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The analysis of phase transitions of gauge theories has relied heavily on simplifications that arise at the
boundaries of phase diagrams, where certain excitations are forbidden. Taking 2+1-dimensional Z2 gauge
theory as an example, the simplification can be visualized geometrically: on the phase diagram boundaries the
partition function is an ensemble of closed membranes. More generally, however, the membranes have “holes”
in them, representing worldlines of virtual anyon excitations. If the holes are of a finite size, then typically they
do not affect the universality class, but they destroy microscopic (higher-form) symmetries and microscopic
(string) observables. We demonstrate how these symmetries and observables can be restored using a “membrane
patching” procedure, which maps the ensemble of membranes back to an ensemble of closed membranes. (This
is closely related to the idea of gauge fixing in the “minimal gauge,” though not equivalent.) Membrane patching
makes the emergence of higher symmetry concrete. Performing patching in a Monte Carlo simulation with
an appropriate algorithm, we show that it gives access to numerically useful observables. For example, the
confinement transition can be analyzed using a correlation function that is a power law at the critical point. We
analyze the quasi-locality of the patching procedure and discuss what happens at a self-dual multicritical point
in the gauge-Higgs model, where the lengthscale � characterizing the holes diverges. The patching approach
described here generalizes to many other statistical ensembles with a representation in terms of fluctuating
membranes or loops, in various dimensions, and related constructions could be implemented in experiments
on quantum devices.
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I. INTRODUCTION

It is a remarkable fact that many topological phase transi-
tions, which lack any local order parameter, can be described
using Landau-Ginsburg theory anyway. The Landau theory
is formulated in terms of a “fictitious” order parameter,
which does not exist as a local observable of the origi-
nal theory. Canonical examples include Higgs transitions in
discrete gauge theories, and in three dimensions also their
confinement transitions [1,2]. The simplest case is the 3D
gauge-Higgs model with Z2 gauge field and Z2 matter, where
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both the Higgs and confinement transitions are “Ising∗” tran-
sitions [3–8]. These are not Ising transitions, but they can be
largely understood in terms of the latter. In the deep infra-
red, the Ising∗ fixed point, or more generally a “Landau∗”
fixed point, is related to the standard Landau fixed point
by orbifolding: i.e., by a gauging procedure that eliminates
non-gauge-invariant operators, including the Landau order pa-
rameter, from the spectrum. (We will review ways of thinking
about Landau∗ transitions below.)

A crucial point about the relationship between the gauge
theory and the Landau theory is that in general it is emergent,
rather than microscopic. In other words, the relation is mean-
ingful only after coarse-graining beyond some characteristic
lengthscale �. For a Higgs transition, � separates a regime at
shorter scales, where gauge fluctuations are nontrivial, from
a regime at larger scales where (heuristically) the gauge field
can be treated as flat—i.e., locally equivalent to pure gauge.
Once we have an effective model where nontrivial gauge fluc-
tuations have been eliminated, the relation to a Landau-like
theory is direct: we can locally choose a gauge where the
gauge field is trivial, so that the interactions of the Higgs fields
resemble those in a Landau theory [1,2]. The emergence of the
Landau∗ description is also tied to the emergence of a “higher”
symmetry [9–13], associated with emergent string operators,
as discussed below.

Anyon excitations of the deconfined phase give an alterna-
tive perspective. For example, the Higgs transition of 2+1D
Z2 gauge theory is the condensation of the “e” anyon. The
lengthscale � is related to the mass scale for other anyons,
which braid nontrivially with e, but which can be neglected
in the infrared. At the longest scales, the dynamics of the
e particle then resemble those of a local boson in a Landau
theory.

In the case where � is suppressed all the way to zero, the
“duality” between the transition in the gauge theory and the
Landau transition holds at the microscopic level [1]. (This
may be extended to small � within perturbation theory [1,2].)
However, the scale � may be arbitrarily large; for example
we can approach a phase transition where � diverges (and
where the Landau∗ description breaks down). In general,
the Landau∗ description and the associated higher symmetry
emerge only after a nontrivial renormalization group flow.

The renormalization group pictures above are heuris-
tic. Reference [14] outlined how to make the emergence
precise and “constructive” using spacetime configurations.
This method defines the emergent observables sufficiently
concretely that they can be measured in a simulation and
their locality properties can be analyzed theoretically. Here
we develop this approach in full and implement it in a Monte
Carlo simulation. Our aims are twofold:

First, to develop a geometrical understanding of how the
Landau∗ description—with its “fictitious” order parameter—
emerges as we go from the microscopic scale to scales �
�. In a more formal language, this is also the emergence
[12,14–18] of a one-form symmetry [9–11]—a symmetry
group generated by string operators. (Here, these string op-
erators are associated with anyons [12,13,19].) We start from
the geometrical representation of the partition function of a
lattice gauge theory as an ensemble of membranes [14,20–
23] and use a “patching” procedure to construct the emergent

observables. The general idea was outlined in Ref. [14] and is
developed here. The procedure is not limited to lattice gauge
theory, and could be applied to many other statistical mechan-
ics ensembles formulated in terms of strings or membranes
(we will discuss some examples).

Second, we aim to show that the approach based on
“patching” membranes is useful, in Monte Carlo simulations,
for analyzing topological phase transitions. We argue that
constructing the emergent “dual” order parameter and its
correlators gives a more efficient way of studying the confine-
ment transition than looking at standard local correlators. It is
worth noting that some standard diagnostics for the transition,
such as the Fredenhagen-Marcu order parameter [22,24], have
an exponentially bad signal-to-noise problem, which is not the
case here.

The patching-based approach outlined below is related to
an idea of Fradkin and Shenker [2], who argued that a two-
point correlator for Higgs fields can be defined, within the
perturbative regime (� � 1), by gauge fixing in the “minimal
gauge.” Gauge fixing can be formulated as a geometrical prob-
lem similar to the membrane patching proposed here but with
some important differences (concerning both the nature of the
patching algorithm and the way excitations on the scale of the
system size are treated). The present “geometrical” approach
makes it possible to go beyond the perturbative regime of
small �, and to construct emergent string operators (which in
general are not accessible simply by gauge fixing). We use
concepts from geometrical critical phenomena to analyze the
quasilocality of our patching procedure, showing, e.g., that it
can be used to diagnose the deconfined phase and to study the
relevant phase transition out of this phase even if � is much
larger than the lattice spacing.

The patching approach also sheds light on topological
phase transitions that are not Landau∗-like and which are
far less understood, including the self-dual point where the
two Ising∗ lines in Fig. 1 meet [14,25,26], which is itself a
scale-invariant multicritical point [14,27,28]. We discuss the
fate of the string operators at this multicritical point (MCP).
Interestingly, although they become nonlocal, there is a sense
in which this nonlocality is weak. We discuss why this MCP is
challenging to analyze using continuum field theory (despite
the existence of a continuum Chern-Simons formulation for
Z2 topological order).

We end this introduction with a heuristic overview of the
geometrical picture. Z2 gauge theory can be formulated in
terms of unoriented membranes [20–22]. (In the quantum
interpretation, these membranes represent worldsheets traced
out by flux lines in the 2+1D theory, as they evolve in imag-
inary time: see, e.g., Fig. 6 of Ref. [14]). For us, the key
distinction is between membranes/worldsheets that are closed
and those that have “holes” in them (to be made more precise
below): see Fig. 1.

When all membranes are closed, the mapping between the
gauge theory and a Landau theory (here Ising) is almost triv-
ial. The membranes are simply reinterpreted as domain walls
in an Ising order parameter.1 In this mapping there is a global

1For the moment we work in the thermodynamic limit, to defer
discussion of boundary conditions.
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FIG. 1. Phase diagram of the Z2 gauge-Higgs model in 3D,
showing the confinement transition line (red), the Higgs transition
line (black), the self-dual multicritical point (MCP) where they meet,
and a segment of first order coexistence extending from the MCP
(double line). The model’s partition function is shown in Eq. (1),
with x, y defined in Eq. (2). The partition function is expressed in
terms of classical membranes in Eq. (3), where − log x is the bare
membrane tension and − log y is the bare line tension of membrane
boundaries.

Z2 ambiguity in the sign of the Ising order parameter, but no
additional local ambiguity. When membranes are closed the
relevant one-form symmetry is also present microscopically,
as we discuss in Sec. II.

When membranes have holes in them, these mappings
break down at the microscopic level. But it is natural to expect
that if the holes are “small,” then in the infrared we will
effectively recover a theory of closed membranes, in which the
above mappings again apply.2 Here we translate this heuristic
point into a constructive approach. The key point is that,
whenever the typical size of holes is finite (which we define
precisely in terms of percolation) it is possible to repair the
membranes, configuration by configuration, by a “patching”
procedure [14]. This patching procedure is quasilocal, i.e., it
involves patches of finite typical size �. Crucially, this means
that the patching procedure is unambiguous in the thermody-
namic limit. It can also be done efficiently in a Monte Carlo
simulation, as described below.

Once the membranes have been patched, we can define
the configuration of the fictitious order parameter S(r) = ±1,
configuration by configuration (up to a global sign, and tak-
ing boundary conditions into account). After patching, we
can also define topological string operators without any ob-
stacle. The Ising correlation function “〈S(r)S(r′)〉” is really
the expectation value of such a string operator. The patching
procedure allows this correlator to be given a precise meaning
and measured in a simulation (perhaps even in an experiment),

2Perturbation theory about the simple closed-membrane limit can
also be used to derive an effective longer-ranged Ising Hamiltonian:
this is one way to understand the stability of the Ising expo-
nents [1,2].

which would be impossible working only with microscopic
observables.

In the 3D Z2 gauge-Higgs model, the Higgs and confine-
ment lines (shown in Fig. 1) are completely equivalent, by the
exact duality property of the model [1]. In our convention, the
transition line we discuss is the confinement transition. As can
be seen in Fig. 1 we can cross this line at various values of the
Higgs coupling, which is related to y in the figure. As we move
along the confinement phase transition line by increasing y,
the typical size � of the “holes” in the membrane increases,
diverging at yMCP, the self-dual critical point where Higgs and
confinement lines meet [14,20]. We study the confinement
(Ising∗) transition at various values of y, up to and including
yMCP.

II. Z2 WORLDSHEETS: REVIEW

We will demonstrate the patching procedure for “Z2

membranes”—worldsurfaces of Z2 flux lines in 2+1D. We
take the Z2 gauge field to be coupled to a Z2 matter field. We
start by reviewing this model. We will be quite brief. See the
early parts of Ref. [14] for a more complete overview of the
model.

A. Definition of the model

The partition function, for an L × L × L cubic lattice with
periodic boundary conditions, is

Z ∝
∑

{σ },{τ }
exp

⎡⎣K
∑
�

⎛⎝ ∏
〈i j〉∈�

σi j

⎞⎠ + J
∑
〈i j〉

τiσi j τ j

⎤⎦, (1)

where i labels lattice sites, σi j = ±1 is the gauge field on
links, and τi = ±1 is the Higgs field on sites. We refer to K as
the gauge stiffness and to J as the Higgs coupling. However, it
will be convenient to trade them for the parametrization [1,29]

x = tanh K, y = tanh J (2)

(used in Fig. 1), which are the natural “fugacities” in a mem-
brane representation of the partition function [20].

There are two dual ways to formulate the membrane map-
ping. The equivalence of these dual representations is one way
to see the equivalence of the Higgs and confinement phase
transition lines in Fig. 1. In a quantum language, these dual
formulations correspond to formulations of the path integral
either in the “electric” or the “magnetic” basis, as discussed
below. We choose the “electric” representation, in which the
membrane ensemble is3

Z =
∑
M

x|M| y|∂M|. (3)

Here M stands for a configuration of membranes, which
means a set of plaquettes of the cubic lattice that are to be

3The electric representation is obtained by a strong coupling (“high
temperature”) expansion of Eq. (1). The dual (i.e., “magnetic”) rep-
resentation is an even more straightforward rewriting of Eq. (1): the
membranes live on the dual cubic lattice, and a plaquette of the dual
cubic lattice is occupied if τiσi jτ j = −1 for the corresponding link
〈i j〉 of the original lattice. See, e.g., Appendix A of Ref. [14] for
more detail.
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FIG. 2. Configuration with a hole and patching scheme
(Sec. III B).

regarded as occupied. See Ref. [14] for details. |M| is the
total membrane area of M. The membrane boundary ∂M is a
set of occupied links: A link is part of the membrane boundary
∂M if it is adjacent to an odd number of occupied plaquettes.
|∂M| is the total length of occupied links. The left part of
Fig. 2 shows an example of a small piece of membrane with a
nontrivial boundary.

We will define the term “hole” to mean a geometrically
connected subset of ∂M, i.e., a cluster of boundary links (see
Sec. III B for a more precise definition). It is often useful to
idealize holes as looplike, as explained below (Sec. IV C),
though microscopically they can have more complicated
topology.

(Although for convenience we use the word “hole” to de-
note any connected component of the membrane boundary
∂M, such a boundary component does not need to resemble
a hole in a larger piece of membrane: for example, a “hole”
could also be the boundary of a small membrane “platelet”
made up of a single plaquette.)

From Eq. (3) we see that x controls the bare membrane
tension, and y controls the bare line tension for holes, i.e., for
membrane boundary.

Equations (1) and (3) can be thought of as 3D classical
partition functions in their own right. However, if we choose
to think of Z as an imaginary time path integral for a 2+1D
quantum Z2 gauge theory, then the membrane ensemble (3)
is the formulation of this path integral in the basis of Z2

electric flux lines which live in the 2D spatial plane and
which terminate on electric charges. The membranes we are
discussing are worldsurfaces of these electric flux lines (see,
e.g., Fig. 6 in Ref. [14]). The boundaries of the membranes,
which make up the “holes,” are worldlines of the electric
charges. Duality is the existence of a completely equivalent
picture in the magnetic basis, for Z2 magnetic flux lines and
charges.

Figure 1 above showed the phase diagram. The key fea-
tures are the confinement and Higgs transition lines (related
by duality); the self-dual multicritical point at (xMCP, yMCP),
where confinement and Higgs lines both end [2,14,25,26]; and
a short first-order segment to the left of the multicritical point.

We will focus particularly on the confinement transition
line, marked in solid red in Fig. 1. If we move along a horizon-
tal line on the phase diagram at fixed y in the range [0, yMCP),
then we cross this line at an x value that we will denote xc(y).

FIG. 3. The phase diagram of Fig. 1 shown together with the
percolation threshold for holes (red dashed line). The typical hole
size �(x, y) is finite below this line (data from Ref. [14]).

Loosely speaking, crossing this line from the left to the right
gives a proliferation of membranes [20].

A key point will be that if we move upwards along a
vertical line in the phase diagram, at any fixed x, there is a
critical value of y where the characteristic size � of holes4

diverges [14,20]. We will refer to this as the “hole percolation”
threshold. The location of the transition line is shown in Fig. 3
below. This threshold coincides with the Higgs transition for
x > xMCP, and passes through the multicritical point [14]. The
percolation transition line also continues to x < xMCP, but its
nature changes in this regime and it need no longer have any
thermodynamic significance for x < xMCP.

B. The y = 0 limit: Closed membranes

The lower boundary of the phase diagram, i.e., the line y =
0, is special: the partition function simplifies there because the
membranes are closed (∂M = 0).

This means that on the line y = 0 there is a microscopic
mapping to Ising [1], and that topological line operators
(t’Hooft loops) can be defined microscopically [1,2,9–11,19].
We now review how this works for y = 0, in preparation for
our main aim which is to extend these mappings and defini-
tions to y > 0.

The closed membranes at y = 0 can be mapped to Ising
domain walls, by introducing Ising spins Sr that live at the
centres of cubes. (That is, r is a site of the dual cubic lattice,
made up of cube centres. A pair of adjacent spins Sr , Sr′ are
antiparallel if the corresponding plaquette p of the original
lattice is occupied, i.e., p ∈ M.) The Ising spin S is ordered
for x < xc(0), i.e., in the confined phase, and S is disordered
for x > xc(0), i.e. in the deconfined phase, where membranes
proliferate.

In the finite system, the mapping is to an Ising model with a
sum over both periodic and antiperiodic boundary conditions

4One way to define �(x, y) at a given point (x, y) in the phase
diagram is via the exponential decay constant for the probability that
a given region of size R contains a hole of linear size R: prob ∼ e−R/�.
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in each direction: this is because a closed path that loops
around the system in, say, the x direction can cross either
an even or an odd number of membranes. Denoting these
two possibilities by σx = ± and similarly for the y and z
directions, the gauge theory partition function decomposes
into sectors:

Z =
∑

σx,σy,σz=±
Zσx,σy,σz . (4)

Finally, the relation to the Ising partition function involves a
factor of 2, because the above definition of the Ising spin Sr

has a global sign ambiguity: Z Ising
σx,σy,σz = 2Zσx,σy,σz , where on

the left-hand side σμ = ± denotes periodic/antiperiodic Ising
BCs in the μ direction.

While there is a “duality” between the gauge theory at
y = 0 and the Ising model,5 the Ising spin Sr does not ex-
ist as an observable in the original gauge theory. However,
the gauge theory does have well-defined string operators VP

(observables defined on a line) that are closely related to
correlators such as 〈SrSr′ 〉.

Given a path P on the dual lattice (either closed or open),
VP is equal to +1 if P intersects an even number of occu-
pied plaquettes and to −1 if P intersects an odd number of
occupied plaquettes. (We can write VP as a product of local
signs for each plaquette pierced by P.) Because all membranes
are closed when y = 0, the value of VP does not change if we
deform the path P (keeping its endpoints, if any, fixed).

If P is an open path between r and r′, in an infinite system,
then VP depends only on its endpoints. From the domain wall
interpretation, it is clear that under the mapping to Ising

VP ←→ SrSr′ . (5)

In the finite system with periodic boundary conditions VP is
also nontrivial for closed loops that wrap around the system.
(VP is trivial for a contractible loop.)

The operators VP can be viewed as symmetry opera-
tors [9–11]. For example, in the Hamiltonian formulation of
the gauge theory, as a 2D quantum system, one may define
corresponding unitary quantum operators V̂P for paths P lying
in the spatial plane. The invariance of VP under deformations
of P implies that these operators commute with the Hamil-
tonian: [Ĥ, V̂P] = 0. Unlike the generators of a conventional
symmetry (which would be supported on the entire spatial
plane) these operators are supported on one-dimensional lines.
They are referred to as 1-form symmetry operators.

In this language, the one-form symmetry is spontaneously
broken in the deconfined phase, because of the existence
of a degenerate ground-state manifold within which V̂P, for
winding loops, acts nontrivially. In the language of the Z2

topological order and the toric code, V̂P are the “magnetic”
string operators associated with “m” excitations [19].

C. Finite and infinite holes

The above concepts (the “dual” Landau order parameter
Sr , and the string operators) are useful for detecting the de-

5This “duality” between the gauge theory and the Ising model
should not be confused with the self-duality of the gauge theory that
relates the electric and magnetic representations.

confined phase and the transition out of it. To generalize them
to y > 0, we will need to deal with the problem of having
holes in the membranes. We make some qualitative points
before giving a concrete construction in the next Section. For
concreteness we focus the discussion below on the confine-
ment transition, but the key points also apply in the deconfined
phase. By duality, the discussion also translates directly to the
Higgs transition. We will discuss some other extensions of the
method in Sec. VI.

Let �(y) ≡ �(xc(y), y) be the typical hole size at a given
point along the confinement transition line. �(y) grows with
increasing y, and diverges at the MCP. Figure 3 shows the part
of the phase diagram where � is finite.

Heuristically, when �(y) is finite (y < yMCP), we might
imagine that holes disappear under RG. That is, after coarse-
graining to scales � �(y) we effectively recover a theory of
closed membranes, and the system flows to the same Ising∗

fixed point that governs the phase transition on the boundary
y = 0. Below we will show that this can be made concrete
(giving a constructive mapping to Ising) also for y > 0.

We construct the dual spin Sr explicitly and show that it
only behaves like a local operator on scales much larger than
�(y). Therefore, the duality to Ising only emerges beyond this
scale.

Similarly string operators analogous to VP can be defined
as “fattened” objects [13]. Because of rare large loops, the
string operators must in general be much thicker than �(y), as
we discuss below.

We will also examine the fate of these concepts at the
MCP, where � = ∞ and “holes” are present on all scales.
We emphasise that the MCP is in a different universality
class to the confinement line. Monte Carlo strongly indicates
that the multicritical point is a scale-invariant critical point,
which is of interest because it is a simple example of a crit-
ical point without any known useful continuum Lagrangian
description [14].

The dual order parameter Sr ceases to be local at the MCP.
This is one way of understanding why the mapping to a
Landau theory breaks down at the MCP (see Refs. [14,28]
and Sec. VII for further discussion of this point).

Interestingly, though, there is a sense (discussed in
Sec. V B below) in which this nonlocality is mild at the
MCP. This may be a hint as to why various exponents at the
multicritical point are numerically close to exponents of the
XY model [14,27].

III. MEMBRANE PATCHING

A. Schematic

To define the dual order parameter and the string operators,
we will define a convention for mapping a given membrane
configuration M—which in general will have a nontrivial
boundary, ∂M �= 0—to a “repaired” or “patched” configura-
tion M with ∂M = 0. Once this is done, M can be viewed
as a configuration of domain walls for a dual spin Sr , and
observables can be constructed in terms of M in the same
way as at y = 0.

We emphasize that this is a procedure for defining ob-
servables in a given configuration M—we leave the partition
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function unchanged. In particular, above we defined string
operators VP(M) in the closed membrane ensemble (here we
have made the dependence of this observable on the config-
uration M, as well as on a path P, explicit). The patching
procedure allows us to define a string operator ṼP in the y > 0
ensemble, via

ṼP(M) ≡ VP(M). (6)

Since M is closed, ṼP has the key invariance property under
deformations of the path P. For an open path P between points
r and r′ in an infinite system we have the duality relation
ṼP(M) ↔ SrSr′ (we discuss boundary conditions in a finite
system below).

We will perform the repair by attaching a patch for each
hole separately (by the rule in the following subsection). Note
that the mapping from M to M is not a strictly local opera-
tion: a given plaquette in M depends on other plaquettes in
M. In turn, this relaxes the locality properties of ṼP and the
dual spin Sr . However, if the typical hole size is finite, then
there is an effective notion of locality on larger scales [14],
which we discuss in Sec. V.

We now describe concretely how to define the patching. In
following sections we will implement it in a Monte Carlo sim-
ulation of Eq. (3), focussing particularly on the confinement
transition for 0 < y < yMCP.

B. Membrane-patching algorithm

The membrane-patching algorithm is as follows. For a
given configuration M, the first step consists in performing
a percolation analysis of the occupied links (links in ∂M).
This means that we determine the connected clusters of links.
(A cluster does not share any site with any other cluster.)

If there is a cluster that spans the entire system in any
direction6 then we flag the configuration as percolating (“non-
patchable”), and do not try to patch it. Later when we compute
expectation values, we will often condition on the configu-
ration being patchable (nonpercolating). When y < yMCP, the
probability of a configuration percolating is vanishingly small
at large L.

In a given patchable configuration, we patch each cluster
separately. The links of a cluster represent the boundary of a
patching surface: see, for example, the left image in Fig. 2.
It is convenient to think of the definition of this surface as a
two-step procedure.

First, a patching surface can easily be constructed as a
union of triangles. For each link in the cluster, we define a
triangle with the link as one side and the cluster’s center of
mass as the opposite vertex. Such a surface is shown in the
central image in Fig. 2.

Next, we simplify this surface to an equivalent one con-
structed from plaquettes of the cubic lattice, instead of from
triangles (Fig. 2, right). Note that each plaquette p is dual to a
link l (p) of the dual cubic lattice (lines in yellow in the central
image in Fig. 2). Loosely speaking, if a triangle crosses a dual

6A cluster is defined to span the system in a given direction, say the
X direction, if for every X -coordinate value x ∈ {0, . . . , L − 1} the
cluster contains at least one link occupying it.

FIG. 4. A loop configuration (“hole”) and the resulting mem-
brane patch produced by the algorithm.

link l (p), this means that the plaquette p should be included in
the patch. More precisely, a plaquette p is included if the dual
link l (p) crosses an odd number of triangles. An example of
the membrane patch associated to a cluster is shown in Fig. 4.

A final detail is that in rare cases a triangle may pass
exactly through a vertex of the dual cubic lattice. For a simple
solution, we resolve the degeneracy by infinitesimally perturb-
ing the center of mass in a random direction. Other resolutions
are possible, but the choice will not have any significant effect
on the results.

We have proposed an explicit, easy to implement, patching
procedure. Other legitimate procedures, leading to slightly
different patched surfaces, are also possible, but such changes
would not affect the universal behavior of the correlation
function at distances r � � (Sec. III D, Sec. V), or the analysis
of the phase transition. Having defined the patches we can
define the repaired configuration M. If we call the set of
patching plaquettes P , the new set M = M ∪ P − M ∩ P
defines strictly closed surfaces and allows us to construct line
operators as described in Sec. III A.

C. Ising observables

In particular, we can define correlators of the dual Ising
field, e.g., 〈SrSr′ 〉, if we correctly account for boundary
conditions (as discussed directly below). We propose that
these correlators are practically useful for the analysis of
the phase transition, because they allow standard tools for
order parameters to be applied to the confinement and Higgs
transitions, despite the fact that the original model does not
have an order parameter. For example, such tools include the
analysis of the total magnetization, and of Binder cumulants,
to accurately identify the transition point. (We will use the
language of the confinement transition, but by duality, the
results translate directly to the Higgs transition.) We reiterate
that for y > 0 the quantity SrSr′ is definable only through
the patching procedure, unlike the simpler case y = 0 where
SrSr′ is the expectation value of a “microscopic” line operator.

As discussed around Eq. (4), an ensemble of closed mem-
branes can be split into sectors. Our patching algorithm works
in all sectors. It is also perfectly meaningful to define correla-
tion functions of the Ṽ operators conditioned on a given sector
(as defined more precisely below): correlators for different
sectors agree when r � L/2, so that restricting to a sector
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does not affect the location of the phase transition, but may
differ when r is of order L.

One reason it is often useful to restrict to a sector is for
the numerical analysis of the confinement phase transition.
The analysis of the transition through the asymptotics of the
correlators is subject to large statistical errors; more effective
procedures are based on the analysis of Binder-like parame-
ters [30]. These can be defined straighforwardly in the first
sector (σx = σy = σz = +).

In this sector the dual Ising spin Sr has periodic boundary
conditions, and so is well-defined up to a global sign flip:
this means that, after patching, the correlation function 〈SrSr′ 〉
may be straightforwardly defined. When we write expressions
such as 〈SrSr′ 〉, we refer to an average conditioned on the
σx = σy = σz = + sector.

More formally, this may be expressed as

〈SrSr′ 〉 ≡ 〈ṼP(M) χ+(M)〉
〈χ+(M)〉 , (7)

where P is any path connecting r to r′, and χ+(M) is an
indicator function that takes the value χ+ = 1 if M is a
patchable configuration in the + + + sector, and the value
χ+ = 0 otherwise.

Similarly, for a configuration in the σx = σy = σz = + sec-
tor, the squared magnetization density

M2 =
(

L−3
∑

r
Sr

)2
(8)

is well-defined.
In the simulations below it will also be convenient to define

two dimensionless quantities:

b4(M ) = 3〈M2〉2 − 〈M4〉
2〈M2〉2 , (9)

b1(M ) = 1

1 − √
2/π

(
〈|M|〉

〈M2〉1/2 −
√

2

π

)
. (10)

b4(M ) is just the Binder parameter [30] rescaled such that it
becomes 1 in the ferromagnetic phase and 0 in the param-
agnetic one (b4 = 3UL/2). b1(M ) behaves similarly to b4(M )
and has the same two limits, but it is statistically slightly easier
to estimate [14], so we suggest the use of the former instead
of the latter.

We will also store statistics related to the total patched area,
which we denote Apatched: for a given configuration, Apatched

is the number of plaquettes in the set P defined above in
Sec. III B. Analysis of the statistics of Apatched at different
points on the confinement line reveals the divergence of the
patching lengthscale �(y) as the self-dual critical point is
approached.

D. Diagnosing the deconfined phase: Robustness
of patching procedure

Since in Sec. IV below we will focus on critical scaling
near the confinement transition line (the red line in Fig. 1), we
emphasize in this section that the patching procedure gives a
way to detect or verify deconfinement more generally (even
far away from the confinement transition line).

First we note that the conditions (i) and (ii) below serve as
(easily checkable) sufficient conditions for a point of the phase

diagram to lie within the deconfined phase. Subsequently we
will argue that, for the present patching algorithm and model,
they are also necessary conditions (meaning that patching can
be used as a diagnostic of deconfinement throughout the entire
deconfined phase):

Condition (i): The patching procedure succeeds; i.e., the
probability of a configuration M being patchable tends to 1 at
large system size. Equivalently, the holes are nonpercolating,
as discussed below.

This condition ensures that the line operators Ṽ that we
define through patching are quasilocal (as discussed in more
detail in Sec. V). Given this, these operators may then be used
to detect deconfinement.

In principle, one way to detect deconfinement would be by
checking for the spontaneous breaking of one-form symmetry
using a line operator that wrapped around the system in some
direction. An alternative (and more practical7) diagnostic is
the expectation value of an open string operator:

Condition (ii): The expectation value of the string operator
limL→∞〈ṼP〉, for an open path P of length R, tends to zero at
large R.

In terms of the dual Ising degrees of freedom, this means
that the dual Ising order parameter is disordered. Numerically,
a convenient way to detect this is via the vanishing at large L
of the squared magnetization 〈M2〉 (defined in the previous
section).

The two conditions above show that patching gives a sim-
ple diagnostic for the deconfined phase: first we confirm that
holes do not percolate, and then we check that 〈M2〉 vanishes
at large L.

If, in the second step, we find that 〈M2〉 does not vanish,
this tells us that we are not in the deconfined phase. This is
what happens if we are to the left of the confinement line in
Fig. 1.

The remaining question is about the nature of the phase
transitions where the holes start to percolate, i.e., where con-
dition (i) ceases to hold. A priori, there are two possibilities.
First, the percolation transition of the holes could happen at
the thermodynamic phase boundary of the deconfined phase
(the Higgs transition line in Fig. 1, together with the multicrit-
ical point). Alternately, the percolation transition line could
be separated from the thermodynamic phase transition line,
occurring at a smaller value of y that had no thermodynamic
significance.

For the present model, the former scenario holds. In other
words, the Higgs transition line is the percolation phase tran-

7In the quantum language, a signature of the deconfined phase is

that a line operator ˆ̃V , which winds around the system in some direc-
tion, acts nontrivially on the ground-state space. As a result 〈Ṽ 〉 = 0
for the thermal expectation value of a winding string operator, so long
as the thermal expectation value properly sums over all topological
sectors (Sec. II B). However, because of the order–L free energy
barrier that separates different topological sectors (in the 3D classical
language), it will often be much easier for Monte Carlo to sample
a single sector than to sample all sectors. Therefore, observables
that can be calculated in a single sector are more useful in practice.
This is not a serious restriction since it is possible to detect the
thermodynamic phase using observables within a topological sector.
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FIG. 5. (Panel 1) Correlation as a function of distance along one of the axis directions for system size L = 64 at the critical point xc(y)
for several values of y. Black dotted line represents a power-law r−(1+ηIsing ), where ηIsing = 0.036298. (Panel 2) Magnetization as a function
of x − xc(y), for several values of y and different system sizes. Colors and symbols indicate y values (three are plotted) and system sizes,
respectively. (Panel 3) Scaling collapse of parameter b1 as a function of (x − xc(y))L1/νIsing where νIsing = 0.629971 is the critical exponent of
the 3D Ising universality class. (Panel 4) Patched area for several values of y as a function of L at their critical point xc(y). (Panel 5) Variance
of the patched area for several values of y as a function of L in logarithmic scale, at their critical point xc(y).

sition of the holes. This was already anticipated in Ref. [20];
Ref. [14] gave numerical evidence that the hole percolation
transition coincides with the thermodynamic transition along
the full extent of the Higgs line (plus multicritical point), and
sketched an analytical explanation for why the two transitions
coincide which we develop a little further in Appendix B.

As a result, the present patching approach successfully
diagnoses the entirety of the deconfined phase. Further, we
argue in Appendix B that this property is robust to slight
changes of the model or the patching scheme.

On the other hand, a sufficiently severe change to the way
clusters are defined in the patching scheme (a sufficiently
“bad choice” of patching algorithm) could cause percolation
to occur in the interior of the deconfined phase, as we discuss
in Appendix B. In that scenario, the “bad” patching algorithm
would still be able to successfully diagnose deconfinement
for small enough y, but for larger y it would not give us any
information about which phase the model was in.

E. Monte Carlo updates

For completeness we specify the updates used to equi-
librate the model. For one Monte Carlo step we use two
standard Metropolis updates: First we attempt to update all
plaquettes in the system (one at at a time). Second, for all
cubes in the system, we try to change all six plaquettes of
the cube at the same time. For y = 0 this second procedure
reproduces the standard spin-flip update for the dual Ising
system.

IV. APPLICATION TO ISING∗ TRANSITION

We now apply the above algorithm to the confinement
phase transition (y < yMCP). By the exact self-duality of the
gauge theory, the following results also apply to the Higgs
transition, in the dual membrane representation (where the
membranes are worldsheets of magnetic, rather than electric,
fluxlines).

First we show results for dual Ising observables which are
computable using this patching algorithm. Then we study the
properties of the patches themselves: These reveal a growing
lengthscale �(y), and a fractal structure below this scale, when
y gets close to yMCP.

A. Dual Ising correlators

We study the phase transition at several values of y. For a
given value of y, the critical value xc(y) can be determined
using the modified Binder cumulant b1 [Eq. (10)], which
shows a crossing at xc(y), and is discussed further below.

A striking demonstration of Ising∗ universality is given by
the power-law scaling of the dual Ising correlator as a function
of separation z:

C(z) = 〈S(0,0,0)S(0,0,z)〉 (11)

at the critical point x = xc(y). At y = 0 this correlator can be
defined microscopically using a simple line operator, but for
y > 0 it is nontrivial and must be defined using the patching
procedure.

The correlator is shown in Panel 1 of Fig. 5, as a function of
distance z in a system of fixed size L = 64. Data for the values
y = 0, 0.1, 0.2, which lie on the confinement line and are
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expected to be in the Ising∗ universality class, are consistent
with the Ising power law, where ηIsing = 0.036298(2) [31],
which is shown with a dotted line.8 (Since the Ising anomalous
dimension ηIsing is small, this line is close to 1/z.) The distinct
curves are also consistent with each other within error bars:
although in general the nonuniversal normalization of C(z)
will depend on y, this dependence appears to be very weak.
The Panel also shows the correlator computed at the MCP,
where its RG interpretation is different and will be discussed
in Sec. V B.

An intuitive way to see the confinement transition is in the
dual magnetization [Eq. (8)], shown as a function of x − xc(y)
in Panel 2 of Fig. 5. Data is shown for different systems sizes
and also different y. Again, y = 0 is the case where there is a
microscopic mapping to Ising. This is compared with the same
quantity for y = 0.2 and y = 0.221. They both show a striking
similarity to the y = 0 case. Note that we have absorbed the
y-dependent shift to the location of the critical point (which
can be seen in Fig. 1) so that the transition occurs at the same
value of the horizontal coordinate in each case.

Finally, Panel 3 of Fig. 5 shows the scaling collapse of b1

for several values of y < yMCP using the known Ising corre-
lation length exponent νIsing = 0.629971(4) [31]. We fitted all
data to a single scaling function, shown in the figure as a black
line. For the scaling function we used eight free paramaters
(eight coefficients for a B-spline function). Additionally, to
achieve collapse of the curves we kept xc(y) as an adjustable
parameter for each y value used.

Using data for y � 0.217 and dropping the smaller system
sizes we obtained χ2 = 42.04 for 39 degrees of freedom,
showing an excellent overlap between different locations on
the phase transition line. We also obtained accurate phase
boundaries xc(y) from the fit. These agree within error bars
with the estimates using percolation observables in Ref. [14]
(the latter estimated the Higgs phase boundary, but duality
relates it to the confinement boundary under discussion here).
In the panel we also show data for smaller sizes, as well as
data for y = 0.22, 0.221 that were not used for fitting, and the
deviation from the scaling curve is still quite small.

B. Other sectors

The observables above are expectation values condi-
tioned on being in the first sector (σx = σy = σz = +) of
the membrane ensemble. It is of course possible to consider
observables averaged over sectors.

A simple one is the probability Pσx,σy,σz of being in a given
sector. Note that the value of σx = ±1 is just the value of the
string operator ṼPx for a path Px that winds around the sample
in the x-direction, so Pσx,σy,σz is simply related to expectation
values of such winding string operators.

At the Ising∗ critical point, and in the limit L → ∞, these
numbers are universal and related by duality to ratios of Ising

8The power law applies for 1 � r � L. It is also possible to per-
form a scaling collapse for r/L of order 1 (not shown).

TABLE I. Sector probabilities at the self-dual multicritical point
(MCP). Patchable configurations are assigned to a sector (σx, σy, σz )
as in Sec. II B. These sectors have probability Pσx ,σy,σz . By symmetry,
P++− = P−++, etc. Percolating (nonpatchable) configurations occur
with nonzero universal probability Pperc at large L. (By contrast,
limL→∞ Pperc = 0 in the region of the phase diagram where � is
finite.)

L P+++ P++− P+−− P−−− Pperc

8 0.219 0.111 0.088 0.077 0.1061(20)
16 0.222 0.114 0.089 0.080 0.0885(19)
32 0.235 0.115 0.085 0.076 0.0886(19)

partition functions with different boundary conditions,

Pσx,σy,σz = Z Ising
σx,σy,σz∑

σ ′
x,σ

′
y,σ

′
z
Z Ising

σ ′
x,σ

′
y,σ

′
z

. (12)

In a finite-size system, there is also a nonzero probability
Pperc(L) of being in a percolating (nonpatchable) configura-
tion, which is not assigned to any of the above sectors. For
y < yMCP this probability vanishes exponentially at large L,
so that (asymptotically) every configuration can be assigned
to an Ising sector.

For y = yMCP, where � = ∞, the limit limL→∞ Pperc(L) is
instead a nonzero constant, which we estimate in Sec. V B
(Table I).

In our Monte Carlo dynamics, the configuration can make
a transition between different sectors by passing through a
nonpatchable configuration with a percolating hole. In prin-
ciple, this allows equilibration over all sectors. In practice
this is possible if y is not too small and L is not too large.
When y < yMCP such transitions are exponentially suppressed
in the limit L → ∞ simply because Pperc(L) is exponentially
suppressed. For this reason we have not tried to accurately
compute the sector probabilities for the Ising∗ critical point.
This could be done, using the present gauge theory, by parallel
tempering, exchanging configurations at different values of
y [32].

C. Properties of the patching for large �

As y increases along the confinement line, approaching
the multicritical point at yMCP, the “holes” in the membranes
become larger. Structurally, these holes are clusters of links on
the cubic lattice. At the MCP, and on scales much larger than
the lattice spacing, they become fractal loops9 with a fractal
dimension [14]

d f = 1.77(2). (13)

9At the lattice level, the holes (clusters) are not strictly nonintersect-
ing loops, since a site can be connected to more than two occupied
links. However, a visual examination of large loops [14] suggests
that these self-intersections go away after coarse-graining, so that
the infrared theory is one of nonintersecting loops. In the language
of loop models, this is equivalent to the statement that the “four-leg
operator” is renormalization-group irrelevant, or alternatively to the
statement that the fractal dimension of self-intersection events is
negative [33,34].
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Slightly below yMCP, the typical size �(y) of the holes is finite
(a discussion of scaling forms close to the MCP is given in
Appendix A):

�(y) ∼ 1

(yMCP − y)νS
, νS � 0.67, (14)

where νS = (3 − xS )−1 is a critical exponent of the MCP [14].
The loops are fractals on scales in between 1 and �(y).

Once the holes are patched, the patches inherit some fractal
properties from their boundaries. For example, the typical area
of a large patch scales with its linear size R as R1+d f : that is,
the effective dimensionality of the patch is greater by one than
the effective dimensionality of its boundary, as we might have
expected.

Here, we show that the diverging lengthscale �(y) has im-
plications for the statistics of the total patched area, Apatched,
defined at the end of Sec. III C. We compare simulation data
with expectations from a scaling argument in that is described
in Appendix A.

Below we describe the approach to the MCP along the con-
finement line; qualitatively similar results, but with slightly
different exponent values, would obtain if we approached
the Higgs phase transition from within the deconfined phase,
since � also diverges on the Higgs line.

In Panel 4 of Fig. 5, the average fraction of plaquettes
that get patched—i.e., 〈Apatched〉/3L3, where 3L3 is the total
number of plaquettes in the lattice—is shown as a function of
the system size, for several values of y. The fraction of patched
plaquettes increases slowly as y → yMCP, indicating that the
typical density and/or size of the holes is growing. However,
limL→∞〈Apatched〉/3L3 is finite even at the MCP (as it must be
since by definition this fraction is between zero and one). At
the MCP we may argue

〈Apatched(L)〉
3L3

= α − βL−(2−d f ) + . . . , (15)

where α and β are constants. The first term is dominated by
small loops, while the exponent in the subleading term is uni-
versal. On the confinement line, in the regime 1 � �(y) � L,
the form is instead

〈Apatched(L)〉
3L3

= α − γ (yMCP − y)νS (2−d f ) + . . . , (16)

where this exponent is ∼0.15 (this is consistent with extrapo-
lated data from Panel 4 Fig. 5—data not shown).

Unlike the above average, higher moments of Apatched are
dominated by the largest patches, and do show a critical
divergence arising from the divergence of the typical patch
size �.

When � is finite, the normalized cumulants 〈〈Ak〉〉/(3L3)
for k = 2, 3, . . . have a finite thermodynamic limit, but at
the MCP we expect that they are dominated by patches with
linear size comparable with L, so scale as 〈〈Ak〉〉/(3L3) ∼
Lk(1+d f )/L3. For y close to yMCP,〈〈

Ak
patched

〉〉 = Lk(1+d f )F (k)(L/�), (17)

where � is the lengthscale in Eq. (14) and F (k) is a crossover
scaling function.

Panel 5 of Fig. 5 shows the normalized variance of the
patched area, 〈〈

A2
patched

〉〉/
(3L3), (18)

as a function of the system size, for various y. For y < yMCP,
this quantity has a finite thermodynamic limit. At the MCP,
the data is consistent with a power-law divergence in L, as
〈〈A2

patched〉〉/(3L3) ∼ L2.2. This exponent is smaller than the
expected L2.54. We have not identified the source of the dis-
crepancy. Conceivably, finite-size effects associated with the
internal structure of a cluster may be large. We discuss some
aspects of cluster structure in Appendix A.

Nevertheless, the divergence of the variance of the patched
area is a clear sign of a diverging lengthscale for patches at the
MCP.

V. QUASILOCALITY OF OBSERVABLES

Here we discuss the locality properties of the line operators
ṼP defined in Sec. III A and of the dual Ising variable. First we
discuss the case where the typical loop (hole) size � is finite:
in this case there is a notion of locality after coarse-graining,
confirming that patching successfully defines emergent string
operators and the emergent “duality” to a local order parame-
ter. Then in Sec. V B we discuss the case where � diverges to
clarify in what sense locality breaks down.

A. Case where � is finite

Consider the regime where � is finite (though perhaps
large): this includes the deconfined phase and the confinement
critical regime discussed above (and part of the trivial phase).
The following points were discussed more briefly in Ref. [14].

How local are the string operators ṼP? First let us consider
a closed path P. For concreteness, let P be a straight path of
length L (on the dual lattice) that winds around a periodic
system of size L.

When � = 0, the operators (t’Hooft operators) VP are sup-
ported on a single line of plaquettes: i.e., the value of VP(M)
is a product of ±1 factors associated with the plaquettes ly-
ing on P, and so they can be determined by examining the
configuration M only along this line. For � > 0, the value of
ṼP(M) = ±1 is defined through patching. To determine this
value, we must determine which of the plaquettes on P are
occupied in the patched configuration M.

In principle, this can depend on plaquettes of M that
are far from P. However, to determine ṼP(M) = ±1 with a
high probability (say 1 − ε) of success, it is not necessary to
patch the entire configuration M. It is sufficient to patch the
loops (holes) in a “tube” around P. This tube must be large
enough to include, with high probability,10 all the loops that
are pierced by P.

At first sight we might think that it is sufficient to take
a tube of thickness O(�), since this is the typical loop size.
However, if the length L of the path is much larger than �,
then the path will likely encounter some “rare” loops of size
� �. This requires us to thicken the tube to a radius that is of
order

R ∼ � ln(L/ε) (19)

10Probabilities are with respect to the ensemble defining the parti-
tion function.
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when L is large, to have a high probability that all the relevant
loops are included in the tube. (See Appendix A 3 for more
detail.)

In other words, we can accurately approximate ṼP with
an operator Ṽ ε

P which is a function only of the configuration
inside a tube of thickness R around P (and which agrees with
ṼP, in a random configuration M, with a probability very
close to 1). Note that R is parametrically smaller than the
length of the path P, so that after sufficient coarse-graining
the (t’Hooft) line operator ṼP can be regarded as local.

Now consider an open path P. Letting P be a straight path
between two points r and r′, we can approximate ṼP by an
operator that depends only on the configuration inside a cigar-
shaped region surrounding P, whose thickness at the center is
of order � ln(|r − r′|/ε). The thickness of the cigar close to
its endpoints, however, can be taken to be only of order �. In
(say) an infinite system, the operator ṼP, for such an open path
P, is dual to SrSr′ .

The invariance of ṼP under deformations of the path P
means that SrSr′ can be mapped to ṼP for any path P con-
necting r to r′. This, together with the observations above
about the cigar-shaped region around P, gives a sense in
which � is a typical scale associated with the dual opera-
tor S. Loosely speaking, a product such as SrSr′ is robust
to changes in the membrane configuration, so long as these
changes are far enough away from r, r′ and sufficiently
local.11

An alternative way to quantify locality in the dual language
would be to reexpress the partition function in terms of Sr .12

Because of patching the effective interactions would be nonlo-
cal, but could be approximated by interactions of finite range
O(�) at the cost of incurring only a small error in the free
energy density.

We can also consider the effect on operators ṼP of changing
the patching scheme. If the new scheme retains similar locality
properties to the present one, the change only dresses ṼP by
quasilocal (on scale �) functions of the membrane configu-
ration near P’s endpoints. This does not affect the universal
asymptotics of correlation functions.

The point above about rare worldline configurations (of the
gapped anyon), which gave the scaling in Eq. (19), should
apply generally to the Euclidean path integrals for topolog-
ical phases. It indicates that generically their emergent line

11If (i) the region where the membrane configuration is changed is
at a distance � � from the points r, r′ and (ii) the complement of the
changed region still permits a sufficiently thickened path from r to
r′ (i.e., the changed region does not “wrap” one of the points) then
we can choose P so that Ṽ ε

P is unaffected by the change. In order that
Ṽ ε

P remains a good estimate of ṼP we may also have to require that
the new configuration is not too atypical with respect to the Gibbs
measure.

12Separating Z into topological sectors (see previous sections) we
write, e.g., Z+++ = ∑

M∈(+++) e−H[M] (for the + + + sector; other
sectors are similar) as Z+++ = 1

2

∑
{Sr }

∑
M∈(+++) e−H[M]χ (S,M),

where χ (S,M) = 1 if S is one of the two spin configurations
consistent with the patched configuration M and zero other-
wise. Then the effective spin Hamiltonian is given by e−H′[S] =∑

M e−H[M]χ (S,M).

operators must have a thickness that grows logarithmically
with their length. This logarithmic scaling is consistent with
bounds for quantum operators in Ref. [13], which considered
the definition of dressed line operators, obtained by quasiadi-
abatic continuation, in discrete gauge theories.

B. At the self-dual MCP

Right at the self-dual multicritical point, the lengthscale �

defined by the holes diverges. What happens to the observable
Gr,r′ ≡ 〈ṼP〉 (for a path from r to r′)?

Let us consider the thermodynamic limit L → ∞ for the
system size, with r − r′ fixed. At first sight we might have
guessed that this correlator would fail to have a sensible
thermodynamic limit, because of contributions from patching
loops of size much larger than |r − r′|.

In fact, though, we can argue that contributions from loops
much larger than |r − r′| are negligible (see Appendix A),
so that limL→∞ Gr,r′ is well-defined and nonzero even at
the MCP. This correlator was shown at the MCP in Panel
1 of Fig. 5 (the average is taken only over nonpercolat-
ing configurations), and the data suggest a power law for
1 � |r − r′| � L, with a critical exponent numerically sim-
ilar to (but presumably distinct from) the Ising exponent.

This power-law scaling of Gr,r′ is consistent with scale
invariance at the MCP. However, at the MCP, ṼP no longer
possesses the locality properties that it possessed for finite �.
First, ṼP can no longer be viewed as a “string” operator at the
MCP. This is because, at large |r − r′|, ṼP is affected nonneg-
ligibly by loops of size |r − r′|. So instead of being a function
of the configuration in a cigar connecting r to r′, with a width
parametrically smaller than |r − r′|, ṼP is really a function of
the configuration in a roughly ball-shaped region whose size
is of order |r − r′| in all directions. Similarly, Gr,r′ is no longer
dual to a two-point function in a spin model with quasilocal
interactions. Finally, at the MCP the exponent of the power
law for Gr,r′ is no longer guaranteed to be independent of the
choice of patching scheme.

For these reasons, this “two-point” function is no longer
such a natural object at the MCP. Nevertheless, it is interesting
to see how similar the numerical data for Gr,r′ at the MCP is
to that for � < ∞. This may well be related to the smallness
of certain universal amplitudes at the MCP, which we turn to
next.

In Table I we show the probabilities for the different sec-
tors, at the MCP. These sectors were defined in Sec. II B. The
last column shows the probability of a “nonpatchable” config-
uration, i.e., one with a percolating loop. By scale invariance
of the ensemble of large loops (holes) at the MCP [14], this
probability is expected to converge to a universal order 1
number, 0 < Pperc < 1, at large L. The data is consistent with
this, with Pperc on the order of 0.1. The smallness of this
universal number suggests a possible scenario for why expo-
nents numerically close to, but distinct from, Landau theory
exponents, could arise at the MCP (see Ref. [14], endnote).

VI. EXTENSIONS OF THE PATCHING IDEA

The approach of this paper can be extended to numerous
other models that have a representation in terms of “closed”
geometric objects. It can be applied either as a way of di-
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agnosing a topological phase or as a way of probing phase
transitions. The geometric objects need not necessarily be
two-dimensional membranes. Here we list some possible ex-
amples for future investigation.

A. Three dimensions: Gauge theories
and amphiphilic membranes

The closest to the present setting are other 3D models that
have a sign-free representation in terms of membranes rep-
resenting, say, worldsurfaces of “electric” flux lines. Discrete
gauge theories with other gauge groups give modified kinds of
membranes. For example, Z3 gauge theory gives membranes
that carry an orientation degree of freedom. Allowing multiple
species of matter field corresponds to giving the e anyon, and
therefore the “holes” in the membranes, an additional label.

It should be emphasized, however, that the patching ap-
proach is more general than the gauge theory context. For
example, it could be applied to configurations of amphiphilic
membranes [20,35–41] to detect the phase transitions out of
the “symmetric sponge phase” (deconfined phase).

In principle, such models can be in the spatial continuum,
rather than on a lattice. It would be interesting to explore how
far one can depart from standard gauge theory Hamiltonians
while maintaining the phase diagram topology of Fig. 1.

B. 3+1 dimensions

In a 3+1-dimensional discrete gauge theory with gapped
matter, we can again patch the 2D worldsurfaces of electric
flux lines. This will allow us to detect the emergent 1-form
electric symmetry [11] of the deconfined phase.

It is also interesting to consider cases (relevant for exam-
ple to 3+1D Higgs transitions) where the “membranes” that
we patch are three-dimensional, or more generally a d + 1-
dimensional theory where we patch d-dimensional surfaces.
The patched surfaces can then be interpreted as domain walls
for a dual Landau-like field ϕ. In 3+1 dimensions we can have
a non-fine-tuned phase transition (with no symmetries in the
UV) where this dual Landau field is free in the IR.

C. Repairing loops

It is interesting to consider repairing one-dimensional
lines, for example, in 2D.

References [42–45] analyzed a modified Hamiltonian for
the 2D classical XY model, in which the interaction energy
for a pair of adjacent spins i and j has two minima, one at
relative angle θi − θ j = 0, and one at θi − θ j = π :

βH = −
∑
〈i j〉

[� cos(θ j − θ j ) + J cos(2(θ j − θi ))]. (20)

When J and � are both large, this model has quasi-long-range
order for eiθ (the superfluid phase). If � is now decreased
(still at large J), the energy cost of certain string excitations,
across which θ jumps by π , is decreased—see Fig. 6. In
the limit of infinite J these strings are closed, while at finite
J they can terminate at half-vortices (Fig. 6). Varying � at
fixed large J , we may cross a phase transition at which the
strings proliferate. This is a transition from the superfluid into
a pair superfluid, where eiθ is disordered (thanks to the strings,

FIG. 6. A configuration of XY spins in a modified XY model,
with 1/2-vortices (dots) that are connected by strings (blue) where
the phase (indicated by arrows) jumps by � π . A repair algorithm
for the strings allows additional correlators to be defined.

across which eiθ changes sign) but e2iθ has quasi-long-range
order [44].

The simplest picture for this transition is to neglect the
half-vortices, since at large J they appear only in bound pairs.
Then the strings are treated as closed loops, and are analogous
to Ising domain walls. As a result, the phase transition at
large J (between superfluid and pair superfluid) has Ising
exponents [42,43]. There are also interesting phase transitions
at smaller J [44,45].

This and similar 2D models could be studied from the
“patching” point of view of the present paper, explicitly
repairing the loops with an algorithm that pairs (matches)
nearby half-vortices, and adds a corresponding segment to the
string. Assuming that this repair process is sufficiently local,
it would for example allow the Ising anomalous dimension
η = 1/4 to be measured directly using a (nonlocal) correlation
function, despite the fact that there is no local operator with
this anomalous dimension in this theory.

Note that the emergence of closed (unoriented) loops here
implies the emergence of a Z2 symmetry. If one direction is
viewed as time, then this is the conservation of the number of
loop segments, modulo 2.

It would be interesting, both in the above case and in
the standard XY model/Coulomb gas, to study the relation
between the thermodynamic binding/unbinding of vortices,
and the success or failure of a given algorithm in finding a
quasilocal pairing of vortices and antivortices.

D. Application to experiments in quantum devices

So far we have discussed Z2 gauge theory in the lan-
guage of 3D classical statistical mechanics. But this gauge
theory also describes the quantum statistical mechanics of the
simplest Z2 spin liquids/topologically ordered states in two
dimensions, including the toric code [19,46–51].

Recently, it was possible to realize the toric code
ground state experimentally [52,53]. A key question is
how to efficiently detect deconfinement in experiments of
this type by using measurements of the spins. One ap-
proach is the Fredenhagen-Marcu order parameter, which
involves a ratio of correlation functions of “bare” Wilson
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line operators [20,22,24,54]. However, this involves measur-
ing exponentially small quantities (because of nonuniversal
short-distance effects close to the Wilson line), implying a
signal-to-noise problem in the large size limit. Therefore, we
suggest that an effective method may be instead to directly
define emergent string correlators by applying the configura-
tion “repair” idea of Ref. [14] to 2D quantum measurements,
rather than 3D Monte Carlo data. Below we give a schematic
indication.

After this work was completed, we learned of a re-
lated proposal for detecting topological order from 2D
quantum measurement snapshots in Ref. [55] (where an RG-
inspired procedure for annihilating anyons is used, rather than
minimal-weight matching).

A complete measurement of all the qubits making up the
quantum state, say in the σx basis, gives a 2D configuration
{σx}. (This configuration is of course random, according to
Born’s rule, even though we assume that the initial wave
function is prepared deterministically.) This configuration is
equivalent to a single 2D slice through the 3D configurations
discussed above. Since we only have 2D information, the
problem of “repairing” the configurations is different to that
discussed above, although the general idea is similar.

For idealized wave functions (e.g., the toric code), such a
measurement gives a σx configuration that can be viewed as a
collection of closed loops (i.e., electric flux lines) in the plane.
In this setting, the value of a magnetic string operator VP({σx})
can be defined in a standard way for a given σx configuration.
The definition is the planar version of that in Sec. II B: each
electric flux line that is crossed by P contributes a minus
sign to VP({σx}). The average of this operator for long path
P be used to distinguish the deconfined from the confined
phase [19] [point (ii) in Sec. III D]. Here, averaging requires
repeatedly measuring independent instances of the wave func-
tion.

For a more generic wave function the σx configurations ob-
tained by measurement will not form closed loops. However,
if we are sufficiently close to the idealized limit, then we can
define emergent string operator measurements via

ṼP({σx}) ≡ VP({σ x}), (21)

where {σ x} is a repaired configuration in which dangling-end
defects are eliminated. The annihilation of pairs of defects
is a standard idea in error correction [56]: In the most
basic standard algorithm, σ x is obtained from σx by flipping
a minimal set of spins that removes all dangling ends. This
geometrical algorithm is used here for a different purpose,
namely to define functions ṼP({σx}) for any configuration.

At first glance, having defined ṼP({σx}), we can now use
expectation values of ṼP({σx}) (averaged over complete mea-
surements of many instances of the state) to demonstrate
deconfinement in the same way as in the idealized case.

However, it is necessary to first verify that the repair
process gives a sufficiently local operator ṼP({σx}). In the
three-dimensional case, we were able to analyze the locality
properties of the patching using percolation concepts and to
confirm that patching succeeds all the way up to the Higgs
phase boundary. We leave it for the future to analyze the
locality of this two-dimensional repair process.

VII. OUTLOOK and COMMENTS ON THE MCP

This paper advocates patching as constructive way of un-
derstanding emergent higher symmetries and as a useful tool
in simulations. (For example, dimensionless “Binder cumu-
lants” of the dual order parameter may be used to accurately
locate the transition.)

We have focused on the case of a simple lattice gauge
theory, but patching and its generalizations could be used to
construct emergent string operators and dual order parameters
in much more general models. It would be interesting to make
further numerical explorations. Section VI has discussed some
examples including models of membranes in the spatial con-
tinuum, a generalized XY model, and quantum simulations of
topological states.

A key question in any patching scheme is the locality of the
patching process. In the patching algorithm that we use, each
“hole” (loop) is patched separately. As a result, the locality
properties of the algorithm are analyzable using standard ideas
from geometrical phase transitions, showing that nontrivial
emergent line operators can be constructed in the entirety of
the part of the phase diagram where they are expected to exist
in the IR.

This loop-by-loop patching scheme is different from a
“minimal weight” algorithm, which would find the minimal-
area set of patches consistent with a given set of loops. One
issue with the latter algorithm is that it involves an opti-
mization problem that may be highly nonlocal even in a
configuration where all loops are finite. The locality properties
of such a patching procedure would therefore require further
analysis.

Gauge fixing in the minimal gauge [2] is closely related
to minimal-weight patching (in the appropriate membrane
ensemble). In a finite system it differs in the way global
excitations are treated. Let us comment on this briefly. The
relevant membrane ensemble for gauge fixing is the mag-
netic ensemble, which is dual to the one we have primarily
discussed. Loosely speaking, the relation is that, after gauge
fixing, the domain walls of the gauge-fixed Higgs field con-
figuration τ

gauge-fixed
i [cf. Eq. (1)] define a configuration M1

of closed membranes. In an infinite system, these are pre-
cisely the membranes that are obtained by “patching” an
initial configuration of (possibly open) membranes defined
by the values of σi jτiτ j , using a minimal-weight algorithm.
In the finite system, however, the configuration M1 can dif-
fer from the (minimal-weight) patched configuration M by
system-spanning membranes. As a result, the gauge fixing
procedure does not in general give access to the operators ṼP

in the finite periodic system. However, in the infinite-system
limit, minimal-gauge-fixing corresponds to a certain choice of
patching scheme.

An alternative tool for diagnosing deconfinement is the
Fredenhagen-Marcu order parameter [22,24], whose critical
behavior was recently studied numerically [54]. This observ-
able uses a “bare” string operator, rather than a dressed one,
and as a result generally suffers an exponential signal-to-noise
problem in Monte Carlo. However, the scaling of the FM
order parameter could be understood via an extension of the
arguments in Sec. V and the appendices, by writing the bare
string operator as the product of the dressed operator and a
contribution from patches.
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In this paper we have considered the gauge theory with
periodic boundary conditions, but it would also be interesting
to explore boundary phenomena. Recently, it has been argued
that Higgs phases can often be thought of as symmetry-
protected topological states protected by both conventional
and higher-form symmetries [57], with associated boundary
states. (See Refs. [58,59] for other approaches to distinguish-
ing Higgs and confining regimes.)

Inside the deconfined phase, there are two emergent one-
form symmetries, related by e–m duality. One of these
symmetries survives at the Higgs transition, and the dual sym-
metry survives at the confinement transition. The approach
in the present paper only gives access to one set of string
operators at a time, because it is necessary to pick a basis
(electric or magnetic) to formulate the partition function as
a membrane ensemble. The phase diagram of the standard Z2

gauge theory has an exact self-duality, so it is straightforward
to change between the two bases. For more general models
(e.g., models in the spatial continuum) the analog of this basis
change may be more nontrivial.

A. Comments on self-dual multicritical point

Finally let us discuss the multicritical point in Fig. 1. In ad-
dition to the confinement and Higgs transition lines, the phase
diagram of the gauge theory contains the self-dual MCP where
they meet. The MCP is not yet understood as a conformal field
theory, and is an interesting target for further study.

Since the MCP is the meeting point of two critical lines
with Ising exponents, at first sight a natural guess would be
that it has XY exponents [20]. More recently, this has been
argued by Ref. [27], on the basis of the numerical similarity
of exponents observed in Ref. [14]. However, challenges to
this theoretical interpretation were discussed in Refs. [14,28].
To begin with, the fixed point associated with the MCP cannot
be the fixed point of the XY model (for example because the
adjacent phases do not match). In addition, the MCP cannot be
an orbifold13 of the XY fixed point (i.e., an “XY∗ transition”)
as this would not give the correct universal properties of
the topologically ordered phase immediately adjacent to the
MCP [14].

Reference [28] has directly demonstrated (using simula-
tions) that there is no U (1) current operator at the MCP CFT,
showing that the MCP does not have an emergent global U (1)
symmetry. By contrast, the usual “XY∗” transition has a U (1)
symmetry.

These observations do not rigorously exclude the possibil-
ity that the exponents of the MCP could be equal to exponents
from XY. But (as observed in Ref. [14]) if this was the case,
it would have to be due to an entirely new type of relationship
between conformal field theories, and at present we are not
aware of any proposed mechanism. Therefore, at present the
simplest hypothesis is that the exponents of the MCP are
simply numerically close to those of the XY model.

13Here orbifolding refers to gauging with a flat gauge field (which
leaves correlators of gauge-invariant operators unchanged and elimi-
nates non-gauge-invariant operators from the spectrum). The term is
used in a different sense in some other contexts [60].

In this paper we have focused mainly on the part of the
phase diagram where the “hole size” �(x, y) is finite, so that
patching allows a duality to a model with a local order pa-
rameter. This works for the confinement transition (as well
as in the deconfined phase). The equivalent process works
for the Higgs transition, in the dual representation. But at the
multicritical point (where Higgs and confinement lines meet),
� diverges. As a result, patching does not give a duality to
a model with a local order parameter at the MCP. This is
another reason why, a priori, we do not expect a Landau-like
description of the MCP.

Instead, any continuum description needs to take account
of the braiding statistics in the adjacent deconfined phase. The
simplest framework that can account for the anyonic braiding
statistics of Z2 topological order using continuum (as opposed
to lattice) field theory is a mutual Chern-Simons (or “BF”)
theory, with two U (1) gauge fields, a1 and a2, with a Chern-
Simons term i k

2π
εμνλa1

μ∂ν a2
λ at k = 2. These gauge fields are

coupled to two matter fields, whose quanta represent e and m
anyons, respectively [61–64]:

LCS = i

π
εμνλa1

μ∂νa2
λ + 1

2

∑
I=1,2

|(∂ − iaI )zI |2

+ m2

2

∑
I=1,2

|zI |2 + λ(|z1|4 + |z2|4) + λ′|z1|2|z2|2 + . . .

However, if we want a putative description of the MCP, then
we must also add monopole operators M(I ), for each of the
gauge fields I = 1, 2, to this continuum Lagrangian. This is
necessary to avoid an unphysical enlargement of symmetry,
or equivalently to remove an unwanted degeneracy in the
spectrum of anyons:

L = LCS + κ
∑

I=1,2

(M(I ) + M(I )∗). (22)

This issue was commented on in Ref. [14]. In Appendix C we
review the Chern-Simons approach in more detail to clarify
why the multicritical point is challenging to describe using
continuum field theory. (See a very recent preprint for a
discussion of Zk for larger values of k [65].) Appendix C
also discusses a (speculative) alternative way to remove the
unwanted anyon degeneracy, using a replicalike limit in the
Chern-Simons theory.
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APPENDIX A: SCALING ARGUMENTS

1. Lengthscales close to the self-dual MCP

The multicritical point lies on a self-dual line in the phase
diagram. Choosing the phase diagram coordinates (y, y′)
where

y′ ≡ 1 − x

1 + x
, (A1)
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self duality acts as

y ←→ y′. (A2)

Self-duality (which can be treated as a global Z2 symmetry
in the infrared) can be used to classify operators at the MCP.
There is an RG relevant, self-duality-preserving operator de-
noted S, with scaling dimension xS ∼ 1.5, and an RG relevant
self-duality-odd (anti-self-dual) operator denoted A, with scal-
ing dimension xA ∼ 1.22 [14]. Writing δy = y − yMCP, the
corresponding perturbations of the MCP are λ+ ≡ δy + δy′
and λ− ≡ δy′ − δy, respectively, and their RG eigenvalues are
3 − xS,A. We let νS,A ≡ (3 − xS,A)−1.

Turning on a λ+ perturbation with λ+ < 0 leads to the
deconfined phase, while turning on λ− leads to either the con-
fined or the Higgs state, depending on sign λ−. By standard
RG results, the shape of the confinement and Higgs phase
transition lines, close to the MCP, are given by

λ− ∼ ±|λ+|νS/νA, (A3)

so roughly

λ− ∼ ±|λ+|1.2. (A4)

Therefore, the confinement and Higgs phase transition lines
are asymptotically parallel as they approach the MCP, but this
cusp behavior is rather weak since the above exponent is not
much larger than 1.

Note that a crude way to obtain the above is to define
lengthscales

ξ± ≡ |λ±|−νS,A, (A5)

which are the scales at which a given perturbation would
renormalize to an order 1 value (in the absence of the other
perturbation). The phase transition lines occur where ξ+ and
ξ− are of the same order (otherwise, one of the two perturba-
tions dominates, and we end up in the interior of one of the
phases).

Therefore, at a point on the confinement phase transi-
tion line, but close to the MCP, we have a large lengthscale
� ∼ ξ+ ∼ ξ−. Since, on the confinement line, we have [from
Eq. (A3)]

λ+ = 2 δy + O(λνS/νA
+ ), (A6)

this lengthscale is

�(y) ∼ (yMCP − y)−νS . (A7)

This is the characteristic lengthscale for the crossover from the
universality class of the MCP to universality class of the Ising∗

confinement transition. (Analogous statements apply for the
crossover on the Higgs line.) �(y) is also the lengthscale
associated with patches, i.e., the scale beyond which larger
patches become exponentially rare.

2. Fractal structure of patches

When � � 1 we have large patches. We now give scaling
arguments using ideas from geometrical critical phenomena
(see, e.g., Ref. [66]) for (i) the typical area of a large patch
and (ii) the moments of the total area of all patches.

First, consider a single large patch whose boundary
“loop” (link cluster) has linear size l . The total length of

this loop—total number of “occupied links” making up the
cluster—scales as ld f with

d f = 1.77(2). (A8)

Therefore, within a ball of volume l3 centered on the center
of mass (CM) of the loop, the average density of occupied
links is ∼ld f −3. Approximating the distribution of occupied
links within this volume as uniform, the number of occupied
links within a spherical shell of thickness dr at radius r scales
as N (r)dr = ld f −3r2dr.

Recall that, to define the patch (Sec. III B), we first asso-
ciate a triangle with each occupied link. This triangle connects
the link to the loop’s center of mass. Any link of the dual
lattice that pierces an odd number of triangles then gives rise
to one of the plaquettes in the patch.

Let Ndual(r′)dr′ be the number of dual links that lie within
the spherical shell with radii [r′, r′ + dr′] and which pierce an
odd number of triangles. The density of patched plaquettes is
then ρpatch(r′) = Ndual(r′)/r′2.

To compute Ndual(r′), we add up contributions from dif-
ferent triangles, associated with occupied links at various
possible radii r (where r′ < r � l). To begin with we neglect
double-counting, i.e., the possibility of a dual link piercing
more than one triangle. This will be valid in a range r′ � rc

where ρpatch(r′) � 1. The scale rc defines a “dense core,”
within which different triangles “overlap,” double-counting
cannot be neglected, and ρpatch(r′) is of order 1. However,
rc � l , so the dense core has a subleading effect on the total
area of the patch.

Consider a triangle associated with an occupied link at ra-
dius r. Since the triangle gets thinner towards the CM, the part
of it that lies within the shell [r′, r′ + dr′] (with r′ < r) has
area ∼(r′/r)dr′, and on average is pierced by order (r′/r)dr′
dual links within the shell [r′, r′ + dr′]. That is, a triangle
whose outer edge is at radius r typically makes a contribution
∼(r′/r)dr′ to Ndual(r′)dr′.

Adding up such contributions,

Ndual(r
′) ∼

∫ l

r′
drN (r)(r′/r) (A9)

= ld f −3r′
∫ l

r′
dr r (A10)

∼ ld f −1r′H (r′/l ), (A11)

where H (x) → 1 for x � 1 and H (x) → 0 for x � 1. (In our
caricature, where the density is uniform, H (x) = [1 − x2], but
this is not accurate.) This gives the density

ρpatch(r′) = ld f −1H (r′/l )/r′. (A12)

So far we have neglected double counting. From Eq. (A12)
we see that the radius of the dense core, within which ρpatch is
cut off at an order 1 value, is

rc ∼ ld f −1 ∼ l0.77(2). (A13)

Since this exponent is smaller than one, the size of the dense
core is much smaller than the total size of the patch, rc � l .
Integrating the density, we find that the typical area of a patch
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of linear size l is

A(l ) ∼ ld f +1(1 − O(l−2(2−d f ) )) (A14)

∼ l2.77(1 − O(l−0.46)), (A15)

where the subleading correction is due to the dense core. (In
principle, there will be other sources of subleading correc-
tions, e.g., due to irrelevant corrections to scaling, that we
have not considered.)

Next, consider the total patched area in a membrane con-
figuration. We begin with the MCP, where there are clusters
on all scales up to the system size L.

For a crude picture, think of Apatched as a sum over contri-
butions from clusters on a range of lengthscales lτ = 2τ for
τ = 1, . . . , log2 L:

Apatched =
τmax∑
τ=1

nτ∑
i=1

A(τ )
i . (A16)

Here i indexes the clusters at a given scale and nτ is the
number of clusters at a given scale. A caricature that captures
the scaling is imagine dividing up the system into lτ -sized
blocks, and to think of nτ as a sum of roughly independent
contributions, each of size O(1), from each block (in reality
these contributions are not independent, but that will not mat-
ter for the following). We have

nτ ∼ (L/lτ )3. (A17)

Using Eq. (A14) above for the typical size A(l ) of a patch,
we have for the average

〈Apatched〉
3L3

∼ (3L3)−1
log2 L∑
τ=1

(L/lτ )3A(lτ ) (A18)

∼ α − βL−(2−d f ) (A19)

as stated in the main text. (The α term is dominated by UV
contributions.) If � is finite and 1 � � � L, then the sum will
instead be cutoff at lτ ∼ �, so that the subleading term is of
order �−(2−d f ) = (yMCP − y)νS (2−d f ):

lim
L→∞

〈Apatched〉
3L3

= α − γ (yMCP − y)0.15 + . . . . (A20)

Writing higher moments of Apatched as a similar sum over
scales suggests that they are instead dominated by the largest
patches, which are of scale L. There are O(1) patches of this
scale with area and fluctuations of order A(L), so that〈〈

Ak
patched

〉〉 ∼ A(L)k ∼ Lk(d f +1). (A21)

Moving along the confinement line away from the MCP
slightly, a standard rescaling argument gives a scaling form
in terms of the crossover scale � in Eq. (A7):〈〈

Ak
patched

〉〉 ∼ Lk(d f +1)F (k)(L/�). (A22)

The above carries over straightforwardly to the scaling
close to the Higgs line (rather than the MCP) where � also
diverges, but with the usual Ising correlation length exponent
νIsing, and where the loops have a distinct fractal dimension
(that of Ising worldlines, d ′

f = 1.7349(65) [67]). We can also
consider a more general point in the vicinity of the MCP, in
which case the scaling functions depend not just on L/� but
on L/ξ+ and L/ξ− [Eq. (A5)] separately.

3. Note on locality of ˜VP

We give slightly more detail on the discussion of the local
truncation of ṼP in Sec. V A.

Consider the closed path case. The exponential suppression
of loops of size R � �(x, y) means that if we thicken the tube
to a scale R (with � � R � L), the probability that there is
a loop pierced by P which we fail to include in the tube is
less than ALe−R/�′(x,y) (where �′(x, y) is proportional to �(x, y)
when they are both large, and A is a constant). Therefore, to
have a probability of error that is less than ε, it is sufficient to
take

R > �′(x, y) ln

(
AL

ε

)
. (A23)

This means that we can approximate ṼP with an operator Ṽ ε
P

that is a function only of the plaquettes inside a tube of radius
R. These operators agree in a configuration with high prob-
ability, so their correlation functions are also approximately
equal.

APPENDIX B: HIGGS TRANSITION AS A PERCOLATION
TRANSITION: REPLICA APPROACH

In this Appendix, following on from the comments in
Sec. III D, we discuss the relation between the Higgs transition
line and the hole percolation transition line (shown in Fig. 3)
where the typical size of holes diverges. Our aim is to connect
the percolation transition to the standard “replica” formalism
used for other geometrical critical phenomena [68,69]. (For
simplicity we discuss only values of x that lie above the
multicritical point.) This replica formulation does not rigor-
ously prove anything, but it gives some intuition for why the
percolation transition and the Higgs transition can coincide
without fine-tuning. In other words, for why the phase dia-
gram topology in Fig. 3—with the percolation line lying on
top of the Higgs line—is stable to small perturbations of the
model or of the protocol for defining clusters.

At the end of this section we also briefly describe, with-
out using replicas, the renormalization group property of the
Higgs transition that ensures this topology is stable.

Recall that the percolation transition is defined by the di-
vergence of the typical hole size, where a “hole” is defined as
a connected cluster of occupied links (Sec. III B).14 Therefore,
diagnosing percolation requires access to nonlocal “geometri-
cal” correlation functions. These cannot be written down as
local correlators of the orginal degrees of freedom, but they
can be written down using the replica trick [68]. We follow an
analogous discussion for vortices in the XY model [69].

Consider the lattice action for the gauge theory (1) written
schematically as

S = −K
∑
�

∏
σ − J

∑
〈i j〉

σi jτiτ j . (B1)

To access geometrical correlators for clusters, we extend this
action to a hierarchy of actions indexed by a natural number

14In simulations the percolation transition may be detected via the
appearance of system-spanning clusters [14].
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N : Ultimately, we are interested in correlation functions in
the “replica limit” N → 1. We replace the field τi with an N
component vector τ i, with components τ a

i for a = 1, . . . , N :

S = −K
∑
�

∏
σ − J

∑
〈i j〉

σi jτ i.τ j . (B2)

We sum over values of τ i in which a single component
is nonzero, and is equal to ±1: i.e., τ = (±1, 0, 0 . . . , 0),
τ = (0,±1, 0, . . . , 0), etc. This replicated theory now has a
nontrivial global symmetry, namely (SN � ZN

2 )/Z2.
The original partition function is reproduced in the replica

limit N → 1. However, the analytic continuation from larger
values of N gives access to geometrical observables that are
nonlocal in the original formulation. For example, the proba-
bility of two sites lying on the same connected cluster of links
is given by

P(i connected to j) = lim
N→1

(N − 1)−1〈Q1
i Q1

j

〉
, (B3)

where we have defined the lattice operator

Qa
j = (

τ a
j

)2 − 1/N. (B4)

This may be shown by examining the high temperature
(“strong coupling”) expansion, in which each cluster of con-
nected links in the expansion acquires a color index that runs
over N values. This is similar to other constructions [68,69]
so we omit details.

A percolating phase is therefore one where the two point
function in Eq. (B3) is long-range ordered, which we write as
〈Q〉 �= 0. In other words, the SN permutational symmetry of
the replica theory is broken in the percolating phase.

If we start at small y in the deconfined phase, τ is un-
condensed, and 〈Q〉 = 0. Now, a priori, we could achieve
percolation in two different ways.

First is the way that in fact happens in this model: as we
increase y, we pass through the Higgs transition, at which
τ condenses. Since τ transforms nontrivially under SN , the
natural expectation is that the condensation of τ induces
“subsidiary” long range order in the composite field Q (i.e.,
percolation). That is, the Higgs and hole-percolation transi-
tions coincide.

In principle, however, we can imagine another phase. This
is a “pair condensate,” in which Q is condensed (〈Q〉 �= 0), but
in which τ is not condensed. This corresponds to a situation in
which clusters percolate within the deconfined phase. Though
this does not happen in the present model, for the present
definition of clusters, it is easy to see that such a phase can be
achieved if we modify the definition of clusters sufficiently.

For example, we could modify the definition of clusters in
the following way. In turn, this defines a modified patching
scheme.

Let O denote the set of occupied links. (Recall that in the
definition above, a cluster is a connected subset of O.) Choose
some probability p ∈ [0, 1], and form another (random) set of
links, O′, to which each link of the lattice belongs with proba-
bility p. Now we define the p-clusters as the connected subsets
of O ∪ O′. The original definition corresponds to p = 0. As
in standard percolation problems, it is evident that, regardless
of where we are in the phase diagram, the p-clusters will
percolate if p is made sufficiently large [70]. Therefore, if p

is made sufficiently large, the percolation transition line will
preempt the Higgs line, giving a part of the deconfined phase
in which 〈Q〉 �= 0.

In principle, it is possible to modify the lattice action to
take account of the above modification to the definition of
clusters. We do not go into this here, but a heuristic picture is
that increasing p would correspond to adding terms depending
only on Q, in particular to decreasing the bare mass-squared
of the field Q.15

The original topology of the phase diagram, in which the
percolation transition lies on top of the Higgs line, is stable
for small enough p: roughly speaking, this topology arises
if the bare mass of Q is sufficiently large. However, if p
is increased enough, then the bare mass of Q may become
(sufficiently) negative, in part of the phase diagram, to enter
the pair condensate phase.

Leaving aside the heuristic replica discussion, the stability
of the phase diagram topology in Fig. 3 (with the percolation
line on top of the Higgs line) relies formally on the geometri-
cal “two-cluster” operator [71] being renormalization-group
irrelevant at the Higgs transition and at the multicritical
point [14]. The irrelevance of this operator means that the
critical clusters look at large scales like topologically one-
dimensional loops which rarely revisit the same location
(self-contacts become rare after coarse-graining of the clus-
ters). This absence of self-contacts, at large scales, means
that sufficiently small changes to way the clusters are defined
(such as a small increase of p above zero, in the modification
described above) do not change the large scale geometry of
the clusters, and do not move the percolation transition line
away from the Higgs line.

The irrelevance of the two-cluster operator can be in-
ferred from the fact that the percolation and Higgs transitions
are found numerically to coincide. The emergent looplike
structure is also visually apparent in snapshots of configura-
tions [14]. (The fact that the fractal dimension of the critical
clusters is small (around d f = 1.73 at the Higgs transition,
and around d f = 1.77 at the multicritical point [14]) also sug-
gests that branching structures are likely to be rare.) But for a
more direct demonstration, the irrelevance of the two-cluster
operator could also be tested numerically by computing an
appropriate geometrical correlation function [71].

In this Appendix we have discussed two ways for holes
to percolate: (i) via a thermodynamic transition, i.e., along
the Higgs line or at the MCP where the Higgs line termi-
nates; and (ii) via a purely geometrical transition with no
thermodynamic significance.16 We note finally that the fractal
properties of the critical clusters are very different at the two
kinds of transition. In case (i) the critical clusters have a
fractal dimension smaller than two, and resemble non-self-
intersecting loops on large scales. In case (ii) they resemble
conventional percolation clusters [70], with a fractal dimen-

15Since the field Q vanishes in the replica limit N → 1, changing
the bare mass of Q (or adding other terms to the action that depend
only on Q) has no effect on conventional thermodynamic observ-
ables. However, it affects replica correlators such as Eq. (B3).

16Note that the latter kind of transition occurs in the small-x part of
the phase transition; see Fig. 3.
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sion larger than 2.5. This is one way to determine whether (in
a more general model) the patching scheme is breaking down
simply because of a poor definition of clusters, or for the more
fundamental reason that the Higgs line is being crossed.

APPENDIX C: FIELD THEORY APPROACHES
TO THE MULTICRITICAL POINT

This Appendix is mostly concerned with the multicritical
point of Z2 gauge theory with Z2 matter, and possible field
theory approaches to it. We spell out in more detail brief com-
ments made in Ref. [14] about continuum approaches to the
MCP based on Chern-Simons theory. In addition, we briefly
list some more speculative field theory approaches to this
critical point and related ones, in particular an approach based
on analytic continuation in the rank of the global symmetry
group.

1. Mutual Chern-Simons theory

Let us first review the challenges to constructing a con-
tinuum field theory description of the self-dual multicritical
point. [We distinguish continuum field theories from lattice
field theories such as Eq. (1).]

The reasons why the MCP cannot be described by Landau
theory or by a “Landau∗” theory have been discussed in the
main text and in Ref. [14]. Another possible approach is via
mutual Chern-Simons theory [61–64]. The challenge in this
description arises from the need to include monopole opera-
tors in the action. This was mentioned briefly in Ref. [14] and
we give a little more detail here.

First consider a self-dual mutual Chern-Simons action, in-
volving a pair of U (1) gauge fields a1,2 and a pair of complex
scalar fields, z1,2 [61–64]:

L(k)
CS = i

k

2π
εμνλa1

μ∂νa2
λ + 1

2

∑
I=1,2

|(∂ − iaI )zI |2

+ m2

2

∑
I=1,2

|zI |2 + λ(|z1|4 + |z2|4) + λ′|z1|2|z2|2 + . . .

(C1)
(in Euclidean signature). The ellipses stand for other local
couplings that we could add.

When the matter fields are massive, this theory describes
a certain state with Zk topological order [61–64] (so that
the case of main interest here is k = 2). The elementary “e”
and “m” anyons are associated with quanta of z1 and z2,
respectively. By tuning the renormalized mass-squared m2 to
zero, it is possible to access a phase transition (perhaps first
order [72]) between this deconfined phase and a trivial phase.

However, this phase transition is not the one that we want.
The reason is that the above field theory (for k = 2) does not
have the same symmetry as the problem of interest. Equa-
tion (C1) has, among other symmetries, a U (1) × U (1) global
symmetry that arises from conservation of gauge flux for each
of the two gauge fields. In other words, the deconfined phase
described by the above Lagrangian is a different symmetry-
enriched topological order to that in the Z2 gauge theory with
Z2 matter. The e and m anyons are charged under the first and
second U (1) groups, respectively. Note that, in this theory, the
e and m anyons have distinct antiparticles. For example, e has

an antiparticle e∗; e and e∗ are topologically equivalent in the
case k = 2, but carry opposite U (1) charge of +1/2 and −1/2
units, respectively. (Analogously in the m sector.)

To cure this problem, we must allow for the terms in the
action which reduce the symmetry to the physical symmetry:
i.e., terms which break the two U (1) symmetries. Physically,
this corresponds to allowing processes in which, for example,
an e anyon transforms into its antiparticle e∗ (so that the dis-
tinction between particle and antiparticle disappears at large
scales). Since the symmetries in question correspond to flux
conservation of the two gauge fields, these processes are Dirac
monopoles (instantons): pointlike sources of gauge flux in
spacetime. The necessity of allowing such instanton events, to
remove conserved currents that are unphysical in the present
context was pointed out by Hansson et al. in Ref. [61].

Allowing monopoles in the path integral is equivalent to
adding monopole operators to the action (for discussions of
monopole operators in gauge theories see, e.g., Refs. [73,74]
and references therein),

L = i
2

2π
εμνλa1

μ∂νa2
λ + 1

2

∑
I=1,2

|(∂ − iaI )zI |2

+ m2

2

∑
I=1,2

|zI |2 + λ(|z1|4 + |z2|4) + λ′|z1|2|z2|2

+ κ
∑

I=1,2

(M(I ) + M(I )∗). (C2)

Here M(I ) (respectively, M(I )∗) inserts a minimal-strength
Dirac monopole (antimonopole).

It is possible that this UV theory (for appropriate small
values of the couplings, and when the renormalized mass
is tuned to zero) flows to the same fixed point as the
MCP in the Z2 gauge theory with Z2 matter, i.e., in the
Wegner/Fradkin-Shenker model. Moving along the self-dual
line would correspond, heuristically, to changing m2, and
perturbing away from the self-dual line would correspond to
making the masses different for z1 and z2, i.e., to adding a term
|z1|2 − |z2|2.

Unfortunately, however, at present it is challenging to deal
with field theories such as Eq. (C2), so Eq. (C2) is not—yet—
a predictive theory for the MCP. While M(I ) and M(I )∗ are
well-defined operators in the continuum theory, they are not
local expressions in terms of the fields zI and aI , so this action
is far from the domain where simple mean-field-like reasoning
is a useful starting point. For example, simply by looking at
Eq. (C2), it is not easy to say whether there should be a second
order transition, or what the topology of the phase diagram in
the vicinity of this transition should be.

However, the above field theories and extensions of them
can certainly be useful for other critical points involving gap-
less anyons, for example if the monopole operators become
irrelevant, which is expected to happen at large enough k [75],
or if the U (1) × U (1) symmetry exists from the outset as a
physical symmetry of the problem. We comment further on
the case of large k below, since this can give models where
braiding effects on mutually nonlocal gapless anyons can be
understood relatively simply.
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2. Loops and braiding phases

To motivate some other approaches below, let us review a
geometrical way of rewriting the partition function for the Z2

gauge theory on the self-dual line. This is as a loop gas in three
Euclidean dimensions. Here we will be schematic—for more
details see the discussion in Ref. [14] and the related loop gas
in Ref. [72].

The partition function of the loop gas involves a sum over
configurations two kinds of unoriented loops, one represent-
ing e worldlines and one representing m worldlines. The e
worldlines live on a cubic lattice L, and the m worldlines live
on the dual17 cubic lattice L′ (whose sites are at the centers
of cubes of L). The Boltzmann weight consists of (i) local
interactions between worldlines, and (ii) a topological contri-
bution of the schematic form (−1)X , where X = X (Ce, Cm )
is the Z2 linking between e worldlines and m worldlines.
Schematically,

ZIGT =
∑
Ce,Cm

W (Ce, Cm )(−1)X (Ce,Cm ), (C3)

where, e.g., Ce denotes the configuration of unoriented e loops
and W (Ce, Cm ) contains the local interactions between loop
segments.18

Note that the topological term is the difference from a
Landau theory. If we dropped this term, the resulting partition
function

ZL =
∑
Ce,Cm

W̃ (Ce, Cm ), (C4)

potentially with additional local interactions between the loop
segments, is a “worldline” representation of a more conven-
tional lattice theory for two real Landau-like order parameters
φx and φy, one living on each sublattice. Depending on the
microscopic interactions, this theory can have a transition in
the XY universality class, with an emergent O(2) symmetry
for the order parameters (see the discussion in Ref. [14]).

First let us note why, in this language, we expect the ex-
ponents of the MCP to be different from XY exponents. We
may think about Eq. (C3) in terms of a heuristic real space
renormalization group, in which we coarse-grain the loop
configurations. We expect that the topological linking term in
the Boltzmann weight is preserved during coarse-graining, but
the local interactions in W will be renormalized. As a result
of the linking phase, the RG transformation for W in Eq. (C3)
will be different from that for W̃ in Eq. (C4). As a result, the
fixed point and its exponents, for the case of the gauge theory
MCP, should be expected to be different from those of the XY
model (even if they are numerically close).

Nevertheless, the fact that the exponents are close suggests
that the effect of the topological phase on the RG transfor-

17In the loop representation of Eq. (1), these loops may have self-
intersections, but we do not expect this to be essential (i.e., we believe
that these self-intersections are irrelevant at large scales—see the
discussion at the end of Appendix B). It is also possible to formulate
models where both kinds of loops live on the same lattice; see Sec. X
of Ref. [14].

18For more careful discussion of boundary conditions, etc.; see
Ref. [14].

mation for W , in the vicinity of the fixed point, may be
quantitatively mild in some sense. However, in the Z2 case
it is not obvious how this should be quantified (unless it
was possible to construct the real-space RG transformation
numerically).

One regime where the effect of the braiding phases could
be quantified is for the Zk problem at large k. In this case,
the natural loop model involves oriented loops (worldlines
of the elementary anyons), and the braiding phase is e2π iY/k ,
where Y is now the signed linking number that takes account
of the orientation of the loops. Since this phase becomes
small at large k, the RG transformation law will converge to
that of a simple Landau theory (now for two complex order
parameters) at large k.19

The Chern-Simons theory at large k has been treated much
more completely than the above schematic discussion in a
new preprint by Shi and Chatterjee [65] that appeared after
this work was completed. Reference [65] uses a “large N”
approach to the mutual Chern-Simons theory to compute
exponents as a function of k/N . (Large N has also been
considered in unpublished work by Ye and Wang [75].) It was
noted there that the exponents converge to those of Landau
theory at large k, and also that this fact does not rely on
large N .

3. A replica field theory approach to the MCP?

The loop gas picture also suggests the following amus-
ing but very speculative possibility. Above, starting with the
Lagrangian in Eq. (C1), we were forced to add monopole
operators to remove an unwanted “multiplicity” of the anyons:
the theory in Eq. (C1) has two degenerate quasiparticles in
the e sector, namely e and e∗, whereas at low energies we
wanted only a single anyon in this sector (and similarly for
the m sector). Here we consider the possibility of removing
the unwanted multiplicity without using monopoles, using the
replica trick instead. (This should not be confused with a very
different application of the replica trick in Appendix B.)

We will motivate this possibility using a slightly uncon-
ventional lattice regularization of the field theory in Eq. (C1),
in which it becomes a simple loop gas (similar to that in
Ref. [72]).20 In this loop gas we again have two kinds of

19We have discussed with Chong Wang one formal way to make
this precise. The linking phase may be expressed as a double integral
over the currents J (1) and J (2) of the two complex fields. [Modulo
subtleties about the choice of regularization, this is equivalent to
formally integrating the gauge fields out of the Chern-Simons action
in Eq. (C1).] Then formally we could do perturbation theory in 1/k,
corresponding to an expansion in correlation functions of current
operators in the initial Landau theory. As a toy model, we could
consider a fine-tuned critical point, in which the “parent” Landau
theory fixed point was Gaussian.

20Essentially we regularize the matter fields on a lattice (more pre-
cisely, we place z1 on a cubic lattice, and z2 on the dual cubic lattice)
but we keep the gauge fields in the continuum. Then integrating the
gauge fields out gives the purely topological interaction between the
worldlines.
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worldlines, representing e and m loops, with a linking phase,
but now each loop carries an orientation which distinguishes
particle worldlines from antiparticle worldlines. We choose a
lattice regularization in which the local interactions between
the loops are independent of the loop orientations.

With this choice of lattice regularization, it is possible
to perform the sum over loop orientations explicitly in the
partition function, to give a topological contribution 2no. loops

to the Boltzmann weight:

Z (2) =
∑
Ce,Cm

W (Ce, Cm)(−1)X (Ce,Cm )2no. loops, (C5)

The sum is now over unoriented loops, as in Eq. (C3). The
factor of 2no. loops is the remaining difference between this
partition function and the one we wish to study for the original
MCP in Fig. 1.

The partition function above naturally generalizes to

Z (n) =
∑
Ce,Cm

W (Ce, Cm)(−1)X (Ce,Cm )(2n)no. loops (C6)

for an arbitrary integer n � 1. In turn, this loop gas may be
obtained from a lattice analog of a mutual Chern-Simons the-
ory like that in Eq. (C7), but for scalar fields zI = (zI

1, . . . , zI
n)

with n flavors:

L(2,n)
CS = i

2

2π
εμνλa1

μ∂νa2
λ + 1

2

∑
I=1,2

|(∂ − iaI )zI |2 + . . . .

(C7)
We see that partition function in Eq. (C6) becomes equal

to the desired partition function of Z2 gauge theory with Z2

matter if we formally take the replica limit

n → 1/2. (C8)

Therefore, it is tempting to ask whether there is some way
to access the desired multicritical point using an “n → 1/2”
replica limit of the multiflavor continuum theory in Eq. (C7).

At this point, it is important to note that it is not a priori
obvious whether these lattice theories have the same infrared
behavior as the continuum field theories (when the latter are
regularized in a more conventional way). In fact, as discussed
below, this is connected to a question of a nontrivial emergent
symmetry.

A more generic lattice version of the continuum Chern-
Simons theory will not have such a simple form as Eq. (C6).
The key feature that was used in obtaining Eq. (C6) was that
the local interactions between loop segments were indepen-
dent of their relative orientations. As a result, we were able
simply to sum over the orientations to produce the factor of
2no. loops.

This is a hint that Eq. (C6) encodes an enlarged sym-
metry compared to a generic lattice regularization of the
Chern-Simons theory. We can see this by noting that the
loop gas (C6) can also be obtained from a lattice Z2 gauge
theory with an explicit so(2n) × so(2n) continuous global

symmetry.21 This is larger than the explicit continuous global
symmetry of the continuum Chern-Simons Lagrangian, which
is [su(n) × u(1)] × [su(n) × u(1)]. (The su(n) factors are fla-
vor symmetries, for the e and m sectors, respectively, and the
u(1) factors are the flux conservation symmetries discussed
above. For simplicity we consider only the continuous part of
the symmetries, neglecting discrete factors.)

For the replica limit of the continuum theory to make sense,
what we would probably require is the following. Starting
with Eq. (C7) with appropriate quartic couplings, we would
hope to find—somewhere in the parameter space22—a non-
trivial fixed point where so(2n) × so(2n) global symmetry
emerged in the infrared. Then, we would hope to analytically
continue the critical exponents of this fixed point to n = 1/2.

This scenario passes a basic consistency check. The num-
ber of conserved current operators for a theory with so(2n) ×
so(2n) is 2n(2n − 1),23 which of course tends to zero when
n → 1/2: this is as as desired, since (a priori) there is no
reason to expect the MCP to have any continuous symmetry.

By contrast, it is unlikely that a fixed point of L(2,n) without
any symmetry enhancement could be sensibly continued to
n = 1/2. A theory with only [su(n) × u(1)] × [su(n) × u(1)]

21One representation of the standard Z2 gauge theory with Z2

matter is in terms of a lattice “BF” action [50,61]. This takes the
schematic form

S = −J
∑

〈i j〉∈L
σi jτiτ j − J ′ ∑

〈i j〉∈L′
σ̃i j τ̃i τ̃ j + Stop(σ, σ̃ ), (C9)

where σ is a Z2 gauge field on the cubic lattice L and σ̃ is the
dual gauge field, living on the dual cubic lattice L′ (similarly for the
matter fields τ and τ̃ ), and Stop(σ, σ̃ ) is a topological action [50,61].
Integrating out σ̃ and τ̃ shows that this formulation is equivalent
to the standard Z2 gauge theory plus Z2 matter [Eq. (1)], with
e−2K = tanh J ′. Now, we can extend the theory to one with 2n flavors
simply by replacing τ with a unit-length vector τ = (τ1, . . . , τ2n) and
similarly for τ̃ = (̃τ1, . . . , τ̃2n ):

S = −J
∑

〈i j〉∈L
σi jτ i.τ j − J ′ ∑

〈i j〉∈L′
σ̃i j τ̃ i .̃τ j + Stop(σ, σ̃ ). (C10)

For a slightly simpler strong-coupling expansion it is convenient to
modify the Boltzmann weight to the Nienhuis-like [76] form

e−S = eStop (σ,σ̃ )
∏

〈i j〉∈L
(1 + yσi jτ i.τ j )

∏
〈i j〉∈L

(1 + y′σ̃i j τ̃ i .̃τ j ). (C11)

The strong coupling expansion of this theory maps it to a loop gas
similar to that in Eq. (C6), except that loops can visit a given node
more than once (a given link is visited at most once). (This can be
seen from standard considerations for loop models [68] together with
basic properties of Stop [61].) Note that both (C10) and (C11) have
manifest [O(2n)/Z2] × [O(2n)/Z2] global symmetry. Here the two
O(2n) groups represent rotations/reflections of τ and τ̃, respectively
(and we have quotiented out the gauge symmetries associated with σ

and σ̃ , respectively).
22It would not necessarily matter if such a fixed point was highly

unstable (or even complex [77]) for n > 1/2, since all that would
matter would be the number of (symmetry-allowed and nonvanish-
ing) relevant perturbations when n = 1/2, and the unitarity of the
theory (in the IR) for this value of n.

23This the number of Lie group generators.
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global symmetry has 2(n2 − 1) + 2 conserved current oper-
ators. When n → 1/2, this number tends to 1/2, which is
unlikely to have a sensible interpretation.

Note that if so(2n) × so(2n) symmetry did emerge,
for some choice of couplings in the Chern-Simons
theory, it would not act locally on the fields zI

and aI . For example, consider the n2 − 1 op-
erators O(1)

ab = z1
az1∗

b − 1
n |z1|2δab, which transform

in the adjoint representation of su(n), together with the
n(n + 1)/2 monopole operators M(2)

ab , which transform in
the symmetric tensor representation of su(n), together with
their complex conjugates M(2)∗

ab . All of these correspond to
operators which transform an e particle of one species into an
e particle of another species, so they would presumably unite
to form a single (symmetric tensor) representation of so(2n),
of dimension 2(n + 1)(n − 1/2).24

The above scenario for the RG flows is speculative. If it did
hold, the advantage would be that we have eliminated the need

to include monopoles in the continuum action: the unwanted
symmetry is eliminated using the replica limit, rather than
using monopoles. However, we would still need an analytic
method of studying the hypothetical fixed point in which n
could be treated as a continuously variable parameter25 (for
example, fixed-dimension RG). So it is not yet clear whether
this approach could be useful. Nevertheless, this kind of
(putative) symmetry enhancement in Chern-Simons theory is
interesting in its own right even for fixed n.

24The corresponding operators in the theory (C10) of footnote 21
would be of the form τ 1

a τ 1
b − 1

2n δab(τ1)2.
25The large n expansion is unlikely to be useful: monopole opera-

tors have large scaling dimensions at the fixed points that are easily
accessible at large n [78], so the enhancement of symmetry between
the Oab and Mab operators described in the previous paragraph is
unlikely at such fixed points.
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