality
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difference is that �z · σ intra
�x is a nonmonotonic function that

is suppressed at higher photon frequency.33 This is because,
in contrast to �z-vortices and the above-mentioned point (a),
�x-vortices lie on the kx axis (cf. Fig. 9) and reduce the
optical affinity |�x · Acv|2 for small |kz|. Thus for high frequen-
cies, �x-vortices deactivate the horizontal relaxation paths that
have the largest anomalous shift (�z · � × dk); this effectively
suppresses the intraband shift current and leads to a linear
disparity (|�z · σ�x − �z · σ�z|) of order 0.1 mA V−2.

Let us close this section by explaining the (1/Eg)-
divergence (and concomitant sign change) of �z · σ intra

ε across
the topological phase transition, as illustrated in Figs. 8(e) and
8(f). It suffices to show that the affinity shift loop also has a
(1/Eg)-divergence, according to the proportionality relation
in Eq. (13). The contribution to the affinity shift loop [cf.
Eq. (23)] by a pair of diametrically opposed geodesic paths
(±P) can be further decomposed as

Affave

(∫
−P

+
∫
P

)
�z · �ck × dk

+ δAff

(∫
−P

−
∫
P

)
�z · �ck × dk, (24)

with Affave ≡ (|�z · Acv|2−P + |�z · Acv|2P )/2 and δAff ≡ (|�z ·
Acv|2−P − |�z · Acv|2P )/2. The term proportional to Affave is
asymptotically irrelevant as |Eg| approaches zero, due to an
emergent left-right symmetry of the massive Dirac fermion
[Eq. (21)] about the extremal wave vector.34 What remains is
to evaluate the asymptotic behavior of the term proportional
to δAff: the integral (

∫
−P − ∫

P ) of the anomalous shift vector
diverges as 1/Eg, because (i) �z · �ck × dk/|dk| diverges as
Eg/|Eg|3 at the band extremum, which is a well-known type
of divergence for massive Dirac fermions [cf. Eq. (H14)],
and (ii) the width of the Berry curvature hot spot is of order
|m′|/h̄v ∝ |Eg|. Combining both (i) and (ii), the second inte-
gral in Eq. (24) is estimated as (extremal value of curvature) ×
(hot-spot width), which is proportional to Eg/|Eg|3 × |Eg| =
1/Eg. Because this divergence applies to any pair of diamet-
rically opposed geodesic paths, the affinity shift loop must
likewise diverge as 1/Eg, and thus also �z · σ intra

ε ≈ �z · σε.
There are two reasons why this divergence will be cut off

in a more realistic model of BiTeI, meaning that the 1/Eg be-
havior breaks down in a narrow energy interval: |Eg| < E cut

g :
(i) The first reason is that not all photoexcited quasipar-

ticles will relax all the way down to the conduction-band
bottom (where the Berry curvature diverges), but instead they
will relax to a Maxwell-Boltzmann distribution with a charac-
teristic thermal energy kBTl .35

enhance |�y · Srec| by precluding an orientational-disordered average,
as explained in Appendix F.

33A minor difference between Figs. 8(c) and 8(d) is that �z · σexc
�x is

also nonmonotonic and remains small at low frequencies. This occurs
because �z · S�x

vkext←ckext
= 0, due to an emergent chiral symmetry at

the band edge, as elaborated in Appendix H.
34This left-right symmetry is explained in App. H 3.
35The preceding calculation of the 1/Eg divergence assumed that as

|Eg| → 0, kBTl must likewise → 0; indeed, the geodesic approxima-
tion relied on kBTl � |Eg|, as was explained in Sec. II.

(ii) The second reason is that the O(2) symmetry of
our effective model of BiTeI is only approximate; in real
BiTeI, the topological phase transition (between two topo-
logically distinct semiconductors) is not intermediated by
an O(2)-symmetric nodal-loop band touching, but by a C3v-
symmetric Weyl-semimetallic phase; the energy scale of the
C3v-symmetric trigonal warping is estimated to be about
10 meV [23].

Both reasons suggest the 1/Eg behavior of �z · σε to be
precluded with a cutoff E cut

g that is comparable to either kBTl

or 10 meV, whichever is larger.

VI. DISCUSSION AND OUTLOOK

A. The threefold way

The steady shift current density in a direct-gap semi-
conductor has a threefold decomposition: j = jexc + jrec +
jintra, corresponding, respectively, to current contributions by
interband excitation [cf. Eq. (7)], interband recombination
[Eq. (8)], and intraband relaxation [Eq. (9)]. While this three-
fold decomposition has been studied for simplified models
of pyroelectrics and piezoelectrics [5], it is here that jrec +
jintra acquires a new dimension of understanding through
the lens of wave-function geometry. Geometrical notions
(such as the Berry phase) transcend the traditional classifica-
tion of piezoelectrics versus pyroelectrics, and they provide
overarching principles to guide our interpretation of the out-
of-equilibrium, many-body dynamics of photoexcited matter.

One of our main results is that the excitation-induced cur-
rent density jexc can be outweighed by either jintra or jrec,
especially in semiconductors characterized by large intraband
Berry curvature or optical vortices (topological singularities in
the interband Berry phase). Model semiconductors with large
Berry curvature exhibit a shift-current conductivity that is of
order mA V−2 without fine-tuning of the incident radiation
frequency; in the presence of optical vortices, the conductivity
can change by ∼mA V−2 if the linear polarization vector
flips by 90◦. These estimates of the conductivity assumed a
generic value of the joint density of states, but in principle
the joint density of states can be further optimized [44] for a
synergistic enhancement. To our knowledge, no measurement
of the short-circuit conductivity in shift-current materials has
reached the mA V−2 range.

B. Wave-function approach to photovoltaic materials

Establishing the steady shift current in the broader frame-
work of wave-function geometry confers an advantage: we
acquire a Rosetta stone to translate our vast body of knowl-
edge (on topological materials) to concrete predictions of
photovoltaic materials. Here are two cases in point:

(i) Intraband relaxation due to electron-phonon scattering
results in an anomalous shift that is proportional to the in-
traband Berry curvature; cf. Eq. (5).36 Let us juxtapose this

36Electron-phonon scattering is not the only mechanism for in-
traband relaxation in a direct-gap semiconductor; electron-impurity
scattering also results in a shift [5], which may substantially con-
tribute to jintra for dirtier samples. The impurity-mediated shift is
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anomalous shift with the nonlinear Hall effect predicted by
Sodemann and Fu [57]. What matters to the anomalous shift
current is the Berry curvature of all Bloch states enclosed by
the excitation surface; this contrasts with the nonlinear Hall
effect, which depends (at low temperature) on the Berry cur-
vature of the Fermi surface. However, the two effects are not
completely divorced: a semiconductor with a large anomalous
shift current is continuously tunable (e.g., by doping) to a
metal with a large nonlinear Hall effect. This is evident from
Fig. 5(a) if one imagines the excitation surface to be a Fermi
surface.

(ii) While the topological-matter community is well-versed
in finding materials with large intraband Berry curvature, it
is presently unclear which materials have optical vorticity.
On the one hand, a high-throughput ab initio algorithm has
been proposed in Ref. [48] to search for materials with optical
vorticity. On the other hand, it would also be advantageous
to identify general, topological principles that guarantee the
existence of optical vorticity in certain classes of materials.
One such principle is the Chern-vorticity theorem in Eq. (18),
which relates the Chern number (of a 2D cross-section of a 3D
Brillouin zone, or of a 2D Brillouin zone) to the net vorticity
(of the same 2D cross-section or 2D Brillouin zone). This
theorem has broad implications for the vorticity in topological
semimetals and topological insulators, one of which is the
necessary existence of optical vorticity in BiTeI.

Our case study of the linear photogalvanic effect (LPGE)
in semiconducting BiTeI (Sec. V) illustrates four principles:

(a) Because the k-locations of optical vortices depend on
the light polarization, the steady shift current depends sen-
sitively on the light polarization. If the excitation surface is
proximate to an optical vortex, the photonic shift vector is
orientationally disordered over the excitation surface, which
tends to reduce the excitation shift current.

(b) The recombination shift strongly depends on the
symmetry of the Hamiltonian at the wave vectors of recombi-
nation. For BiTeI, chiral symmetry reduces the recombination
shift vector to about a third of the lattice period.

(c) Because band wave functions can depend strongly on
energy, so can the steady shift current depend sensitively on
the photon frequency. A rule of thumb is that the net shift
conductivity changes sign in the transition from a photon-
mediated shift current (at low frequencies corresponding to
band-edge excitation) to a phonon-mediated anomalous shift
current (at higher frequencies).

(d) The steady shift current is sensitive to discrete changes
of the wave-function topology. In particular, the steady shift
current changes sign across the Z2 topological phase transi-
tion, and the magnitude of said current is extraordinarily large
in the vicinity of the transition.

closely analogous to the “side jump” in the anomalous Hall effect
of magnetic metals [56]. In their study of the “side jump,” Sinitsyn
et al. have argued that the impurity-mediated shift reduces to the
anomalous shift [Eq. (5)] under two assumptions: (i) the small-
angle scattering is dominant, and (ii) the cell-periodic component of
the Bloch function is spatially homogeneous. The improbability of
either assumption makes for a tenuous relation between the impurity-
mediated shift and the anomalous shift.

FIG. 10. A photovoltaic phase diagram of BiTeI. The carrier
density can be tuned by varying the growth method [59,60] or by
doping with Cu [61]. Pressure can be applied within a diamond anvil
cell [53] or by chemical substitution.

The experimental implications of (a)–(d) are summarized
in Fig. 10. The figure also illustrates the bulk photovoltaic
current in semimetallic BiTeI: a previous theory [58] has
predicted a nonlinear Hall current that depends on the Berry
curvature dipole d of the Fermi surface and also changes sign
across the topological phase transition. For light sources in the
100 THz regime (and higher), the bulk photovoltaic current of
semimetallic BiTeI is dominated by the circular photogalvanic
effect (CPGE),37 but this is not true for semiconducting BiTeI.

Our photovoltaic phase diagram of BiTeI showcases the
tight correlations between wave-function geometry and the
bulk photovoltaic effect over a wide range of carrier densities
and on both sides of the topological phase transition. We
hypothesize that similar correlations hold for other topolog-
ical materials, suggesting that the bulk photovoltaic effect
is an unprecedented phenomenological framework in which
to faithfully diagnose and sensitively characterize topological
materials.

C. Transient versus steady photovoltaic current

Section II demonstrates that the steady, excitation-induced
current jexc well approximates the transient current at the
onset of radiation. By subtracting the transient current (mea-
sured at early times) from the steady current (measured at late
times), would one obtain jrec + jintra?38 Not quite, because the
steady photovoltaic current includes not only the shift current
but also the ballistic current.39

37The CPGE is larger than the LPGE by a factor ωτ  1, with
ω being the photon frequency and τ � 100 fs being the momentum
relaxation time [57].

38We consider an experimental geometry where the photon-
dragged current vanishes [1,2], and where the surface photovoltaic
current is separable from the bulk photovoltaic current [62].

39The ballistic current results from a (k → −k) asymmetry in the
quasiparticle distribution [3,22,30,62]; such asymmetry can be in-
duced by electron-impurity, electron-phonon [63], and electron-hole
interactions [64]. Does a large phonon-induced ballistic current cor-
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It may be argued that the transient current is insensitive to
the temperature of a photoexcited semiconductor,40 while the
steady current includes jintra, which is sensitive to the tem-
perature of the phonons. Suggestively, a substantial disparity
in the temperature dependence (of the transient versus steady
photocurrent) was observed for a ferroelectric charge-transfer
complex, though the disparity was attributed by Nakamura
et al. to the formation of a Schottky barrier at the sample-
electrode interface [21]. It would be interesting to see if this
disparity persists for a different electrode whose work func-
tion is identical to that of the sample.

Conversely, it has been reported that the Kraut-Baltz-Sipe-
Shrekbtii formula [4,6,13] for the shift current adequately
describes the photoconductivity measurements of n-GaP [65],
suggesting that jrec + jintra is small for this material; this
hypothesis can be tested by an ab initio study of the
intraband/interband Berry phase of GaP, which we would love
to see.

D. The loop approach to shift currents

Our analysis of the direct-gap semiconductor relied on
identifying a reduced set of quasiparticle transitions that con-
catenate into loops (cf. Fig. 4) and predominantly contribute
to the steady shift current [Eq. (1)]. Appendix D shows how
to exactly reformulate the BIS formula [Eq. (1)] as a sum over
loop currents:

j = −|e|
V

∑
B,B′,m

Sm
B′←B

(
Am

B′←B − Em
B←B′

) =
∑
loop

jloop, (25)

with jloop meaning the current contributed by a closed flow
line (in energy-momentum space) of one-electron probability.

The loop formulation holistically treats excitation, relax-
ation, and recombination as inextricably linked processes;
such linkage is epitomized by the shift loop in Eqs. (6)–(13).
Using loops allows us to derive general properties of the
steady shift current that do not necessarily apply to the tran-
sient shift current; in particular, a purported relation between
the shift current and interband polarization differences [49] is
shown in Appendix D 3 to apply to the transient current but
not the steady current. A related advantage of loops is calcu-
lational: approximating the steady shift current by a reduced
family of predominant loops [e.g., via Eq. (13)] requires far
fewer computational resources than simulating a quasiparticle
distribution fB that sets the collisional integral to zero, and
then inputting fB into the BIS formula; cf. Appendix C 2.

Our loop current formulation is applicable beyond direct-
gap semiconductors, with the caveat that the predominant
loops may change depending on the context. For instance, re-
combination in indirect-gap semiconductors is intermediated
by transitions between Bloch states and impurity-localized
states; such transitions also contribute to the shift current [30].

relate with a large phonon-induced jintra? We leave this open question
for future investigations.

40 jexc depends on temperature only through the photoexcitation
transition rate, which is proportional to (1 − fck ) fvk, with f the
Fermi-Dirac distribution. Assuming the band gap greatly exceeds
kBT0, (1 − fck ) fvk ≈ 1 is insensitive to T0.

In small-gap semiconductors or Dirac-Weyl semimetals, inter-
band recombination may be contributed by electron-phonon
scattering. It would be desirable to develop a theory of the
steady shift current in Dirac-Weyl semimetals, for which the
anomalous shift may potentially be large. It is hoped that
photoconductivity measurements of TaAs [66] would benefit
from a reinterpretation of what exactly is causing the shift.

E. The potential for solar-cell applications

A large short-circuit conductivity is not sufficient for
solar-cell applications; also required is a large open-circuit
photovoltage to generate sufficient electrical power. Though
shift-current materials can have open-circuit photovoltages
that greatly exceed the band gap [67–69], the product of the
short-circuit current and open-circuit photovoltage may be
limited depending on the architecture of the shift-driven solar
cell.

Let us first consider Pusch et al.’s model [70] of a
shift-driven solar cell, in which a homogeneous shift-current-
carrying intrinsic semiconductor is connected via leads to an
external load; henceforth, we refer to this as the PRCE cell.
Assuming a few ideal conditions, namely that the contacts
with the leads do not introduce additional resistance, and
that temperature is sufficiently low (kBT � Eg) to ignore the
dark conductivity, the light-to-electrical energy conversion
efficiency of a PRCE cell is calculated in Appendix K to be

eff = 1

4

mrs
2/τtrτrec

h̄ω
(26)

under monochromatic illumination with frequency ω. Here,
m−1

r = m−1
e + m−1

h is the reduced mass of an electron-hole
pair in the parabolic-band approximation, τtr is the Drude-type
transport lifetime for photoexcited carriers, and τrec is the
recombination lifetime; cf. Sec. II. s can be interpreted as
the average shift per photoexcited electron-hole pair, and is
expressible as a normalized affinity shift loop [cf. Eq. (10)]:

s = ASLεs,ω

〈 fvck|εs · Acvk|2〉ω . (27)

Our formula for the efficiency is essentially identical to
Eq. (11) in Ref. [70], except that our s replaces their
heuristically defined “average charge displacement R” with
a precisely calculable formula; moreover, Eqs. (26) and (27)
with Eqs. (6)–(10) clarify the oft-ignored roles of jrec + jintra
in the operation of a shift-driven solar cell.

Even if s is of order the lattice period a, it may be seen that
eff � 1 at solar frequencies and with typical values for a ≈
5 Å, mr ≈ m f (free-electron mass), τtr ≈ 100 fs, and τrec ≈
1 ns for radiative recombination. More appreciable efficien-
cies are expected for heavy-fermion materials dominated by
faster nonradiative recombination [71], and with extraordinar-
ily large lattice periods that characterize (moiré) superlattices.
Going beyond the PRCE model, inhomogeneous doping of
the shift-current-carrying semiconductor would marry advan-
tages of both the shift mechanism and conventional barrier
layer photovoltaics; whether such a synergy is incremental or
transformative remains to be seen.

115108-16



ANOMALOUS SHIFT AND OPTICAL VORTICITY … PHYSICAL REVIEW B 110, 115108 (2024)

ACKNOWLEDGMENTS

We thank Boris Sturman for patient explanations of the
BIS theory, Benjamin Fregoso for illuminating discussions
of third-order optical responses, Michael Schuler for ed-
ucating us on the electron-phonon interaction, and Pavlo
Sukhachov for a detailed reading and commentary. An illu-
minating discussion with Andreas Pusch helped us formulate
a more nuanced discussion of shift-driven solar cells. This
research was supported in part by the National Science Foun-
dation under Grant No. NSF PHY-1748958. In the final
stages of this work, P.Z. received support from the Center
for Emergent Materials, an NSF MRSEC, under Award No.
DMR-2011876.

APPENDIX

The Appendixes contains several supplementary re-
sults for the specialized audience. Most of these results
have been referenced and motivated in the main text.
An organizational structure is presented to help with
navigation:

Appendix A: This glossary collects many recurrent equa-
tions and symbols for easy reference. The equations include
the Belinicher-Ivchenko-Sturman (BIS) formula for the shift
current (Appendix A 1) and its threefold decomposition into
contributions by excitation, recombination, and intraband
transitions (Appendix A 4). The BIS formula inputs the quasi-
particle, photonic, and phononic occupancies and outputs
a current; certain assumptions about these occupancies are
recorded in Appendix A 2. All explicit calculations of the shift
current in this work have been based on a two-band, direct-gap
semiconducting model; the terminology that surrounds this
model is collected in Appendix A 3.

Appendix B: This Appendix summarizes several salient
aspects of the steady nonequilibrium distribution of photoex-
cited carriers. Included is a review of the different relaxation
mechanisms for a hot photoexcited carrier in a semiconductor
(Appendix B 1) and a derivation of the associated kinetic
model which applies in the regime of low carrier density
(Appendix B 2). Simplified versions of this kinetic model are
described if there is electron-hole symmetry (Appendix B 2 a)
and if the collisional integral is constant along isoenergy sur-
faces (Appendix B 2 b).

Appendix C: The BIS formula of the shift current is ped-
agogically derived in Appendix C 1, numerically calculated
in Appendix C 2, and compared to other formulas of the
shift current in Appendix C 3. This comparison elucidates
what is missing from the Kraut-Baltz-Sipe-Shkrebtii formula
[4,6,13], as well as formulas derived from dissipative Floquet
methods [17,19,20]. Appendix C 1 also demonstrates that to

describe the steady state perturbatively, the zeroth-order state
is emphatically not the thermal equilibrium state (in the ab-
sence of the light source).

Appendix D: The steady shift current is equivalently for-
mulated in terms of loop currents. The basic ingredients of
the loop formulation are presented in Appendix D 1, namely
the loop decomposition of the probability flow network,
the shift loop, and the loop current. A theorem derived in
Appendix D 2 formalizes the equivalence between the BIS
formula and a sum of loop currents. This theorem is applied
to revise a purported relation [49] between the shift current
and interband polarization differences (Appendix D 3), and to
derive the geodesic approximation of the shift conductivity
for 3D semiconductors (Appendix D 4) and quasi-2D semi-
conductors (Appendix D 6). The geodesic approximation is
rigorously justified as the small-angle-scattering limit of the
BIS formula in Appendix D 5.

Appendix E: The transient shift current is shown here to
be well approximated by the excitation-induced component of
the steady shift current. This Appendix rigorously elaborates
an argument presented in Sec. II.

Appendix F: The shift conductivity is calculated for a
model Hamiltonian with optical vortices to corroborate claims
made in Sec. IV about the vortex-induced linear disparity of
the shift conductivity.

Appendix G: A theorem relating Chern numbers to optical
vorticity [cf. Eq. (18)] is proven here.

Appendix H: A few facts that support our case study on
BiTeI are presented here, including an effective Hamiltonian
of a massive Dirac fermion that holds near the topological
phase transition, as well as the vanishing of the shift current
at the band edge, for x- and y-polarized light.

Appendix I: An alternative derivation of the anomalous
shift vector is provided.

Appendix J: A misconception about the electron-phonon
scattering rate is exposed. The misconception traces back to
a fallacious belief of a universally applicable gauge for the
Bloch wave function.

Appendix K: The energy conversion efficiency is calcu-
lated for a solar cell based on an intrinsic, shift-current-
carrying semiconductor.

APPENDIX A: GLOSSARY

1. The Belinicher-Ivchenko-Sturman formula

We use “Belinicher-Ivchenko-Sturman (BIS) formula” to
refer to two sets of equations for the phonon-mediated
and photon-mediated shift current. The former current is
given by

j = − |e|
V

∑
B,B′,m

Sm
B′←B

(
Am

B′←B − Em
B←B′

)
; B = (bk), B′ = (b′k′) m = (qp), (A1)

with the phononic shift vector given by

Phonon : Sm
B′←B = −(∇k + ∇k′ ) argV m

B′,B + Ab′b′k′ − Abbk = −S−m
B←B′ , (A2)
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and with the difference in absorption and emission transition rates given by

Phonon: Am
B′←B − Em

B←B′ = δq,k′−k
2π

h̄

∣∣V m
B′B

∣∣2δ(EB′B − h̄ωm){(1 − fB′ ) fBNm − (1 − fB) fB′ (Nm + 1)}, (A3)

with EB′B = EB′ − EB. Actually, the above equations are more general than those presented in Ref. [5], in that the above
equations allow for interband phonon-mediated transitions, while the formula in the BIS paper does not. This being a minor
generalization, we will anyway refer to our final formula as the BIS formula.

The BIS formula for the photon-mediated shift current combines Eq. (A1) with

Photon : Sm
b′k←bk = − ∇k arg εm · Ab′bk + Ab′b′k − Abbk = −S−m

bk←b′k; (A4)

Am
B′←B − Em

B←B′ = δk,k′
(2πe)2ωm

V |εm · Ab′bk|2δ(EB′B − h̄ωm){(1 − fB′ ) fBNm − (1 − fB) fB′ (Nm + 1)}, (A5)

in Gaussian units. In Ref. [5], Am
B′←B − Em

B←B′ appears with an additional multiplicative factor of 1/n2, with n the refractive
index; this factor should not be there, according to our derivation in Appendix C 1.41

In the steady state, the quasiparticle distribution fB satisfies a nondetailed balance condition that represents an invariance
under simultaneous collisions with all bosons:

For all B, 0 =
∑

m

∑
B′

(
Am

B←B′ + Em
B←B′ − Am

B′←B − Em
B′←B

)
, (A6)

with
∑

m summing over all photonic and phononic modes. The right-hand side of the above equality may be viewed as the
collisional integral evaluated to second order in the electron-boson coupling, i.e., the integral has a form expected from Fermi’s
golden rule. Equations (A1)–(A6) represent a closed set of equations to determine the shift current: one first determines fB from
Eq. (A6) and then inputs fB into Eq. (A1).

2. Quasiparticle, photon, and phonon occupancies

The above equations show that the BIS current is a functional of the quasiparticle, photon, and phonon occupancies:

j = j
[

fB, Nphot
m , Nphon

m

]
, (A7)

with the dependence on occupancies given solely by the transition rates A = A[ fB, Nphot
m , Nphon

m ] and E = E[ fB, Nphot
m , Nphon

m ].
Throughout this work, f symbolizes the occupancy of charged, fermionic quasiparticles that are long-lived in an insulator

[72], though strictly speaking we do not account for the renormalization of the wave function [73]. When there is no T (for
temperature) superscript on fB, fB should be understood as the nonequilibrium, steady distribution determined in a kinetic model
(cf. Appendix B 2), hence fB generically deviates from the thermal

Fermi-Dirac distribution : f T
B = 1

e(EB−μ)/kBT + 1
. (A8)

The phonons are assumed to thermalize with a lattice temperature Tl , meaning that the phonon occupancy is a Planck
distribution:

Phonon: Nm = NTl
m = 1

eh̄ωm/kBTl − 1
. (A9)

We will not always have the “phon” or “phot” superscript on Nm, so the meaning of m should be deduced from the local context.
The minimal frequency for optical phonons is defined to be the optical phonon threshold:

Optical phonon: min{ωm} = �o; kBTl � h̄�o ⇒ NTl
m � 1. (A10)

h̄�o is typically comparable to kB times room temperature. We assume in calculations of the shift conductivity that the lattice
temperature is small compared to the optical phonon energy, hence the thermal occupancy of optical phonons is negligible.

The photon occupancy is assumed to be a sum of thermal and source-generated contributions:

Photon : Nm = NTl
m + �Nsδm,ms ; �Ns  1. (A11)

We have assumed that the source is bright (�Ns  1) and produces photons of a single, linearly polarized mode:

Source: mode = ms; frequency = ωs = c||qs|| > Eg/h̄; polarization vector = εs ∈ R3. (A12)

41The 1/n2 factor is absent in the Sturman-Fridkin monograph [30], which followed after the BIS paper. A factor of 1/n appears only in the
conversion of photon occupancies to the radiation intensity; cf. Appendix C 3.
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In the classical approximation to the radiation field, �Ns can
be be expressed in terms of the electric-wave amplitude ac-
cording to42

E = Eωεse
i(qs·r−ωst ) + c.c.; |Eω|2 = 2π

h̄ω�Ns

V . (A13)

The vector-valued shift conductivity is defined by the nonlin-
ear current response:

j = σε,ω|Eω|2, (A14)

with j the shift current in Eq. (A1).
A basic property of the quasiparticle transition rates is that

the absorption and emission rates cancel out if the fermions
and bosons are thermalized with the same temperature:

Detailed balance :
(
Am

B′←B − Em
B←B′

)
f T
B , f T

B′ ,NT
m

= 0. (A15)

This holds for both phonons and phonons, as one may verify
by substituting the Fermi-Dirac and Planck distributions into
Eqs. (A3)–(A5).

3. Direct-gap semiconducting model

All explicit calculations of the shift conductivity in this
work are based on a model of a direct-gap intrinsic semicon-
ductor with two bands (not counting spin):

Band indices : b = c (conduction); b = v (valence);

Bloch labels: C = (ck); V = (vk). (A16)

EC − EV is assumed to be minimized at a single wave vector,
which we call the extremal wave vector:

min{Ecvk} = Ecvkext = Eg, Ecvk = EC − EV . (A17)

The band gap Eg is assumed to be large compared to the lattice
temperature Tl (with source turned on) and the equilibrium
temperature T0 (with source turned off), hence the equilibrium
Fermi-Dirac occupancies are close to being binary:

kBT0 � Eg ⇒ f T0
C ≈ 0; f T0

V ≈ 1. (A18)

Isoenergy surfaces of a band are defined to k-surfaces in which
the band dispersion is constant:

Isoenergy surface of band b and energy E ≡ all k satisfying EB = E . (A19)

The source photon frequency is assumed large enough that resonant absorption can occur across the band gap, and the
excitation surface is defined as the k-surface where resonant optical absorption can occur:

ES ≡ excitation surface ≡ all k satisfying Ecvk = h̄ωs > Eg. (A20)

We define Eb,exc as the energies of b-band states on the excitation surface:

Excitation energy: Ec,exc = {EC | k ∈ ES}; Ev,exc = {EV | k ∈ ES}. (A21)

We will encounter symmetric models where Ec,exc is degenerate for all conduction-band states on the excitation surface, meaning
the excitation surface is an isoenergy surface of energy Ec,exc.

For photonic modes that mediate resonant interband transitions, their thermal occupancy is negligible:

Resonant photon : NTl
m δ(Ecvk − h̄ωm) � δ(Ecvk − h̄ωm) ⇐ kBTl � Eg. (A22)

The passive and active regions of either band are defined with respect to the optical phonon threshold [Eq. (A10)]:

Conduction: : Eck − Eckext > h̄�o (active); 0 < Eck − Eckext < h̄�o (passive);

Valence: − (Evk − Evkext ) > h̄�o (active); 0 < −(Evk − Evkext ) < h̄�o (passive). (A23)

4. Excitation, recombination, and intraband components of the shift current

As discussed in Sec. II, the steady shift current can be decomposed into contributions by excitation, recombination, and
intraband relaxation processes:

Threefold decomposition : j = jexc + jintra + jrec. (A24)

Here, we present the explicit expressions for each of the three components in Eqs. (A25)–(A30).
The excitation-induced current is defined to be the shift current contributed by interband, vertical transitions over the

excitation surface [Eq. (A20)]:

Excitation-induced current: jexc = j[ f ]k=k′∈ES ≈ −2↑↓
|e|
V
∑

k

Sεs
ck←vkIms

exck; (A25)

Excitation rate: Ims
exck = (2πe)2ωs

V |εs · Acvk|2 fvckδ(Ecvk − h̄ωs)�Ns. (A26)

42This may be derived from the standard relation [74,75] between the classical electromagnetic vector potential and the photon number:

E = −1

c

∂As
em

∂t
, As

em = 2c

√
h �Ns

ωs V
εs cos(qs · r − ωst ).
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2↑↓ = 2, with the additional subscript reminding us that this two originates from the spin degree of freedom. fvck is defined to be
fvk − fck. Equation (A25) has been presented for the case in which a pair of spinless bands (labeled b = v and c) are optically
excited; if there are more than a pair, simply sum the right-hand side of Eq. (A25) over all pairs.

Equation (A25) is derived by restricting
∑

kk′ in Eq. (A1) with the condition that k = k′ lies on the excitation surface, and this
is the meaning of j[ f ]k=k′∈ES. In principle,

∑
m in j[ f ]k=k′∈ES sums over all bosonic modes with the same frequency ωm = ωs

as the source-generated photons. This
∑

m may be restricted to photonic modes, because the band gap is presumed to exceed
the optical phonon energies. Photon-mediated vertical transitions over the excitation surface can be divided into five classes,
according to Eqs. (A5) and (A11):

(i) Absorption of thermal photons with a rate ∝NTl
m fv (1 − fc).

(ii) Stimulated emission of thermal photons with a rate ∝NTl
m fc(1 − fv ).

(iii) Absorption of source-generated photons with a rate ∝�Ns fv (1 − fc).
(iv) Stimulated emission of source-generated photons with a rate ∝�Ns fc(1 − fv ).
(v) Spontaneous emission of photons with a rate ∝ fc(1 − fv ).
In practice, only (iii) and (iv) are significant. Here is why. Since the timescale to spontaneously emit photons (∼1 ns)

greatly exceeds the timescale for scattering with phonons (∼100 fs), the contribution of (v) to the shift current is negligible.
By our assumptions that temperature is low and that carriers are resonantly excited, kBTl � Eg � h̄ωs = h̄ωm, hence the Planck
occupancy NTl

m � 1. It follows that �Ns  1  NTl
m , and we then assume (i) � (iii), and (ii) � (iv). Keeping only (iii) and (iv)

leads to Eq. (A25).
The intraband current is defined to be the shift current contributed by intraband transitions:

Intraband current: jintra =
∑

b=v,c

jb
intra; jb

intra = j[ f ]b=b′ = −2↑↓
|e|
V|

phon∑
m

∑
k,k′

Sm
bk′←bk

(
Am

bk′←bk − Em
bk←bk′

)
, (A27)

with A − E given in Eq. (A3). When bands do not overlap on the energy axis (as is true for our two-band semiconducting model),
intraband transitions may be restricted to phononic modes, because the typical quasiparticle band velocity is much less than the
speed of light.

It is useful to decompose the intraband current into contributions by acoustic and optical phonons: jb
intra = ja,b

intra + jo,b
intra.

Assuming (a) kBTl � h̄�o, (b) the active region is much bigger than the passive region (|Eb,exc − Eb,kext |  h̄�o), and that (c)
small-angle scattering predominates, the effect of acoustic phonons is substantially outweighed by that of optical phonons:
|| ja,b

intra|| � || jo,b
intra||. Here is why. Assumption (c) allows us to employ the small-angle-limit of the phononic shift in Eq. (5);

because this anomalous shift is proportional to δk = ||k′ − k||, the net effect of transitions k′ ← k within the passive region
is ignorable compared to transitions within the much larger active region; cf. a similar argument made in Sec. II. Within the
active region, transitions mediated by optical phonons are predominantly that of spontaneous emission, because the thermal
occupancies of optical phonons are small; cf. Eq. (A10). Transitions mediated by spontaneous emission of optical phonons
predominantly result in a larger shift than transitions mediated by acoustic phonons; this is because the timescales for individual
collisions are comparable to 100 fs for both types of phonons [31], but for optical phonons, δk has a lower bound given by �o

divided by the carrier group velocity, while the only lower bound for electron–acoustic-phonon scattering is the trivial bound
δk > 0. Altogether, these considerations lead to the intraband shift current being dominated by

jo,b
intra ≈ 2↑↓

|e|
V|

optical phonons∑
m

∑
k,k′

Sm
bk′←bkE

sp,m
bk←bk′ , (A28)

E sp,m
bk←bk′ = δb,b′δq,k′−k

2π

h̄

∣∣V m
B′B

∣∣2δ(EB′B − h̄ωm)(1 − fB) fB′ . (A29)

The recombination-induced current is defined to be the shift current contributed by vertical photon-mediated transitions
(ck ↔ vk) for k outside the excitation surface:

Recombination-induced current: jrec = j[ f ]k=k′ /∈ES = 2↑↓
|e|
V

phot∑
m

∑
k

Sm
ck←vkIm

reck, (A30)

Recombination rate: Im
reck = (1 − δk,ES)

(
Em

vk←ck − Am
ck←vk

)
, (A31)

with A − E given in Eq. (A5). We have introduced δk,ES as the projector to the excitation surface, and 1 − δk,ES as the
complementary projector. Equation (A30) may be simplified on the basis of two considerations:

(a) The
∑

k in Eq. (A30) may be further restricted to a small-k volume corresponding to the passive region, according to
arguments presented in Sec. II and Appendix B 1.

(b) Because of the projection in Eq. (A30), jrec depends on the thermal photon occupancy NTl
m but not the source-generated

occupancy �Ns; since the thermal occupancies of resonant photons are small [cf. Eq. (A22)], one may as well retain only the
transitions mediated by spontaneous emission.
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Altogether, (a) and (b) imply

jrec ≈ 2↑↓
|e|
V

phot∑
m

pass∑
k

Sm
ck←vkE

sp,m
vk←ck, (A32)

E sp,m
vk←ck = δk,k′

(2πe)2ωm

V |εm · Acvk|2δ(Ecv − h̄ωm)(1 − fv ) fc.

(A33)

We take
∑pass

k to mean an integral over the passive k-volume
of either the conduction or valence band [cf. Eq. (A23)],
whichever of the two volumes is smaller.

The threefold decomposition of the shift current in
Eq. (A24) implies a threefold decomposition of the shift con-
ductivity defined in Eq. (A14):

σε,ω = σexc
ε,ω + σ intra

ε,ω + σrec
ε,ω, σexc

ε,ω = jexc

|Eω|2 ,

σ intra
ε,ω = jintra

|Eω|2 , σrec
ε,ω = jrec

|Eω|2 . (A34)

APPENDIX B: THE NONEQUILIBRIUM DISTRIBUTION
OF PHOTOEXCITED CARRIERS

1. Relaxation mechanisms for photoexcited carriers

The steady shift current in a semiconductor cannot be
calculated without understanding some basic aspects of the
relaxation mechanisms and distribution of photoexcited carri-
ers, which we review here. (We use “carrier” as a shorthand
for hole and electron quasiparticles.) Much of this brief review
derives from a more comprehensive review by Esipov and
Levinson [27].

Which scattering process dominates the energy relaxation
of carriers depends on (i) the radiation intensity J generated
by a source, and (ii) the energy E of the carrier.

The dependence on J is because the rate of carrier-carrier
scattering via the instantaneous Coulomb interaction increases
with the density n of photoexcited carriers,43 and n is roughly
proportional to J .

The dependence on the carrier energy E is because the
matrix elements for scattering depend on the initial and final
states. An especially strong dependence develops for E near
the optical phonon threshold h̄�o, which is defined as the
smallest optical phonon energy. Our convention is that E for
an electron (hole) carrier is set to zero at the conduction-
band minimum (valence-band maximum). For E < h̄�o (the
passive region), a carrier is forbidden by energy conservation
against emitting optical phonons, and energy relaxation is sub-
stantially suppressed relative to E > h̄�o (the active region);
cf. Eq. (A23) and Figs. 3(b) and 3(c).

We define an upper bound nh to the carrier density,
such that if n � nh (meaning much less than or compa-
rable in magnitude), scattering by optical phonons is the
primary/dominant mechanism of energy relaxation for pho-
toexcited carriers in the active region; if n  nh, it would
be carrier-carrier scattering that dominates energy relaxation

43If the majority of photoexcited carriers follow a Maxwellian dis-
tribution, the rate of carrier-carrier scattering is simply proportional
to n; cf. Eq. (2.3.6) in Ref. [27].

in the active region. For instance, nh ∼ 1018 cm−3 for GaAs
[27]. We assume throughout this paper that optical phonons
are the primary energy relaxers in the active region. Because
the typical carrier–optical-phonon scattering time τ o ∼ 100 fs
[31,32], which is far smaller than the interband recombination
time (τrec ∼ 1 ns) [27,30], the majority of carriers would relax
into the passive region where they await recombination.44

In other words, the steady electron (hole) distribution in the
passive region accounts for most of the electrons in the con-
duction band (holes in the valence band), as illustrated in
Fig. 3(c).

It is also useful to identify the secondary/subdominant
mechanism for energy relaxation in the active region; the
two candidates are carrier-carrier scattering and carrier–
acoustic-phonon scattering. We assume that the subdominant
mechanism in the active region is also the dominant mech-
anism for energy relaxation in the passive region, where
carrier–optical-phonon scattering “switches of” discontinu-
ously. Let us define a second density nl � nh, such that in
the intermediate density range: nl � n � nh (e.g., 1013 �
n � 1018 cm−3 for GaAs), carrier-carrier scattering is the sub-
dominant relaxer in the active region; and in the low-density
regime: n � nl , carrier–acoustic-phonon scattering is the sub-
dominant relaxer in the active region.

For at least a number of semiconductors, steady-state mea-
surements of hot-carrier photoluminescence spectra45 support
the hypothesis that photoexcited electrons in the passive re-
gion largely follow a nondegenerate Maxwellian distribution
with a source-dependent chemical potential μe and electron
temperature Te; likewise, the majority of photoexcited holes
in the passive region are Maxwellian with parameters μh and
Th. μe and Te are distinct from the equilibrium chemical po-
tential and temperature: Te simply equals the nonequilibrium
lattice temperature Tl if electron–acoustic-phonon scattering
is the dominant energy relaxer in the passive region (n � nl );
however, Te may exceed Tl if electron-electron scattering is the
dominant energy relaxer in the passive region (nl � n � nh).
Typically, both kBTe and kBTh < h̄�o, so most of the photoex-
cited carriers occupy only a smaller fraction of the passive
region, and recombination transitions predominantly occur
between electrons (with energy � kBTe) and holes (with en-
ergy � kBTh). In large part, the theory that is presented in the
main text is agnostic about fine-grained details of the carrier
distribution within the passive region, meaning the theory is
generally applicable whether or not a Maxwellian distribution
develops in the passive region. However, if it does develop,
then explicit kinetic models can be constructed that are based
on the diffusive approximation for energy relaxation; cf. Ap-
pendixes B 2 b and E.

2. The kinetic model in the low-density regime

We will introduce a kinetic model that holds in
the low-density regime (n � nl ) and forms the basis

44Because h̄�o ∼ 30 meV, and a typical bandwidth ∼1 eV, it takes
at most 30 emissions of optical phonons for a hot carrier to relax into
the active region. 30 × 100 fs is still much less than τrec.

45For instance, see Refs. [76,77]; more experiments are reviewed in
Refs. [27,28].
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for numerical simulations of the BIS formula in
Appendix C 2.

The collisional integral for a quasiparticle in a two-
band semiconductor may decomposed into vertical photon-
mediated transitions and intraband phonon-mediated transi-
tions:

Ick = Iphot
k + Iphon

ck , Ivk = −Iphot
k + Iphon

vk . (B1)

The photon-mediated component can be further decomposed
into an excitation rate [Eq. (A26)] and recombination rate
[Eq. (A31)], depending on whether k lies on the excitation
surface or not:

Iphot
k = δk,ESIms

exck − (1 − δk,ES)
phot∑

m

Im
reck. (B2)

The phonon-mediated component can be decomposed into
incoming transitions that increase the quasiparticle occupancy
and outgoing transitions that decrease the quasiparticle occu-
pancy:

Iphon
bk =

phon∑
m

∑
k′

(
Am

bk←bk′ + Em
bk←bk′ − Am

bk′←bk − Em
bk′←bk

)
,

(B3)

with A and E defined in Eq. (A3). Each of Iexc, Irec,A, and E
depends on the quasiparticle distribution fB; this distribution
is is defined to be steady if it sets the collisional integral to
zero:

Steady distribution: Ick[ fB] = Ivk[ fB] = 0 for all k.

(B4)

Let us first address the contribution to Iphon
bk by carrier–

optical-phonon scattering, which is assumed to be the
dominant energy relaxation mechanism in the active region;
cf. Appendix B 1. As justified in Appendix A 4, one may
neglect the absorption and stimulated emission of optical
phonons, retaining only the transition rate for spontaneous
emission: Am

bk←bk′ − Em
bk′←bk → −E sp,m

bk′←bk
, with E sp defined in

Eq. (A29). We assume that small-angle polarization scattering
predominates over deformation scattering [35]. For simplicity
in modeling, we focus on polarization scattering by a single
branch of longitudinal optical phonons, in which case the
phonon mode m is fully specified by a phonon wave vector
q; for small q, the phonon frequency is assumed to be approx-
imately a constant equal to �o. The asymptotic expression for
the collisional integral is then given by46

Optical phonon: Io
bk =

∑
qk′

(
E sp,q

bk←bk′ − E sp,q
bk′←bk

)
, (B5)

E sp,q
bk←bk′ = δk′−k,q

2π

h̄

∣∣V q
bk′bk

∣∣2δ(Ebk′k − h̄�o)(1 − fbk) fbk′ ;

(B6)∣∣V k′−k
bk′bk

∣∣2 = ∣∣V k−k′

bkbk′
∣∣2 ≈ h̄

2π

ζa

V
|〈ubk′ |ubk〉cell|2

|k′ − k|2 . (B7)

46For general expressions, see Eq. (3.12) in Ref. [36] and the
discussion in Sec. III. For the specific case of longitudinal optical
phonons, Sec 1.3.E in Ref. [78] contains a concise derivation.

ζ is a coupling parameter with dimensions of energy over
time. The inner product of cell-periodic Bloch functions is
related to the quantum metric tensor [79,80] as

|〈ubk′ |ubk〉cell|2 = 1 − δkiδk jg
i j
bk + O(δk3);

gi j
bk = Re

〈∇ i
kub

∣∣∇ j
k ub

〉
cell

− Ai
bbkAj

bbk; (B8)

δk = k′ − k,

with Abbk the intraband Berry connection.47 Below room
temperature (kBTl � h̄�o), spontaneous emission of optical
phonons dominates over stimulated emission and absorption,
meaning we drop all terms in Eq. (B7) that are proportional to
the Planck occupancy: NTl

q � 1.

Next we attend to the contribution to Iphon
bk by carrier–

acoustic-phonon scattering, which has been assumed to be the
subdominant energy relaxation mechanism in the active re-
gion; cf. Appendix B 1. Deformation scattering with acoustic
phonons is typically outweighed by piezoacoustic scattering
[35]. The precise expression of the transition rate/matrix el-
ement for piezoacoustic scattering will not be required, and
because we will eventually employ a diffusive Fokker-Planck
approximation to the collisional integral. For now, it is worth
knowing that the matrix element depends on the quasiparticle
band index only through48∣∣V k′−k,p

bk′,bk

∣∣2 ∝ |〈ubk′ |ubk〉cell|2, (B9)

just as for polarization scattering with optical phonons in
Eq. (B7).

a. Electron-hole symmetric kinetic model

Because it is numerically intensive to simulate a steady
distribution that satisfies Ick[ fB] = Ivk[ fB] = 0 for all k, we
will resort to two model assumptions. The first is that band
energies and electron-phonon-scattering matrix elements are

Electron-hole symmetric: Eck = − Evk,∣∣V m
ck′,ck

∣∣2 =∣∣V −m
vk,vk′

∣∣2, (B10)

with −m being the momentum-inverted counterpart of m. This
symmetry condition ensures for the phononic transition rates
that

Am
ck←ck′ [1 − fv, 1 − fc] =A−m

vk′←vk[ fc, fv],

Em
ck←ck′ [1 − fv, 1 − fc] =E−m

vk′←vk[ fc, fv], (B11)

as may be verified by inspecting Eq. (A3); the meaning
of A[1 − fv, 1 − fc] is to replace fck → 1 − fvk and fvk →
1 − fck for all terms in A, and for all k. The photonic tran-
sition rate satisfies Iphot

k [1 − fv, 1 − fc] = Iphot
k [ fc, fv], even

without assuming electron-hole symmetry; cf. Eq. (B10).

47Recently, the electron-phonon coupling has been related to an
orbital-projected analog of the Fubini-Study metric [81].

48See Eqs. (3.15) and (3.16) in Ref. [36], bearing in mind a remark
made in Sec. III about a missing factor.
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Altogether,

Ick[1 − fv, 1 − fc]

= Iphot
k [ fc, fv] +

phon∑
m

∑
k′

(
A−m

vk′←vk + E−m
vk′←vk

− A−m
vk←vk′ − E−m

vk←vk′
)

fc, fv
= −Ivk[ fc, fv]. (B12)

Thus the steady-state condition Ick = Ivk = 0 is solved
by an electron-hole-symmetric distribution: fck = 1 − fvk. In
particular, if fck is found such that Ick[ fc, 1 − fc] = 0, then it
is guaranteed that Ivk[ fc, 1 − fc] = 0.

Let us check that our model for the quasiparticle Hamil-
tonian [H (k) in Eq. (16)] and carrier-phonon scattering
[Eqs. (B3)–(B7)] is electron-hole-symmetric in the sense
of Eq. (B10). Suppose that the conduction- and valence-
band wave functions are related by an antiunitary operation:
|uck〉cell = Ĉ|uvk〉, which implies 〈uck|uck′ 〉 = 〈uvk′ |uvk〉. Be-
cause the electron-phonon matrix element (for both polariza-
tion and piezoacoustic scatterings) only depends on the band
index through |〈ubk|ubk′ 〉|2 [cf. Eq. (B9)], |V m

ck,ck′ |2 = |V m
vk,vk′ |2.

Applying a general property of electron-phonon matrix ele-
ments: V m

bk,bk′ = V −m
bk′,bk

[cf. Eq. (C21)], one obtains the second
equation in Eq. (B10). For the specific model Hamiltonian in
Eq. (16), the antiunitary operation is simply Ĉ = σ2K , with
σ2 the second Pauli matrix and K implementing complex
conjugation. More generally, any H (k) that is a sum of Pauli
matrices satisfies

σ2H (k)σ2 = −H (k), Eck = −Evk. (B13)

The last condition further implies that the excitation surface is
an isoenergy surface:

0 = Ecvk − h̄ωs = 2Eck − h̄ωs (B14)

for any source radiation frequency ωs. In other words, the
set of excitation energies Ec,exc defined in Eq. (A21) is just
a single energy.

b. Isoenergy symmetric kinetic model

To recapitulate, we want to numerically simulate an
electron-hole-symmetric distribution fck such that Ick[ fc, 1 −
fc] = 0. Having reduced the problem to a single band by
electron-hole symmetry, one may as well drop the band in-
dex on fck → fk, Eck → Ek, and Ec,exc → Eexc. We further
redefine E = 0 to be the minimal energy for the conduction
band.

To simplify the simulation of fk, we further assume that fk

is approximately isoenergy-symmetric, meaning that fk is ap-
proximately constant under variation of k within an isoenergy
surface for Ek:

fk ≈ fE , fE = 〈〈 fk〉〉kE ,

〈〈	(k)〉〉kE =
∑

k

δkE 	k, δkE = δ(Ek − E )

VgE
, (B15)

with gE meaning the density of conduction-band states per
unit volume (V) and per spin orientation. We refer to 〈〈· · · 〉〉kE

as isoenergy-averaging, and fE as the isoenergy-averaged
distribution. For the purpose of computing the shift current,

fk ≈ fE is justified to the extent that the collisional integral
in Eq. (B1) is isoenergy-symmetric: Ik ≈ IE = 〈〈Ik〉〉kE , which
constrains the model Hamiltonians that we allow ourselves to
numerically simulate.49

By averaging the kinetic equation Ik[ fc, 1 − fc] = 0 over
an isoenergy surface, one obtains50

E > Ecut : gE IE [ f ] = G↑[ f ] δ(E − Eexc) − gE fE

τ o
E

+ gE+ fE+

τ o
E+

− gE fE

τrec
− ∂E js

E = 0,

E± = E ± h̄�o. (B16)

We will explain the terms on the right-hand side in turn:
(i) Recalling the excitation energy Eexc [Eq. (A21)] to be

the energy of conduction-band states on the excitation surface,
G↑ δ(E − Eexc) is the rate of increase in the quasiparticle num-
ber density gE fE due to the absorption of source-generated
photons.51 In other words, G↑[ f ] is the rate at which source-
generated photons are absorbed per unit volume and per spin
orientation;

G↑[ f ] = α↑[ f ]Irad

h̄ω
(B17)

can be expressed as a product of the single-spin absorption
coefficient and the radiation intensity, divided by the source
photon energy.

(ii) −gf /τ o|E (+gf /τ o|E+ ) in Eq. (B16) represents an out-
flow (inflow) of electrons due to spontaneous emission of
optical phonons. τ o

E is the average time for a quasiparticle
with energy E to spontaneously emit an optical phonon; in the
passive region (E < h̄�o), spontaneous emission is forbidden
by energy conservation, hence we set τ o

E = ∞. One may relate
τ o

E to the collisional integral Iphon
k by

gE+ fE+

τ o
E+

− gE fE

τ o
E

= ζa

V2

cut∑
kk′

δ(Ek − E )
|〈uk′ |uk〉cell|2
|k − k′|2

× { fk′δ(Ek′ − E+) − fkδ(Ek′ − E−)}. (B18)

The right-hand side is obtained by applying
∑

k δ(Ek − E )/V
to the component of Iphon

k corresponding to spontaneous emis-
sion of optical phonons [cf. Eq. (B7)] and dropping all terms

49In general, it should be expected that the nonequilibrium distri-
bution is isoenergy-asymmetric with respect to inverting k: fk �= f−k.
This is possible because the continuous absorption of photons creates
a nonequilibrium state with a direction for time. Consequently, the
asymmetry ( fck − fc,−k) is proportional to the light intensity [30] and
contributes to a “ballistic current” [3] but not the shift current.

50The following kinetic equation is very similar to one studied in
Ref. [82]; however, we would rather not presume they adopted the
same premises as we have adopted.

51G↑ δ(E − Eexc) is derived by applying
∑

k δ(Ek − Eexc)/V to Iphot
k

[Eq. (B2)] and retaining terms that are proportional to the source
photon number �Ns; cf. Eq. (A11).
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that are nonlinear in the quasiparticle distribution: fk fk′ � fk

and fk′ ; bear in mind that nondegenerate fermion statistics
( fk � 1) apply to a wide range of continuous-wave laser
experiments [27]. Because we are employing an asymptotic
expression that is valid for small-angle scattering, we have
introduced a cutoff in

∑cut
kk′ , so that δk = |k − k′| is much less

than the linear dimension of the Brillouin zone.
(iii) −gE fE/τrec represents the quasiparticle loss rate due to

interband recombination by spontaneous emission of photons.
The effects of absorption and stimulated emission of thermal
photons are negligible, as was explained in Appendix A 4. In
numerical simulations, we just take τrec ∼ 1 ns to be a typ-
ical, energy-averaged timescale for interband recombination
[27,30]. In principle, one could refine the model by replacing
τrec → τ rec

E , with τ rec depending on E through the energy de-
pendences of the dipole matrix element and fE .52 In practice,
what matters to the shift current is the order-of-magnitude
difference: τ rec

E  τ o
E , which guarantees that recombination

transitions predominantly occur in the passive region, inde-
pendent of the precise energy dependence of τ rec; cf. Sec. II
and Eq. (A32).

(iv) −∂E js
E is the rate of change of gE fE induced by

electron–acoustic-phonon scattering. A negative js
E represents

a scattering-induced relaxation of the number density gE fE to-
ward decreasing energies, so we refer to js

E as the energy-axis
current. In principle, this current should be an integral of fE ;
however, the smallness of acoustic-phonon energies relative
to typical electron energies allows us to employ the diffusive
Fokker-Planck approximation [35,83]:

js
E = −gE E

τ s
E

(1 + kBTl∂E ) fE . (B19)

E/τ s
E is the dynamic friction coefficient [35], which is

interpretable as minus the “drift speed” of a number-density-
valued wave packet on the energy axis. The form of (1 +
kBTl∂E ) encodes an Einstein relation between the dynamic
friction coefficient and the diffusion coefficient.53

Our previous assumption that energy relaxation is dom-
inated by optical phonons can now be expressed as a
mathematical inequality, namely that the dynamic friction
coefficient is much less than the energy relaxation rate due
to spontaneous emission of optical phonons:

E > h̄�o : ηE = E

h̄�o

τ o
E

τ s
E

� 1. (B20)

The diffusive approximation is valid on the condition
that the density of states is analytic and the collisions are
quasielastic. The former condition rules out van Hove sin-
gularities [84]. The latter condition means precisely that the
change in a quasiparticle’s energy (due to a collision) is much

52gE fE/τ rec
E = ∑

k δ(Ek − Eexc)E sp,m
vk←ck/V , with the spontaneous

emission rate defined in Eq. (A33).
53For electron–acoustic-phonon scattering, the Einstein relation is

derived most directly from simplified expressions in Sec. 4.5 of
Ref. [35], assuming that kBTl  the acoustic phonon energy. In a
subsequent discussion in Appendix E, we will also need an analogous
Einstein relation for electron-electron scattering, which has been
derived in Ref. [27].

less than the quasiparticle’s initial energy [35]. This holds for
most quasiparticle energies, since acoustic-phonon energies
are a very small fraction of the quasiparticle bandwidth. We
introduce a cutoff energy Ecut that is comparable to the typical
acoustic phonon energy, such that the diffusive approximation
holds for E > Ecut.

For energies less than the cutoff, we adopt the following
kinetic equation:

0 < E < Ecut : gE IE [ f ] = gE+ fE+

τ o
E+

− gE fE

τrec
− js

Ecut

Ecut
= 0.

(B21)

− js
Ecut

represents a (downward ≡ energy-relaxing) current
of the number density gE fE across the cutoff energy [cf.
Eq. (B19)]; any density that relaxes across the cutoff is equally
distributed between all conduction-band states below the cut-
off.54 This crude modeling of scattering below the cutoff can
in principle be improved upon, but we remind the reader that
the steady shift current is insensitive to fine details of the
quasiparticle distribution within the passive region, due to
arguments explained in Sec. II. Despite the crudeness of the
model, it ensures that all phonon-mediated collisions conserve
the total number of quasiparticles within the conduction band.
In other words, if all the collisional terms in Eqs. (B16)–
(B21), with the exception of terms involving G↑ and τrec, are
collectively denoted as gE I intra

E , then
∫∞

0 gE I intra
E dE = 0.

APPENDIX C: BELINICHER-IVCHENKO-STURMAN
FORMULA FOR THE SHIFT CURRENT

1. Derivation of the Belinicher-Ivchenko-Sturman formula

It has been expressed to the authors that the Belinicher-
Ivchenko-Sturman theory [5] is difficult to penetrate. To our
knowledge, no explicit derivation of the BIS formula yet exists
in the literature. We will therefore derive their main formulas
for pedagogy. More precisely, we mean to derive the form
of the phonon-mediated (photon-mediated) shift current to be
Eq. (A1), with the phononic (photonic) shift vector given in
Eq. (A2) [Eq. (A4)], and with the difference in absorption and
emission transition rates given by Eq. (A3) [Eq. (A5)].

Since the BIS formula encodes the spontaneous emis-
sion of photons, the derivation requires us to quantize the
radiation field. If one were to quantize the radiation field
but retain a first-quantized electron description, one would
derive an analog of the BIS formula that is only applica-
ble to nondegenerate Fermi statistics, i.e., one would miss a
spontaneous-emission term that is nonlinear in the distribu-
tion function [cf. Eq. (A5) below]. To properly account for
the Pauli exclusion principle in the presence of spontaneous
emission, it is necessary to apply second quantization to the
electron. It is fortuitous but misleading that terms that are

54The − js
Ecut

/Ecut term can be viewed as a collisional term gE Is
E [ f ]

due to the secondary scattering mechanism. The crudeness in our
approximation lies in assuming gE Is

E [ f ] is independent of E for E
below the cutoff. This amounts to assuming that Is

E is independent of
E , because the density of states is energy-independent for a quasi-2D
parabolic band.
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nonlinear in the distribution function cancel out if one consid-
ers only photon absorption and stimulated emission [Eq. (A5)
with Nm + 1 ≈ Nm]; thus it has been possible for theories
(based on first quantization of the electron and a classical
theory of radiation) to neglect the exclusion principle and yet
derive correct formulas for the transient shift current, as will
be elaborated in Appendix C 3.

Our derivation also manifests how a perturbation theory
of the steady state differs dramatically from a perturbation
theory of the transient state. Most practitioners who calcu-
late nonlinear optical responses are calculating the transient
response, and their zeroth-order state is the thermal equilib-
rium state in the absence of the light source. In steady-state
perturbation theory, the zeroth-order state is emphatically not
a thermal state; instead, Appendix C 1 e proves rigorously that
if the state is steady, the zeroth-order quasiparticle distribu-
tion satisfies a nondetailed balance condition that represents
an invariance under simultaneous collisions with all bosons.
Moreover, we have no reason to believe that the zeroth-order
state in steady perturbation theory is perturbatively connected
to the thermal equilibrium state (in the absence of the light
source).

The outline of the derivation is as follows:
(i) Appendix C 1 a sets up the problem and establishes the

notation. We review salient properties of the independent-
electron Hamiltonian, the crystal momentum representation,
the independent-boson Hamiltonian, Fock space, and the
electron-boson interaction. Finally, we express the shift cur-
rent in terms of stationary density matrices, and we derive a
perturbative expression for the stationary density matrix in the
Lippmann-Schwinger scattering formalism.

(ii) The Lippmann-Schwinger formula for the stationary
density matrix is expressed in terms of second-quantized ma-
trix elements; these elements will be reduced to first-quantized
matrix elements in Appendix C 1 b. The result of this reduc-
tion is an intermediate formula for the photonic and phononic
shift current in Eqs. (C48) and (C57), respectively. These
intermediate formulas are more formal than optimal: they are
expressed in terms of an infinite number of band-off-diagonal
matrix elements of the position operator.

(iii) Appendix C 1 c derives an optimal expression for the
photonic shift current, with help from a sum rule derived from
the first-quantized commutation relation between position and
canonical momentum.

(iv) Appendix C 1 d derives an optimal expression for the
phononic shift current, with help from a sum rule derived from
the first-quantized commutation relation between position and
the phonon-induced potential-energy field.

(v) Appendix C 1 e demonstrates that the zeroth-order
density matrix is not thermal; instead, the zeroth-order quasi-
particle distribution satisfies a nondetailed balance condition
that represents an invariance under simultaneous collisions
with all bosons.

a. Preliminaries

We decompose our Hamiltonian into two independent-
particle terms and an electron-boson interaction:

H = H0 + U, H0 = H ele
0 + Hbos

0 . (C1)

We will first explain the independent-particle terms:
Independent-electron Hamiltonian and the crystal momen-

tum representation. H ele
0 is a mean-field Hamiltonian for

independent electrons in a crystalline medium:

H ele
0 =

∑
B

EBc†
BcB, [cB, c†

B′ ] = δB,B′ ,

B = (b, k), B′ = (b′, k′), (C2)

where [x, y] = xy − yx (the commutator) and B is a collec-
tive index for both the band label and crystal wave vector.
We assume throughout this work that spin-orbit coupling is
negligible; to simplify notation, b should be understood as a
spinless band label, and H as a Hamiltonian in one spin sector;
only in the final steps will the current be multiplied by 2 to
account for the spin degeneracy of bands.

cB annihilates an electronic state with a wave function of
the Bloch form: eik·rubk(r)/

√
V , with ubk(r) = ubk(r + R) be-

ing periodic in Bravais-lattice translations, and V the volume
of the medium. These cell-periodic functions are normalized
as

〈ubk|ub′k〉cell = δb,b′ , 〈X |Y 〉cell =
∫

dτ

Vcell

X (τ )Y (τ), (C3)

with τ the intracell coordinate, δb,b′ a Kronecker delta function
for the band labels, and Vcell the real-space volume of the
primitive unit cell. The orthonormality and completeness of
our basis of Bloch waves reads

〈B|B′〉1 = δB,B′ = δbb′δkk′ , I1 =
∑

B

|B〉〈B|1. (C4)

I is the identity operator, and the superscript 1 in Eq. (C4)
reminds us that we are dealing with a first-quantized, one-
particle Hilbert space.

Our notation for k suggests misleadingly that k is a discrete
wave vector:

∑
B = ∑

b

∑
k and δB,B′ = δk,k′δb,b′ . However,

for the position operator to have a well-defined action on pe-
riodic Bloch states, one must take V to be infinite [85], hence
δkk′ = (2π )3δ(k − k′)/V should be understood as a shorthand
for a Dirac δ function, and we will be applying certain iden-
tities that apply to Dirac δ functions but not Kronecker δ

functions:

∇kδkk′ = −∇k′δkk′ , fk′∇kδkk′ − fk∇kδkk′ = δkk′∇k fk.

(C5)∑
k should also be understood as an integral over the Bril-

louin zone: V
∫

BZ d3k/(2π )3. With these caveats in mind, we
present the first-quantized position, canonical momentum, and
velocity operators in the crystal momentum representation
[85]:

rBB′ = 〈B|r̂|B′〉1 = iδbb′∇kδkk′ + δkk′Abb′k,

Abb′k = 〈ubk|i∇kub′ 〉cell, (C6)

pBB′ = 〈B| p̂|B′〉1 = δkk′Pbb′k,

Pbb′k = 〈ubk| p̂|ub′k〉cell = m f vbb′k, (C7)

vBB′ = 〈B|v̂|B′〉1 = δkk′vbb′k, vbb′k = 〈ubk|v̂|ub′k〉cell. (C8)

We have assumed in the absence of spin-orbit coupling that
v̂ = p̂/m f , with m f the free-electron mass. It is also worth
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defining the band-off-diagonal position operator as

r̂off =
∑
BB′

roff
BB′ |B〉〈B′|1,

roff
BB′ = δkk′Aoff

bb′k, (C9)

Aoff
bb′k = Abb′k(1 − δbb′ ),

which is related to the band-off-diagonal elements of the ve-
locity operator [85]:

voff
b′bk

Ebb′k
= − i

h̄
Aoff

b′bk, Ebb′k = Ebk − Eb′k. (C10)

Independent-boson Hamiltonian. Hbos
0 is the independent-

boson Hamiltonian absent the zero-point energy:

Hbos
0 =

∑
m

h̄ωma†
mam′ ,

ama†
m′ + a†

m′am = δm,m′ , m = (q, p), (C11)

where the index m = (qp) runs over both photonic and
phononic modes.

We follow Fermi’s prescription [86] in quantizing the
transverse/solenoidal component of the electromagnetic vec-
tor potential in the Coulomb gauge [74,75]. For photons, q
is a wave vector in R3 with a cutoff: h̄cq < Ecut; the cutoff
energy may be taken as the largest energy difference between
the Bloch bands, which are excited by the light source.55

p ∈ {1, 2} specifies one of the two possible transverse polar-
izations for a given q; we adopt a linearly polarized basis,
meaning the polarization vector is real-valued: εm ≡ ε

(p)
q̂ =

ε
(p)
−q̂ ∈ R. The photon frequency is polarization-independent:

ωm = cq with q = ||q||.
For phonons, q is a wave vector in the BZ, and p =

3, 4, . . . , 3Nnuc + 2 is a label for a nondegenerate phonon
band, with Nnuc being the number of nuclei per primitive
unit cell. ωqp = ω−qp is the renormalized phonon dispersion
[87,88].

Altogether,
∑

m = ∑
p

∑
q with p running over 3Nnuc + 2

values,
∑

q = V
∫

d3q/(2π )3 with the integration domain de-
pending on p, and δm,m′ should be understood as δq,q′δp,p′ .

Fock space. Eigenstates of the independent-particle Hamil-
tonian are labeled by electronic occupancies nB ∈ {0, 1} and

bosonic occupancies Nm ∈ {0, 1, 2, . . .}:
(H0 − Eμ)|μ〉 = 0, μ = ({

nμ
B

}
B,
{
Nμ

m

}
m

)
,

Eμ =
∑

B

EBnμ
B +

∑
m

h̄ωmNμ
m . (C12)

Throughout this Appendix, Greek symbols (like μ) are used
as a collective index for all electronic and bosonic occupan-
cies. {nB}B means a set of occupancies for all Bloch states,
but we will often use the shorthand {nB}B → {n}. Likewise
for {Nm}m → {N}. We will refer to |μ〉 as an independent-
particle state. The set of independent-particle states forms an
orthonormal basis (〈μ|ν〉 = δμ,ν) for the combined-electron-
boson Fock space. The resolution of identity is given by

I =
∑

μ

|μ〉〈μ| =
∑
{n}

∑
{N}

|{n}{N}〉〈{n}{N}|,

∑
{n}

=
∏

B

1∑
nB=0

,
∑
{N}

=
∏

m

∞∑
Nm=0

. (C13)

Any operator Oe with an e superscript should be under-
stood as acting only in the electronic Fock space, which
is spanned by independent-electron states denoted as |{n}〉e.
(The existence or absence of subscripts distinguishes kets in
different Hilbert spaces.) We will focus on bilinear electronic
operators

Oe =
∑
B,B′

OB,B′c†
BcB′ , Oe

μν = 〈{nμ}|Oe|{nν}〉e, (C14)

with matrix elements denoted as Oe
μν ; the commutator of two

bilinear operators is expressible as

[Ge, Oe] =
∑
BB′

[G, O]BB′c†
BcB′ , Ge =

∑
B,B′

GB,B′c†
BcB′ .

(C15)

Electron-boson interaction. We decompose U into a tensor
product of operators acting in the electronic and photonic
Fock spaces:

U =
∑

m

U e
m(am + a†

−m), U e
m =

∑
B,B′

U m
B,B′c†

BcB′ = (
U e

−m

)†
,

(C16)

with −m = (−q, p) the momentum-reversed partner of m =
(qp). U e

m = (U e
−m)† ensures that U is self-adjoint. For m that

is photonic (phononic), U m
B,B′ is defined as the electron-photon

(electron-phonon) matrix element:

U qp
bk,b′k′ =

⎧⎨⎩δk,k′W̆ qp
bb′k, W̆ qp

bb′k =
√

he2

ωqpV ε
(p)
q̂ · vbb′k (electron-photon),

V qp
bk,b′k′ = δk,k′+qV̆

qp
bb′k, V̆ qp

bb′k = V−1 ∑RL
G P̃E

qp
q+G〈ubk|eiG·r̂|ub′k−q〉cell (electron-phonon).

(C17)

We will describe each matrix element in turn.

55This cutoff is imposed for self-consistency: our use of the dipole approximation requires that q is much less than the linear dimension of
the BZ.
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The electron-photon matrix element is derived from the
first-order term in the nonrelativistic minimal coupling:
|e|A⊥ · v/c, with v the second-quantized electron velocity
operator and A⊥ the quantized electromagnetic vector poten-
tial satisfying ∇ · A⊥ = 0 [74]. The photonic expression in
Eq. (C17) is valid in the dipole approximation. Within this
approximation, U e

m = U e
−m = (U e

m)† is self-adjoint. Minimal
coupling also results in an electron-photon interaction propor-
tional to e2, but such a coupling does not contribute to the shift
current because it cannot induce interband transitions within
the dipole approximation [cf. Eq. (C23) below].

We adopt a simplified electron-phonon matrix element
V̆ qp

bb′k which is derived in the adiabatic approximation (where
phonons are frozen from the electron’s perspective) and by
applying the Hartree approximation to electron-electron inter-
actions [36,87]. In the expression for V̆ qp

bb′k,
∑RL

G sums over all
reciprocal-lattice vectors, q is a wave vector in the Brillouin
zone (BZ), and q + G = Q is a wave vector in R3. P̃E

m
Q =∫

R3 e−iQ·rPEm
r dr is a Fourier transform of the one-electron

potential energy PEm
r induced by annihilating a phonon of

mode m. PEm
r is self-consistently [87] screened in a crystalline

medium, and is linearly related to the bare potential energy
PEm;0

r :

P̃E
qp
q+G =

RL∑
G′

ε−1
q+G,q+G′ P̃E

qp;0
q+G′ = P̃E

−qp
−q−G, (C18)

with ε−1
Q,Q′ = ε−1

−Q,−Q′ the static, inverse dielectric function in
the Hartree approximation.56 The bare potential energy is ex-
pressible in terms of ṽQ = 4πe2/||Q||2, the Fourier transform
of the Coulomb interaction:

P̃E
qp;0
q+G = iṽq+G

nuclei∑
j

(
h̄NcellZ2

j

2ωqpMj

)1/2

(q + G) · ε j
qpe−iG·r j

= P̃E
−qp;0
−q−G, (C19)

with the caveat that ṽ0 = 0 to account for the electrical neu-
trality of the entire medium [89]. Ncell = V/Vcell is the number
of primitive unit cells; j labels the nuclei in one primitive unit
cell; a nucleus labeled j has a charge Zj |e|, mass Mj , and

real-spatial coordinate r j ; ε
j
m = ε

j
−m is the polarization vector

of the jth nucleus.57

It is worth defining a first-quantized operator whose matrix
elements (with respect to Bloch waves) are identical to the
electron-phonon matrix element [Eq. (C17)]:

V̂ qp = V−1
RL∑
G

P̃E
qp
q+Gei(q+G)·r̂, 〈B|V̂ m|B′〉1 = V m

BB′ . (C20)

Because PEm
r is the one-body potential induced by a complex-

valued wave (rather than a standing wave), the potential is not
real-valued but satisfies PEm

r = PE−m
r ; moreover, V̂ m is not

56An explicit expression can be found in Eq. (12.16) of Ref. [87].
57The above expressions are obtained from equations (2.9)–(2.11)

in Ref. [36].

self-adjoint:

(V̂ m)† = V̂ −m = T̂ V̂ mT̂ −1, V m
BB′ = V −m

B′B , (C21)

with T̂ being the first-quantized, time-reversal operator.
Shift current in terms of density matrices. We adopt

the Schrödinger representation in which am, a†
m, U , and H

are all time-independent, i.e., am is not accompanied with
the multiplicative factor e−iωmt . This allows us to solve for the
stationary density matrix

∂tρ = − i

h̄
[H, ρ] = 0, ρ = ρ (0) + ρ (1) + ρ (2) + · · ·

(C22)

in time-independent perturbation theory, with ρ (n) propor-
tional to the nth power of the perturbation U .

Because ρ is stationary, −|e|Tr[vρ] represents a direct cur-
rent. −|e|Tr[vρ (0)] represents the direct current in the absence
of the light source, and vanishes by time-reversal symmetry.
We will see in Appendix C 1 b that ρ (1) does not contribute
to the direct current, but ρ (2) does. The shift current is the
second-order direct current contributed by band-off-diagonal
elements of the velocity matrix vbb′k:

j = −|e|
V Tr[voffρ

(2)],

voff =
∑
b,b′,k

voff
bb′kc†

bkcb′k, (C23)

voff
bb′k = vbb′k(1 − δb,b′ ).

Band-diagonal elements contribute to the “ballistic current”
[3], which we do not touch upon in this work.

Stationary density matrix from the Lippmann-Schwinger
formalism. We will derive ρ (n) based on the Lippmann-
Schwinger scattering formalism [90,91], which we briefly
review.

For any independent-particle state |μ〉 with energy Eμ, one
can construct an “in” state |μ+〉 that is an eigenstate of the full
Hamiltonian with the same energy:

(H − Eμ)|μ+〉 = 0,

|μ+〉 = |μ〉 + G+
Eμ

U |μ〉, (C24)

G+
E = 1

E − H + i0+ ,

with G+ the retarded Green’s function and 0+ a positive
infinitesimal. An “in” state has the same normalization as
its independent-particle counterpart [91]. Since the set of
independent-particle states forms an orthonormal basis, so
then does the set of all “in” states: 〈μ+|ν+〉 = δμ,ν .

Let us motivate the imaginary infinitesimal by a wave-
packet interpretation proposed in Ref. [91]. The above cor-
respondence between |μ〉 and |μ+〉 allows us to parametrize
|μ+〉 by the one-particle wave vectors (k1, k2, . . . , q1, q2, . . .)
of electrons and bosons that make up |μ〉. Thus it is possible to
form a wave packet by smoothly linearly combining |μ+〉 with
slightly different values for the one-particle wave vectors. The
i0+ guarantees that such a wave packet behaves essentially
as a superposition of independent particles in the far past:
t → −∞.58 The use of “in” states thus simulates a scattering
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process in which localized wave packets of electrons and
bosons are initially separated (in real space) but subsequently
approach each other, and in so doing they evolve into an en-
tangled, polaritonic/polaronic state with a nontrivial current.

Let us construct a density matrix by summing over outer
products of “in” states weighted by probability coefficients
Fμ:

ρ =
∑

μ

Fμ|μ+〉〈μ+|, 1 =
∑

μ

Fμ. (C25)

Because the “in” state is an eigenstate of H , ρ satisfies the
stationary condition in Eq. (C22). By iteratively expanding the
Green’s function in a perturbative series

G+ = G+
0 + G+

0 UG+
0 + G+

0 UG+
0 UG+

0 + · · · ,

G+
0;E = 1

E − H0 + i0+ , (C26)

one obtains a perturbative series for the density matrix:

ρ =
∑

μ

Fμ|μ+〉〈μ+| = ρ (0) + ρ (1) + ρ (2) + · · · ,

ρ (0) =
∑

μ

Fμ|μ〉〈μ|. (C27)

Because the zeroth-order component ρ (0) is stationary with
respect to the noninteracting Hamiltonian H0, one may as well

take Fμ to be a product of one-particle probabilities pnB and
PNm :

Fμ = p{nμ}P{Nμ}, p{n} =
∏

B

pnB , P{N} =
∏

m

PNm . (C28)

The sense in which p and P are one-particle probabilities is
that

1 =
1∑

nB=0

pnB =
∞∑

Nm=0

PNm ,

〈nB〉 =
1∑

nB=0

pnB nB=
∑

μ

Fμnμ
B , (C29)

〈Nm〉 =
∞∑

Nm=0

PNm Nm =
∑

μ

FμNμ
m ,

with 〈nB〉 and 〈Nm〉 being the average number of electrons
and bosons with the one-particle labels B and m, respectively.
In a generic, nonequilibrium state, pnB does not have the
Fermi-Dirac form, and instead satisfies a nondetailed balance
condition that represents an invariance under simultaneous
collisions with all bosons, as detailed in Appendix C 1 e.

It is convenient to introduce the shorthand

Fμν = Fμ − Fν, Eμν = Eμ − Eν, (C30)

and express ρ (1) and ρ (2) in terms of their matrix elements in
the independent-particle basis:

ρ (1)
μν = 〈μ|ρ (1)|ν〉 = FμνUμν

Eμν − i0+ , (C31)

ρ (2)
μν =

∑
λ

UμλUλν

[
Fλ

(Eλμ + i0+)(Eλν − i0+)
+ Fν

(Eνμ + i0+)(Eνλ + i0+)
+ Fμ

(Eμλ − i0+)(Eμν − i0+)

]

=
∑

λ

UμλUλν

Eμν − i0+

[
Fμλ

Eμλ − i0+ + Fνλ

Eλν − i0+

]
. (C32)

b. From second-quantized matrix elements to first-quantized matrix elements

We need only concern ourselves with matrix elements ρ (n)
μν with |μ〉 and |ν〉 having identical occupations numbers for all

bosonic modes. After all, for any operator O = Oe ⊗ (ident ity) that acts trivially in the bosonic Fock space,

Tr[Oρ] =
∑
μν

Oνμρμνδ{Nμ},{Nν }. (C33)

In particular, Eq. (C33) holds for O being the electronic velocity operator v. An immediate implication is that ρ (1) does not
contribute to the direct current: Tr[vρ (1)] = 0, because ρ (1)

μν ∝ Uμν [cf. Eq. (C31)] and U necessarily changes the boson number;
cf. Eq. (C16).

Let us apply Eq. (C33) to the shift current [Eq. (C23)] with ρ (2) = ∑
λ UμλUλν . . . given in Eq. (C32). If Uλν represents the

creation (annihilation) of a boson of mode m, then Uμλ must represent the annihilation (creation) of a boson of the same mode.
Thus,

ρ (2)
μν δ{Nμ},{Nν } =

∑
λ,m

〈μ|U e
mam|λ〉 〈λ|U e

−ma†
m|ν〉 + 〈μ|U e

−ma†
m|λ〉 〈λ|U e

mam|ν〉
Eμν − i0+

[
Fμλ

Eμλ − i0+ + Fνλ

Eλν − i0+

]
δ{Nμ},{Nν }. (C34)

58One can construct “out” states by flipping the sign of i0+, such that the wave packet becomes essentially noninteracting in the far future.
This wave-packet interpretation is elaborated in Chap. 3 of Ref. [91]. In other derivations of the conductivity [15,92], i0+ appears as a result of
an adiabatic turn-on process in accordance with Kubo tradition [93], yet no such adiabatic process exists in the typical experiment, e.g., with
lasers.
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In particular, Eq. (C33) implies there are no “cross terms” proportional to 〈· · ·U e
m · · · 〉〈· · ·U e

m′ · · · 〉 with m photonic and m′
phononic.

Equation (C34) manifests two classes of intermediate states |λ〉—one with {Nλ} differing from {Nμ} only in that Nλ
m =

Nμ
m + 1, and another with {Nλ} differing from {Nμ} only in that Nλ

m = Nμ
m − 1. We distinguish the two classes by the notation

{Nλ} = {. . . , Nμ
m ± 1, . . .}, which allows us to express

ρ (2)
μν δ{Nμ},{Nν } =

∑
{nλ}

∑
m

{(U e
m

)
μλ

(
U e

−m

)
λν

Ee
μν − i0+

(
Nμ

m + 1
)[ p{nμ}P{Nμ} − p{nλ}P{...,Nμ

m +1,...}
Ee

μλ − h̄ωm − i0+ + p{nν }P{Nμ} − p{nλ}P{...,Nμ
m +1,...}

Ee
λν + h̄ωm − i0+

]

+
(
U e

−m

)
μλ

(
U e

m

)
λν

Ee
μν − i0+ Nμ

m

[
p{nμ}P{Nμ} − p{nλ}P{...,Nμ

m −1,...}
Ee

μλ + h̄ωm − i0+ + p{nν }P{Nμ} − p{nλ}P{...,Nμ
m −1,...}

Ee
λν − h̄ωm − i0+

]}
δ{Nμ},{Nν }. (C35)

The above expression utilizes the definition of Oe in Eq. (C14) and a new definition for the electronic component of the total
energy:

Ee
μ =

∑
B

nμ
B EB, Ee

μν = Ee
μ − Ee

ν . (C36)

The factors of Nμ
m and Nμ

m + 1 in Eq. (C35) are obtained from the standard matrix elements for bosonic creation and annihilation.
In evaluating Tr[voffρ

(2)], we first perform a partial trace by summing over the bosonic occupancies. In this manner, one
converts expressions involving Nμ

m to expressions involving average occupancies:

Tr[voffρ
(2)] =

∑
{nμ,nν ,nλ}

∑
m

(
ve

off

)
νμ

Ee
μν − i0+

{(
U e

m

)
μλ

(
U e

−m

)
λν

[
p{nμ}〈Nm + 1〉 − p{nλ}〈Nm〉

Ee
μλ − h̄ωm − i0+ + p{nν }〈Nm + 1〉 − p{nλ}〈Nm〉

Ee
λν + h̄ωm − i0+

]

+ (
U e

−m

)
μλ

(
U e

m

)
λν

[
p{nμ}〈Nm〉 − p{nλ}〈Nm + 1〉

Ee
μλ + h̄ωm − i0+ + p{nν }〈Nm〉 − p{nλ}〈Nm + 1〉

Ee
λν − h̄ωm − i0+

]}
. (C37)

Let us apply the relation between band-off-diagonal elements of the velocity operator and band-off-diagonal elements of the
position operator [Eq. (C10)], which translates to the following identity in second quantization:(

ve
off

)
νμ

Ee
μν − i0+ = − i

h̄

∑
kbb′

Aoff
b′bk〈{nν}|c†

b′kcbk|{nμ}〉e ≡ − i

h̄

(
Ae

off

)
νμ

. (C38)

In dropping the i0+, we have assumed that Ee
μν = Ebb′k (for some b �= b′) is nonzero for the bands and wave vectors of interest;

it is worth recalling that b does not include the spin label, hence one should not expect an energy degeneracy due to spin. By
plugging Eq. (C38) into Eq. (C37) and recognizing that two of the four terms are complex conjugates of the other two,

Tr
[
voffρ

(2)
] = − i

h̄

∑
{nμ,nν ,nλ}

∑
m

(
Ae

off

)
νμ

[(
U e

m

)
μλ

(
U e

−m

)
λν

p{nμ}〈Nm + 1〉 − p{nλ}〈Nm〉
Ee

μλ − h̄ωm − i0+

+ (
U e

−m

)
μλ

(
U e

m

)
λν

p{nν }〈Nm〉 − p{nλ}〈Nm + 1〉
Ee

λν − h̄ωm − i0+

]
+ c.c. (C39)

Let us interchange variables {nμ} ↔ {nν} for the first term and {nλ} ↔ {nν} for the second, and then apply the resolution of
identity within the electronic Fock space:

∑
{nμ} |{nμ}〉〈{nμ}| = Ie,

Tr[voffρ
(2)] = i

h̄

∑
{nν ,nλ}

∑
m

(
U e

m

)
νλ

[
Ae

off,U e
−m

]
λν

Ee
νλ − h̄ωm − i0+ (〈Nm〉(p{nν } − p{nλ}) + p{nν }) + c.c., (C40)

with [Ae
off,U e

m]λν meaning a matrix element of the commutator of two electronic operators, as defined in Eqs. (C14) and (C15).
By splitting

∑
m = ∑photon

m +∑phonon
m in Eq. (C40), one decomposes Tr[voffρ

(2)] = Tr[voffρ
(2)
phot] + Tr[voffρ

(2)
phon], which we tackle

separately.
Evaluating Tr[voffρ

(2)
phot]. Recalling the definitions of U e

m, Aoff
k , and Ae

off in Eqs. (C17), (C10), and (C38), and that U e
m = U e

−m
within the dipole approximation,(

U e
m

)
νλ

[
Ae

off,U e
−m

]
λν

= he2

ωmV
∑
k′k

∑
aa′bb′

εm · vbb′k
[
Aoff

k′ , εm · vk′
]

aa′ 〈{nν}|c†
bkcb′k|{nλ}〉e〈{nλ}|c†

ak′ca′k′ |{nν}〉e, (C41)

with a, a′, b, and b′ being band labels, and [Aoff
k′ , εm · vk′] being a commutator of two matrices in the band indices.
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The product 〈c†
bkcb′k〉e〈c†

ak′ca′k′ 〉e is given by

(i) δAA′δBB2 nν
bknν

ak′δ{nν },{nλ} + (ii)
(
1 − nλ

B

)
nλ

B2
nν

B

(
1 − nν

B2

)
δAB2δA′Bδ{nν },{nλ}−B2+B, (C42)

with B = (bk), B2 = (b′k), A = (ak′), and A′ = (a′k′), and {nλ} − B2 + B labels an electronic Fock basis state that differs from
{nλ} only in having one-particle state B2 be unoccupied and B be occupied. Equation (C42) implies two additive contributions to
(U e

m)νλ[Ae
off,U e

−m]λν = (i′)+(ii′), namely

(i′) = he2

ωmV

{∑
bk

εm · vbbknν
bk

}⎧⎨⎩∑
b′k′

[
Aoff

k′ , εm · vk′
]

b′b′n
ν
b′k′

⎫⎬⎭δ{nν },{nλ},

(ii′) = he2

ωmV
∑

k

∑
bb′

εm · vbb′k
[
Aoff

k , εm · vk
]

b′b

(
1 − nλ

B

)
nλ

B2
nν

B

(
1 − nν

B2

)
δ{nν },{nλ}−B2+B, (C43)

where we replace the dummy index a by b′ in (i′). Plugging (i′) + (ii′) into Eq. (C40) leads to two additive contributions to
Tr[voffρ

(2)
phot] = (i′′) + (ii′′).

It should be seen that (i′′) is at least fourth order in the electron charge and therefore does not contribute to the second-order
Tr[voffρ

(2)
phot]. This follows from∑

{nν ,nλ}

〈Nm〉(p{nν } − p{nλ}) + p{nν }
Ee

μλ − h̄ωm − i0+ nν
bknν

b′k′δ{nν },{nλ} =
∑
{n}

p{n}
−h̄ωm

nbknb′k′ = −〈nbk〉〈nb′k′ 〉
h̄ωm

(C44)

and

(i′′) ∝ e2
∑

k

εm · vbbk〈nbk〉 = e2
∑

k

εm · vbbk
〈nbk〉 − 〈nb,−k〉

2
∝ e4. (C45)

Due to time-reversal symmetry, vbbk is odd under k → −k. The same symmetry would constrain 〈nbk〉 to be an even function if
the average were taken in a state of thermal equilibrium. However, optical excitation creates a nonequilibrium state that breaks
time-reversal symmetry, which is reflected in a nonzero (〈nbk〉 − 〈nb,−k〉) that is proportional to the source intensity, i.e., to e2.59

What remains of Tr[voffρ
(2)
phot] is (ii′′). To evaluate (ii′′), we point out that the energy denominator in Eq. (C40) reduces to(

1 − nλ
B

)
nλ

B2
nν

B

(
1 − nν

B2

)
δ{nν },{nλ}−B2+B

Ee
νλ − h̄ωm − i0+ =

(
1 − nλ

B

)
nλ

B2
nν

B

(
1 − nν

B2

)
δ{nν },{nλ}−B2+B

Ebb′k − h̄ωm − i0+ . (C46)

We need two more identities that follow from p{n} being a probability function for independent particles [cf. Eq. (C28)]:∑
{nν ,nλ}

p{nν }
(
1 − nλ

B

)
nλ

B2
nν

B

(
1 − nν

B2

)
δ{nν },{nλ}−B2+B =

∑
nλ

B,nλ
B2

(
1 − nλ

B

)
nλ

B2

∑
nν

B

pnν
B
nν

B

∑
nν

B2

pnν
B2

(
1 − nν

B2

) = 〈nB〉〈1 − nB2

〉
,

∑
{nν ,nλ}

p{nλ}
(
1 − nλ

B

)
nλ

B2
nν

B

(
1 − nν

B2

)
δ{nν },{nλ}−B2+B = 〈

nB2

〉〈1 − nB〉. (C47)

Altogether, the photonic shift current is expressible as

jphot = − 2π i|e|3
ωmV2

photon∑
m

∑
bb′k

{Nm fbb′k − fb′k(1 − fbk)}εm · vb′bk
[
Aoff

k , εm · vk
]

bb′

Ebb′k + h̄ωm + i0+ + c.c., fbb′k = fbk − fb′k. (C48)

In this last step, we interchanged b ↔ b′ and simplified our notation as 〈Nm〉 → Nm and 〈nB〉 → fB, to be consistent with the
rest of the paper.

To go from Eq. (C48) to the final expression for the photonic shift current [Eqs. (A1), (A4), and (A5)] involves a sum rule
derived from the first-quantized commutation relation: [r̂n, p̂n′

] = ih̄δn,n′ , with n and n′ denoting the components of three-vectors.
We follow this through in Appendix C 1 c.

Evaluating Tr[voffρ
(2)
phon]. Recalling the definitions of U e

m, V̆ m, Aoff
k , and Ae

off in Eqs. (C17), (C10), and (C38),(
U e

m

)
νλ

[
Ae

off,U e
−m

]
λν

=
∑
kk′

∑
aa′bb′

V̆ m
bb′k

(
Aoff

k′ V̆ −m
k′ − V̆ −m

k′ Aoff
k′+q

)
aa′ 〈{nν}|c†

bkcb′k−q|{nλ}〉e〈{nλ}|c†
ak′ca′k′+q

|{nν}〉e, (C49)

with m = (q, p), where a, a′, b, and b′ are band labels, and Aoff
k′ V̆ −m

k′ is a product of two matrices indexed by band labels.

59The “ballistic current” is essentially −|e|/2V
∑

bk vbbk(〈nbk〉 − 〈nb,−k〉) [3].

115108-30



ANOMALOUS SHIFT AND OPTICAL VORTICITY … PHYSICAL REVIEW B 110, 115108 (2024)

Imitating Eqs. (C42) and (C43), we find two additive contributions to (U e
m)νλ[Ae

off,U e
−m]λν = (i′) + (ii′), the first of which is

nontrivial only if the phonon wave vector vanishes:

(i′) = δq,0

{∑
bk

V̆ m
bbknν

bk

}⎧⎨⎩∑
b′k′

[
Aoff

k′ , V̆ −m
k′

]
b′b′n

ν
b′k′

⎫⎬⎭δ{nν },{nλ},

(ii′) =
∑

k

∑
bb′

V̆ m
bb′k

(
Aoff

k−qV̆
−m

k−q − V̆ −m
k−qAoff

k

)
b′b

(
1 − nλ

B

)
nλ

B3
nν

B

(
1 − nν

B3

)
δ{nν },{nλ}−B3+B, (C50)

with B = (bk) and B3 = (b′, k − q). The contribution to (i′) is only by zero-wave-vector optical phonons, since zero-wave-
vector acoustic phonons do not admit quantization.60 Plugging (i′) + (ii′) into Eq. (C40) leads to two additive contributions to
Tr[voffρ

(2)
phon] = (i′′) + (ii′′).

It should be seen that (i′′) is at least fourth order in the electron-boson coupling and therefore does not contribute to the second-
order Tr[voffρ

(2)
phon]. To appreciate this, apply Eq. (C44) once again, noting that the 1/ωm factor in Eq. (C44) is well-defined for

optical phonons as q → 0. Then,

(i′′) ∝
(∑

...

V̆ m
... · · ·

)∑
bk

[
Aoff

k , V̆ −m
k

]
b,b〈nbk〉 =

(∑
...

V̆ m
... · · ·

)∑
bk

[
Aoff

k , V̆ −m
k

]
b,b

〈nbk〉 − 〈nb,−k〉
2

. (C51)

Because (〈nbk〉 − 〈nb,−k〉) is proportional to e2, altogether (i′′) is quadratic in both the electron-photon and electron-phonon
couplings.

To arrive at the last line in Eq. (C51), we had applied that [Aoff
k , V̆ 0p

k ]b,b is odd under k-inversion, due to time-reversal
symmetry. Indeed, the antiunitary nature of time reversal,

T̂ |ub,−k〉cell = eiφbk |ubk〉cell, 〈uB|T̂ uB′ 〉cell = 〈uB′ |T̂ −1uB〉cell, (C52)

results in a transposition of the band labels for matrix elements:

Aoff
bb′,−k = ei(φbk−φb′k )Aoff

b′bk, V̆ 0p
b′b,−k = ei(φb′k−φbk )V̆ 0p

bb′,k ⇒ (
Aoff

−kV̆ 0p
−k

)
b,b = (

V̆ 0p
k Aoff

k

)
b,b. (C53)

To elaborate on the middle equality, we utilize our general expression for the self-consistently-screened electron-phonon matrix
element [Eq. (C17)] and massage the matrix element as

〈ub′,−k|eiG·r̂|ub,−k〉 = 〈ub′,−k|T̂ −1e−iG·r̂T̂ |ub,−k〉 = 〈T̂ ub′,−k|e−iG·r̂|T̂ ub,−k〉 = ei(φb′k−φbk )〈ubk|eiG·r̂|ub′k〉, (C54)

omitting the cell superscript in the above equation.
What remains of Tr[voffρ

(2)
phon] is (ii′′). To evaluate (ii′′), we follow steps closely analogous to Eqs. (C46) and (C47), replacing

the Bloch label B2 → B3. This leads to the following expression for the phononic shift current:

jphon = − i|e|
h̄V

phonon∑
m

∑
bb′k

{
Nm
(

fB3 − fB
)− fB

(
1 − fB3

)}(Aoff
k−qV̆

−m
k−q − V̆ −m

k−qAoff
k

)
b′bV̆

m
bb′k

EB3 − EB + h̄ωm + i0+ + c.c., (C55)

with m = (q, p), B = (bk), and B3 = (b′, k − q). Utilizing our definition of the band-off-diagonal position operator [Eq. (C9)]
and the first-quantized electron-phonon operator [Eq. (C20)],

[r̂off, V̂ −m]B′B = 〈B′|[r̂off, V̂ −m]|B〉1,
∑

k′
[r̂off, V̂ −m]B′BV m

BB′ = (
Aoff

k−qV̆
−m

k−q − V̆ −m
k−qAoff

k

)
b′bV̆

m
bb′k, (C56)

with B′ = (b′k′). This identity can be inserted into Eq. (C55) to obtain an equivalent expression for the phononic shift current:

jphon = − i|e|
h̄V

phonon∑
m

∑
BB′

{Nm( fB′ − fB) − fB(1 − fB′ )} [r̂off, V̂ −m]B′BV m
BB′

EB′ − EB + h̄ωm + i0+ + c.c. (C57)

To go from Eq. (C57) to the final expression for the phononic shift current [Eqs. (A1)–(A3)] involves a sum rule derived from
[r̂, V̂ −m] = 0. The zero is because V̂ −m is defined in terms of the position operator but not the momentum operator [Eq. (C20)].
We follow this through in Appendix C 1 d.

60One way to see this is that in the quantization of the displacement field, the prefactor in front of am is inversely proportional to
√

ωm [35].
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c. Sum rule for the photonic shift current

The first-quantized commutation relation

ih̄δn,n′δBB′ = 〈B′|[r̂n, p̂n′
]|B〉1 =

∑
B′′

(
rn

BB′′ pn′
B′′B′ − pn′

BB′′rn
B′′B′

)
(C58)

will be used to prove

[Aoffn, Pn′
]bb′ = ih̄δn,n′δb,b′ + [−i∇n

k + (
An

b′b′k − An
bbk

)]
Pn′

bb′ , (C59)

with all k-dependent quantities evaluated at the same k. By inserting Eqs. (C6) and (C7) into the right-hand side of Eq. (C58)
and carrying out

∑
B′′ ,

ih̄δn,n′δBB′ = iPn′
bb′k′∇n

kδkk′ − iPn′
bb′k∇n

kδkk′ + δkk′[An, Pn′
]bb′ . (C60)

By applying the second Dirac-δ identity [Eq. (C5)] and separating diagonal and off-diagonal components of An, one derives
Eq. (C59).

Let us plug Eq. (C59) into our expression for the shift current [Eq. (C48)]. It should be remarked that the ih̄δn,n′δb,b′ term in
Eq. (C59) does not contribute to the current because the band-diagonal velocity vbbk is an odd function of k and the rest of the
integrand may be taken as even.61 What remains is

jphot = Im
∑

m

4π |e|3
ωmV2

∑
bb′k

{Nm fbb′k − fb′k(1 − fbk)}εm · vb′bk[−i∇k + (Ab′b′k − Abbk)]εm · vbb′k

Ebb′k + h̄ωm + i0+ , (C61)

with all k subscripts omitted for simplicity. By applying the Sokhotski-Plemelj theorem: 1/(x + i0+) = CPV[1/x] − iπδ(x),
with CPV meaning Cauchy’s principal value, one can decompose j = (a) + (b), with

(a) ∝
∑

k

{Nm fbb′k − fb′k(1 − fbk)}CPV
Im εm · vb′bk[−i∇k + (Ab′b′k − Abbk)]εm · vbb′k

Ebb′k + h̄ωm
,

(b) = −
∑

m

4π2|e|3
ωmV2

∑
bb′k

{Nm fbb′k − fb′k(1 − fbk)}δ(Eb′bk − h̄ωm)Re εm · vb′bk[−i∇k + (Ab′b′k − Abbk)]εm · vbb′k. (C62)

(a) vanishes by time-reversal symmetry, which imposes that

Im εm · vb′bk[−i∇k + (Ab′b′k − Abbk)]εm · vbb′k = −|εm · vbb′k|∇k|εm · vbb′k| (C63)

is an odd function of k. To appreciate this, apply that εm is real, the velocity operator inverts sign under time reversal, and the
time-reversal symmetry of cell-periodic wave functions [Eq. (C52)]

εm · vbb′,−k = −eiφbk−iφb′kεm · vbb′k. (C64)

(b) is related to the photonic shift vector [Eq. (A4)] by the following identity:

Re εm · vb′bk[−i∇k + (Ab′b′k − Abbk)]εm · vbb′k = |εm · vbb′k|2Sm
b′k←bk. (C65)

Plugging the above equation and Eq. (C10) into Eq. (C62), one finally derives Eq. (A1) with Eqs. (A4) and (A5).

d. Sum rule for the phononic shift current

Substituting Eqs. (C6) and (C7) into the right-hand side of

0 = 〈B′|[r̂, V̂ −m]|B〉1 =
∑
B′′

(
rB′B′′V −m

B′′B − V −m
B′B′′ r̂B′′B

)
, (C66)

applying the standard identity f (x, x′)∂xδ(x − x′) = δ(x − x′)∂x′ f (x, x′), and separating the band-diagonal and band-off-diagonal
matrix elements of the position operator, one obtains

0 = (i∇k′ + i∇k + Ab′b′k′ − Abbk)V −m
B′B + δk′,k−q

(
Aoff

k−qV̆
−m

k−q − V̆ −m
k−qAoff

k

)
b′b. (C67)

Plugging this into our expression for the phononic shift current [Eq. (C57)],

jphon = − Im
2|e|
h̄V

phonon∑
m

∑
BB′

{Nm fB′B − fB(1 − fB′ )}V m
BB′ (i∇k′ + i∇k + Ab′b′k − Abbk)V −m

B′B

EB′B + h̄ωm + i0+ , (C68)

61An argument can be constructed that is analogous to the one used in Eq. (C45).

115108-32



ANOMALOUS SHIFT AND OPTICAL VORTICITY … PHYSICAL REVIEW B 110, 115108 (2024)

with B = (bk), B′ = (bk′), fB′B = fB′ − fB, and EB′B = EB′ − EB. By applying the Sokhotski-Plemelj theorem, one can decom-
pose jphon = (a) + (b), with

(a) ∝
∑
kk′q

{Nm fB′B − fB(1 − fB′ )}CPV
Im V m

BB′ (i∇k′ + i∇k + Ab′b′k − Abbk)V −m
B′B

EB′B + h̄ωm
, (C69)

(b) = 2π |e|
h̄V

phonon∑
m

∑
BB′

{Nm fB′B − fB(1 − fB′ )}δ(EBB′ − h̄ωm)Re V m
BB′ (i∇k′ + i∇k + Ab′b′k − Abbk)V −m

B′B . (C70)

To simplify the above expressions, it is worth recalling V m
BB′ = V −m

B′B from Eq. (C21).
(a) vanishes by time-reversal symmetry, which imposes that

Im V m
BB′ (i∇k′ + i∇k + Ab′b′k − Abbk)V −m

B′B = ∣∣V m
BB′
∣∣(∇k′ + ∇k)

∣∣V m
BB′
∣∣ (C71)

is odd under simultaneously inverting (k, k′, q) → (−k,−k′,−q), and the rest of the integrand in Eq. (C69) is even. (Certainly
all energies are even functions, and we have argued for fB ≈ f−B; we suppose further that Nm ≈ N−m, i.e., that any time-reversal
breaking of the phonon occupations is proportional to the light intensity, and does not affect the second-order shift current.) To
prove oddness of Eq. (C71), it suffices to show that |V m

BB′ | is even, i.e., |V m
BB′ | = |V −m

−B,−B′ | with the minus signs denoting a reversal
in wave vectors. Recalling how time reversal acts on V̂ m [Eq. (C21)] and on Bloch waves [Eq. (C52)],

V m
−B,−B′ = ei(φB−φB′ )V m

B′B ⇒ ∣∣V −m
−B,−B′

∣∣2 = V −m
−B,−B′V m

−B′,−B = V −m
B′B V m

BB′ = ∣∣V m
BB′
∣∣2. (C72)

Plugging

Re V m
BB′ (i∇k′ + i∇k + Ab′b′k − Abbk)V −m

B′B = −∣∣V m
BB′
∣∣2{−(∇k′ + ∇k) argV m

BB′ + Abbk − Ab′b′k
}

(C73)

into Eq. (C70) and interchanging B ↔ B′, one finally derives Eqs. (A1)–(A3).
It is worth justifying our interpretation of Eq. (A3) as a difference between absorption and emission rates:
(i) Suppose a Bloch state transits from B → B′ while absorbing a phonon of mode m; this is implemented by the electron-

phonon interaction U e
m(am + a†

−m) [cf. Eq. (C16)], or more specifically by V m
B′Bc†

B′cBam [cf. Eq. (C17)]. Thus one expects the
associated shift vector for this process to be −∇k argV m

B′B + Ab′b′k′ − Abbk = Sm
B′←B [cf. Eq. (A2)]. By the Golden Rule, one

expects a transition probability that is proportional to |V m
B′B|2 and given by the first term in Eq. (A3), namely Am

B′←B. The
associated contribution to the current is then −(|e|/V ) Sm

B′←B Am
B′←B, which is the first term in Eq. (A1).

(ii) Suppose a Bloch state transits from B′ → B while emitting a phonon of mode m; this is implemented by the electron-
phonon interaction U e

−m(a−m + a†
m) [cf. Eq. (C16)], or more specifically by V −m

BB′ c†
BcB′a†

m [cf. Eq. (C17)]. Thus one expects the
associated shift vector for this process to be −∇k argV −m

BB′ + Abbk − Ab′b′k′ = S−m
B←B′ [cf. Eq. (A2)]. By the Golden Rule, one

expects a transition probability that is proportional to |V −m
BB′ |2 = |V m

B′B|2 [cf. Eq. (C21)] and given by (the negative of) the second
term in Eq. (A3), namely Em

B←B′ . Why the minus sign in Eq. (A3); equivalently, why the minus sign in Eq. (A1)? The reason is
that the current contributed by this transition is

−|e|
V S−m

B←B′Em
B←B′ = −|e|

V
(− Sm

B′←B

)
Em

B←B′ , (C74)

which is the second term in Eq. (A1). Note that S−m
B←B′ = −Sm

B′←B follows from V m
BB′ = V −m

B′B [cf. Eq. (C21)].

e. The zeroth-order quasiparticle distribution is not thermal

Let us define the nonperturbative quasiparticle distribution as

f stat
B = Tr

[
ne

Bρ
]
, ne

B = c†
BcB. (C75)

In the Schrödinger representation (indicated by S= below), density matrices can be time-dependent, but operators (such as ne
B) are

time-independent:

∂t f stat
B

S= Tr
[
ne

B∂tρ
]
. (C76)

Because ρ is stationary, the nonperturbative quasiparticle distribution is steady:

0 = ∂tρ = − i

h̄
[H, ρ] ⇒ 0 = ∂t f stat

B . (C77)

In the Heisenberg representation, density matrices are generally time-independent, but operators (like ne
B) satisfy Heisenberg’s

equation of motion:

∂t f stat
B = Tr

[(
∂t n

e
B

)
HρH

] = i

h̄
Tr
{[

UH ,
(
ne

B

)
H

]
ρH
}
, (C78)
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with OH denoting an operator O in the Heisenberg representation;62 here, it should be recalled that H = HH = (H0)H + UH and
[H0, ne

B] = 0 ⇒ [(H0)H , (ne
B)H ] = 0. Since traces are independent of the representation,

Tr
{[

UH ,
(
ne

B

)
H

]
ρH
} = Tr

{[
U, ne

B

]
ρ
}
, (C79)

and we may insert the perturbative expansion for ρ in Eq. (C25). A term in this perturbative expansion that is even in powers of U
has a vanishing contribution to Tr{[U, ne

B]ρ}, because one traces over an odd multiple of the bosonic creation/annihilation oper-
ator. In particular, Tr{[U, ne

B]ρ (0)} = 0 because ρ (0) = ∑
μ Fμ|μ〉〈μ| [cf. Eq. (C25)] and 〈μ|am + a†

−m|μ〉 = (am + a†
−m)μμ = 0.

Let us therefore evaluate Tr{[U, ne
B]ρ (1)}, using our expression for ρ (1) in Eq. (C31):

−ih̄∂t f stat
B =

∑
mμν

{[
U e

m, ne
B

]
(am + a†

−m)
}

νμ

FμνUμν

Eμν − i0+ + O(U 4). (C80)

Each photon/phonon that is created must be subsequently annihilated, and vice versa:

−ih̄∂t f stat
B =

∑
mμν

[
U e

m, ne
B

]
νμ

(
U e

−m

)
μν

FμνUμν

Eμν − i0+ {(am)νμ(a†
m)μν + (a†

−m)νμ(a−m)μν}. (C81)

Switching m → −m in the second term, and applying the standard matrix elements for bosonic operators,

−ih̄∂t f stat
B =

∑
mμν

[
U e

m, ne
B

]
νμ

(
U e

−m

)
μν

Fμν

Eμν − i0+ Nμ
m δNμ,Nν+m +

∑
mμν

[
U e

−m, ne
B

]
νμ

(
U e

m

)
μν

Fμν

Eμν − i0+
(
Nμ

m + 1
)
δNμ+m,Nν . (C82)

δNμ,Nν+m is a Kronecker delta function enforcing Nμ

m′ = Nν
m′ for all m′, except for Nν

m + 1 = Nμ
m ; for δNμ+m,Nν , it is Nμ

m + 1 = Nν
m,

which is the exception. We use this δ function to kill the summation over Nν :

−ih̄∂t f stat
B =

∑
mnμnνNμ

[
U e

m, ne
B

]
νμ

(
U e

−m

)
μν

pnμPNμ − pnν P···Nμ
m −1···

Ee
μν + h̄ωm − i0+ Nμ

m

+
∑

mnμnνNμ

[
U e

−m, ne
B

]
νμ

(
U e

m

)
μν

pnμPNμ − pnν P···Nμ
m +1···

Ee
μν − h̄ωm − i0+

(
Nμ

m + 1
)
. (C83)

Ee is the electronic component of E . Carrying out the sum over Nμ,

−ih̄∂t f stat
B =

∑
mnμnν

[
U e

m, ne
B

]
νμ

(
U e

−m

)
μν

pnμ〈Nm〉 − pnν 〈Nm + 1〉
Ee

μν + h̄ωm − i0+ +
∑

mnμnν

[
U e

−m, ne
B

]
νμ

(
U e

m

)
μν

pnμ〈Nm + 1〉 − pnν 〈Nm〉
Ee

μν − h̄ωm − i0+ . (C84)

Interchanging summation variables nμ ↔ nν for the second term,

−ih̄∂t f stat
B =

∑
mnμnν

(
−
[
ne

B,U e
m

]
νμ

(
U e

−m

)
μν

Ee
μν + h̄ωm − i0+ +

[
U e

−m, ne
B

]
μν

(
U e

m

)
νμ

Ee
μν + h̄ωm + i0+

)
(pnμ〈Nm〉 − pnν 〈Nm + 1〉). (C85)

By applying that ne
B is self-adjoint and U e

m = (U e
−m)

†
[cf. Eq. (C16)], one recognizes one fraction to be the complex conjugate of

the other:

−ih̄∂t f stat
B =

∑
mnμnν

(
2i Im

[
U e

−m, ne
B

]
μν

(
U e

m

)
νμ

Ee
μν + h̄ωm + i0+

)
(pnμ〈Nm〉 − pnν 〈Nm + 1〉). (C86)

At this point we split the photonic and phononic contributions:

∂t f stat
B = (

∂t f stat
B

)phot + (
∂t f stat

B

)phon
(C87)

by splitting the sum over the bosonic modes:
∑

m = ∑phot
m +∑phon

m . Focusing first on the photonic contribution, we evaluate the
numerator in Eq. (C86) with help from Eq. (C15), Eq. (C17), and εm = ε−m ∈ R,

[
U e

−m, ne
B

] =
∑

b′
�ε−m · (voff

b′bkc†
b′kcbk − (b ↔ b′)

)
; � =

√
he2

ωmV
, (C88)[

U e
−m, ne

B

]
μν

(
U e

m

)
νμ

=
∑

b′

∣∣�εm · voff
bb′k

∣∣2{(1 − nν
B′
)
nν

B

(
1 − nμ

B

)
nμ

B′δnμ,nν−B+B′ − (b ↔ b′)
}
. (C89)

62This may be verified by substituting ρ = e−iHt/h̄ρH eiHt/h̄ and ne
B = eiHt/h̄(ne

B )H e−iHt/h̄ into Eq. (C76).
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Since the numerator in Eq. (C86) is manifestly real, it suffices to evaluate the imaginary part of the denominator:

δnμ,nν−B+B′ Im
1

Ee
μν + h̄ωm + i0+ = −πδnμ,nν−B+B′δ

(
Ee

μν + h̄ωm
) = −πδnμ,nν−B+B′δ(εB′B + h̄ωm), (C90)

with εB being a one-electron energy. Summing over electron occupancies,∑
nμnν

pnμ(
1 − nν

B′
)
nν

B

(
1 − nμ

B

)
nμ

B′δnμ,nν−B+B′ = (1 − fB) fB′ , fB = 〈nB〉. (C91)

Combining it all, we arrive at a steady-state condition on the quasiparticle occupancies:

0 = ∂t f stat
B = (

∂t f stat
B

)phot

gain − (
∂t f stat

B

)phot

loss + (
∂t f stat

B

)phon + O(U 4),(
∂t f stat

B

)phot

gain = 2π

h̄

∑
mb′

∣∣�εm · voff
bb′k

∣∣2(1 − fB) fB′ {〈Nm〉δ(εBB′ − h̄ωm) + 〈Nm + 1〉δ(εBB′ + h̄ωm)}, (C92)

(
∂t f stat

B

)phot

loss = 2π

h̄

∑
mb′

∣∣�εm · voff
bb′k

∣∣2(1 − fB′ ) fB{〈Nm〉δ(εB′B − h̄ωm) + 〈Nm + 1〉δ(εB′B + h̄ωm)}.

It may be seen that the gain and loss rates are of the form
expected from Dirac’s time-dependent perturbation theory,
i.e., Fermi’s Golden Rule. The phononic contribution may be
evaluated analogously and also has the form expected from
Dirac’s time-dependent perturbation theory.

In conclusion, for the nonperturbative quasiparticle dis-
tribution f stat

B to be steady (up to U 4 corrections), the
zeroth-order quasiparticle distribution fB is the steady solution
of Icoll[ fB] = 0, where Icoll is the collisional integral (evaluated
by Fermi’s Golden Rule) in the presence of the light source.
In particular, fB is not the thermal quasiparticle distribution
in the absence of the light source, contrary to the way in
which most authors approach perturbation theory in nonlinear
optical response.

2. Numerical implementation of the BIS shift-current formula

This section explains how to simulate an isoenergy-
averaged quasiparticle distribution fE that is a steady solution
to the kinetic equation derived in Appendix B 2, and how fE is
subsequently input to the BIS formula [Eq. (A1)] to determine
the shift conductivity and its threefold decomposition. The
conductivity will be determined for the model Hamiltonian
[Eq. (16) with Q̃ = 1 and P̃ = 4] that is characterized by large
time-reversal-symmetric Berry curvature; in particular, we
would like the reader to be able to reproduce the conductivity
plot in Fig. 5(e).

In Appendix B, we have motivated the momentum-
resolved collisional integral in Eqs. (B1)–(B7), and we
derived the corresponding isoenergy-averaged collisional
integral in Eqs. (B16)–(B21), having assumed that the quasi-
particle distribution is isoenergy-symmetric: fk ≈ fE ; cf.
Eq. (B15). This assumption is justified to the extent that
the collisional integral is isoenergy-symmetric, meaning that
Eqs. (B1)–(B7) are well-approximated by Eqs. (B16)–(B21).
Whether this is a good approximation depends on the pa-
rameters chosen in our model Hamiltonian [Eq. (16)] as well
as the source radiation frequency ωs. We have checked that
the e-isotropy condition approximately holds with our cho-
sen parameters (Q̃ = 1 and P̃ = 4) in the frequency range

h̄ω/Eo ∈ [0.8, 1.5].63 The isoenergy-symmetric assumption
was made to save computational simulation time, but one may
do without this assumption if one is numerically sophisticated.

There remains some work in fixing the parameters in both
sets of collisional integrals, chief among them being the
electron–optical-phonon coupling constant ζ in Eq. (B7), as
well as the timescale τ o

E for spontaneous emission of optical
phonons in Eq. (B16). The two parameters are related through
Eq. (B18), which can be simplified as

ζ
a

V2gE

cut∑
kk′

|〈uk′ |uk〉cell|2
|k − k′|2 δ(Eck − E )δ(Eckk′ − h̄�o) = 1

τ o
E

.

(C93)

The summation is restricted by the condition δk = |k − k′| �
G /10, with G = 2π/a being the reciprocal-lattice period. A
typical scale for τ o

E is 0.1 ps [31,32] hence we set τ o
E∗ = 0.1 ps

for a reference energy E∗ = 0.413 75E0 in the active region;
this fixes ζ = 6.329 E0

0.1 ps and causes τ o
E to vary from 33.3

to 165.2 fs in the active region, as illustrated in Fig. 11(a).
To be clear, all plotted energies are defined to equal zero in
the middle of the gap, in contrast to the carrier energies de-
fined with respect to the band extrema. The other parameters
in the kinetic model are fixed to be τrec = 1 ns (a typical
interband recombination time [30]); τ s

E = 1 ns for all E (a
typical energy relaxation time due to spontaneous emission
of acoustic phonons [28]);64 and a = 5 Å (a typical lattice
period). All calculation in this Appendix are presented for a
linearly polarized source: εs = �x.

Our first step is to simulate fE , which sets the isoenergy-
averaged collisional integral [Eqs. (B16)–(B21)] to zero. We
begin by discretizing the energy: . . . , Ej, Ej+1, Ej+2, . . . such
that adjacent energy levels are separated by �E = Ej+1 − Ej .
Conduction-band Bloch states are binned according to the
following rule: if Ej − �E/2 � Eck < Ej + �E/2, then the

63The dipole matrix element becomes isoenergy-asymmetric at
higher frequencies, as explained in Sec. IV.

64τ s
E  τ o

E and the optical phonon scattering explicitly dominates
in the active region.
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FIG. 11. Part (a) shows the plot of τ o
E vs E in the active region. Part (b) shows the plot of ||gE I[ f (n)]|| vs the evolution step n. Part

(c) compares fc(1 − fv ) and fv (1 − fc ). Part (d) compares 〈|Ax
cv|2〉ω and 〈|Ay

cv|2〉ω in the passive region, i.e., h̄ω ∈ [Eg, Eg + 2h̄�o].

Bloch state (ck) belongs in the jth bin. By choosing h̄ω =
nω�E and h̄�o = n��E to be integer multiples of �E ,
one can translate Dirac δ functions to Kronecker δ func-
tions: δ(Eckk′ − h̄�o) → δEckk′ ,h̄�o/�E and δ(Ecvk − h̄ω) →
δEcvk,h̄ω/�E . For instance, δEckk′ ,h̄�o = 1 if and only if Eck →
Ej and Eck′ → Ej−n�

for some bin index j. Then the photon-
absorption term is discretized as

G↑[ f ] δ(E − Ec,exc) → gE

∑
ms

Ims
exc,E ,

Im
exc,E = 2π2αfsc

�Nm

V 2E (1 − 2 fE )

× 〈|εm · Acvk|2〉ωm

δ2E ,h̄ωm

�E
, (C94)

with αfs = |e|2/(h̄c) being the fine-structure constant, and
Im
exc,E being the isoenergy average of Iωε

exck; cf. Eq. (A26).
In practice, we have chosen �E = E0/1600 and h̄�o =
20�E . To avoid certain artifacts of our energy discretiza-
tion scheme, we introduced a small frequency bandwidth
(4�E/h̄) for the source-generated photons; this means that
the source produces an equal number of photons in each
of four modes (ms = 1, 2, 3, 4), with differing frequencies
ωs − 2�E/h̄, ωs − �E/h̄, ωs, ωs + �E/h̄ but identical po-
larization εs.

We initialize the distribution as a Boltzmann-Maxwell dis-
tribution: f (0)

E = f T
E ,BM = exp ( − (E − μe)/kBT ), which is

the steady distribution favored by the Fokker-Planck term:
(1 + kBT ∂E ) f T

E = 0.65μe is generically not the chemical po-
tential in thermal equilibrium; instead, it is determined by
balancing recombination and excitation rates for the conduc-
tion band as a whole:

∑
E gE f T

E �E/τrec = G↑, with
∑

E 	(E )
our shorthand for

∑
j 	(Ej ).

Beginning from our ansatz Maxwellian distribution, we
evolve the system over a discrete time interval δt to obtain
a new distribution:

f (n+1)
E = f (n)

E + IE [ f (n)]δt (C95)

for n = 0, 1, 2, . . . , with the collisional integral IE [ f ] defined
in Eqs. (B16)–(B21). This is a numerical procedure to obtain
a steady state, and in no way reflects the actual time evolution

65Hot-carrier photoluminescence spectra support the hypothesis
that most photoexcited carriers are distributed in the manner of
Maxwell-Boltzmann; cf. Appendix B 1.

of quasiparticle distribution in an experiment. We stop this
iterative process when the norm

||gE I[ f (n)]|| =
√∑

E

(gE I[ f (n)(E )])2 (C96)

decays below a certain threshold, i.e., 0.05% of
∑

E ,ms
gE Ims

exc.
Supposing the threshold is crossed when n = n0, then we say
f (n0 ) is a numerically steady solution of the kinetic equation.

For illustration, Fig. 3(c) represents a numerically
steady distribution calculated using the above scheme, with
�Nms/V = (1 ns)−1 �EG 2

440π2cαfsE0
≈ 1010 cm−3 for each of the

four source modes, Eexc = 5h̄�o, n0 = 5000 steps, and a time
step δt = 1 fs. Figure 11(b) illustrates a decay of ||gE I[ fn||
below our threshold of (5 × 10−4)

∑
E gE Iexc ≈ 1.08 × 10−7.

To calculate the shift current, we input the numerically
steady f (n0 )

E to the threefold-decomposed current formulas in
Eqs. (A25), (A28), and (A32). The discrete analogs of these
formulas are

jexc = − 2↑↓
|e|
V
∑
ms

∑
k

Sεs
ck←vkIm

exc,Ek
, (C97)

jintra = 2↑↓2cv
|e|
V

cut∑
kk′

ζa

V
1

|k′ − k|2 fck′ (1 − fck)

× δEkk′ ,h̄�o

�E
�c,(k+k′ )/2 × (k′ − k), (C98)

jrec = 2↑↓
|e|
V

∑
k∈pass

Sx̂
ckext←vkext

fck

τrec
. (C99)

We will explain each equation in turn:
(i) Excitation. Im

exc was defined in Eq. (C94) and
∑

ms
sums

over the aforementioned source modes.
(ii) Intra. Equation (C98) is derived by substituting the

electron-phonon matrix element [Eq. (B7)] and the anomalous
shift vector [Eq. (5)] into Eq. (A28), and then summing over
both conduction and valence bands. In this sum, each band
contributes equally due to the presumed electron-hole sym-
metry ( fck = 1 − fvk; cf. Appendix B 2 a), hence the factor
of 2cv = 2 in Eq. (C98). To see why, note for any two-
band model that �ck = −�vk, hence Sano

c;k′←k = −Sano
v;k′←k and

fck′ (1 − fck)Sano
c;k′←k = (1 − fvk′ ) fvk(−Sano

v;k′←k). Recognizing
from Eq. (5) that Sano

v;k′←k = −Sano
v;k←k′ , we find that Eq. (A28)

is identical for valence and conduction bands.
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(iii) Recombination.
∑

k∈pass in Eq. (C99) integrates over
the passive k-volume, based on a previous argument (cf.
Sec. II) that the majority of photoexcited carriers are steadily
distributed within the passive region; this argument is corrob-
orated by our numerical simulation in Fig. 3(c), bearing in
mind that gE is constant in our quasi-2D model. Because a
dipole selection rule fixes Ay

cvk = 0 for kx = 0, and Ay
cvk can-

not vary substantially in the small passive region (assuming
the band gap is not anomalously small), it may be deduced
that |Ay

cv,k|2 � |Ax
cv,k|2 everywhere in the passive region; cf.

Fig. 11(d). Therefore, one may as well approximate all recom-
bination transitions as being mediated by x-polarized photons,
with the spontaneous emission rate E sp,x̂

vk←ck = fck/τrec. The
corresponding photonic shift vector Sx̂

vk←ck is also approxi-
mated as Sx̂

vkext←ckext
, because the variation of the photonic shift

vector within the passive region is small.
The threefold-decomposed conductivities are obtained by

diving each of jexc, jintra, and jrec by |Eω|2; cf. Eq. (A34). It is
advantageous to express the squared electric amplitude |Eω|2
in terms of the discrete Im

exc [Eq. (C94)]:

|Eω|2 =
⎛⎝∑

E ,ms

gE�EIms
exc,E

⎞⎠/[
2πcα f s(1 − 2 fE )

× 〈∣∣εms · Acvk
∣∣2〉

ω
JDOS↑

]
, (C100)

in accordance with
∑

ms
�Nms h̄ωs/V = |Eω|2/(2π ); cf.

Eq. (A13). For the conductivity plot in Fig. 5(e), we had
chosen

∑
ms

�Nms/V ≈ 1010 cm−3. For comparison, in a typ-
ical argon-ion-laser experiment with a radiation intensity of
40 W cm−2 [94], the number density of source photons is
approximately 1/3 × 1010 cm−3.

3. Comparison with the Kraut-Baltz-Sipe-Shkrebtii formula
and dissipative Floquet methods

The Kraut-Baltz-Sipe-Shkrebtii formula (KBSS) for the
shift current is [4,6,13]

jKBSS = σKBSS
ε,ω |Eω|2,

σKBSS
ε,ω = −2π

|e|3
h̄

∑
bb′

∫
d3k

(2π )3
f T
bb′k|ε · Ab′bk|2Sb′k←bk

× δ(Eb′bk − h̄ω), (C101)

with Eb′bk = Eb′k − Ebk and f T
bb′k = f T

bk − f T
b′k. One can con-

vert Eq. (C101) to a proportionality relation with the
radiation intensity (within the dielectric medium) by Irad =
(c/2π )nω|Eω|2, assuming the medium is nonmagnetic with
a frequency-dependent refractive index nω that is spatially
uniform and isotropic.66

66The time-averaged Poynting vector (within the dielectric
medium) has the form Iradq̂, with Irad = (c/2π )nω|Eω|2 having di-
mensions of energy per unit area per unit time, and q̂ being the
unit directional vector of the electromagnetic wave propagation. We
adopt the same, real-valued definition of the refractive index as in
Ref. [95]. In an absorptive medium, Irad should be multiplied by
a coordinate-dependent, exponential damping factor [95]; however,

The KBSS formula has been derived in a variety of models
and methods [4,6,7,12,13,15,17,19,20,96], which may have
created an impression that it is universally truthful. The actual
reason for the universality is a largely unjustifiable and often
implicit assumption shared by all these models, namely that
the electronic quasiparticle distribution retains its equilibrium
value under continuous-wave irradiation. It is an experimental
fact that this assumption does not hold, as is most vividly
demonstrated by hot-carrier photoluminescence spectroscopy
[27,28].

This formula was originally derived by Kraut and Baltz
[4,13] and subsequently rederived by Sipe and Shkrebtii [6]
using more-or-less standard perturbation theory. In the Kraut-
Baltz derivation, relaxation was accounted for in a crude
relaxation-time approximation, with the relaxation time even-
tually taken to be arbitrarily small compared to the Rabi
oscillation period at resonance; in other words, relaxation
to equilibrium is assumed to be such a strong effect (rela-
tive to the optical excitation) that the electronic quasiparticle
distribution never deviates from the equilibrium value. (Simi-
lar perturbative derivations [12,15,96] have proposed without
rigorous justification to view the imaginary infinitesimals in
the energy denominator as an inverse relaxation time.) In the
Sipe-Shkrebtii derivation [6] (and similar diagrammatic meth-
ods [7]), relaxation was omitted entirely; because their method
is based on perturbing an equilibrium state in the lowest or-
ders for the electric field, it is not surprising that their final
formula is expressed in terms of the equilibrium quasiparticle
distribution. The KBSS formula has been alternatively derived
from dissipative Floquet methods [17,19,20] in the regime of
strong dissipation: relaxation rate  Rabi frequency. This is
another model where relaxation to equilibrium is assumed to
be overwhelmingly strong.

The rest of this Appendix will be used to demonstrate
that the BIS formula also reduces to the KBSS formula if
the electronic quasiparticle distribution is thermal. On the
one hand, this planned demonstration can be viewed as a
consistency check of the BIS formula. On the other hand,
the BIS-to-KBSS reduction crystallizes what is missing from
the KBSS formula: namely, the missed photocurrent can be
precisely attributed to the deviation of the steady quasiparticle
distribution from its equilibrium value, given a realistic model
of relaxation in which relaxation also causes shifts.

Without further ado, the KBSS formula in Eq. (C101) is
related to the BIS formula in Eq. (A1) by

jKBSS = j
[

f T
B , NT ;phot

m + �Nsδm,ms , NT ;phon
m

]
. (C102)

That the BIS formula is a functional of the quasiparticle,
photon, and phonon occupancies has been explained in Ap-
pendix A 2. The KBSS formula is thus the BIS formula with a
very specific input for occupancies: f T

B is a Fermi-Dirac distri-
bution [Eq. (A8)], NT ;phon

m is a Planck distribution [Eq. (A9)]
with the same temperature, and the photon occupancy is a
sum of thermal and nonthermal contributions; the nonthermal
photons are generated by a monomodal source with mode
index ms.

this factor is negligible if the attenuation length greatly exceeds the
thickness of the medium.
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(b) (c) (d)(a)

pc

pv

FIG. 12. (a) Caricature of a probability flow network. Panels (b) and (c) illustrate two distinct loop decompositions of the network in
panel (a). Panel (d) illustrates a geodesic approximation of the network in (a). Part of the approximation amounts to neglecting the radiative
recombination transition between the two Bloch states labeled B2 and B3, as justified in Sec. III.

All bosonic modes with a thermal occupancy cannot
contribute to the shift current, due to detailed balance; cf.
Eq. (A15). For the source mode ms, the net transition rate
[Eq. (A5)] can be decomposed as(

Ams
C←V − Ems

V ←C

)
f T
B ,NT

ms +�Ns

= (
Ams

C←V − Ems
V ←C

)
f T
B ,NT

ms

+ (2πe)2ωs

V |εs · Acvk|2δ(Ecvk − h̄ωs) f T
vck�Ns,

(C103)

with C = (ck) and V = (vk). The first term on the right-hand
side of Eq. (C103) vanishes by detailed balance [Eq. (A15)],
hence the right-hand side of Eq. (C102) reduces to Eq. (C101).

We will say a few words about what is missed from the
KBSS formula, how the BIS formula does better, and why
dissipative Floquet models (in their present formulation) do
not. As explained in Sec. II and elaborated on in Appendix E,
the KBSS current is approximately the transient photocur-
rent, or equivalently the excitation component of the steady
photocurrent:

σKBSS
ε,ω ≈ σexc

ε,ω, σε,ω = σexc
ε,ω + σ intra

ε,ω + σrec
ε,ω. (C104)

As defined through the BIS formula, the shift conductivity
σε,ω [Eq. (A14)] has a threefold decomposition explained in

Eq. (14); apparently, the KBSS formula misses out on current
contributions by intraband relaxation and interband recombi-
nation.

Because the KBSS formula is derived by dissipative Flo-
quet methods in the strongly dissipative regime [17,19,20], it
is evident that these methods also miss out on the effects of in-
traband relaxation and interband recombination. The present
formulation of Floquet methods is inadequate for the follow-
ing reasons: (a) The premise of time-periodic Hamiltonians
relies on a classical approximation of the radiation field, and
precludes the quantum effect of radiative recombination by
spontaneous emission. (b) In Refs. [17] and [19], the use of
experimentally unrealizable “fermionic baths” as a relaxation
mechanism precludes the phonon-induced shift [Eq. (5)] re-
sponsible for σ intra

ε,ω . (c) In Ref. [20], Barik and Sau considered
electron-phonon scattering as a relaxation mechanism; how-
ever, they also missed the phonon-induced shift [Eq. (A2)]
due to an unjustifiable assumption that the electron-phonon
matrix element is momentum-independent.

APPENDIX D: LOOP FORMULATION OF THE STEADY
SHIFT CURRENT

We present an equivalent formulation of the steady shift
current, namely that the BIS formula in Eq. (A1) is equivalent
to a sum of loop currents:

Loop current theorem: j = − |e|
V

∑
B,B′,m

Sm
B′←B

(
Am

B′←B − Em
B←B′

) =
∑
loop

jloop, (D1)

with jloop being the current contributed by a closed flow line
(in energy-momentum space) of one-electron probability, as
illustrated in Figs. 12(b) and 12(c). The precise definition of
jloop is given in Eq. (D15) after some preliminary prepara-
tions.

As a first step to reformulating the shift current in terms of
loop currents, Appendix D 1 shows how to interpret the flow
of one-electron probabilities in energy-momentum space as
an oriented graph with nodes corresponding to Bloch states,
as illustrated in Fig. 12(a); it will be shown that this graph can
be decomposed into loops, and for each loop one can associate
a net shift vector [Eq. (D14)] and a current [Eq. (D15)]. We

will then prove the loop current theorem in Appendix D 2, and
subsequently discuss two applications:

(i) The loop-current formula manifests that the intraband-
Berry connection terms (Ab′b′k′ − Abbk) in the shift vector
[Eqs. (2) and (3)] always cancel out when all transitions in the
steady state are accounted for. From this follows a revision of
a purported relation between the shift current and interband
polarization differences [49], as discussed in Appendix D 3.

(ii) The loop formulation naturally leads to equitable ap-
proximations of the shift current, which treat excitation,
relaxation, and recombination on an equal footing. The ap-
proximation lies in identifying a reduced family of loops
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that contribute most substantially to the shift current. Once
a reduced family of loops is identified, calculating the shift
current via Eq. (D1) requires far fewer computational re-
sources than a direct calculation of the BIS formula (cf.
Appendix C 2). This work focuses on the geodesic loops
[Fig. 12(d)] that predominate the shift current in direct-gap
semiconductors. For 3D semiconductors, the geodesic ap-
proximation to the shift conductivity [Eq. (13)] is derived
from the loop-current formula [Eq. (D1)] in Appendix D 4,
and as a small-angle-scattering limit of the BIS formula
[Eq. (A1)] in Appendix D 5. Finally, the geodesic approxima-
tion is extended to quasi-2D semiconductors in Appendix D 6.

1. The shift loop and the loop current

Let us define a link as a pair of Bloch labels. A link is said
to be ordered if the band energy of the first label is larger than
the band energy of the second:

ordered link ≡ (B′>B), EB′B = EB′ − EB > 0. (D2)

A general link written as (B′, B) admits any possible ordering
of EB′ and EB. For instance, given the three Bloch labels in
Fig. 12(a), one may write (B1 > B2) and (B3, B2) but not
(B3 > B2).

For every ordered link, we define the ordered transition
rate as the sum of one-electron transition rates over all possi-
ble bosonic modes indexed by m:

ordered transition rate = R(B′>B) =
∑

m

(
Am

B′←B − Em
B←B′

)
,

(D3)

and the ordered shift vector as a weighted average of the shift
vector [cf. Eqs. (A2)–(A4)] over all bosonic modes:

ordered shift vector S(B′>B) =
∑

m

Sm
B′←B

Am
B′←B − Em

B←B′

R(B′>B)
.

(D4)

As a reminder, A is the absorption rate and E is the emission
rate defined in Eqs. (A3)–(A5). Because Am

B′←B − Em
B←B′ ∝

δ(EB′B − h̄ωm) with a bosonic energy h̄ωm that is strictly pos-
itive,67 we wrote (B′>B) in Eq. (D4) rather than (B > B′). Let
us discuss two classes of ordered shift vectors:

Ex. 1: Phononic ordered shift vector
If B′ and B differ in electronic wave vectors, then, within the dipole approximation for the electron-photon coupling, one

can restrict
∑

m in Eqs. (D3) and (D4) to phononic modes.
(a) If the difference in wave vectors (k and k′) is small and the transition is intraband (b = b′), Sqp

B′←B in Eq. (D4) is
well-approximated by the anomalous shift Sano

b;k′←k [Eq. (5)], which does not depend on the phonon branch p. It should also
be recalled from Eq. (A3) that Am

B′←B − Em
B←B′ ∝ δq,k′−k. Altogether, these imply that Eq. (D4) reduces to S(bk′>bk) = Sano

b;k′←k.
(b) If the difference in wave vectors (k and k′) is not necessarily small, but the phonon energy h̄ωm = EB′B is nondegenerate,

then
∑

m in Eqs. (D3) and (D4) is restricted to one phonon branch (say m), and S(B′>B) = Sm
B′←B as defined in Eq. (A2).

Ex. 2: Photonic ordered shift vector
If B′ and B are identical in electron wave vectors (k = k′), with Eb′bk = Eb′k − Ebk exceeding the optical phonon energies,

than one may restrict
∑

m in Eqs. (D3) and (D4) to photonic modes.
(a) If k does not lie on the excitation surface,

∑
m in Eqs. (D3) and (D4) is restricted (by energy conservation) to photonic

modes whose occupations are thermal, i.e., Nm = NTl
m has the Planck form and does not depend on the orientation q̂ of the

photon wave vector. In fact, the only quantities in Eq. (D4) that depend on q̂ are the photonic shift vector [Eq. (A4)] and the
square of the interband Berry connection [Eq. (A5)]. Thus Eq. (D4) simplifies to

S(b′k>bk) =
∫

dλq̂
∑2

p=1 |εqp · Ab′bk|2 Sqp
b′k←bk∫

dλq̂
∑2

p=1 |εqp · Ab′bk|2
, (D5)

where we integrate over q̂ (parametrized by solid angle λq̂) and sum over both transverse polarizations.
(b) If k lies on the excitation surface,

∑
m in Eqs. (D3) and (D4) sum over all photonic modes with the same frequency ωs

as the source-generated photons. For a bright source, an argument in Appendix A 4 conveys that
∑

m in Eqs. (D3) and (D4)
may as well be restricted to the single source mode ms, so that Eq. (D4) simplifies to S(b′k>bk) = Sms

b′k←bk [Eq. (A4)].

It would also be useful to discuss the net transition rate for B′ ← B, with EB′ not necessarily greater than EB. For this purpose,
we define

oriented transition rate RB′←B = sgn[EB′B]R(B′>B) = −RB←B′ , (D6)

67As remarked earlier in Appendix C 1 b, quantized phonons/photons are not well-defined for zero ωm.
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such that RB′←B > 0 represents a net probability flow from B
to B′, independent of the ordering of band energies.

We may draw a cartoon to visualize the flow of probabil-
ity in energy-momentum space. In Fig. 12(a), we represent
every link by an arrow; the thickness of the arrow shaft is
proportional to |R(B′>B)|; the arrowhead points from B′ ← B
if R(B′>B) > 0, and vice versa. Our cartoon is thus an oriented
graph/network, with each node/vertex corresponding to a
Bloch state, and with each link/edge oriented according to
the direction of the probability flow. We will use node=B
interchangeably.

By comparing the BIS formula [Eq. (A1)] with the defini-
tions of R(B′>B) and S(B′>B) in Eqs. (D3) and (D4), one deduces
that the shift current is essentially the sum of R(B′>B)S(B′>B)

over all ordered links in the probability-flow network:

j = − |e|
V

∑
(B′>B)

S(B′>B)R(B′>B). (D7)

In the steady state, the time independence of the occu-
pancy of each Bloch state implies that for each node (say, B)
in the graph, incoming transition rates must exactly balance
outgoing transition rates:

∑
B′ RB′←B = 0. The probability-

flow network can therefore be viewed as a discrete analog
of a divergence-free/solenoidal vector field. This discrete
solenoidal condition allows us to decompose the probability-
flow network into loops, as illustrated in Fig. 12(b).68 Each
loop represents the closed flow line of an electron’s proba-
bility in energy-momentum space, with the perspective that
forward-moving holes are backward-moving electrons.

More precisely, here are three defining properties of a loop:
(a) The first property of a loop is that it is a closed concate-

nation of general links:

loop with N links = (BN , BN−1)(BN−1, BN−2) · · ·
(B2, B1)(B1, BN ). (D8)

If (B′, B) is one of the N links appearing above, then we say
the link is contained in the loop: (B′, B) ∈ loop; if EB′B > 0
(<0), we would further say that (B′ > B) ∈ loop [(B > B′) ∈
loop].

(b) To each loop, we associate a positive-valued loop rate
|δRloop|, which is the magnitude of the probability flow rate
along the loop.

(c) Each loop has a Z2-valued orientation (Orloop) that
determines the direction of probability flow:

Orloop = + 1 : B1 → B2 → · · · → BN → B1, (D9)

Orloop = − 1 : B1 ← B2 ← · · · ← BN ← B1. (D10)

It follows from (a)–(c) that one can assign an oriented loop
rate to each link in the loop:

δRloop
Bn+1←Bn

= −δRloop
Bn←Bn+1

= Orloop|δRloop| with BN+1 ≡ B1.

(D11)

The sense in which the probability-flow network is decom-
posed to loops is that for each link in the network,

RB′←B =
∑

loop�(B′,B)

δRloop
B′←B, (D12)

where the summation is over all loops that contain the link
(B′, B); RB′←B is given by Fermi’s Golden Rule [cf. Eqs. (A3)
and (A5)] and depends on the carrier distribution. Equiva-
lently, for every ordered link in the network,

R(B′>B) =
∑

loop�(B′>B)

δRloop
B′←B. (D13)

Consider the cartoon of Fig. 12(b) for illustration: (B3, B2) is
contained in two loops colored red and blue, hence RB3←B2

is given by a sum of two δR’s. The loop decomposition is
not unique, meaning that a different set of loops may satisfy
Eq. (D13) for the same network, as illustrated in Fig. 12(c).

For each loop, the shift loop is defined by summing the or-
dered shift vector over all ordered links in the loop, weighted
by a sign that encodes the direction of probability flow in that
loop:

Shift loop Sloop =
∑

(B′>B)∈loop

sgn
[
δRloop

B′←B

]
S(B′>B). (D14)

Because the summation is over ordered links, EB′B > 0, and
sgn[δRloop

B′←B] = +1 (−1) if the loop-decomposed probability
flow is toward increasing band energies (decreasing band
energies).

To motivate this sign factor, consider an example that elaborates on case (b) of Ex. 1 [cf. the box under Eq. (D4)]. For
the conduction-band link (B1 > B2) illustrated in Fig. 12(c), the probability flow is toward decreasing band energies,
which reflects the predominance of phonon emission over absorption. Then the link’s contribution to Sloop is simply
sgn[δRloop

B1←B2
] S(B1>B2 ) = −Sqp

B1←B2
, which equals S−q,p

B2←B1
by the inversion symmetry of the phonon shift vector [Eq. (A2)]. As

explained at the end of Appendix C 1 d, S−m
B2←B1

is precisely the shift vector associated with emitting a phonon of mode m.

With Sloop and |δRloop| in hand, we can now define the loop current

jloop = −|e|
V Sloop|δRloop|, (D15)

68Analogously, a divergence-free vector field can be approximated by a superposition of elementary solenoids, which includes the case of
finite-length loops [97].
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which enters our loop current theorem in Eq. (D1). It may be
seen that the loop current depends implicitly on the carrier
population through |δRloop|, as per Eq. (D12) and with identi-
fying RB′←B as the Golden-Rule transition rates in Eqs. (A3)
and (A5).

2. Derivation of loop current theorem

Beginning from the right-hand side of Eq. (D1), we input
the definitions of the loop current in Eq. (D15) and the shift
loop in Eq. (D14),∑

loop

jloop = −|e|
V
∑
loop

Sloop|δRloop|

= −|e|
V
∑
loop

∑
(B′>B)∈loop

sgn
[
δRloop

B′←B

]|δRloop| S(B′>B).

(D16)

Utilizing the definition of the oriented loop rate in Eq. (D11),∑
loop

jloop = −|e|
V
∑
loop

∑
(B′>B)∈loop

δRloop
B′←B S(B′>B)

= −|e|
V

∑
(B′>B)

∑
loop�(B′>B)

δRloop
B′←B S(B′>B). (D17)

In the last step, we have applied that summing over all ordered
links in a given loop and subsequently summing over all loops
is equivalent to summing over all loops that contain a given
ordered link and subsequently summing over all ordered links.
Carrying out the restricted summation over loops on the right-
hand side of Eq. (D17) and utilizing the rate decomposition
condition in Eq. (D13), we obtain the BIS formula [Eq. (A1)],
which completes the proof.

3. Gauge invariance of the reduced shift loop

The theorem allows us to simply derive general properties
of the steady shift current. We focus on one such property,
namely that the (Ab′b′k′ − Abbk) terms in both phononic and
photonic shift vectors [Eqs. (A2)–(A4)] cancel out when all
transitions are accounted for. This cancellation was pointed
out by BIS without an explicit demonstration [5], but it is a
simple consequence of the loop current theorem.

Recall that the shift vector (in either the photonic or
phononic case) may be decomposed into a term that depends
on the bosonic mode and terms that do not:

Sm
B′←B = δSm

B′←B + AB′ − AB, AB′ = Ab′b′k′ , AB = Abbk.

(D18)

The mode-dependent term is the negative gradient of an argu-
ment of a certain transition matrix element [Eqs. (A2)–(A4)];
we will refer to δSm

B′←B as the reduced shift vector. It follows
that the ordered shift vector [Eq. (D4)] decomposes similarly
as

S(B′>B) = AB′ − AB +
∑

m

δSm
B′←B

Am
B′←B − Em

B←B′

R(B′>B)
. (D19)

One may verify that the intraband connection terms cancel out
in the shift loop Sloop for any loop. Indeed, in the case of the

first orientation in Eq. (D9), the shift loop decomposes as

Sloop = δSloop + (
AB2 − AB1

)+ (
AB3 − AB2

)+ · · ·
+ (

ABN − ABN−1

)+ (
AB1 − ABN

) = δSloop. (D20)

δSloop, the reduced shift loop, is defined by replacing all shift
vectors by reduced shift vectors [cf. Eq. (D18)] in Eq. (D14).
Thus it follows that each loop current, being proportional
to Sloop, is invariant if the intraband connection terms are
dropped. Finally, the steady shift current, being a sum of loop
currents, also satisfies the same invariance property.

Equation (D20) implies that the reduced shift loop is a
well-defined, gauge-invariant quantity, despite the fact that
the reduced shift vector [Eq. (D18)] of a single transition is
not gauge-invariant. By “gauge-invariance,” we mean being
invariant under redefining one-electron Bloch wave functions
by a Bloch-label-dependent phase φB that is differentiable
with respect to k: |uB〉cell → eiφB |uB〉cell.

The cancellation in Eq. (D20) calls into question a claim
made by Fregoso-Morimoto-Moore [49], namely that large
polarization differences [−|e| ∫BZ(Acck − Avvk)d3k/(2π )3]
between the conduction and valence bands imply a large shift
current in the absence of optical vortices. At best, the Fregoso-
Morimoto-Moore claim holds for the frequency-integrated
transient shift conductivity (Appendix E), but not the steady
shift conductivity.

4. Geodesic approximation of loop currents
for 3D semiconductors

The steady shift current is well approximated by keeping
the most relevant loops in Eq. (D1). This section focuses on
the reduced family of geodesic loops, which predominate the
shift current in an intrinsic, direct-gap semiconductor with
a single minimum for Eck − Evk, namely Eckext − Evkext = Eg,
and conditioned on (i) carrier–optical-phonon scattering being
the dominant mechanism for energy relaxation in the active
region, (ii) small optical phonon energies (relative to Eg and
the largest energy of a photoexcited carrier), and (iii) low tem-
perature kBTl � Eg, h̄�o (�o is the optical phonon threshold
frequency). The goal of this section is to derive the geodesic
approximation to the shift conductivity [Eq. (13)] from the
loop-current formula [Eq. (D1)].

To motivate the geodesic loop, let us first consider a pair
of Bloch states with Bloch labels V = (v, kexc) and C =
(c, kexc); kexc lies on the optical surface, v denotes the valence
band, and c is the conduction band. The oriented transition
rate RC←V [cf. Eq. (D6)] is assumed to be dominated by
the absorption of nonthermal, source-created photons. The
probability-flow subgraph that includes the link (C,V ) is car-
icatured in Fig. 13. We will not repeat the arguments (detailed
in Secs. II and III) that explain why such a subgraph is
predominant; our goal here is to explain how such a subgraph
can be approximated by a geodesic loop.

Granted some poetic license, one may view the subgraph as
a cyclic probability river that rises in elevation, then splits into
tributaries that eventually merge into a waterfall. The splitting
reflects the multiple possible intraband relaxation pathways
in the conduction band; the merging reflects the existence of
a band-energy extremum that causes relaxation pathways to
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+ + +

FIG. 13. Loop decomposition of a probability flow subgraph. A similar subgraph was considered in Fig. 4(c).

converge toward the extremal wave vector kext. The cyclic
river may be decomposed into N cyclic streams, such that
for each stream, the flow rate is constant along the stream.
(N = 4 for our caricature in Fig. 13.) This constant flow rate
is identified with |δRloopn

|, with {loopn}N
n=1 being labels for the

N streams. All streams merge at (C,V ), such that the sum of
the stream flow rates [Eq. (D11)] equals the river flow rate:

N∑
n=1

∣∣δRloopn

∣∣ = RC←V , C = (ckexc), V = (vkexc).

(D21)

We have chosen a stream decomposition such that all the
streams flow with the same orientation as the river, and
this is always possible to choose. In principle, one may
choose a stream decomposition in which some of the streams
flow against the river along (C,V ); then for those counter-
flowing streams, one would replace |δRloopn

| → −|δRloopn
| in

Eq. (D21).
We proceed without further use of metaphors. The contri-

bution of the above subgraph to the shift current69 is a sum of
N loop currents:

jsubgraph[kexc] = −|e|
V

N∑
n=1

Sloopn

∣∣δRloopn

∣∣. (D22)

As argued in Sec. III, the predominant intraband-relaxation
pathways do not deviate far from geodesic paths connecting
kexc to kext; we remind the reader that the geodesic path is or-
thogonal to all isoenergy contours. Let us define the geodesic
loop as combining an excitation transition at kexc, geodesic-
path relaxation to kext through the conduction band, recom-
bination at kext, and geodesic-path relaxation back to kexc

through the valence band, as caricatured in Fig. 12(d). We de-
note the geodesic, oriented k-paths by pc and pv , respectively,
and the geodesic loop by loop[kexc]; the associated shift loop
is denoted Sloop[kexc], with Sloop generally defined in Eq. (D14).

It is of interest to show how Sloop[kexc] simplifies to an
expression for the shift loop [Eqs. (6)–(8)] that we have used
in the main text:

(i) For the recombination transition associated with
(B′>B) = (ckext > vkext ) (leftmost link in Fig. 13), one ap-
plies Eq. (D5) to show that sgn[δRloop

B′←B] S(B′>B) = Srec, as

69Bear in mind that “current” has nothing to do with the metaphor-
ical river current.

defined in Eq. (8). sgn[δRloop
B′←B] being −1 accounts for the

reversed orientation in a recombination transition, but this
minus sign can be absorbed by −Sm

ck←vk = Sm
vk←ck.

(ii) For the excitation transition associated with(B′>B) =
(ckexc > vkexc), sgn[δRloop

B′←B] S(B′>B) = Sms
ckexc←vkexc

assuming
that the source is monomodal and bright (cf. argument in
Appendix A 4).

(iii) For an intraband transition associated with (B′>B) =
(ck′ > ck), it is assumed small-angle scattering predom-
inates (||k′ − k|| � Brillouin-zone dimension), such that
sgn[δRloop

B′←B] S(B′>B) reduces to the asymptotic expression
−�ckave × δk [cf. case (a) in Ex. 1 of Appendix D 1]. By
approximating a discrete sum over intraband links as a line
integral, one obtains the first line integral in Eq. (6). The
second line integral is obtained in an analogous manner.

Because loopn does not deviate far from loop[kexc], we
approximate Sloopn

≈ Sloop[kexc] for all loops that make up the
subgraph; this is the geodesic approximation. The approxi-
mation is justified to the extent that small-angle scattering
predominates over large-angle scattering, as elaborated on
in Appendix D 5. Applying the geodesic approximation to
Eqs. (D21) and (D22),

jsubgraph[kexc] ≈ −|e|
V Sloop[kexc]RC←V . (D23)

The shift current is a sum of loop currents over loops that
constitute the full probability-flow network, and not just the
subgraph containing (C,V ). [For the one-dimensional cari-
cature in Fig. 12(d), the full network is composed of two
subgraphs.] In other words, one should sum jsubgraph[kexc] over
all kexc on the excitation surface:

j ≈ −2↑↓
|e|
V
∑

k

Sloop[k]R(ck)←(vk), (D24)

with the understanding that R(ck)←(vk) ∝ δ(Ecvk − h̄ω)
[Eq. (A5)] constrains

∑
k to the excitation surface; we have

also included a factor of 2 to account for spin. Assuming a
bright, monomodal light source, we may follow the argument
in Appendix A 4 to derive that R(ck)←(vk) ≈ Iεω

exck, with Iexc

defined in Eq. (A26). Converting the source mode occupancy
�Ns to an electric-field amplitude Eω through Eq. (A13), one
obtains

j ≈ −2π
|e|3
h̄

〈 fvck|ε · Acvk|2Sloop[k]〉ω(2JDOS↑)|Eω|2,
(D25)
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with fvc = fvk − fck a difference in the steady-state quasipar-
ticle distribution functions, and 〈· · · 〉ω and JDOS↑ defined in
Eq. (11). When expressed in terms of a nonlinear conductivity,
j = σε,ω|Eω|2, Eq. (D25) is equivalent to Eq. (13).

5. Geodesic approximation as a small-angle-scattering
limit of the BIS formula

Because the geodesic approximation of the shift conduc-
tivity [Eq. (13)] has been used in all model calculations, it
is of interest to clarify the regime of validity of the approx-
imation. Here, we will demonstrate that Eq. (13) derives as
a small-angle-scattering limit of the BIS formula Eq. (A1):
lims→∞ σBIS = σgeo, with s a parameter that controls the an-
gle of scattering. The choice of s is not unique. One possible
choice is to increase the power in the square of the electron-
phonon matrix element: |V m

bk′,bk|2 ∝ 1/||k′ − k||s [Eq. (C17)],

bearing in mind that this is a theoretical exercise to elucidate
the essence of the geodesic approximation; the physical value
of s is 2 for polarization scattering with optical phonons; cf.
Sec. III.

Implementing the threefold decomposition of both σgeo

[Eq. (14)] and σBIS (Appendix A 4), one can straightfor-
wardly verify that the excitation components match exactly,
while the recombination components match to a good ap-
proximation, bearing in mind that recombination transitions
predominantly occur at k near the extremal wave vector.70

This section will demonstrate for the intraband components
that lims→∞ σ intra

BIS = σ intra
geo .

Assuming only two bands are optically excited, the
intraband conductivity decomposes into contributions by in-
dividual bands: σ intra = σ intra

c + σ intra
v , and we will prove for

the conduction band that

BIS-geodesic reduction: lim
s→∞ σ intra

c,BIS = σ intra
c,geo + Or

(√
h̄�o

Eexc
,

√
h̄�o

Eg

)
, (D26)

with �o the optical phonon threshold [Eq. (A10)] and Eexc

the excitation energy measured from the conduction-band
minimum [Eq. (A21)]; the meaning of Or is relative error,
i.e., a + Or (b, c) means Or (b, c) has a magnitude less than
or comparable to maximum{|ba|, |ca|}, assuming b and c are
dimensionless. The BIS-geodesic reduction for the valence
band [Eq. (D26) with c → v] also holds true, but is a straight-
forward extension requiring no further substantiation.

To clarify, σ intra
c,geo is given by Eqs. (6)–(13) with the shift

loop reduced to the line integral over the geodesic path pck

connecting k to kext:

σ intra
c,geo = − 2π

|e|3
h̄

〈
fvck|ε · Acvk|2

∫
pck

�c × dk
〉
ω

2↑↓JDOS↑,

(D27)

while σ intra
c,BIS is taken from Eqs. (A28)–(A34):

σ intra
c,BIS = −2↑↓

|e|
V|Eω|2

∑
k,k′

Sck←ck′E sp
ck←ck′ . (D28)

We have omitted the phonon mode m = (qp) superscript on
the phononic shift Sm

ck′←ck = −S−m
ck←ck′ and the spontaneous

emission rate E sp,m, with the understanding that p is fixed to
a single branch of optical phonons, and q = k − k′ is fully

70As described in Sec. II and elaborated here, σ rec
BIS reduces to σ rec

geo

if the photonic shift vector Sm
ck←vk [in Eq. (A32), with k in the

passive k-volume] is approximated to be Sm
ckext←vkext

. This approxi-
mation leads to a relative error of order h̄�o/Eg, assuming that the
band gap Eg is the energy scale for significant variation of the shift
vector. If the photoexcited carriers within the passive region follow a
Maxwellian distribution, with electron temperature kBTe < h̄�o and
hole temperature kBTh < h̄�o (cf. Appendix B 1), then the relative
error is reducible to σ rec

BIS = σ rec
geo + Or (kBT/Eg), with T being the

smaller of {Te, Th}.

determined by momentum conservation; cf. Eq. (A3). Hence-
forth, we will simplify the notation by omitting the c subscript
on all quantities, except in instances where such an omission
may lead to confusion.

In addition to certain assumptions that justify the predom-
inance of geodesic loops (summarized in the beginning of
Appendix D 4), we will make additional model assumptions
that simplify the demonstration of the BIS-geodesic reduc-
tion [Eq. (D26)], though we do not believe these additional
assumptions are ultimately necessary for the reduction:

(i) The optical phonon frequency is roughly a constant
equal to h̄�o for the small phonon wave vectors we consider.

(ii) Both conduction and valence bands have isotropic dis-
persions, i.e., Eck and Evk depend on k through ||k||, as may
be expected near band extrema with cubic symmetry.

(iii) In the active region, electron–optical-phonon scat-
tering overwhelmingly dominates over electron–acoustic-
phonon scattering as the primary mechanism for energy
relaxation. One way to formalize this is to take ηE defined
in Eq. (B20) to zero.

Some implications of (i)–(iii) will hereby be elucidated in
preparation to prove the BIS-geodesic reduction [Eq. (D26)].

Excitation rate. (i) and (ii) imply that the excitation energy
Eexc [cf. Eq. (A21)] of conduction-band states is degenerate,
i.e., the excitation rate [Eq. (A26)] is nonzero only if Ek =
Eexc:

Iexck = Ĩexckδk,Eexc ,

Ĩexck = 2π |e|2
h̄

fvck|ε · Acvk|2 |∇kEc|
|∇kEcv|VgEexc |Eω|2. (D29)

We collect here a few useful properties of surface projectors:

δk,E = δ(Ek − E )

VgE
,

∑
k

δk,E =
∑

E

δk,E = 1,

δk,Eδk,E = δk,E , δk,Ej δk,Ej′ = δk,Ej δ j j′ , (D30)
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which encode their completeness (with
∑

E meaning∫
VgE dE ), idempotence, and orthogonality.71 Integrating a

surface-projected test function is equivalent to averaging the
test function over a two-sphere parametrized by the solid
angle λ:

〈〈	(k)〉〉kE =
∑

k

δk,E 	(k) =
∫

dλ

4π
	(k)

∣∣∣∣
k=(kE ,λ)

,

∑
k

=
∫ cutoff

0

Vk2dk

(2π )3

∫
dλ, (D32)

with kE being the inverse of the isotropic band dispersion Ek .
〈〈	(k)〉〉kE is referred to as the isoenergy average of 	(k).

Quasiparticle distribution. (i)–(iii) imply that the nonequi-
librium quasiparticle distribution within the active region is
singularly peaked at periodic intervals [27,82]:

fk =
jmax∑
j=0

f̃k, jδk,Ej , Ej = Eexc − jh̄�o. (D33)

fk thus has a ladderlike structure, with the top rung of the
ladder corresponding to the excitation energy (E0 = Eexc),
and the lowest rung Ejmax lying just above the passive re-
gion. The singular nature of fk originates from the source
being monochromatic and the predominant phonons being
dispersionless. One may verify that the regular function fE

in Eq. (E9) becomes proportional to a Dirac δ function as
ηE → 0.

Spontaneous emission rate. A related implication of (i)–
(iii) is that the spontaneous emission rate is a sum of terms
that connect adjacent rungs of the ladder:

E sp
k←k′ =

jmax−1∑
j=0

˜̃E sp
k←k′

||k − k′||s δk,Ej+1δk′,Ej
. (D34)

We have extracted 1/||k − k′||s and the singular δ functions
such that ˜̃E sp

k←k′ is regular as k approaches k′. To derive
the surface projector δk′,Ej

in Eq. (D34), apply that E sp
k←k′

[Eq. (A29)] is proportional to the singular distribution fk′

[Eq. (D33)]; the second surface projector δk,Ej+1 in Eq. (D34)
originates from energy conservation: Ek′k = h̄�o [Eq. (A29)].
The ladder structure in Eq. (D34) implies that the operator∑ jmax−1

j=0 δk′,Ej
acts trivially on the emission rate:

jmax−1∑
j=0

δk′,Ej
E sp

k←k′ = E sp
k←k′ , (D35)

due to the idempotence of surface projectors; cf. Eq. (D30).

71If the reader is bothered by (δk,E )2 being a product of two Dirac
δ functions, one may regularize the surface projector as

δVk,E =
{

1 |Ek − E | < 1/2VgE ,

0 otherwise,
(D31)

multiply two regularized projectors, and then subsequently take V →
∞.

Kinetic equation. The kinetic equation for the steady quasi-
particle distribution [Eqs. (B1)–(B7)] simplifies to

Iexc,k′ −
∑

k

E sp
k←k′ +

∑
k′′

E sp
k′←k′′ = 0 (D36)

for k′ in the active region [Eq. (A23)]; Iexc,k′ is given in
Eq. (D29) and E sp

k←k′ in Eq. (D34). We have dropped the
recombination component [Eq. (B2)] of the kinetic equa-
tion because the loss rate due to spontaneous emission of
optical phonons greatly outweighs the loss rate due to inter-
band recombination; cf. the discussion under Eq. (E8).

The last preparation for the BIS-geodesic reduction
[Eq. (D26)] will be to relate the excitation and spontaneous
emission rates as

Ĩexc,(k0,λ) = ˜̃E sp
(k j+1,λ)←(k j ,λ) lim

s→∞ 〈1/qs〉 j+1
j ,

〈1/qs〉 j+1
j ≡

∫
dλ′

4π

1

||k − k′||s
∣∣∣∣
k=(k j+1,λ′ );k′=(k j ,λ)

. (D37)

k j is short for kEj , meaning it is the radius of the spherical
isoenergy surface with energy Ej . The term on the right-hand
side of Ĩexc can be interpreted as the rate at which a quasiparti-
cle on the jth isoenergy surface drops to the ( j + 1)th surface
by spontaneously emitting an optical phonon.

Equation (D37) is ultimately a consequence of the con-
servation of probability flow in energy-momentum space.
Proving Eq. (D37) takes three steps: (A) we first relate the
excitation rate to the rate of phonon-mediated transitions
between the zeroth/excitation surface to the first isoenergy
surface. (B) We then relate the rate of phonon-mediated tran-
sitions between the ( j − 1)th and jth surfaces to the rate of
phonon-mediated transitions between the jth and ( j + 1)th
surfaces. (C) Combining our relations from (A) and (B) and
taking the small-angle-scattering limit gives us Eq. (D37).

Step (A): Projecting the kinetic equation [Eq. (D36)] onto
the excitation surface tells us

0 = δk′,E0

⎛⎝Iexc,k′ −
∑

k

E sp
k←k′ +

∑
k′′

E sp
k′←k′′

⎞⎠
= Iexc,k′ − δk′,E0

∑
k

E sp
k←k′ , (D38)

with the last term dropping out because there are no quasi-
particles with energies exceeding Eexc that can drop to the
excitation surface by emitting a phonon; cf. Eq. (D34). Let us
substitute the ladder formula for the emission rate [Eq. (D34)]
into Eq. (D38) and apply the orthogonality of surface projec-
tors [Eq. (D30)] to reduce

∑
j to the j = 0 term. We then

convert
∑

k δkE1 to a solid-angular integral via Eq. (D32) to
obtain

δk′,E0
Ĩexc,k′ = δk′,E0

∫
dλ

4π

˜̃E sp
k←k′

||k − k′||s
∣∣∣∣
k=(k1,λ)

. (D39)

Step (B): If we project the kinetic equation [Eq. (D36)] to
the jth isoenergy surface with j �= 0 and �= jmax, then it is the
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excitation term that drops out:

δk′,Ej

⎛⎝∑
k′′

E sp
k′←k′′ −

∑
k

E sp
k←k′

⎞⎠ = 0. (D40)

Like how we derived the right-hand side of Eq. (D39),
Eq. (D40) can be massaged to the form∫

dλ′′

4π

˜̃E sp
k′←k′′

||k′ − k′′||s
∣∣∣∣
k′′=(k j−1,λ′′ )

=
∫

dλ

4π

˜̃E sp
k←k′

||k − k′||s
∣∣∣∣
k=(k j+1,λ)

(D41)

for any k′ on the jth isoenergy surface. With k′ as a reference
point, Eq. (D41) encodes that the incoming probability flow
from the ( j − 1)th surface matches the outgoing probability
flow to the ( j + 1)th surface.

Step (C): Both Eqs. (D39) and (D41) involve solid-angular
integrals that simplify in the small-angle-scattering limit: fix-
ing k′ = (k j, λ

′),

lim
s→∞

∫
dλ

4π

˜̃E sp
k←k′

||k − k′||s
∣∣∣∣
k=(k j+1,λ)

= ˜̃E sp
(k j+1,λ′ )←k′ lim

s→∞ 〈1/qs〉 j+1
j , (D42)

with 〈1/qs〉 defined in Eq. (D37). The crucial step taken here is
to replace ˜̃E sp

k←k′ in the integral by its value when ||k − k′||−s is
maximized, or equivalently when ||k − k′|| is minimized. This
replacement is justified asymptotically as s → ∞, and it may
be seen as an application of Laplace’s method [98]. To man-
ifest the usual form of the integral seen in Laplace’s method,
we momentarily adopt spherical-angular coordinates λ =
(cos θ, φ) such that k = (k sin θ cos φ, k sin θ sin φ, k cos θ )
and k′ = (0, 0, k′); then for any smooth function fk = f (k, λ),

Ls =
∫

dλ

4π

f (k, λ)

||k − k′||s

=
∫ 1

−1
esR(x)

[ ∫ 2π

0

f (k, x, φ)

4π
dφ

]
dx,

R(x) = − 1

2
ln [k2 + k′2 − 2kk′x], (D43)

with x = cos θ . R(x) has a unique global maximum at x = 1,
which is an end point of the interval of integration. Applying
a standard formula from asymptotic analysis [98],

lim
s→∞ Ls = f (k, 1, φ)

2

esR(1)

sR′(1)
+ Or (s−1)

= f0,0,k
1

2skk′|k − k′|s−2
+ Or (s−1), (D44)

with R′ = dR/dx. In our application, f0,0,k corresponds to
˜̃E sp
(k j+1,λ′ )←(k j ,λ′ ) in Eq. (D42).

Substituting Eq. (D42) into Eq. (D41), we relate the tran-
sition rates between two adjacent pairs of isoenergy surfaces
as

˜̃E sp
(k j ,λ)←(k j−1,λ)

˜̃E sp
(k j+1,λ)←(k j ,λ)

= lim
s→∞

〈1/qs〉 j+1
j

〈1/qs〉 j−1
j

. (D45)

Combining Eqs. (D39) and (D45), we relate the excitation rate
to the transition rate between a pair of isoenergy surfaces:

Ĩexc,(k0,λ) = ˜̃E sp
(k j+1,λ)←(k j ,λ) lim

s→∞ 〈1/qs〉1
0

j∏
i=1

〈1/qs〉i+1
i

〈1/qs〉i−1
i

. (D46)

The solid-angular integral in Eq. (D37) is evaluated to be

〈1/qs〉 j+1
j = 1

2(s − 2)k jk j+1

×
[

1

|k j − k j+1|s−2
− 1

(k j + k j+1)s−2

]
, (D47)

which manifests that 〈1/qs〉 j+1
j is symmetric under in-

terchanging j and j + 1, hence Eq. (D46) simplifies to
Eq. (D37), as desired.

Proof of BIS-geodesic reduction [Eq. (D26)]. Let us begin
the proof by demonstrating that the ratio between Eqs. (D27)
and (D28) reduces to

σ intra
geo

σ intra
BIS

=
〈〈

Ĩexc,k
∫

pk
� × dk

〉〉
kE0∑ jmax−1

j=0

〈〈∑
k Sk←k′E sp

k←k′
〉〉

k′Ej

. (D48)

Beginning with the geodesic expression in Eq. (D27), we
insert the integral expression of 〈· · · 〉ω from Eq. (11) and
decompose the excitation rate Iexck according to Eq. (D29):

−V|Eω|2
2↑↓|e| σ intra

geo =
∑

k

δk,Eexc Ĩexck

∫
pk

� × dk. (D49)

The right-hand side of the above equation is simply the numer-
ator of Eq. (D48), per our definition of isoenergy averaging in
Eq. (D32). Working now on the BIS formula [Eq. (D28)], we
insert the trivial operator

∑ jmax−1
j=0 δk′,Ej

[Eq. (D35)] and apply
again the definition of isoaveraging in Eq. (D32):

− V|Eω|2
2↑↓|e| σ intra

BIS =
jmax−1∑

j=0

〈〈∑
k

Sk←k′E sp
k←k′

〉〉
k′Ej

. (D50)

Taking the ratio of Eqs. (D49) and (D50) gives Eq. (D48), as
desired.

Focusing on a summand of fixed j and taking the small-
angle-scattering limit,

SE j = lim
s→∞

〈〈∑
k

Sk←k′E sp
k←k′

〉〉
k′Ej

=
∫

dλ

4π

∑
k

Sk←(k j ,λ) lim
s→∞ E sp

k←(k j ,λ). (D51)

We then apply Laplace’s method [Eqs. (D43) and (D44)] and
replace Sk←k′ ˜̃E sp

k←k′ by its value when ||k − k′|| is minimized:

SE j =
∫

dλ

4π
S(k j+1,λ)←(k j ,λ)

˜̃E sp
(k j+1,λ)←(k j ,λ) lim

s→∞ 〈1/qs〉 j+1
j

=
∫

dλ

4π
�k j

ave
× δk j Ĩexc,(k0,λ), (D52)

with k j
ave = (k j + k′ j )/2, δk j = k′ j − k j , k′ j = (k j+1, λ), and

k j = (k j, λ). In the last step, we substituted the spontaneous
emission rate with the excitation rate in accordance with
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Eq. (D37), and we replaced the phonon-mediated shift vector
with its asymptotic small-angle limit [Eq. (5)]. The sum of
SE j over j may be regarded as a Riemann sum, which ap-
proximates a line integral over the geodesic path:∑

j

�k j
ave

× δk j =
∫

pk

� × dk + Or

(√ h̄�o

Eexc
,
√ h̄�o

Eg

)
.

(D53)

Indeed, it may be seen that the discrete transitions between
isoenergy surfaces,

(k jmax , λ) ← (k jmax−1, λ) ← · · · ← (k1, λ) ← (k0, λ) = k,

(D54)

concatenate into a straight path p′
k of fixed solid-angular ori-

entation; the geodesic path pk similarly connects kext ← k in
a straight path. One caveat is that (k jmax , λ) is not kext and
lies just outside the passive k-volume [Eq. (A23)], thus |p′

k|
is shorter than |pk| by about kh̄�o . In the parabolic-band ap-
proximation, kh̄�o/kEexc = (h̄�0/Eexc)1/2, which is the reason
for the relative error in Eq. (D53). This estimate presumes
the band gap Eg is comparable to Eexc. For semiconductors
with anomalously small band gaps, the Berry curvature may
be concentrated in an energy interval comparable to Eg, hence
the relative error is modified to (h̄�0/Eg)1/2. Altogether,

lim
s→∞

jmax−1∑
j=0

〈〈∑
k

Sk←k′E sp
k←k′

〉〉
k′Ej

=
〈〈

Ĩexc,k

∫
pk

� × dk
〉〉

kE0

+ Or

(√
h̄�o

Eexc
,

√
h̄�o

Eg

)
, (D55)

which combines with Eq. (D48) to give the BIS-geodesic
reduction [Eq. (D26)].

For finite s = 2, which is appropriate to polarization scat-
tering, one should expect the ratio σ intra

geo /σ intra
BIS to deviate from

unity. In practice, we find this deviation to be small: for the
model calculation in Sec. III, the ratio turns out to be 1.08 for
a source photon energy of h̄� = 0.8E0; cf. Fig. 5(e).

6. Geodesic approximation for quasi-2D semiconductors

Having formulated the geodesic approximation for 3D
direct-gap semiconductors, we would like to extend the notion
to quasi-2D direct-gap semiconductors, as exemplified by the
model Hamiltonian in Eq. (16).

By quasi-2D, we mean that the electronic band energies
Ebk and cell-periodic wave functions |ubk〉cell are approxi-
mately independent of one wave-vector coordinate, say, kz.
The former condition implies that the band gap is minimized
not at a single k-point but along a k-line. In our model
[Eq. (16)], this k-line is parametrized by k = (0, 0, kz ), as
illustrated by the purple line in Fig. 14. The latter condition on
the wave function implies that the intraband Berry curvature
vector is collinear with the z unit directional vector: �bk =
�z

bk�z, and that the shift current vanishes in the z direction.
Indeed, a nonzero z-component of the photonic/phononic

kexc pc

P  pco

krec

kz

FIG. 14. Quasi-two-dimensional conduction band plotted over
(E , kx, kz ), with E parametrizing an implicit vertical axis.

shift vector requires that |ubk〉cell depends nontrivially on kz,
as deducible from Eqs. (A2)–(A4) and Eq. (C17).

Let us then consider the shift current j⊥ orthogonal to �z.
We would like to demonstrate that j⊥ is well approximated
by Eq. (D25), with loop[k] reinterpreted as a planar geodesic
loop: a geodesic loop confined to the kx-ky plane that contains
k. Precisely, we mean that all nodes in loop[k] have identical
values for kz, and k is connected by a geodesic path to the
extremal wave vector that lies closest to k, as illustrated by the
green trajectory in Fig. 14. A consequence of loop[k] being
planar is that the affinity shift loop in Eq. (D25) simplifies to
a planar integral:

〈 fvck|ε · Acvk|2Sloop[k]〉ω
=
∫

dkxdky

(2π )2az

δ(Ecvk − h̄ω)

JDOS↑
fvck|ε · Acvk|2Sloop[k]. (D56)

We have introduced a lattice constant az such that
∫

dkz =
2π/az. The z component of k in the integrand can be arbitrar-
ily chosen, and the integrand only depends on band energies
and wave functions within the arbitrarily chosen kx-ky plane.
This justifies our use of the planar model Hamiltonian in
Eq. (16), which explicitly depends on kx and ky but not kz.

To recapitulate, being quasi-two-dimensional allows us to
simplify the loop analysis to planar loops, as if the problem
were strictly two-dimensional. Such a simplification is not a
priori obvious, since a hot photoexcited electron with initial
wave vector kexc (on the excitation surface) may relax to any
point along the conduction-band minimum, including points
that differ from kexc in the z component (cf. the pink trajectory
in Fig. 14). If subgraph[kexc], the probability-flow subgraph
that includes the link (ckexc > vkexc) (cf. Fig. 13), is decom-
posed into loops, one expects to find loops that are extended
in the kz direction.

Let us denote the pink-colored trajectory by pc; the lower-
energy boundary point of pc corresponds to the wave vector
krec of recombination; it is assumed that the electron traces a
path pv from Bloch label (v, kexc) to (v, krec), which is not
illustrated in Fig. 14. Altogether, pc, pv and the vertical links
at kexc and krec combine to form loop(kexc, krec); its associated
shift loop Sloop(kexc,krec ) is defined through Eq. (D14). We define
P ◦ loop(kexc, krec) as the projection of loop(kexc, krec) onto
the kx-ky plane containing kexc. If kz

exc = 0, then this projection
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amounts to setting kz = 0 for all nodes along the loop, such
that the pink trajectory collapses to the green trajectory in
Fig. 14.

We would prove that the shift loop is invariant under such
a projection: Sloop(kexc,krec ) = SP◦loop(kexc,krec ). Points (i)–(iii) in
Appendix D 4 can be used to show that Sloop(kexc,krec ) has the
same form as the right-hand side of Eq. (6), with Srec defined
as in Eq. (8) but with kext replaced by krec. Because the
photonic shift vector [Eq. (A4)] and the interband Berry con-
nection are purely a function of |ubk〉, which is kz-independent,
the two photonic terms in Eq. (6) are invariant under changing
the z component of krec. What remains is to demonstrate a
similar invariance for the anomalous component of the shift
loop, which is given by a sum of the two line integrals in
Eq. (6). pc differs from P ◦ pc only in that the k-path of inte-
gration is extended in the kz direction (Fig. 14). Since �ck =
�z

ck�z is kz-independent, it follows that �ck × dk = �c,P◦k ×
P ◦ dk, meaning

∫
pc

�ck × dk is invariant under projecting
pc → P ◦ pc. The same argument and conclusion hold for
v → c. This completes our proof of invariance for the shift
loop.

It is a straightforward generalization to demonstrate that
the invariance property Sloop = SP◦loop holds for any loop,
not just the simple loop we considered above. Thus for
the purpose of evaluating the loop current contribution by
subgraph[kexc] [Eq. (D22)], one may as well project the entire
subgraph to the kx-ky plane containing kexc.

At this point, one may apply essentially the same argu-
ments that led to approximating Eq. (D22) by Eq. (D25), with
the only modification being that all loops are now planar, and
in particular, loop(k) in Eqs. (D23) and (D24) is a planar
geodesic loop. This completes the proof of Eq. (D56).

APPENDIX E: THE TRANSIENT CURRENT
APPROXIMATES THE EXCITATION-INDUCED CURRENT

Appendix B establishes concepts and notations that are
prerequisite to understanding this Appendix.

We focus on the photoexcited carrier density regime: n �
nh, where energy relaxation in the active region is domi-
nated by optical phonons. Assuming that the excitation energy
[Eq. (A21)] of photoexcited carriers lies in the active region,
we would demonstrate that the transient current jtran is well
approximated by the excitation-induced component jexc [cf.
Eq. (A25)] of the steady current.

Before tackling the transient and nonequilibrium currents,
let us take a step back to consider an equilibrated mix of
electrons, photons, and phonons in the absence of the light
source. The quasiparticle occupancy then follows the Fermi-
Dirac distribution: f T0

bk [Eq. (A8)], while the occupancy of
photons and phonons follows the Planck distribution: NT0

m
[Eq. (A9)] with the same equilibrium temperature. The shift
current, viewed as a functional of the quasiparticle, photon,
and phonon occupancies [Eq. (A7)], vanishes:

Equilibrium: j
[

f T0
B , NT0;phot

m , NT0;phon
m

] = 0, (E1)

due to detailed balance; cf. Eq. (A15).
At the onset of turning on a light source (with frequency ωs,

mode ms, polarization εs), the quasiparticles and phonons re-
tain their equilibrium distributions, but the photon occupancy

is modified to NT0;phot
m + �Nsδm,ms . We define the transient

current as the current at the onset of radiation:

Onset: jtran = j
[

f T0
B , NT0;phot

m + �Nsδm,ms , NT0;phon
m

]
. (E2)

All bosonic modes with a thermal occupancy cannot con-
tribute to the shift current, due to detailed balance; cf.
Eq. (A15). For the source mode ms, the net transition rate
[Eq. (A5)] can be decomposed just as in Eq. (C103), with T
replaced by T0. Because the first term on the right-hand side of
Eq. (C103) vanishes by detailed balance [Eq. (A15)], the tran-
sient current is simply proportional to the source-generated
photon occupancy:

jtran = − |e|
V
∑

k

Sεs
C←V

(2πe)2ωs

V |εs · Acvk|2

× δ(Ecvk − h̄ω) f T0
cvk�Ns. (E3)

The formula here assumes a two-band semiconducting model
(Appendix A 3), but more generally one would just sum over
contributions from all resonant interband transitions. It should
be borne in mind that f T0

C is exponentially suppressed with
exponent Eg/kBTe  1 for an intrinsic semiconductor:

f T0
C � 1 and 1 − f T0

V � 1. (E4)

Equation (E3) manifests that jtran �= 0 must originate solely
from the disruption of detailed balance between pairs of Bloch
states that are resonantly coupled by the light source, i.e., pairs
labeled (ck) and (vk), with k on the excitation surface ES;
cf. Eq. (A20). It follows that in evaluating jtran = j[ f T0 , . . .],
one may as well restrict the wave-vector summations

∑
kk′ in

Eq. (A1) with the condition k = k′ ∈ ES:

jtran = j
[

f T0
B , NT0;phot

m + �Nsδm,ms , NT0;phon
m

]
k=k′∈ES. (E5)

As derived in Appendix A 4, the excitation-induced com-
ponent of the steady shift current [cf. Eq. (A25)] differs from
Eq. (E3) only in that f T0

cvk is replaced by the nonequilibrium
fcvk = fC − fV . If one accepts that the nonequilibrium quasi-
particle distribution over the excitation surface satisfies

∀k ∈ ES : fC � 1 and 1 − fV � 1, (E6)

then fcvk ≈ f T0
cvk (on the excitation surface), and therefore the

excitation-induced current approximates the transient current:

jtran = j[ f T0 ]|k=k′∈ES ≈ j[ f ]|k=k′∈ES = jexc, (E7)

in accordance with Eqs. (E3)–(E5).
For n � nh, we believe the inequalities in Eq. (E6) hold

generally, due to an argument presented in the main text and
reproduced here: the smallness of fC and (1 − fV ) originates
from the slowness in optical excitations compared to the fast-
ness of energy relaxation by carrier-carrier and carrier-phonon
scatterings.

We will flesh out this argument by deriving an explicit
expression of fC for the kinetic model set up in Appendix B 2.
This model encodes certain assumptions that caricature re-
ality, as detailed in Appendixes B 2 a and B 2 b. Thus our
explicit expression for fC should be understood as an order-
of-magnitude estimate for more realistic distributions; this is
fine because the advertised inequality [Eq. (E6)] is a statement
about orders of magnitude.
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With this caveat in mind, let us reproduce from Eq. (B16)
the kinetic equation for the isoenergy-averaged quasiparticle
distribution fE in the conduction band:

E > h̄�o : G↑δ(E − Ec,exc) − gE fE

τ o
E

+ gE+ fE+

τ o
E+

+ ∂E

[
gE E

τ s
E

(1 + kBTe∂E ) fE

]
= 0,

E+ = E + h̄�o. (E8)

We assume the reader has read the discussion leading to
Eq. (B16), and we will not repeat the definitions and de-
scriptions of each term in the kinetic equation. However, we
will mention two slight differences between the above equa-
tion and Eq. (B16):

(i) We have dropped the interband recombination term
(−gE fE/τrec) that was present in Eq. (B16). This is alright
for E > h̄�o (the active region), because electron–optical-
phonon scattering results in a substantially larger loss rate:
−gE fE/τ o

E , given that τrec ∼ 1 ns and τ o
E ∼ 100 fs [30–32].

(ii) The diffusive Fokker-Planck term in Eq. (E8) car-
ries a more general meaning than the corresponding term in
Eq. (B16):

(ii-a) For n � nl , the diffusive term encodes electron–
acoustic-phonon scattering, and τ s ≡ τA is the energy relax-
ation time due to spontaneous emission of acoustic phonons;
a typical value is τA ∼ 1 ns [27,28].

(ii-b) For nh  n  nl , the diffusive term encodes
electron-electron scattering, and τ s = τee is the time taken for
a hot “test electron” (with initial energy  kBTe) to cool down
to an energy comparable to kBTe [27]. By assumption for this
density regime, electron-electron scattering is more efficient
in relaxing an electron’s energy than electron–acoustic-
phonon scattering, meaning τ ee � τA ∼ 1 ns. It is also pos-
sible for electron-electron collisions to establish an electron
temperature Te that exceeds the lattice temperature Tl [27].

The solution to the differential equation [Eq. (E8)] has been
derived in Refs. [82] and [27]. Here, we extract a few salient
facts from these references that help to prove Eq. (E6): In
the absence of the secondary scattering process (τ s

E → ∞),
the distribution is a sum of Dirac-δ functions centered at
Ek := Ec;exc − kh̄�o. The effects of the secondary scatterers
are that each peak shifts as Ek → Ek − ηEk (k + 1)h̄�o, as well
as broadens to a regular function. Assuming h̄�o/kBTe � 1
and k ∼ 1, the width of each peak remains small compared to
h̄�o. The highest peak (k = 0) has the functional form

fE = G↑τ
o

g

� − 1

4kBTe
√

�
exp[−x − √

�|x|]|x=(E−Ec;exc )/2kBTe ,

� = 1 + 4
kBTe

h̄�o
η−1, (E9)

with g, τ o, and η evaluated at Ec;exc.72 In particular,

fEc;exc = G↑τ
o

gh̄�oη
√

�
ηh̄�o/kBTe�1≈

1

2

G↑

g

√
τ sτ o

Ec;exckBTe
. (E10)

72The solution presented in Ref. [27] is missing a factor of 1/kBTe,
which we presume is a minor typographical oversight.

Let us estimate G↑/g under realistic experimental con-
ditions. Recalling G↑ = α↑Irad/h̄ω from Eq. (B17), and
assuming typical values for the lattice period a ∼ 5 Å, density
of states g ∼ eV/a3, absorption coefficient α↑ ∼ 103 cm−1

[99], and continuous-wave laser intensity Irad ∼ 40 W cm−2

[69], one finds a modest value for G↑/g ∼ 10 eV/s.
fEc;exc is the product of G↑/g with a quantity that has

dimensions of time over energy. This quantity encodes the mi-
croscopic energy relaxation processes, which occur at much
shorter timescales than 1 s: as a reminder, τ o ∼ 100 fs and
τ s � 1 ns [27,28,31,32]. Thus, fEc;exc � 1 even at the low
temperature of Te ∼ 1 K. Given that fC � 1 for k ∈ ES,
1 − fV = fC � 1 immediately follows from the electron-hole
symmetry of our model; cf. Appendix B 2 a. This completes
our demonstration of Eq. (E6).

APPENDIX F: MODEL CALCULATIONS
WITH OPTICAL VORTICES

This Appendix details the model calculations that support
certain claims stated in Sec. IV, which we reproduce here for
easy reference:

(I) σ�x,ω is dominated by the recombination-induced cur-
rent.

(II) σ�y,ω is dominated by the excitation-induced and intra-
band currents.

(III) The signs of σ
y
�x,ω and σ

y
�y,ω differ over a broad range of

frequencies.
(IV) The linear disparity in the conductivity is large:

|σy
�x,ω − σ

y
�y,ω| ∼ mA V−2.

(V) The current response to unpolarized light is given by
|σy

�x,ω + σ
y
�y,ω|/2 ∼ 0.1 mA V−2.

Some aspects of the following demonstration will be a
more quantitative elaboration of qualitative arguments made
in Sec. IV.

The form of our model Hamiltonian is identical to the one
studied in the context of the anomalous shift; cf. Eq. (16).
Having studied the case of Q̃ = 1, we now tune Q̃ from
positive to negative values. The conduction and valence bands
touch (at k = 0) when Q̃ = 0 and subsequently untouch for
negative Q̃. This untouching is accompanied by the nucle-
ation of two time-reversal-related �x-vortex lines at (k̃x, k̃y) ≈
( ±

√
−Q̃/(1 − Q̃/2), 0), as illustrated in Fig. 15(a); there are

no �y-vortices in this model [Fig. 15(b)]. Henceforth, we fix
Q̃ = −1.

First, let us consider the case of an �x-polarized light source
and make the case that the excitation-induced current is out-
weighed by the recombination-induced current: || jexc[�x]|| �
|| jrec[�x]||, due to the vortex-induced orientational disorder of
the photonic shift vector field. This inequality simplifies to
||σexc,y

�x,ω || � ||σrec,y
�x,ω || for the y-component of the shift conduc-

tivity [Eqs. (6)–(14)], because a mirror symmetry (x → −x)
of the model Hamiltonian73 constrains the x component of the
shift current to vanish, while the z component vanishes due to
the quasi-two-dimensionality of the model; cf. Appendix D 6.
Because the shift conductivity is essentially the product of the

73MxH (k)M−1
x = H (−kx, ky ) with Mx = σ3.
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FIG. 15. Characterization of the model Hamiltonian in Eq. (16)
with Q̃ = −1. Panels (a), (c), and (e) are characterizations for a light
source with linear polarization vector εs = �x, and (b), (d), and (f) for
εs = �y. The pink dots in (a), (c), and (e) represent the k-locations
of �x-vortices. Panels (a) and (b) depict the photonic shift vector
field Sεs

ck←vk, with εs = �x and �y, respectively. For panels (c) and
(d), the red ellipse represents the excitation surface for a photon
frequency h̄ω = 4.5E0; arrows on the ellipse represent the vectors
|εs · Acvk|2Sεs

ck←vk for k on the excitation surface; the central arrow
represents the recombination component of the affinity shift loop:
ASLrec

ε,4.5E0
; cf. Eq. (F1). For panels (e) and (f), the size of the red dots

indicates the magnitude of |εs · Acvk|2 for k on the excitation surface;
the colored background represents the Berry curvature scalar field
�z

ck in units of a2 = (Vcell )2/3, with a color legend on the right.

joint density of states (JDOS↑) [cf. Eq. (12)] with the affinity
shift loop [cf. Eqs. (10)–(13)], one may as well compare the
excitation and recombination components of the affinity shift
loop:

ASLexc
ε,ω ≡ 〈|ε · Acvk|2Sε

y,ck←vk〉ω vs

ASLrec
ε,ω ≡ 〈|ε · Acvk|2〉ωSy,rec (F1)

for ε = �x, and 〈· · · 〉ω denoting an average over the excitation
surface; cf. Eq. (11). Sy means the y component of S, and
Sε

y,ck←vk is the photonic shift vector defined in Eq. (A4). The
recombination shift Srec is defined in Eq. (8) but simplifies in
the present context to S�x

vkext←ckext
, due to a mirror-symmetry-

imposed dipole selection rule.74 A numerical calculation of
Eq. (F1) reveals for a wide range of photon frequencies that
ASLexc

�x and ASLrec
�x have opposite signs, and that |ASLexc

�x | �
|ASLrec

�x | by a multiplicative factor ranging from 1/5 to 1/8,
as illustrated in Fig. 16(a).

To rationalize this multiplicative factor, we illustrate
|Ax

cvk|2S�x
ck←vk as arrows in Fig. 15(c) for k along a represen-

tative excitation surface encircling the �x-vortices. The central
arrow in Fig. 15(c) represents 〈|Ax

cvk|2〉ωS�x
vkext←ckext

. All arrows
are drawn with a common scale to allow for mutual compar-
ison. It is evident that proximity to the �x-vortex causes the
direction of |Ax

cvk|2S�x
ck←vk to rotate along the excitation sur-

face; the average of |Ax
cvk|2S�x

ck←vk over the excitation surface
is therefore diminished; this average just equals ASLexc

ε,ω; cf.
Eq. (F1). In contrast, recombination occurs in the vicinity of
the extremal wave vector kext, where the photonic shift vector
is roughly constant. Thus follows a general principle: ceteris
paribus, the orientational disorder induced by �x-vorticity re-
duces jexc[�x] relative to jrec[�x], for an �x-polarized source.

Ceteris paribus, the same orientational disorder reduces
jexc[�x] relative to jexc[�y], for reasons explained in Sec. IV.
This implies a linear disparity of the excitation-induced
current jexc, which applies to a broad range of photon fre-
quencies; compare red curves of Figs. 16(a) and 16(b).

To understand the linear disparity of the intraband current
jintra, we have indicated the k-dependent magnitude of |Ax

cv|2
(|Ay

cv|2) by the size of dots imprinted over the excitation sur-
face in Fig. 15(e) [Fig. 15(f)]; in both figures, the same Berry
curvature scalar field (�z

ck) is represented by a color plot. It
may be seen that |Ax

cv|2 and |Ay
cv|2 are both anisotropic over the

excitation surface, but each favors a different segment of the
excitation surface for reasons explained in Sec. IV. We deduce
for the �y-polarized source that the predominant relaxation
pathways are roughly parallel to kx [cf. Fig. 7(f)] and intersect
the Berry-curvature hot spots, leading to a larger anomalous
shift than the case of the �x-polarized source. Once again, this
effect is not limited to a fine-tuned photon frequency; compare
green curves of Figs. 16(a) and 16(b).

Altogether, the linear disparity of jexc and jintra results
in the net shift current being dominated by jexc + jintra for
a �y-polarized source [cf. the black curve in Fig. 16(b) and
claim (II)], and by jrec for a �x-polarized source [black curve
in Fig. 16(a) and claim (I)]; the net current changes sign if
the polarization is flipped [claim (III)]. The linear disparity
of the affinity shift loop [i.e., the difference of the two black
curves in Fig. 16(a) vs 16(b)] is comparable to −1 (in units
of Vcell, the real-space volume of the primitive unit cell) over
a broad range of frequencies; this corresponds to a linear
disparity of the conductivity: σ

y
�x,ω − σ

y
�y,ω ≈ 2 mA V−2 [cf.

Eq. (13), Fig. 2(d), and claim (IV)], assuming a generic value
for JDOS↑ ≈ (VcelleV )−1.75

74Conduction- and valence-band states with kx = 0 transform under
different representations of mirror symmetry Mx , hence Ay

cvkext
=

Az
cvkext

= 0. This implies for any ε that is not orthogonal to �x that

∇k arg ε · Acvkext = ∇k arg Ax
cvkext

and Sε
vkext←ckext

= S�x
vkext←ckext

.
75We choose Q̃ = −1 and P̃ = 12 such that JDOS↑ ≈ (VcelleV )−1.
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FIG. 16. The black curves in panels (a) and (b) represent the affinity shift loop 〈|εs · Acv|2Sεs
y,loop〉ω (in units of Vcell) vs the photon frequency

ω, for polarization εs = �x and �y, respectively. Nonblack curves represent the three components of the affinity shift loop: excitation (red
curve), intraband relaxation (green curve), and recombination (blue curve). Panel (c) averages the affinity shift loop over two orthogonal
light polarizations.

The response to an unpolarized light source is given by
(σy

�x,ω + σ
y
�y,ω )/2, which ≈0.2 mA V−2 over a broad range of

frequencies [cf. the black curve in Fig. 16(c) and claim (V)].
We end this Appendix with a caveat: the calculated val-

ues of σ should be taken with a grain of salt. A reliable
calculation of σ should also account for the dependence of
Bloch wave functions over continuous space [48], but such a
dependence is discarded when the Hilbert space is reduced
to a two-dimensional vector space at each k point, as was
done for all model Hamiltonians in this work. A more realistic
model would incorporate ab initio–derived wave functions
as additional model parameters [11,100]. Reassuringly, our
qualitative arguments for vortex-induced shifts do not rely
on the two-band approximation and are equally applicable to
realistic, continuous-space Hamiltonians.

APPENDIX G: CHERN-VORTICITY THEOREM

The Chern-vorticity theorem in Eq. (18) relates the Chern
numbers (Cv,Cc) of the valence and conduction states (over
any closed 2D k-manifold �) to the net optical vorticity (Vort)
within �.

To prove the theorem, we first recall that if Cv (Cv ) �= 0,
the wave function cannot be made continuous and periodic
over �, i.e., Avvk (Acck) must be singular somewhere on �. To
be concrete, supposing � were a two-torus; Fig. 17 illustrates
how � is decomposed into two patches, such that the wave

FIG. 17. Illustration of the two-patch decomposition of �, as
well as the paths for the line integrals in Eqs. (G1) and (G3). The
magenta crosses represent the optical vortices.

function in the interior of each patch is analytic in k, but
Avvk (Acck) is singular at the patch boundary:

lim
δ→0

1

2π

(∫
L1

+
∫
L2

)
Abbk · dk = Cb with b = v, c.

(G1)

Here, Cb is the Chern number of the band labeled by b, and δ

is an infinitesimal parameter illustrated in Fig. 17.
Performing the same line integral with the Berry connec-

tion replaced by the photonic shift vector gives zero for any
linear polarization vector ε:

lim
δ→0

1

2π

(∫
L1

+
∫
L2

)
Sε

ck←vk · dk = 0, (G2)

because the shift vector is gauge-invariant and smoothly de-
fined except at optical vortices, and one can always choose
the patch boundary to avoid those vortex points.

Comparing the last two equations with the definition of the
photonic shift vector in Eq. (3), one infers that there must
be nonzero circulations in arg[ε · Acvk] to compensate for the
singularity of Avvk (Acck). Specifically,

lim
δ→0

1

2π

(∫
L1

+
∫
L2

)
∇k arg[ε · Acvk] · dk = Cc − Cv, (G3)

which means that the net phase vorticity of ε · Acvk over �

is Cc − Cv . The line integral over L1 (L2) equals the wind-
ing number of arg[ε · Acvk] in patch 1 (patch 2), and is thus
topologically invariant upon contracting the L1 (L2) to in-
finitesimally encircle any optical vortex in patch 1 (patch
2); this contraction is illustrated in Fig. 17. This invariance
implies that Eq. (G3) is equivalent to Eq. (18).

APPENDIX H: SUPPORTING OUR CASE STUDY OF BiTeI

Our case study of BiTeI is based on a four-band Hamilto-
nian HBiTeI(k) [cf. Eq. (19)] with energies ordered as E1 �
E2 < E3 � E4. We focus on photon frequencies that reso-
nantly excite quasiparticles from the highest-energy valence
band to the lowest-energy conduction band: b′ = 3 and b = 2.
Minimizing E3k with respect to k defines a circular ring con-
tained in the zero-kz plane; maximizing E2k with respect to
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k also defines a circular ring contained in the zero-kz plane;
actually, the two rings coincide, as suggested pictorially in
Fig. 9. This coincidence may be rationalized: the O(2) sym-
metry about the z axis, combined with time-reversal symmetry
(T ), imply the existence of a C2zT symmetry (twofold rotation
composed with time reversal) which maps k → (kx, ky,−kz );
thus if E3k is minimized on a single O(2)-symmetric ring, this
ring must lie on the C2zT -symmetric plane with kz = 0. Within
this plane, the Hamiltonian has a chiral symmetry that relates
positive to negative energies:

τ2σ3HBiTeI(kx, ky, 0)τ2σ3 = −HBiTeI(kx, ky, 0), (H1)

which implies that E2kxky0 is maximized wherever E3kxky0 is
minimized. We will refer to this ring as the band-edge ring.

1. Effective description by a massive Dirac fermion

Near the topological phase transition between a trivial
insulator and a Z2 topological insulator, the two bands that
touch are effectively described by a massive Dirac fermion
in two momentum dimensions. Here, we provide a detailed
derivation of the massive Dirac Hamiltonian in the kx+ − kz

half-plane [cf. Eq. (21)].
We start by restricting HBiTeI [Eq. (19)] to the kx+ − kz half-

plane and Taylor-expanding the Hamiltonian around k0 =
(λ, 0, 0):

HBiTeI = H0 + H1;

H0 = h̄vλ(τ1σ3 − τ2σ1), (H2)

H1 = (m′ − 2Aλqx )τ3σ0 − h̄v(qxτ2σ1 + qzτ2σ3) + O(q2).

We have introduced wave numbers qx and qz, which are the
deviations from k0 in the kx+ − kz half-plane; τiσ j is the
Kronecker product of τi and σ j , i.e., τi ⊗ σ j [101]. k0 is a
point where the bands touch during the topological phase
transition; by construction, H1 vanishes at k0 when m′ = 0,

and the touching bands correspond to the two zero-energy
eigenstates of H0, which we label as |1〉 = (i, 1, 0, 0)T /

√
2

and |2〉 = (0, 0,−i, 1)T /
√

2.
In the low-energy subspace spanned by |1〉 and |2〉, the

effective Hamiltonian is given by degenerate perturbation the-
ory as

H ′
i, j = 〈i|H1| j〉, i, j = 1, 2. (H3)

Given that

〈i|τ3σ0| j〉 = (γ3)i j,

〈i|τ2σ1| j〉 = −(γ1)i j, (H4)

〈i|τ2σ3| j〉 = −(γ2)i j i, j = 1, 2,

with γ1,2,3 being Pauli matrices of the Hilbert space spanned
by |1〉 and |2〉, Eq. (H4) directly gives Eq. (21) in the main
text.

2. Vanishing shift at the band edge, for x- and y-polarized light

This section aims to explain why �z · jexc dominates over
�z · jrec in the low-frequency regime of Fig. 8(c). This re-
duces to explaining the smallness of the recombination shift
vector �z · Srec [Eq. (8)] relative to the excitation shift vec-
tor [Eq. (7)], according to the average-shift-loop formula
in Eqs. (6)–(13). Given that �z · Srec is an affinity-weighted
average of �z · Sε

vkext←ckext
over all polarization vectors of the

spontaneously emitted photon [Eq. (8)], it may be argued that
�z · Srec is small because of the vanishing of the band-edge shift
vectors,

On the band-edge ring: �z · S�x
vkext←ckext

= �z · S�y
vkext←ckext

= 0.

(H5)

This is equivalent to the vanishing of the band-edge shift
connections,

On the band-edge ring: �z · S�x
vkext←ckext

∣∣�x · Acvkext

∣∣2 = �z · S�y
vkext←ckext

∣∣�y · Acvkext

∣∣2 = 0, (H6)

because the optical affinity is nonvanishing throughout the band-edge ring; after all, there are no optical vortex loops intersecting
the band-edge ring, as illustrated in Fig. 9.

For any tight-binding Hamiltonian H (k), the photonic shift connection can be expressed as [44]

�z · S�x
b′←b|�x · Ab′b|2 = Im

⎧⎨⎩ vx
bb′

(ωbb′ )2

⎡⎣〈ubk|∂z∂xH |ub′k〉 − vz
bb′�

x
bb′ + vx

bb′�
z
bb′

ωbb′
+

∑
b′′ �=b,b′

(
vz

bb′′v
x
b′′b′

ωbb′′
− vx

bb′′v
z
b′′b′

ωb′′b′

)⎤⎦⎫⎬⎭. (H7)

Here, ∂z ≡ ∂kz , vz
bb′ = 〈ubk| 1

h̄∂zH |ub′k〉, �z
bb′ = ∂zEb − ∂zEb′ ,

ωbb′ = (Eb − Eb′ )/h̄, and
∑

b′′ �=b,b′ means to sum over all band
indices b′′ that are neither b nor b′.

Let us show that Eq. (H7) vanishes for H = HBiTeI through-
out the band-edge ring:

(i) The first term in the square brackets of Eq. (H7) van-
ishes, because HBiTeI depends quadratically on k as k2

x + k2
y +

k2
z .

(ii) The second term in the square brackets vanishes, be-
cause band energy functions are extremized at the band edge:
∂zE3 = ∂zE2 = 0.

(iii) The third term also vanishes, but the argument is
longer: first, observe from Eq. (19) that ∂zHBiTeI|kz=0 = τ2σ3

is simply the chirality operator in Eq. (H1), meaning that
∂zHBiTeI maps between energy eigenstate with inverted en-
ergies. This implies h̄vz

bb′′ = 〈ubk|∂zHBiTeI|ub′′k〉|kz=0 is only
nonzero if Eb′′ = −Eb, but Eb′′ = −Eb cannot be satisfied
because of the constraint

∑
b′′ �=b,b′ in Eq. (H7). A similar

argument proves that vz
b′′b′ = 0, hence altogether the third term

in the square bracket vanishes.
The above demonstration holds if one replaces x → y,

meaning that the z-component of the shift connection also
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FIG. 18. Representative pair of diametrically opposite geodesic
paths, with −P in red and P in blue. The precise meaning of “di-
ametrically opposite” is that both paths approach the band-extremal
wave vector (kext,P ) along the same tangent line, which we illustrate
as a gray dashed line with tangent vector �P .

vanishes for �y-polarized light, throughout the band-edge ring.
This completes the proof of Eq. (H6).

3. Asymptotic behavior of anomalous-shift integrals

One result in Sec. V was the (1/Eg)-divergence of the intra-
band shift conductivity across the topological phase transition,
with |Eg| the band gap and sgn(Eg) = −1 on the trivial side of
the transition. This divergence relied on an inequality between
two anomalous-shift integrals:∣∣∣∣(∫−P

+
∫
P

)
�z · �ck × dk

∣∣∣∣ �
∣∣∣∣(∫−P

−
∫
P

)
�z · �ck × dk

∣∣∣∣,
(H8)

which is asymptotically valid as |Eg| approaches zero; ±P are
any pair of diametrically opposite geodesic paths, as represen-
tatively illustrated in Fig. 18.

We have demonstrated in Sec. V that the right-hand side of
Eq. (H8) diverges as 1/Eg, thus to prove Eq. (H8) it suffices
to show that the magnitude of the left integral is decreasing as
|Eg| → 0. This is the main result of this subsection.

To begin, consider the Berry curvature within one cross-
section of the torus enclosed by the excitation surface, as
exemplified by the k+

x -kx half-plane. As |Eg| → 0, �z · �ck ×
dk/|dk| = �

y
ck becomes localized to a “hot spot” centered

at the band-extremal wave vector kext,P , with a spot width
comparable to |m′|/h̄v ∝ |Eg|. Indeed, writing the massive
Dirac Hamiltonian as a dot product of three-vectors:

H ′ = d · γ, d = (d1, d2, d3) = (h̄vqx, h̄vqz, m′ − 2Aλqx ),

γ = (γ1, γ2, γ3), (H9)

the conduction-band Berry curvature can be expressed as

�h
ck = − 1

4d3
εhi jd · ∇ki d × ∇k j d ⇒ �

y
ck = 1

2

m′

D3/2
,

D = (d1)2 + (d2)1 + (d3)2, d =
√

D. (H10)

The k-location of the Berry-curvature maximum can be iden-
tified by

0 = ∂s�
y
ck = 3

4
m′ ∂sD

D5/2
, (H11)

with (∂s)m being the mth-order derivative in the direction that
is tangential to P at the band extremum. The Berry-curvature
maximum (of the hot spot) coincides (in k-location) with the
band-extremal wave vector kext,P ; this is because the energy
spectrum of H ′ has an E → −E symmetry at each k, which
implies that extremizing the k-dependent energy gap (Eck −
Evk) is equivalent to extremizing the conduction-band energy:

Eck = √
Dk ⇒ 0 = ∂sEc|kext,P = ∂sD√

D

∣∣∣∣
kext,P

. (H12)

The band gap is defined as the extremal value of (Eck − Evk):

|Eg| = 2d|kext,P = m′
√

1 + u2
, u = 2Aλ

h̄v
, (H13)

and the extremal value of the Berry curvature can be expressed
in terms of the signed band gap (Eg = sgn[m′]|Eg|) as

�
y
ckext,P

= 1

2

m′

D3/2

∣∣∣∣
kext,P

= 4
√

1 + u2
Eg

|Eg|3 . (H14)

That the width of the Berry-curvature hot spot is of or-
der |m′|/h̄v can be deduced from dimensional analysis of
Eq. (H10), assuming that |Aλ| is less than or comparable to
|h̄v|.

The localization of Berry curvature in momentum space
allows us to express the anomalous-shift integral as(∫

−P
+
∫
P

)
�z · �ck × dk =

∫ �

−�

�(0)
s �sds + correction,

(H15)

with a cutoff � > 0 for the integration variable s along the
gray dashed tangent line in Fig. 18; we have introduced �(0)

s ≡
�

y

ckext,P+s �P , with �P being the unit-norm vector parallel to the

tangent line. �s is the symmetric step function that equals −1
for positive s, and +1 for negative s. This step function arises
because ±P are oriented paths beginning on diametrically
opposed points on the excitation surface and ending at the
same point: kext,P . For fixed �, it is evident that the magnitude
of the correction in Eq. (H15) decreases as Eg → 0, due to
the increasing localization of the hot spot (which has a width
|m′|/h̄v ∝ |Eg|).

To prove the main result of this section, what remains is
to show that

∫ �

−�
�(0)

s �sds is also decreasing; actually, we
will prove a stronger statement that this integral just vanishes.
Indeed, so long as the massive-Dirac Hamiltonian has an
energy gap (i.e., m′ �= 0), �ck is an analytic function of k
and hence �(0)

s is an analytic function of s, meaning it admits
a convergent Taylor expansion �(0)

s = ∑
n∈N �

(n)
0 sn/n!, with

the nth-order derivative �
(n)
0 to be (∂s)n�(0)

s evaluated at the
band extremum (s = 0). Only the odd-order derivatives con-
tribute to Eq. (H15), due to the symmetric step function �s
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being an odd function of s, hence(∫
−P

+
∫
P

)
�z · �ck × dk ≈ 2

∑
n∈2N+1

�
(n)
0

n!

∫ �

0
snds.

(H16)

The following discussion proves that �
(n)
0 vanishes for any

odd n. It follows from a dimensional analysis of Eq. (H10)
that the nth-order derivative can be expanded as

�(n)
s = 1

D3/2+n

2∑
m1=0

· · ·
2∑

mn=0

cm1···mn

(
∂s1

)m1 · · ·

(
∂sn

)mn Ds1 · · · Dsn

∣∣∣∣m1+···mn=n

s j→s

, (H17)

with linear coefficients cm1···mn that depend on mj . The mean-
ing of the subscript s j → s is that after performing all the
differentiations [(∂s1 )m1 · · · (∂sn )mn ], the resultant function of
(s1, . . . , sn) is to be replaced by a function of (s, . . . , s). The
summations over mj are restricted such that m1 + m2 + · · · +
mn = n, and each

∑2
mj=0 is capped at two, because D is a

second-order polynomial of momenta variables, which fol-
lows from the linearization of the massive-Dirac Hamiltonian.
If �(n)

s is evaluated at the band extremum (s = 0), then one
can further drop mj = 1 (in each of the summations over
mj) because ∂sD|s=0 = 0 [cf. Eq. (H12)]. It becomes apparent
that the condition m1 + · · · mn = n cannot be satisfied for odd
n and mj ∈ {0, 2}, implying that �

(n)
0 = 0 for odd n. This

completes the proof.

APPENDIX I: ALTERNATIVE DERIVATION
OF THE ANOMALOUS SHIFT

We provide an alternative derivation of the anomalous shift
vector [Eq. (5)] that aims to demystify the appearance of
the Berry curvature. Beginning from an expression for the
intraband phononic shift that was derived in Sec. III and is
valid for small momentum transfer:

Phonon: Sm
k′←k ≈ −∇kave

(
Akave · δk

)+ Ak′ − Ak, (I1)

with Ak the intraband Berry connection, kave = (k + k′)/2,
and δk = k′ − k. We have omitted the band index to simplify
notation. We consider the y-component of the above shift
vector, and we express the derivative as the limiting value of a
difference:

�y · ∇kave

(
Akave · δk

) = lim
ε→0

(
Akave+ε�y/2 − Akave−ε�y/2

) · δk

ε
,

(I2)

such that the shift vector component can be expressed as a line
integral of the connection:(

Sm
k′←k

)y ≈ lim
ε→0

1

ε

∮
Ak · dk ≈ (

�kave × δk
)y

(I3)

along an infinitesimally thin parallelogram drawn in Fig. 19.
Finally, one converts the line integral to an area integral of the
curvature by Stokes’ theorem. This proof is easily generalized
for the x and z components.

FIG. 19. Infinitesimally thin parallelogram.

APPENDIX J: DIFFICULTIES OF THE
PARALLEL-TRANSPORT GAUGE

It has been claimed in the literature that 〈ubkp|ubk〉cell =
1 + O(δk2) can be chosen as a gauge choice for the wave
function [36,102]. This gauge corresponds to a parallel trans-
port condition [δk · Abbk = 0] in the direction of δk = k′ − k
[103,104]. It is not uncommon to find textbooks that ignore
the wave-function dependence of the electron-phonon scat-
tering rate [31]. All Berry-curvature effects (including the
anomalous shift [Eq. (5)]) are missed if one blithely adopts
the parallel-transport gauge.

It is therefore of interest to expose the fallacies inherent
in 〈ubk′ |ubk〉cell = 1 + O(δk2),76 of which there are two related
kinds:

(i) For fixed δk, it is generically impossible to set δk ·
Abbk = 0 for all k in the Brillouin zone; this is tantamount
to assuming that the single-band Berry phase vanishes for all
momentum loops parallel to δk. This assumption may hold if
δk is orthogonal to a mirror plane, in which case the Berry
phase of a single spinless band (in the absence of spin-orbit
coupling) is indeed quantized to 0 or π , but one cannot rule
out the case of π a priori.

(ii) For fixed δk, it is possible to impose δk · Abbk = 0
for all k in a ball-shaped subregion of the Brillouin zone.
However, it is generically impossible to simultaneously im-
pose δk′ · Abbk = 0 within the same ball for δk′ that is not
collinear with δk. The simultaneous imposition is equivalent
to assuming a vanishing Berry phase for an infinitesimal
loop encircling k, i.e., that the Berry curvature δk × δk′ · �b

vanishes at k. Certainly, one must allow for phonons of
all possible wave vectors (δk, δk′ ∈ BZ) to completely de-
scribe the electron-phonon interaction. Without fine-tuning,
the Berry curvature �b vanishes at a generic k-point only in
PT -symmetric materials with negligible spin-orbit coupling
[105]. PT is certainly not a symmetry in the present case
study of noncentric (meaning no P), nonmagnetic (meaning
T -symmetric) materials.

APPENDIX K: ENERGY CONVERSION EFFICIENCY

We will derive an ideal expression for the energy conver-
sion efficiency for Pusch et al.’s model [70] of a shift-current

76There is, of course, no controversy in the claim that
|〈ubk′ |ubk〉cell|2 = 1 + O(δk2); cf. Eq. (B8).
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photovoltaic cell. Our derivation closely follows that in Sec. II
of Ref. [70], which we recommend as prerequisite reading.
However, our final expression for the efficiency [Eq. (K9)] is
less heuristic than Eq. (11) of Ref. [70] in that ours is wholly
expressed in terms of kinetic and band-structure parameters,
which can be extracted from ab initio calculations.

We adopt the same device geometry that is illustrated in
Fig. 1 of Ref. [70]: light falls onto a semiconductor facet with
illuminated area Aillum = dw; d is the separation between two
electrodes, and w is the width of each electrode. For concrete-
ness, we will fix the facet’s normal vector to be parallel to
the unit directional vector �z; the photovoltaic current flows
between the electrodes in the x direction, and w is the linear
dimension of the electrode in the y direction. Assuming that
the radiation falls onto the facet with normal incidence, the
Poynting vector within the semiconductor decays exponen-
tially as

Poynting vector = Irad(z)�z, Irad(z) = Irad(0)e−αabsz,

(K1)

with an attenuation length given by the inverse of the absorp-
tion coefficient:

αabs = 4π2

α f s

h̄ω

nω

〈 fvck|εs · Acvk|2〉ω JDOS↑↓. (K2)

Here, α f s ≈ 137 is the fine structure, nω is the refractive in-
dex, fvck = fV − fC is a difference of the steady quasiparticle
distributions, and JDOS↑↓ is the spin-doubled joint density of
states. Our semiclassical expression for the absorption coef-
ficient presumes that α−1

abs greatly exceeds the lattice period;
the same type of semiclassical approximation implies that the
shift current density has the same exponential decay due to
being proportional to Irad(z):

jx(z) = −|e|sAbs(z), Abs(z) = αabsIrad(z)

h̄ω
. (K3)

s, the average shift per photoexcited electron-hole pair, has
been defined in Eq. (27); Abs(z) is understood as the photon
absorption rate per unit volume, at a distance z from the illu-
minated facet. Equation (K3) is equivalent to jx = σεs,ω|Eω|2,
with σεs,ω the geodesic-approximated shift conductivity in
Eq. (13); to derive the equivalence, revert to Gaussian units

and replace |Eω(z)|2 = 2πIrad(z)/cnω (cf. footnote 66 in Ap-
pendix C 3) and e2/h̄c ≈ 1/137.

Assuming ideally that the contacts with the electrodes do
not introduce additional resistance, the energy conversion ef-
ficiency is given by

eff = 1

4

VocIsc

IradAillum
, (K4)

with Voc the open-circuit photovoltage and Isc the short-
circuit shift current. The latter quantity is obtained by
integrating

Isc = w

∫ t

0
jx(z)dz ≈ w jx(0)/αabs, (K5)

with t the thickness of the semiconductor in the z direction.
In the last step of Eq. (K5), we assumed t  α−1

abs. The open-
circuit photovoltage is determined by the condition that the
shift and drift currents cancel out at each z:

jx(z) = σph(z)
Voc

d
. (K6)

Assuming ideally that the temperature is sufficiently low
(kBT � Eg) for the dark conductivity to be negligible,77 the
drift current is simply proportional to the linear conductivity
of photoexcited carriers; this conductivity is assumed to have
the Drude form

σph(z) = e2τtr

(
n(z)

me
+ p(z)

mh

)
, (K7)

with τtr the transport lifetime, n (p) the photoexcited electron
density (hole density), and me (mh) the effective mass for elec-
trons (holes). Assuming that the semiconductor is intrinsic,

n(z) = p(z) = τrecAbs(z), σph(z) = e2τtrτrec

mr
Abs(z),

(K8)

with τrec the recombination time [cf. Eq. (B16)] and m−1
r =

m−1
e + m−1

h . Combining all the above equations,

eff = 1

4

.511 MeV

h̄ω

mr

m f

s2/τtrτrec

c2
, (K9)

which is equivalent to Eq. (26).

77See Sec. V of Ref. [70].
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