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Probing topological phase transitions in the Aubry-Andre-Harper model
via high-harmonic generation
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We study the high-harmonic generation (HHG) in the Aubry-Andre-Harper (AAH) model. The modulating
phase of the AAH model is used as a control parameter while preserving the chiral symmetry hosting the zero-
energy edge states. The harmonic yield in a particular energy range exhibits a strong dependence on the control
parameter with a clear separation of the region of topologically trivial and nontrivial phases of the system. The
threshold for the harmonic yield is found to serve as an all-optical tool for detecting topological phases. We
extended our study with broken chiral symmetry by including the onsite potential. The introduction of the onsite
potential lifts the degeneracy in the edge states, which affects the harmonic enhancement. Furthermore, it is also
observed that the system’s onsite strength can control the HHG yield.
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I. INTRODUCTION

The high-harmonic generation (HHG) has been extensively
studied in the gas phase over the last decades; it gives us a
promising route to produce highly tunable extreme-ultraviolet
(XUV) pulses in the attosecond regime [1], along with the
opportunity to investigate the electron dynamics in atoms
and molecules on their natural timescales [2,3]. With the
advancement of technology, midinfrared sources are opening
new avenues in the strong field interaction with the solids,
as witnessed from the pioneering work of Ghimire et al.
[4]. The HHG from solids promises a compact source of
XUV radiation and attosecond spectroscopy [5–7]. Moreover,
it also enabled us to explore the countless possibilities in
condensed matter physics, like exploring the large-band-gap
dielectrics [5], retrieving the band structure [8], the effect of
vacancy defects [9], the petahertz current in solids [5], HHG
in graphene [10,11] and transition metal dichalcogenides [12],
Bloch oscillations in solids [13,14], and many more.

The invention of the quantum Hall effect [15] escalated the
research directions toward exploring the topological phases of
matter. The topological material exhibits the insulating prop-
erty in the bulk but has a conducting edge state, unaffected
by the perturbations and defects. It enabled the researchers to
explore the strong field phenomenon in topological condensed
matter physics, especially the high-harmonic generation.

The HHG from the topological materials or, in general,
solids can be understood in terms of intraband and interband
current contributions [16]. The motion of electron within a
band contributes to the intraband emission with the photon
energy below the band gap. However, the electron transitions
from one band to the other band constitute the emission (above
the band-gap energy) caused by the interband current. In
the case of the topological materials, an edge state in the
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band gap enhances the interband transitions, strengthening
the high-harmonic emission. In the later part of this paper,
we will see how the characteristics of the HHG emission by
the topological material might work as a diagnostic tool to
distinguish between the topological phases.

The contribution of the edge state in the HHG processes is
widely studied in the context of the one-dimensional (1D) Su-
Schrieffer-Heeger (SSH) model [17–19], the extended SSH
model [20], the Aubry-Andre-Harper (AAH) model [21], and
the Kiteav model [22,23]. Furthermore, the HHG spectrum
is an all-optical probe used to extract topological informa-
tion using the helicity [24,25] or circular dichroism [26] of
the emitted photons in the Haldane model. With the above
theoretical studies, whether the HHG spectrum shows unique
characteristic features that exhibit topology remains to be
seen. However, recently, an ab initio simulation of HHG [27]
shed light on the universal behavior of topological signatures
in the HHG spectra.

This paper uses a control parameter in the Aubry-Andre
Harper model for the HHG processes and studies the topo-
logical phase transitions. In the past, this model was used to
study the dynamics of particles in quasiperiodic systems. This
AAH model can be experimentally accessible using photonic
crystals [28,29] and an optical waveguide array [28,30,31].
The quasiperiodicity of the AAH model in the form of a co-
sine modulation has its periodicity, which determines whether
modulation is incommensurate (irrational) or commensurate
(rational) with lattice spacing. Moreover, quasiperiodicity
may be included in the terms of onsite and hopping. The
incommensurate hopping modulation leads to Anderson-type
localization [32], and the commensurate hopping modula-
tion term leads to the appearance of zero-energy edge states
[33,34]. Interplay between both quasiperiodic modulations
was studied in [32]. The one-dimensional quasicrystals (QC)
were found to be topologically nontrivial, with the period-
ically modulating parameter providing an additional degree
of freedom, which can be mapped into the two-dimensional
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Hofstadter model, investigated theoretically [31,35] and ex-
perimentally [28,29].

The discrete symmetries of the system classify the prop-
erties of a topological insulator (TI) [36,37]. One of them is
the chiral symmetry or sublattice symmetry (in the case of 1D
TIs), which is responsible for the conservation of zero-energy
edge states that are reflected in the anticommutation property
between the chiral operator and the bulk Hamiltonian. The
role of breaking the chiral symmetry in topological insulators
has been investigated using HHG mechanism [19], and the
emergence of opposite chirality in Weyl semimetals has been
studied recently under strong laser excitation [38,39]. Recent
studies claim that HHG can be a sensitive probe for chirality
in higher-dimensional systems like the tellurium crystals [40],
the surface of silicon dioxide, and magnesium oxide [41] by
driving circularly polarized light.

In this work, we have investigated the HHG using the AAH
model with off-diagonal hopping while preserving chiral sym-
metry. We use the modulating phase of the AAH model as a
control parameter, which reveals the characteristic signatures
in the HHG yield as follows: (i) The harmonic yield has a
strong dependence on the control parameter and ability to
differentiate between the topological and trivial phases. The
transitions from the edge states (topological nontrivial) re-
sult in the higher-harmonic yield. However, for trivial phase
(no edge states) the yield is observed to be lower. (ii) The
harmonic yield is suppressed due to interference of interband
and intraband currents when the control parameter is around
the topological phase transitions. (iii) The onsite strength
(broken chiral symmetry) also plays a crucial role in deter-
mining harmonic yield. This paper is organized as follows:
The theoretical aspects are presented in Sec. II, followed by
the results and discussion in Sec. III, and finally the summary
in Sec. IV.

II. METHODOLOGY

A. Model

We study here the 1D AAH with off-diagonal hopping [33]
which is described by the following Hamiltonian of the form

H0 =
N∑

n=1

η[c†
n+1cn + H.c.], (1)

where c†
n and cn are creation and anhilation operators, re-

spectively. Here, η is the hopping potential and has the
form η = η0[1 + λ cos(2πbn + φ)], with λ being the ampli-
tude of quasiperiodicity and modulating phase factor φ. The
quasiperiodicity can be encoded through the cosine modula-
tion with periodicity 1/b, where b, the modulating frequency,
controls the quasiperiodicity between commensurate and in-
commensurate cases. Depending on the value of b (here in
this work, b takes the form b = p/q = 1

2 with “q” bands. The
modulating parameter φ ∈ [0, 2π ] appears as the additional
degree of freedom (d.o.f.) [42], which affects the topolog-
ical nature of the AAH model [29]. It allows us to map
the two-dimensional (2D) Hofstadter model, which describes
electrons hopping on a 2D square lattice in a perpendicular
magnetic field with 2πb magnetic flux quanta per unit cell
[31]. In this work, we have set η0 = 0.5 a.u., λ = 0.2 a.u.,

FIG. 1. The energy spectrum with 500 lattice sites as a function
of φ (a) The red and blue colors represent the “valence band” (VB)
(occupied states) and “conduction band” (CB) (unoccupied states),
respectively. The lower plots show the probability distribution of the
edge state in the AAH with off-diagonal hopping for three different
values: φ = 0π (b), φ = 0.2π (c), and φ = 0.5π (d).

and N = 500 lattice sites. The energy eigenvalues are plotted
in Fig. 1(a) with respect to φ, showing degenerate pairs of
edge states in the regions 0 < φ < 0.5π and 1.5π < φ < 2π .
Further, we plot the probability of zero-energy eigenstate for
specific values of φ = 0, 0.2π , and 0.5π , which confirms the
localization of edge states as shown in Figs. 1(b)–1(d). The
states are localized at the edge for φ = 0 in the probability
plot, and localization strength decreases at φ = 0.2π . It is
observed that the localization strength decreases with φ, and
the state becomes delocalized at φ = 0.5π and goes into the
bulk part of the chain. The importance of localization and
the presence of edge states will be discussed in detail in the
upcoming section.

This model preserves chiral symmetry [43], i.e.,
C†H0(k)C = −H0(k), where C = σz is the chiral opertor.
The periodicity in the modulating frequency b causes the
model to dimerize [44], i.e., there will be q number of
sublattices. Hence, the above equation is modified as

H0 =
N∑

n=1

[η1c†
n,Acn,B + η2c†

n,Bcn+1,A + H.c.]. (2)

Here, there are two sublattices A and B with intracell hopping
η1 = η0[1 − λ cos(φ)] and intercell hopping η2 = η0[1 +
λ cos(φ)]. This looks like a well-known SSH model and
shares the same topology [45]. The modulating phase φ alters
the hopping strength, which causes the system to go from
topologically nontrivial phase (η2 > η1) to topologically triv-
ial phase (η2 < η1) phase, which can be distinguished by the
topological invariant quantity, winding number.
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B. Coupling to an external field

The energy eigenvalues and eigenstate are calculated by
using the field-free Hamiltonian H0. The laser pulse is polar-
ized along the linear chain and the Hamiltonian becomes time
dependent H (t ) = H0 + HI (t ). The length-gauge interaction
Hamiltonian [21] reads as

HI (t ) =
N∑

n=1

nE (t )a0cnc†
n, (3)

where a0 = 2 a.u. is the lattice constant, E (t ) = −dA(t )/dt is
the electric field of the laser pulse, and the vector potential is
A(t ) = A0 sin2(πt/T ) sin(ω0t ). In this work, the amplitude of
vector potential is kept as A0 = 0.1 a.u., and the frequency of
the laser is taken to be ω0 = 0.0152 a.u. (λ = 3 µm) for five
optical cycles (T = 5τ ), where τ is one optical cycle of the
fundamental frequency (ω0).

The time-dependent Schrödinger equation is solved inde-
pendently for the m initially occupied eigenstates ψm(t = ti )
of the field-free Hamiltonian by the Crank-Nicolson method
to get the time-dependent wave function ψm(t ). Total current
is thus obtained as

Jtotal(t ) =
∑

m

〈ψm(t )|J|ψm(t )〉, (4)

where J current operator is defined as

J = −iea0

∑

n

η[c†
ncn − c†

n+1cn]. (5)

In order to extract the interband and intraband dynamics
the time-dependent wave function ψm(t ) is projected to each
field-free eigenstate [46]

|ψ (t )〉 =
∑

b

∑

m

αb
m(t )

∣∣φb
m

〉
, (6)

where b is the band index and m is the state index for every
band. The intraband and interband current can be written as

Jm
intra (t ) =

∑

b

∑

m,m′
αb∗

m αb
m

〈
φb

m

∣∣J
∣∣φb

m

〉
, (7)

Jm
inter (t ) =

∑

b,b′

∑

i, j

αb∗
i αb′

i

〈
φb

i

∣∣J
∣∣φb′

i

〉
. (8)

The total current is the sum of intraband and interband current
for each eigenstate m is calculated as

Jtotal(t ) =
∑

m

Jm
inter(t ) + Jm

intra(t ). (9)

The harmonic spectra are obtained by taking the Fourier trans-
form harmonics of the time derivative current, which are given
as

Stotal(ω) = |Fω[dJtotal/dt]|2, (10)

where Fω[g(t )] = ∫
g(t ) exp[−iωt]dt is the Fourier transform

of the time-dependent function g(t ).
The total spectra [Stotal(ω)] of the emitted harmonics con-

tain the summation of interband, intraband, and interference
of both [16,47]

Stotal(ω) = Sinter(ω) + Sintra(ω) + Sintfer(ω), (11)

FIG. 2. The HHG spectrum is presented for each value of the
modulating parameter (φ) in the Hamiltonian (H0) [Eq. (10)]. The
color bar represents the harmonic intensity. The energy spectrum for
different topological phases, e.g., topologically nontrivial φ = 0.2π

(b), gapless state φ = 0.5π (c), and trivial phase φ = 0.8π (d) are
also compared. The harmonic spectra for these three φ values are also
presented in (e). The black arrow in (b) and (d) represents �E , which
is the energy difference between the last VB and CB, and the red line
in (b) indicates �Eedge, which is the energy difference between the
VB and the first edge state. The red arrow in (e) indicates �Eedge and
the black arrow represents �E for both φ = 0.2π and φ = 0.8π ,
which has similar �E .

where

Sinter,intra(ω) = |Fω[ jinter,intra]|2 (12)

and

Sintfer(ω) = F∗
ω[ jinter]Fω[ jintra] + F∗

ω[ jintra]Fω[ jinter]. (13)

The harmonic yield Y is calculated using the relation Y =
T −1

∫ ω2

ω1
Stotal(ω)dω.

III. RESULTS AND DISCUSSION

A. Chiral preserving system

The HHG spectrum calculated for all φ is shown in
Fig. 2(a). We observed harmonic enhancements in the regions
φ ∈ [0.3π, 0.6π ] and φ ∈ [1.4π, 1.7π ]. In order to further
examine this enhancement, three specific φ values are chosen:
(i) φ = 0.2π , Fig. 2(b) has a gapped state with the presence
of edge state (η2 > η1); (ii) φ = 0.5π , gapless state (η2 = η1)
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in Fig. 2(c); and (iii) φ = 0.8π , Fig. 2(d) has a gapped state
with no edge state (η2 < η1).

Depending on the band gap (for each value of φ), the har-
monic spectra show unique behavior. At φ = 0.2π and φ =
0.8π , we can see a similar band gap (�E ), which is marked
(black arrow) in the energy spectrum [Figs. 2(b) and 2(d)] as
well as a harmonic spectrum [Fig. 2(e)]. Intraband dynamics
are dominant in the below band gap. The harmonic spectrum
has a dip at φ = 0.8π [Fig. 2(e)], contributing to destructive
interference among multiple valence electrons driven by the
laser field [18]. However, at φ = 0.2π , the harmonic yield
increases after 4.3 eV, as marked by the red arrow in Fig. 2(e),
which implies the zero-energy states facilitate the interband
transitions. On the other hand, φ = 0.8π is a topologically
trivial case with no midenergy states (edge states) and, thus,
interband transitions occur after the electron surpasses the
band gap (�E ). As a consequence, there is a huge difference
in the harmonic intensity. At φ = 0.5π , the energy spectrum
is gapless [Fig. 2(c)], and hence the contributions of both the
bulk and edge states [Fig. 1(d)] result in an efficient harmonic
intensity than the other two φ values. The reason for the har-
monic intensity decreases after 3 eV will be discussed in detail
in the upcoming section. The above variation in the harmonic
emission allows us to distinguish between the topologically
trivial and nontrivial phases in the harmonic spectrum, as was
observed in previous studies of the HHG in chains.

The harmonic intensity is enhanced or decreased at certain
φ values [Fig. 2(a)]; this can be understood by studying the
energy bands. If the band gap is large (small), it is less (more)
probable for an electron to excite to a conduction band, result-
ing in a lower- (higher-) harmonic yield observed in the region
φ ∈ [0.6π, 0.8π ] (φ ∈ [0.4π, 0.6π ]), where midenergy is en-
abling the transition to give a higher-harmonic yield in the
region of φ ∈ [0, 0.4π ] and the absence of midenergy state
leads to a lower-harmonic yield in φ ∈ [0.6π, 1.3π ]. This
behavior confirms the importance of the presence of an edge
state, i.e., the nontrivial behavior of the system.

We have presented the band structure and harmonic spec-
trum around the range φ ∈ [0.4π, 0.6π ] in Figs. 3(a) and
3(b) to analyze the nature of the HHG spectrum around the
topological phase transitions. In this region, the energy differ-
ence between the bands is nearly zero, as also illustrated in
Fig. 3(c), where the variation of �E and �Eedge with φ is pre-
sented. A similar harmonic yield [Fig. 3(b)] is observed below
2 eV in the range φ ∈ [0.44π, 0.49π ] and φ ∈ [0.51π, 0.56π ]
with a sudden drop in the harmonic intensity at the topological
phase transition (φ = 0.5π ) is observed. We did not see much
harmonic enhancement in the topological phase compared to
the trivial phase in this region. To emphasize this, we have
taken the pair of φ values from the topological and trivial
phases with similar band-gap energies. The HHG spectrum
for φ = 0.4π and 0.6π is presented in Fig. 3(d). We observed
the harmonic enhancement until 2 eV (below band gap) for
φ = 0.4π as compared to φ = 0.6π , indicating that the edge
state facilitates transitions to the higher band in φ = 0.4π .
Similarly, in Fig. 3(e), a similar HHG spectrum is observed
for φ = 0.44π and 0.56π (beyond the phase transition point
value) because of the small band gap, not much contribution
from edge states in φ = 0.44π is observed. However, for
φ ∈ [0.4π, 0.49π ], though it looks like a zero-energy state,

FIG. 3. (a) An expanded view of the energy spectrum around
topological phase transitions in the region φ ∈ [0.4π, 0.6π ], accom-
panied by the corresponding harmonic spectrum (b). In (c), we plot
�E and �Eedge with respect to φ. The phase φ (which has the same
band gap) are 0.4π and 0.6π in (d), 0.44π and 0.56π in (e), and
0.38π and 0.62π in (f).

the zoomed plot in Fig. 3(a) reveals exponential decay of
the edge state to the bulk implying delocalization. We have
already discussed that the change in the modulating parameter
(φ) alters the localization strength [Figs. 1(b)–1(d)], which
exhibits no role of the edge state in this region. On the trivial
side (φ ∈ [0.51π, 0.6π ]), a small band gap enhances the tran-
sitions between the bands, leading to a similar HHG spectrum
as the topological phase. Finally, the harmonic enhancement
is visible in the topological case (φ = 0.38π ) as compared to
the trivial case (φ = 0.62π ) as shown in Fig. 3(f), where the
contribution from the edge states (∼1.8 eV) can distinguish
between the phases when the band gap is quite large.

To further elucidate this aspect of sudden drop in
the harmonic emission at topological phase transitions, in
Figs. 4(a)–4(c), we have presented the HHG spectra with
interband and intraband harmonics when φ ∈ [0.49π, 0.51π ].
At φ = 0.49π [Fig. 4(a)], the intraband harmonics are com-
parable to the interband ones, and the interference effects
have an impact only after the cutoff of ∼35 eV. The HHG
spectrum involving only the interference term is presented in
Figs. 4(d)–4(f) [Eq. (13)]. The interference term has two con-
tributions: the negative and positive values refer to destructive
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FIG. 4. HHG spectrum of total (black), intraband (green), and in-
terband (red) are shown for φ = 0.49π (a), φ = 0.50π (b), and φ =
0.51π (c). The corresponding interference term Sintfer(ω) [Eq. (13)]
in the logarithmic scale are presented for φ = 0.49π (d), φ = 0.50π

(e), and φ = 0.51π (f).

and constructive interference causing the suppression or the
enhancement of total harmonic yield, respectively. The neg-
ative values in the interference term cannot be plotted on a
logarithmic scale, and hence, we have plotted the absolute
value in Figs. 4(d)–4(f). The different colors in the spectrum
distinguish between a negative (red) and a positive (blue)
contribution.

It can be observed that the strong destructive interference
happens at a cutoff for φ = 0.49π [Fig. 4(d)], which
correspondingly reduces the total harmonic yield. In Fig. 4(e),
for φ = 0.5π the interference term significantly suppresses
total HHG spectrum. The deviation from intraband and
interband contributions in Fig. 4(b) clearly indicates the strong
presence of the destructive interference. The suppression
of the total harmonic spectrum can also be seen in the
φ-dependent plot [refer to Fig. 3(b)]. The total harmonic
spectrum intensity decrease around 10 eV at φ = 0.51π

[Fig. 4(c)], which correlates with the dominant destructive
interference term in Fig. 4(f). In all the above cases, where
the band gap is small, the intraband and interband current
oscillations occur simultaneously when the interband current
rises and the intraband falls, and vice versa. This helps us to
conclude that both current oscillations are out of phase with
each other in the time domain and have a similar intensity in
the Fourier domain [16].

B. System with broken chiral symmetry

In this section, we study how the breaking of the chiral
symmetry affects the HHG spectrum. Chiral symmetry can be
broken either by introducing the onsite potential [19], or next-
nearest-neighbor hopping potential [44,48], which have been
experimentally demonstrated in photonic crystals [49]. Here,
we specifically see the inclusion of the onsite potential terms

(a)

(b)

(c)

(d)

FIG. 5. The energy spectrum for different values of φ is pre-
sented for the case when the onsite potential VA = VB = 0.05 a.u.
(a) and V = 0.05 cos(2πbn) a.u. (b). The respective HHG spectra as
a function of φ is illustrated in (c) and (d), respectively.

as Hμ = ∑N
n=1[VAc†

n,Acn,A + VBc†
n,Bcn,B] + H0, where VA and

VB are the strengths of the onsite potential. We first consider
the case with VA = VB = 0.05.

Figure 5(a) shows the energy spectrum, which is similar
to Fig. 1(a). However, the degenerate edge states are shifted
by 1.3 eV (0.05 a.u.) from the zero scales. This shift in the
energy of the edge state is caused by the presence of the
onsite potential, which will not change the physical aspects of
the HHG spectra. As a result, a similar [Fig. 2(a)] harmonic
spectrum is observed in Fig. 5(b) as well. The energy and
HHG spectra have a mirror symmetry with respect to φ = 1π .
So hereafter, we present the plot up to φ = 1π . Next, we
consider the onsite potential, with a cosine modulation V =
0.05 cos(2πbn) leads to V = 0.05(−1)n. Hence, depending
on the site number (n), the different onsite strengths for two
sublattices (A and B) are VA = −VB = −0.05. The energy
spectrum with this cosine modulation is shown in Fig. 5(c). In
this case of cosine modulation, the energy spectrum split into
two bands with increased band gap. This leads to the edge
states being split into two branches away from zero. As we
continuously sweep the parameter φ, the edge states mix with
the bulk around φ = 0.5π . As a result, different behaviors in
the HHG spectra are observed [Fig. 5(d)]. In the chiral break-
ing case, the harmonic emission intensity enhanced around
φ ∈ [0.4π, 0.6π ] as can be seen from Fig. 5(d), and there is
no reduction of the harmonic yield for φ = 0.5π , as was the
case with Fig. 2(b). The larger band gap for chiral breaking
case [Fig. 5(d)] lowers the contribution from the interference
of interband and intraband harmonics, and hence the total
harmonic yield is not reduced. In contrast, the band gap is
near zero in the chiral preserving system around the topolog-
ical phase transition [refer to Fig. 3], and the interband and
intraband oscillations are comparable (refer to Fig. 4). Hence,
the interference term has a crucial impact on reducing the
total harmonic spectrum [Fig. 2(b)], especially in φ = 0.5π

the total harmonic spectrum is severely suppressed.
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FIG. 6. The energy spectrum for the case with VA = −VB is pre-
sented for three different φ values: (a) φ = 0.2π , (b) φ = 0.5π , and
(c) φ = 0.8π , along with the harmonic emission spectra (d). In (d),
for φ = 0.2π case the red arrow around ∼3.2 eV represents the
�Eedge, however, the black arrow around ∼9 eV represented the �E
for φ = 0.2π and 0.8π cases.

We have considered three different φ values, namely, φ =
0.2π , 0.5π , and 0.8π to explore the the harmonic emission
weakens for VA = −VB [Fig. 5(d)] as compared to the chi-
ral preserving system [Fig. 2(a)]. The corresponding band
structure and harmonic spectrum for these selected φ values
are illustrated in Figs. 6(a)–6(d). We can see that harmonic
intensity increases around ∼3.2 eV for φ = 0.2π , as marked
in the red arrow in Fig. 6(d), which corresponds to a transition
between the valence band and the lower edge state (�Eedge).
Interband transitions happen directly to the conduction band
from the lower edge state because they inhibit the transitions
between the two edge states, which are localized at the oppo-
site boundaries of the chains. This reflects the lower harmonic
yield in the below band-gap region at φ = 0.2π compared to
chiral preserving systems [refer to Fig. 2(d)]. The harmonic
intensity at φ = 0.8π is less than φ = 0.2π , confirming the
edge state’s absence. The black arrow in Fig. 6(d) represents
the minimum band gap for φ = 0.2π and 0.8π . The band
structure for φ = 0.5π is gapped [Fig. 6(c)], and the higher-
harmonic emission was observed [Fig. 6(d)] for this case
because of the small band gap compared to other φ values.

C. HHG yield

The effect of the control parameter φ on the harmonic
yield in the energy range 3–9 eV is studied and presented in
Fig. 7. The energy differences �E and �Eedge as a function of
the parameter φ are illustrated in Figs. 7(a) and 7(b), respec-
tively, for off-diagonal hopping and VA = −VB onsite potential
model. As φ changes, the intercell hopping strength (η2)
weakens [Eq. (2)], and the band gap reduces until φ = 0.5π as
shown in Fig. 7(a). After topological transitions, the intracell
hopping strength (η1) increases with φ, which opens a band

FIG. 7. �E and �Eedge are plotted with φ for the cases without
(off-diagonal hopping model) (a) and with (c) onsite potential, and
respective harmonic yield in the 3–9 eV energy range is presented as
a function of the modulating phase (φ) for the off-diagonal hopping
model (b), and onsite potential (VA = −VB ) (d). The mirror symmetry
of energy spectrum around φ = 0.5π enabled us to map the harmonic
yield for the cases with φ ∈ [0.5π, 1π ] on φ ∈ [0, 0.5π ]. This helps
us to clearly see the role of the edge states in the harmonic yield. In
(b) and (d), the blue line points represent the case for φ ∈ [0, 0.5π ],
which is topological nontrivial and having the edge states. However,
yellow line points are for the case when φ ∈ [0.5π, 1π ] showing
trivial phase. The inset plot represents the harmonic yield zoomed
in the range φ ∈ [0, 0.24π ].

gap [Fig. 7(a)]. Figure 7(a) shows that the �E has a mirror
symmetry with respect to φ = 0.5π . So in Fig. 7(b), we have
folded back the harmonic yield values for the trivial phase
(after φ = 0.5π ) and plotted into the φ = 0.5π . The different
colors can differentiate between the topological phase (blue)
and the trivial phase (yellow). The appreciable harmonic yield
starts at φ = 0.25π , which has the midenergy state to enhance
the transitions until φ = 0.44π and then harmonic yield starts
decreases until the topological phase transitions happen at
φ = 0.5π . After topological phase transitions, harmonic yield
increases until φ = 0.56π beyond that; the harmonic yield
rapidly decreases because the absence of midenergy dictates
the lower-harmonic yield.

To emphasize the fact that there is less harmonic yield after
φ = 0.44π and an enhanced yield for φ ∈ [0.52π, 0.58π ] as
compared to this φ ∈ [0.42π, 0.48π ] [Fig. 7(b)]. We have
taken the two φ values, at φ = 0.44π and 0.56π , which repre-
sent the highest yield, and the corresponding interference term
is presented in Figs. 8(a) and 8(b). The interference spectrum
oscillates between constructive (blue) and destructive inter-
ference (red). The black dotted line in Figs. 8(a) and 8(b)
shows that after ∼6 eV, destructive interference strength for
φ = 0.56π starts decreasing compared to φ = 0.44π , which
implies a higher yield at φ = 0.56π . The interference terms
for φ = 0.48π and 0.52π are plotted in Figs. 8(c) and 8(d).
The strong destructive interference in both the φ values re-
duces the total spectra, resulting in a lower-harmonic yield.
On the topological side, the edge states are not enhancing the
transitions from VB to CB after φ = 0.4π (refer to Fig. 3). We
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FIG. 8. Comparing the inteference term of Sintfer(ω) [Eq. (13)]
between the topologically nontrivial (left column, φ < 0.5π ) and
trivial (right column, φ > 0.5π ) phase values. The red and blue col-
ors indicate destructive and constructive interference, respectively.

have already seen that in this region, the edge state approaches
the bands, so there is a mixing of transition popups between
the intraband and interband. We cannot say which dominates
in this scenario because both transitions happen simultane-
ously, as shown in Figs. 4(a)–4(c). Therefore, the interference
term dominates this region, and the trivial side absence of
an edge state leads to fewer interference effects that en-
hance the harmonic yield for φ ∈ [0.52π, 0.58π ], compared
to φ ∈ [0.42π, 0.48π ] [Fig. 7(b)]. Moreover, when there is
a smaller band gap, the interference effects play a dominant
role in reducing the harmonic yield. The zoomed inset plot
around φ ∈ [0.1π, 0.24π ] still shows the enhanced yield in
the topological phase. The harmonic yield is a robust measure
that distinguishes emission spectra between the topologically
trivial and nontrivial phases.

Similarly, the harmonic yield is calculated by adding an
onsite potential. The harmonic yield for the VA = VB case is
not shown; it has just the shifted energy spectrum, and the
yield is the same as in Fig. 7(b). The different onsite strength
inside the sublattice with VA = −VB opens a gap in the energy
spectrum [Fig. 7(c)], which lifts the degenerate edge states.
This implies that the edge states are not precisely located
at half of the band gap, whereas in off-diagonal case both
the edge states are located at zero. The electron transition
probability is less because the large band gap between the
first edge state and the VB leads to a lower efficiency for φ �
0.38π , as presented in Fig. 7(d). The efficiency found to be
enhanced for φ ∈ [0.4π, 0.6π ], which implicitly relates to the
minimum band gap. In this range, a larger band gap [Fig. 7(c)]
than the off-diagonal case [Fig. 7(a)], interband transition is
dominant compared to intraband transitions, indicating less
interference effects. Hence, we observed a similar harmonic
yield for φ ∈ [0.4π, 0.49π ] and φ ∈ [0.51π, 0.60π ]. The
zoomed-inset plot [Fig. 7(d)] reveals an enhanced yield in the
topological phase. The position of the edge state plays a cru-
cial role in strengthening the harmonic emission. Breaking the
chiral symmetry reduces the window of harmonic emissions.

FIG. 9. The harmonic yield is calculated with the variation of
the onsite potential (VA = −VB) strength for different φ values. The
scaling factors are specified in each plot.

So far, we have learned that the efficiency of the har-
monic yield is a good measure for identifying the topological
phases. The increase or decrease of the harmonic yield is
related to the minimum or maximum band gap along with the
presence of the edge states. To elucidate the lower-harmonic
yield obtained in the VA = −VB case [Fig. 7(d)], we have also
studied the harmonic yield with the variation of the onsite
strength ranging from V = 0.01–0.05 a.u. The variation of the
harmonic yield with the strength of the onsite potential is pre-
sented in Fig. 9 for different values of φ. It can be seen from
Fig. 9 that for the case of φ = 0.3π and 0.7π , the harmonic
yield decreases with the increase in onsite potential strength.
However, for φ = 0.5π case the reverse happens. The results
of Figs. 9(a) and 9(c) can be understood from the fact that
the band gap between VB and CB increases with potential
strength. Moreover, for φ = 0.5π case [Fig. 9(b)] too the
band gap increases with the onsite potential strength, however,
the reduction in the contribution from the interference term
enhances the total harmonic yield.

In order to examine the harmonic yield enhancement for
φ = 0.5π , we have presented the band-gap energy �E for
φ = 0.5π with different onsite potential strength [Fig. 10(a)].
It clearly shows that the band gap varies significantly against
onsite strengths. The respective HHG spectra for the case of
φ = 0.5π for different onsite potentials are also presented
[Fig. 10(b)]. We have already seen that the lower band gap
leads to destructive interference, reducing the total HHG

FIG. 10. The band-gap energy �E for φ = 0.5π is presented
when the onsite potential is VA = −VB (a) with different onsite
strengths, and the corresponding HHG spectrum is plotted in (b).
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spectra. This explains the increase of higher-harmonic yield
with onsite potential strength φ = 0.5π . The above analysis
shows that for φ = 0.5π , there is an interesting feature in the
variation of onsite strength. Hence, the harmonic yield detects
crucial aspects of the AAH model.

IV. SUMMARY

In summary, we have investigated the high-harmonic gen-
eration in the different topological phases of off-diagonal
hopping in the AAH model with a commensurate modulation,
which gives rise to a zero-energy edge state by keeping the
chiral symmetry intact. The modulating phase (φ) of the AAH
model is used as a control parameter which causes the system
to go from a topologically nontrivial phase to a topologically
trivial phase. The HHG yield shows a strong dependence on
the control parameter and enables us to make the distinction
between the different phases. The edge states of the topologi-
cal nontrivial phase assist in the enhancement of the harmonic
yield. In contrast, the absence of edge states leads to a lower-
harmonic yield. The harmonic yield is found to be minimal

when the control parameter is around the phase transition
point, i.e., φ = 0.5π . The interference of the interband and
intraband harmonics dominates the outcome of the harmonic
yield near the topological phase transition (band gap is near
zero). Furthermore, the impact of chiral symmetry breaking
in the HHG spectrum is also explored by adding an onsite
potential in two different ways: V = VA = VB and −V = VA =
−VB, and the offset of the edge states found to play a cru-
cial role in harmonic enhancement. Our work presents the
HHG yield as a robust measure to detect topological phase
transitions. It is also observed that the onsite strength can
control the harmonic emission of the systems with broken
chiral symmetry. Explicit dependence of HHG processes on
higher dimensions and the decoherence we reserve for the
future.
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