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In optical lattices attractive ultracold fermions with three hyperfine-spin components (colors) can form
three fermionic configurations depending on the interactions—unbound fermions, on-site trions, and off-site
trions—leading to the coexistence of multiple fermionic species in the ordered phase, which demonstrates that
the attractive three-color fermions are unique from other correlated fermion systems and may host intriguing
phases and phase transitions. At temperatures below the superexchange energy scale, we employ the deter-
minant quantum Monte Carlo (QMC) method to investigate the phases and phase transitions in the half-filled
attractive three-color Hubbard model on a honeycomb lattice where the Hubbard interactions are color dependent
(anisotropic interactions) and the coupling between color 3 and colors (1, 2) serves as a control parameter. In
the coupling regime where on-site and off-site trions coexist, our QMC simulations demonstrate coexisting Néel
and charge density wave (CDW) orders which are common in condensed matter but rare in ultracold atoms.
At weak coupling where the color superfluid (CSF) order is scattered by color-3 fermions, we find that very
small coupling of color 3 with colors (1, 2) can destroy the CSF order and that the vanishing of the CSF order
is not immediately accompanied by the emergence of the on-site trionic phase, which strikingly disagrees with
the prevalent results of dynamical mean-field theory. The underlying mechanisms of the coexisting Néel/CDW
orders and of the CSF order breaking are also presented based on intuitive physical pictures.
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I. INTRODUCTION

SU(3) physics with attractive three-color (hyperfine-spin
component) ultracold fermions, such as 6Li and 40K atoms
[1–3], is one of the major research centers of interest at
the interdisciplinary frontiers of ultracold atom physics,
condensed-matter physics, and high-energy physics. The at-
tractive SU(3) Fermi gas with a tunable interaction is an ideal
system for studying trimer states which are hard to be realized
in spin-1/2 Fermi gas due to the Pauli exclusion [4–6]. In op-
tical lattices loaded with attractive SU(3) ultracold fermions,
the variational [7,8], self-energy functional [9,10], dynamical
mean-field theory (DMFT) [11,12], and Bethe ansatz [13]
studies have demonstrated the phase transition between the
color superfluid (CSF) phase and the on-site trionic phase.
This is strongly reminiscent of the phase transition between
the quark superfluid state and the baryon state in high-energy
physics [14–16]. Moreover, DMFT studies [17,18] have also
shown a direct phase transition between the CSF phase and
the on-site trionic phase in the attractive three-color Hubbard
model where attractions are color dependent, thus breaking
the SU(3) symmetry of the Hamiltonian. Besides the on-site
trion, more interestingly, the exact diagonalization study of
the three-fermion attractive SU(3) Hubbard model on the
honeycomb lattice suggests another type of three-body bound
state, known as the off-site trion, composed of two fermions
at one site and one fermion at the nearest-neighbor site [19].
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In recent years, the long-ignored role of the off-site tri-
ons in many-body physics of attractive three-color fermions
has been considered. In a one-dimensional lattice away
from half filling, the density matrix renormalization group
studies have shown that off-site trions can develop quasi-
long-range correlations in the attractive SU(3) Hubbard model
with suppressed on-site triple occupancy [20] as well as in
the attractive three-color Hubbard model with significantly
anisotropic interactions [21]. Recently, quantum Monte Carlo
(QMC) simulations of the half-filled attractive SU(3) Hub-
bard model on a honeycomb lattice have shown that on-site
trions (majority) and off-site trions (minority) coexist in the
charge density wave (CDW) state [22,23], and the off-site
trion arising from density fluctuations forms a local bond
state [22]. Unlike conventional transitions in which only a
single fermionic species gets involved, off-site trions, though
small in number, together with on-site trions, participate in
the CDW ordering of the attractive SU(3) Dirac fermions, and
particularly the quantum critical point affected by multiple
fermionic species cannot be described using the conventional
Gross-Neveu-Yukawa paradigm [22].

In this paper, we explore quantum phase transitions in the
half-filled attractive three-color Hubbard model on a hon-
eycomb lattice. The coupling between the third color and
the other two colors serves as a control parameter of phase
transitions. On one hand, breaking SU(3) symmetry results
in “magnetic” off-site trions (two ends of which may carry
net colors), and on the other hand, reducing the coupling of
the third color with the other two colors (namely, introducing
“interaction anisotropy”) enhances the density fluctuations,
which in turn lead to an increase in the number of off-site
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trions. Thus the magnetic ordering of the off-site trions may
develop in the attractive three-color Hubbard model. Our
sign-problem-free QMC simulations demonstrate coexisting
Néel and CDW orders via tuning the interaction anisotropy
in attractive three-color fermionic atoms, while the previously
reported coexistence of charge and magnetic orders that usu-
ally occurs in condensed matter [24–42] is rare in ultracold
atoms. In addition, our QMC results disagree with the DMFT
prediction that a direct phase transition between the CSF or-
der and the on-site trionic order may occur in the half-filled
attractive three-color Hubbard model.

The rest of this paper is organized as follows. In Sec. II,
the model Hamiltonian and parameters of QMC simulations
are introduced. The coexisting Néel and CDW orders are then
studied in Sec. III. Subsequently, in Sec. IV, the mechanism
of CSF order breaking is investigated. Thereafter, Sec. V
presents the phase diagram of the model calculated by QMC
simulations. The conclusions are drawn in Sec. VI.

II. MODEL AND METHOD

The half-filled attractive three-color Hubbard model on the
honeycomb lattice is described by the following Hamiltonian,

H = − t
∑
〈i j〉,α

(c†
iαc jα + H.c.)

+
∑

i,α<β

Uαβ

(
niα − 1

2

)(
niβ − 1

2

)
, (1)

where 〈i j〉 denotes a pair of nearest-neighbor sites; α and
β are the color indices taking only values 1, 2, 3; t is the
nearest-neighbor hopping integral; niα = c†

iαciα is the particle
number operator of color α on site i; Uαβ (< 0) is the attrac-
tive interaction between fermions carrying different colors.
The chemical potential vanishes at half filling. Inspired by
the theoretical and experimental works regarding the SU(N )-
symmetry breaking interactions [43–46], we set U12 = U and
U13 = U23 = U ′ throughout the paper. Note that |U ′|/|U |
characterizes the interaction anisotropy. When |U | = |U ′|, the
interaction is color independent (isotropic) and the Hamilto-
nian Eq. (1) possesses SU(3) symmetry; when |U ′| < |U |, the
interaction anisotropy is introduced and the SU(3) symme-
try of the Hamiltonian Eq. (1) is reduced to SU(2) ⊗ U(1);
when U ′ = 0, the system is decoupled into two subsystems,
namely SU(2) interacting fermions and free fermions, owning
SO(4) ⊗ U(1) symmetry [47].

The determinant QMC simulation of the half-filled attrac-
tive three-color Hubbard model is sign-problem-free when the
Hubbard-Stratonovich decomposition in the spin-flip channel
is employed [22,23,48]. We employ the determinant QMC
method at T = 0.1t (below the superexchange energy scale)
to simulate the phase transitions in the attractive three-color
Hubbard model. The simulations are performed on the finite-
sized honeycomb lattices with the linear lattice sizes [49] L =
3, 6, 9, 12, in which case the total number of lattice sites is
2L2. Unless specifically stated, the color-dependent Hubbard
interactions Uαβ are given in the units of t .

III. COEXISTING NÉEL/CDW ORDERS

To gain some insight into the physics of the half-filled
attractive three-color Hubbard model, we first consider the
two-site model. For infinite coupling, an on-site trion forms.
In the strong-coupling limit, the perturbation theory gives the
first-order correction term which is cast in the form of an
off-site trion,

|ψoff〉 = − t

|U | + |U ′| (|12, 3〉 + |13, 2〉 + |23, 1〉)

+
(

− t

2|U ′| + t

|U | + |U ′|
)

|12, 3〉. (2)

We see that the off-site trion takes a Néel-like configuration
due to the second term on the right-hand side of Eq. (2)
[the first term is SU(3) symmetric and “colorless”], when
interactions become anisotropic, |U ′| < |U |.

In the trionic CDW regime where on-site and off-site trions
coexist, density fluctuations lead to the formation of off-
site trions from on-site trions [22,23]. Interaction anisotropy
|U ′| < |U | enhances density fluctuations, thus driving up the
number of off-site trions. Our determinant QMC simulations
demonstrate that interaction anisotropy can induce the Néel
ordering of off-site trions on the background of the trionic
CDW phase. In this section, we set |U | = 6 in order to
broaden the coupling range of |U ′| (< |U |) in which on-site
and off-site trions coexist [22].

The structures of trions can be described, respectively, by
the on-site triple occupancy

P3 = 1

N

∑
i

〈ni1ni2ni3〉, (3)

and the off-site triple occupancies

P3off;1 = 1

3N

∑
〈i j〉

〈ni2ni3n j1〉,

P3off;3 = 1

3N

∑
〈i j〉

〈ni1ni2n j3〉,
(4)

where N is the number of lattice sites. The dependences of
occupancies P3, P3off;1, and P3off;3 on the coupling strength
|U ′| are presented in Fig. 1. In the whole range of 3 � |U ′| �
6, P3 � P3off > 0, which shows that the minority off-site tri-
ons coexist with the majority on-site trions. Evidently, when
|U ′| < 5.5, P3off;3 > P3off;1, which implies that color 3 and
colors (1, 2) carried by off-site trions tend to occupy differ-
ent sublattices (i.e., forming Néel-like off-site trions). The
QMC results agree with our physical intuition coming from
the first-order perturbation theory of the two-site Hubbard
model. Moreover, with the decrease of |U ′|, P3off increases
while P3 decreases, which displays the physical picture that
interaction-anisotropy enhanced density fluctuations promote
the formation of off-site trions from on-site trions.

We next show that the growing number of Néel-like off-
site trions caused by the interaction anisotropy can develop
Néel order. The Néel configuration in our three-color model is
contributed by the net magnetic moments of the off-site trion:
The two-fermion end with net colors (1, 2) is in sublattice A,
while the one-fermion end with net color 3 is in sublattice B.
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FIG. 1. The on-site triple occupancy P3, and off-site triple occu-
pancies P3off;1 and P3off;3 are plotted as functions of |U ′|. The inset is
a zoom-in view of P3off;1 and P3off;3 curves. The lattice size is L = 9.

As explained in the Appendix, the Néel moment operator on
site i can be defined as

mi = 1
4 (ni1 + ni2 − 2ni3), (5)

which yields the Néel moment 〈mi〉 = (−1)i 1
2 . The Néel or-

der parameter is then defined as a sum over the correlations
between Néel moment operators,

mQ = 1

N

√∑
i j

(−1)i+ j〈mimj〉. (6)

To investigate the charge spatial modulation (CSM), we also
calculate the staggered order parameters [50–53]

M1 = 1

N

√∑
i j

(−1)i+ j〈ni1n j1〉,

M3 = 1

N

√∑
i j

(−1)i+ j〈ni3n j3〉,
(7)

and the trionic CDW order parameter [22,23]

D = 1

N

√∑
i, j

(−1)i+ jC(i, j), (8)

where C(i, j) = ∑
α,β〈niαn jβ〉 is the density-density correla-

tion function. For various couplings in the range 3 � |U ′| � 6,
the Néel order parameter mQ, the trionic CDW order param-
eter D, and the staggered order parameters M1 and M3 are
obtained by a finite-size extrapolation of the QMC data, as
shown in Figs. 2 and 3, respectively.

Based on the finite-size extrapolation result for the order
parameters, the Néel order parameter mQ, the trionic CDW
order parameter D, and the staggered order parameters M1

and M3 are respectively plotted as functions of |U ′| in Fig. 4.
As shown in Fig. 4(a), when the coupling strength |U ′| < 5.5,
Néel ordering develops (mQ > 0). In Fig. 4(b), on one hand, in
the specified coupling regime the trionic CDW order param-
eter D is slightly smaller than its limiting value, 1.5 (in this
limit only on-site trions exist and they occupy one sublattice),
indicating that the strong trionic CDW order develops in the
mixture of on-site trions and off-site trions; on the other hand,

FIG. 2. The finite-size extrapolation of the Néel order parameter
mQ for various |U ′|. The quadratic polynomial fitting is used.

FIG. 3. The finite-size extrapolation of the trionic CDW order
parameter D and staggered order parameters M1 and M3 at (a) |U ′| =
3, (b) |U ′| = 4, (c) |U ′| = 5, (d) |U ′| = 5.5, (e) |U ′| = 5.8, and (f)
|U ′| = 6. Order parameters D, M1, and M3 characterize the charge
spatial modulation (CSM) of three-color fermions. The quadratic
polynomial fitting is used.
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FIG. 4. (a) The plot of the Néel order parameter mQ as a function
of |U ′|. (b) The plots of the trionic CDW order parameter D and the
staggered order parameters M1 and M3 as functions of |U ′|. The inset
is a zoom-in view of M1 and M3 curves.

when |U ′| < 5.5, staggered order parameters obey M3 < M1,
which indicates that on the background of the trionic CDW
order, the one-fermion ends of off-site trions carrying net
color 3 tend to be the nearest neighbors of on-site trions and
thus occupy a sublattice [two-fermion ends of the off-site
trions carrying net colors (1, 2) then occupy the other sub-
lattice], reflecting the Néel ordering of off-site trions. When
|U ′| � 5.5, M1 and M3 curves coincide perfectly with each
other [Fig. 4(b)], demonstrating the vanishing of the Néel-like
configuration of an off-site trion, and accordingly Néel order
mQ = 0 [Fig. 4(a)]. Our QMC results clearly show that the
control of coupling strength |U ′| induces the Néel ordering of
off-site trions on the background of the strong trionic CDW
order.

We can intuitively comprehend, on the energy grounds, the
underlying physics of Néel ordering of the off-site trions. On
the background of the trionic CDW order, an off-site trion
only has two possible orientations: (1) Its one-fermion end is
the nearest neighbor to on-site trions, as illustrated in Fig. 5(a),
and (2) its two-fermion end is the nearest neighbor to on-site
trions, as depicted in Fig. 5(b). The Pauli exclusion blocks
more hopping channels in Fig. 5(b) than in Fig. 5(a). Hence, to
lower the total kinetic energy, Néel-like off-site trions [result-
ing from breaking SU(3) symmetry of Hubbard interactions]
tend to follow the spatial arrangement outlined in Fig. 5(a),
which is exactly the same as QMC results. Since the two ends
of Néel-like off-site trions occupy a different sublattice, the
Néel ordering develops when the number of off-site trions

(a) (b)

FIG. 5. Two possible orientations of an off-site trion on the
background of the trionic CDW order: (a) The one-fermion end of
the off-site trion is the nearest neighbor to on-site trions. (b) The
two-fermion end of the off-site trion is the nearest neighbor to on-site
trions.

continues to increase due to the enhanced density fluctuation
via tuning the coupling of color 3 with colors (1, 2) |U ′|.

In the half-filled attractive SU(3) Hubbard model, increas-
ing the color-independent Hubbard interaction induces only
the CDW order that corresponds to the spatial modulation of
both on-site and off-site trions on a bipartite lattice [22,23].
Breaking the SU(3) symmetry of the Hubbard interaction
not only causes the off-site trions to be Néel-like, but also
enhances the density fluctuations promoting the formation of
off-site trions from on-site trions. As a consequence, Néel
ordering of the ever-increasing Néel-like off-site trions oc-
curs on the background of the on-site trionic CDW order.
Therefore, the color-dependent Hubbard interactions (i.e.,
interaction anisotropy) play a key role in developing the co-
existing Néel and CDW orders.

IV. CSF ORDER BREAKING

When the color-3 fermion is weakly coupled to the CSF
state of fermions carrying colors (1, 2) (i.e., |U ′| � |U |),
DMFT studies [17,18] suggest a direct phase transition be-
tween the CSF state and the on-site trionic state at finite
|U ′|. We argue that CSF order vanishes at very small |U ′| ac-
companied by the symmetry reduction from SO(4) ⊗ U(1) to
SU(2) ⊗ U(1), and the on-site trionic phase does not emerge
immediately after breaking the CSF order since |U ′| is very
small. Our point can be verified by QMC simulations.

We first define the s-wave pairing (i.e., CSF) structure
factor

�s = 1

N

∑
i j

〈c†
i1c†

i2c j2c j1 + H.c.〉. (9)

The CSF order parameter is then expressed as � = √
�s/N .

To characterize the densities of pairs and on-site trions, we
also calculate the double occupancy

P2 = 1

N

∑
i

〈ni1ni2〉, (10)

and the triple occupancy P3 for various small |U ′| around
the SO(4) ⊗ U(1) symmetric point. In this section, the cou-
pling between colors 1 and 2 is set to |U | = 6. As shown
in Fig. 6, the square of CSF order parameter �2 for various
small couplings (|U ′| � 0.175) are obtained by a finite-size
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FIG. 6. The finite-size extrapolation of the square of CSF order
parameter �2 for various |U ′|. The quadratic polynomial fitting is
used.

extrapolation. In Fig. 7, the square of the CSF order parameter
�2, the double occupancy P2, and the triple occupancy P3

are plotted as functions of the coupling strength |U ′|. When
the coupling |U ′| � 0.175, the CSF order vanishes while the
double occupancy P2 is almost unchanged near the transition
point and is still much larger than the triple occupancy P3

(which is almost unchanged as well). This evidently suggests
that the dominant entities are pairs rather than on-site trions
immediately after the vanishing of the CSF order, which dis-
agrees with the DMFT results [17,18].

The mechanism of vanishing CSF order around the
SO(4) ⊗ U(1) symmetric point can be intuitively understood
in the two-site model by virtue of the concept of Bose-
Einstein condensate (BEC) of pairs [49,54]. In the subsystem
of fermions carrying colors (1, 2), at strong attractive cou-
plings, pairs develop into the phase coherent BEC state

|ψ〉 = eeiφ ∑
i c†

i1c†
i2 |0〉, (11)

in which the average of the pairing structure factor is
〈ψ |�s|ψ〉 = 4. However, when a pair carrying colors (1, 2)
is scattered by a color-3 fermion on a site, as is illustrated in
Fig. 8(a), the phase on the scattering site is shifted, resulting
in that the BEC of pairs evolves into a phase incoherent state

FIG. 7. (a) The square of CSF order parameter �2, and (b) the
double occupancy P2 and the triple occupancy P3 are plotted as
functions of the coupling strength |U ′|. P2 and P3 are calculated on
the L = 9 lattice. Error bars are smaller than the data points in (b).

(a) (b)

FIG. 8. (a) The phase coherent pairs carrying colors (1, 2) are
scattered by the color-3 fermions, (b) leading to incoherent doublons.

(doublons)

|ψ ′〉 = e(eiφc†
11c†

12+ei(φ+�φ)c†
21c†

22 )|0〉, (12)

as is illustrated in Fig. 8(b). In the phase incoherent state,
the pairing structure factor decreases since 〈ψ ′|�s|ψ ′〉 = 2 +
2 cos(�φ) < 4. This microscopic picture of the CSF-breaking
mechanism illustrates that, before the development of the tri-
onic phase, the CSF order vanishes along with the emergence
of incoherent doublons, because the phase shift caused by the
color-3 fermion scattering destroys the phase coherence in the
BEC of pairs, leading to suppression of the pairing correlation.

V. PHASE DIAGRAM

At T = 0.1, the phase diagram of the half-filled attrac-
tive three-color Hubbard model is shown in Fig. 9. Here,
the interaction anisotropy |U ′|/|U | and the coupling between
colors 1 and 2 serve as control parameters for phase transi-
tions. All data points (order parameters) are obtained by the
finite-size extrapolation of the order parameters (calculated on
the L = 3, 6, 9 honeycomb lattices) to their L → ∞ limits.
Note that the black legends in the phase diagram represent
sufficiently weak order parameters that can be identified by
our QMC simulations. The white star represents the vanish-
ing Néel order parameter, while the black star denotes the
weak Néel order. The midpoints between the corresponding
black and white stars depict the phase boundary separating the

FIG. 9. The phase diagram of the half-filled attractive three-color
Hubbard model on the honeycomb lattice at T = 0.1. The blue and
red regions are the doublon-CDW phase and the coexisting doublon-
CDW/CSF phases, respectively.
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coexisting Néel/CDW phases from the gaslike and CDW
phases. The (topmost) black and white inverted triangles
represent respectively the weak and vanishing CDW or-
ders. The black square and circle represent respectively the
weak doublon-CDW and CSF orders. In the regime of small
|U ′|/|U |, the black squares enclose the region of the doublon-
CDW phase in which the black circles indicate the subarea of
the coexisting doublon-CDW/CSF phases [near the SO(4) ⊗
U(1) symmetric point]. The (downmost) white circle repre-
sents the vanishing CSF order.

The phase diagram consists of five regions that represent
the different phases marked by color. In the gaslike phase
(gray region), the spatial distributions of fermions and their
color indices are uniform, described by the vanishing stag-
gered order parameters M1 = M3 = 0. In the trionic CDW
phase (purple region), the CDW order parameter D > 0,
while the Néel order parameter mQ = 0 and the staggered
order parameters M1 = M3 > 0 [since this region is near the
SU(3) symmetric point]. In the coexisting Néel/CDW phase
(yellow region), the order parameters satisfy the conditions
D > 0, mQ > 0, and M1 > M3 > 0 [away from the SU(3)
symmetric point]. In the doublon-CDW phase (blue region),
staggered order parameters M1 > 0 and M3 = 0, in which
case, fermions with colors 1 and 2 form the doublon-CDW
phase while the distribution of color-3 fermions is spatially
uniform. In the coexisting doublon-CDW/CSF phase (red
region), the staggered order parameters M1 > 0 and M3 = 0,
and the CSF order parameter � > 0. The phase diagram of
our model clearly shows that the Néel and CDW orders co-
exist over a broad range of parameters, and that the CSF and
trionic CDW phases are separated by a narrow strip of the
doublon-CDW phase.

VI. CONCLUSIONS

We have performed the sign-problem-free determinant
QMC simulations at T = 0.1 to investigate the phase transi-
tions in the half-filled attractive three-color Hubbard model
on a honeycomb lattice, where Hubbard interactions are color
dependent and set as |U1,2| = |U | = 6 and |U1,3| = |U2,3| =
|U ′|. The coupling |U ′| serves as a control parameter in-
ducing phase transitions. In the coupling regime 3 � |U ′| �
6 where on-site and off-site trions coexist, our QMC sim-
ulations demonstrate the coexisting Néel and CDW orders
driven by interaction anisotropy |U ′| < |U |. The Néel order
is developed by the Néel-like off-site trions, while the CDW
order is modulated by both on-site and off-site trions. In the
weak-coupling regime |U ′| < 0.25, our QMC result shows
that double-occupancy probability is almost |U ′| independent
and much greater than the triple-occupancy probability, which
implies that the vanishing of the CSF order is not immediately
accompanied by the emergence of the on-site trionic phase.

The coexistence of spin/charge orders has long been a
research focus in condensed-matter physics, but yet absent
in cold atom physics. In the phase diagram calculated by
our QMC simulations, the coexisting Néel and CDW orders
occur over a wide range of the control parameters when the
half-filled attractive three-color Hubbard model is away from
the SU(3) and SO(4) ⊗ U(1) symmetric points. The system
of attractive three-color fermions can accommodate multiple

fermionic species (unbound single fermion, on-site trion, and
off-site trion) along with the variation of couplings, which
makes it unique from other correlated fermionic systems. Our
work opens up an avenue for exploring many-body physics of
attractive three-color fermions depending on the interplay of
three fermionic species, which may host intriguing quantum
phases and phase transitions.
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APPENDIX: DEFINITION OF NÉEL ORDER

In the SU(N ) Hubbard model, the two-point spin-spin cor-
relation function should be defined as

Sspin(i, j) =
∑

n

〈Sn(i)Sn( j)〉, (A1)

where Sn(i) is the nth SU(N ) generator on site i [55–58].
For the SU(3) case, Sn(i) takes the form of c†

iαλ̂n
αβciβ , in

which λ̂n is the nth Gell-Mann matrix [59]. However, in the
SU(N )-symmetry-breaking Hubbard model, generators make
unequal contributions to the spin-spin correlation function
defined by Eq. (A1), and usually, only generators with major
contributions are retained when testing magnetic order. For
instance, in the SU(2)-symmetry-breaking Hubbard model,
only Sz(i) is included in the spin-spin correlation function
[60]; in the SU(2N )-symmetry-breaking Hubbard model, only
diagonal generators are included in the spin-spin correlation
function [61]. In the attractive three-color Hubbard model,
since magnetism arises from the net magnetic moments of the
off-site trions [the two-fermion end carries net colors (1,2)
while the one-fermion end carries net color 3], the eighth
SU(3) generator S8(i),

(c†
i1, c†

i2, c†
i3)

1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠

⎛
⎝ci1

ci2

ci3

⎞
⎠, (A2)

makes a much larger contribution to the spin-spin correlation
function than other SU(3) generators. Thus we can only retain
S8(i) in the spin-spin correlation function when testing the
Néel order. Parallel to Ref. [62], in which the magnetic order
is defined in terms of the spatial arrangement of magnetic
moments, we define for the SU(3)-symmetry-breaking model
the Néel order parameter as

mQ = a
1

N

√∑
i j

(−1)i+ j〈S8(i)S8( j)〉, (A3)

where a is a coefficient.
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