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Magnetic response and antiferromagnetic correlations in strained kagome ribbons
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We study the physics of the strong-coupling Hubbard model in a kagome lattice ribbon under mechanical
tension and half filling. It is known that in the absence of strain, the lattice symmetry of the system and strong
electronic interactions induce magnetic frustration. As uniaxial strain is applied, the ribbon exhibits various
configurations with energy oscillations that depend on the direction of the strain axis. The ground states are
obtained by density-matrix renormalization-group calculations. We find that the system is characterized by strong
antiferromagnetic bonds distributed throughout the lattice in directions and patterns that depend on the strain
directions and may coexist with easily polarizable sites that are only weakly correlated to their neighbors. We
identify frustration and correlation measures that follow the strain and interaction dependence of the system well.
These results illustrate that strain-dependent magnetic susceptibility could be explored experimentally to help
probe the role of symmetry and interactions in these systems.
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I. INTRODUCTION

The quantum spin liquid is an exotic and fascinating phase
of matter [1–3]. Proposed by Anderson in [4], he suggested
that such a phase could emerge as the ground state of a
spin-1/2 antiferromagnet on geometrically frustrated triangu-
lar lattices [5]. However, after years of debate on whether a
quantum spin-liquid (QSL) phase would emerge in a trian-
gular antiferromagnet, detailed studies suggest this is not the
case (see [1] and references therein). Indeed, the search for
the realization of this elusive phase of matter has elicited great
effort from the scientific community over the years [6–10].

In this context, the triangular motives present in kagome
materials have attracted much attention in recent years [11].
Their unique crystal structure, consisting of corner-shared tri-
angles arranged around a honeycomb structure, induces high
geometrical frustration, offering thus the tantalizing possi-
bility of stabilizing a QSL ground state [12–14]. Although
magnetic insulating kagome lattices have been investigated
for a long time [15], the interest in their electronic and mag-
netic properties has motivated a reexamination in the context
of QSL phases. Theoretical studies on kagome lattices have
explored interesting physical phenomena, including mag-
netic [16–19] and electronic [20–24] properties, QSL phases
[14,25,26], and unconventional superconductivity [27–32].
Several materials have also been investigated experimentally,
prominently including FeSn [33,34], CoSn [35], MnSn [36],
and the rich class of materials AV3Sb5 with A = K,Rb,Cs [37]
and RV6Sn6 with R = Gd,Ho,Y [38,39].

Different phases have been predicted theoretically in frus-
trated kagome lattices using antiferromagnetic Heisenberg
and/or Hubbard models [40]. While the former accounts
strictly for the spin degrees of freedom in the system, the latter
also accounts for charge fluctuations and can then describe a
wider range of phenomena. Schnyder et al. [17] showed that

different ground states could be obtained by controlling the
spatial anisotropy of antiferromagnetic Heisenberg couplings
on a kagome lattice, resulting in spiral phases and possible
noncoplanar order. More recently, Nayga and Vojta [41] have
also shown that the ground state of a kagome magnet with
classical spins can be controlled by applied mechanical dis-
tortion of the lattice, including the finding that triaxial strain
results in a noncoplanar spin-liquid phase. These studies point
out that the magnetic properties of kagome systems are very
sensitive to changes in the geometric frustration of the lattice.
The reduction in symmetry would then be expected to strongly
affect systems that incorporate charge fluctuations, such as
those present in kagome metals. The Hubbard model provides
a natural description, as the relative hoppings can be seen
as effective control parameters that allow one to address the
important question of how strain modifies the ground-state
properties. Sun and Zhu [42] have shown recently that by
controlling the Coulomb repulsion in a Hubbard model of
a kagome ribbon it is possible to drive the system across
multiple quantum phase transitions. This includes a strongly
interacting regime where the ground state is effectively gov-
erned by an antiferromagnetic Heisenberg model and displays
QSL characteristics. For weaker interaction, these authors saw
evidence of different correlated phases in this geometrically
frustrated system. We are interested in exploring the role that
strain plays in the behavior of kagome systems as interac-
tions change their response from the metallic to the insulating
regime. The question we want to explore is how strain mod-
ifies possible frustrated ground states in the different regimes
with varying correlations and charge fluctuations.

In this work we investigate the effect of a uniaxial uniform
strain in a kagome nanoribbon. A schematic representation
of the system is depicted in Fig. 1. Adopting a single-band
Hubbard model, the effective role of strain is to modify the
hopping matrix elements between electronic orbitals localized
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FIG. 1. Schematic representation of the kagome nanoribbon cor-
responding to Lx = 4 unit cells in the x direction and Ly = 3 unit
cells in the ê2 direction. Circles represent the atomic sites of a
tight-binding model, while solid lines correspond to nearest-neighbor
hopping matrix elements. Red dashed lines at the top and bottom
indicate periodic boundaries, in which case the ribbon folds into
what will be referred to as the long cylinder geometry. Directions
ê1 and ê2 span the unit cell, while the a j ( j = 1, 2, 3) represent the
nearest-neighbor vectors. The angle θ defines the direction of applied
strain with respect to ê1. The dashed magenta hexagon contains a
minimal unit cell and associated bonds used in the text.

at the lattice sites. This generally results in anisotropic cou-
plings along the three lattice vectors, thus reducing geometric
frustration in the system. Furthermore, varying the Coulomb
repulsion allows glancing at how magnetic properties of the
metallic and insulating ground states differ, thereby highlight-
ing the relevance of charge fluctuations.

By performing density-matrix renormalization-group
(DMRG) calculations within a tensor networks platform
[43,44], we compute the ground-state properties of the system,
including the spatial distribution of spin-spin correlations and
the local magnetization upon application of weak magnetic
fields. Our results show that the anisotropy produced by the
applied strain induces the formation of Néel lines of strongly
antiferromagnetically correlated bonds arranged on different
patterns and along different lattice directions, depending on
the strain orientation. This behavior can be understood as
arising from the suppression of the geometrical frustration
in the system. Interestingly, we also find that scattered
among the well-defined Néel lines with antiferromagnetic
correlations, sites exist that are only weakly coupled to their
neighbors. These interstitial sites are thus easily polarizable
by weak external magnetic fields, while the Néel lines remain
in their antiferromagnetic coupled structure. The pattern
of Néel bonds and spatial distribution of polarizable sites
depend critically on strain orientation and becomes more
pronounced for larger values of Coulomb interaction as the
system approaches the kagome antiferromagnet regime. To
better characterize the response to strain, we introduce two
intuitive quantities: a geometric indicator to quantify the
structural frustration in the system and another that measures
how local spin correlations reflect the degree of frustration in
the ground state. These measures are good predictors of the
different spin correlation profiles seen in the system as the
strain and interaction change.

The remainder of this paper is organized as follows. In
Sec. II we introduce the model and methods to study the

kagome lattice. In Sec. III we present and discuss our main
findings. A summary and prospects for future work are pre-
sented in Sec. IV.

II. MODEL AND NUMERICAL METHODS

We consider a kagome lattice ribbon (see Fig. 1) described
by a tight-binding Hubbard Hamiltonian as

H = ε0

∑
j,σ

n jσ −
∑
〈i, j〉

σ

ti jc
†
iσ c jσ +

∑
j

(
Unj↑n j↓ + VzS

z
j

)
, (1)

where c†
jσ (c jσ ) creates (annihilates) an electron with energy

ε0 and spin σ at site j, n jσ = c†
jσ c jσ is the number operator,

Sz
j = h̄(n j↑ − n j↓)/2 is the local spin z component, U repre-

sents the on-site Coulomb repulsion, and Vz = gμBB is the
Zeeman energy due to a magnetic field B in the z direction.
As defined in Appendix A, hopping matrix elements between
nearest-neighbor sites (denoted by 〈i, j〉) are modified by the
presence of a spatially homogeneous uniaxial strain in the
ribbon as

ti j ≡ tα (θ ) = t exp{−β[‖a′
α (θ )‖ − 1]}, (2)

where β is the material-dependent Grüneisen parameter
(approximately equal to 3 [45]), a′

α = (I + ε̄)aα are the
strained vectors, and a1 = 1

2 (1,
√

3), a2 = 1
2 (1,−√

3), and
a3 = −(a1 + a2) = (−1, 0) define the unstrained vectors (see
Fig. 1), and set the nearest-neighbor separation as the unit
length. The strain tensor is [24]

ε̄ = ε

[
cos2 θ − ν sin2 θ (1 + ν) sin θ cos θ

(1 + ν) sin θ cos θ sin2 θ − ν cos2 θ

]
, (3)

where ε is the strain strength, ν the material’s Poisson ratio,
and θ the direction of applied strain, as indicated in Fig. 1.

We are interested in the low-energy physics of the system,
so our analysis involves mainly the ground state and a few
excited ones, as needed. We employ the DMRG approach
implemented within the ITENSOR library [43,44], a matrix
product state platform suitable for obtaining many relevant
physical quantities in quantum many-body Hamiltonians. We
obtain associated physical quantities characteristic of the sys-
tem, such as local magnetizations Mν

j = 〈Sν
j 〉 and spin-spin

correlations Ci j = 〈Si · S j〉 − 〈Si〉 · 〈S j〉, where S j is the spin
operator on a given lattice site j and the terms in angular
brackets represent the expectation values in the low-energy
manifold. As defined, Ci j gives the intrinsic many-body cor-
relations in the presence of an applied magnetic field by
removing the trivial contribution induced by the polarizing
field. In the absence of field, Mν

j = 0 for all ν, so Ci j =
〈Si · S j〉 reduces to the usual expression. For visualization, it
is useful to define the spatial link correlation as

Clink(x, y) =
∑
i, j

Ci je
−di j (x,y)/b, (4)

where di j (x, y) is the distance between any point on the xy
plane and the segment that connects the lattice sites i and j,
while b controls the sharpness of the link structure.
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FIG. 2. Link correlations Clink in the absence of strain (ε = 0)
for (a) U = 5, (b) U = 10, and (c) U = 20. Darker links represent
stronger antiferromagnetic alignments, clearly enhanced in (c). The
uniform link distribution in (a) becomes more inhomogeneous for
increasing U . Apart from strong links along the edges of this flat
ribbon, there appears to be no overall order of the antiferromagnetic
bonds in (c).

III. NUMERICAL RESULTS

We set t = 1 as the energy unit and h̄ = 1 hereafter, and
ensure that the system is in the half-filling regime by setting
ε0 = −U/2. We explore values of U from U = 5 to 20, cor-
responding to different phases of the system. For large values
of U , the system is well described by an antiferromagnetic
Heisenberg model [42]. The number of sites in the kagome
nanoribbon increases rapidly with Lx and Ly, N = Ly(3Lx +
2); we focus our analysis on a system with Lx = 12 and
Ly = 3. Whenever the ribbon is folded along the ê2 direction
into a cylinder, with sites periodically coupled as indicated
by red dashed lines in Fig. 1, we call such an arrangement
the long cylinder geometry (LCG), which corresponds to the
YC6 cylinder in Ref. [14]. For completely open boundaries,
however, the configuration will be referred to as the flat ribbon
geometry (FRG). We have allowed DMRG link dimension up
to 5000, resulting in truncation errors typically less than 10−6.

A. Unstrained vs strained regimes

We first look at the spin-spin correlations in the system
for a strain-free FRG lattice, ε = 0. As defined above, we use
Clink to provide a convenient visualization of the correlations.
Figure 2 shows a heat map of Clink for different Hubbard
interaction values, placing the system into different phases:
U = 5 [Fig. 2(a)], the metallic phase; U = 10 [Fig. 2(b)]; and
U = 20 [Fig. 2(c)], the quantum-spin-liquid/kagome antifer-
romagnetic phase [42]. As the color bar shows, darker links
correspond to stronger antiferromagnetic pairs. For small U ,
the correlation links are not as strong and are homogeneously
distributed, as the weak interactions in this metallic regime
would suggest. Despite the homogeneous distribution of hop-
ping terms in the Hamiltonian, we notice some differences,
likely due to edge effects on the ribbon. For larger U , the anti-
ferromagnetic correlations appear stronger (darker links) and
not as homogeneously distributed as the system approaches

FIG. 3. (a) Ground-state energy per site E0/N as a function of
strain direction θ for (a) ε = 0.10, (b) ε = 0.15, (c) ε = 0.20, and (d)
ε = 0.30. Blue and red curves correspond to flat ribbon geometry and
long cylinder geometry, respectively. The black dashed line shows
ζ (θ ) defined in Eq. (5) and scaled as per [46]. In all panels U = 5,
i.e., the metallic regime for the unstrained system.

the Heisenberg antiferromagnetic regime. In an infinite sys-
tem, the spin-dominated ground state is expected to have
high frustration without strain. A spin-liquid phase may even
emerge, with not yet fully understood characteristics [14,42].
We aim to study the role that strain may play in modifying the
frustration otherwise present in the system. We will contrast
Fig. 2 with the link correlation in the presence of strain to
expose some of its effects on the ground state. All link corre-
lations plotted in this paper are for FRG.

We now analyze the effect of strain on the link-correlation
pattern over the ribbon. Because the effect of strain on the
correlations depends on the angle θ , it is instructive to first
analyze how the ground-state energy E0 changes with θ . Fig-
ure 3 shows E0(θ ) vs θ for U = 5 and increasing strain values.
Blue circles and red squares correspond to FRG and LCG,
respectively. In all cases, E0 exhibits an oscillatory behavior
with maxima and minima as θ varies from 0 to π , as well as
an overall increasing value for larger strains. The oscillations
with strain direction are better defined for ε = 0.30 [Fig. 3(d)]
but are already visible for ε = 0.15 [see Fig. 3(b)]. The min-
ima occur for θ 
 π/6, π/2, and 5π/6, which correspond
to strain applied orthogonal to one of the lattice vectors a j .
In contrast, the E0 maxima are observed around θ = 0, π/3,
and 2π/3, for which the strain direction lies along one of
the lattice vectors. The general behavior of E0 increasing
with ε can be seen to be associated with the suppression of
antiferromagnetic correlations, which contribute to lowering
the energy of the system. This is consistent with the fact that
for LCG E0 is lower, as additional singletlike correlations
appear across the edges. We also notice that E0(θ ) is not
fully symmetric around θ = π/2, a direct consequence of the
slanted geometry that defines the ends of the ribbon. Such
asymmetry is even more pronounced for LCG, as seen in the
red curves of Fig. 3. This feature becomes clear once one
realizes that, for LCG, the configurations in Figs. 4(e) and 4(f)
loop a1 lines onto themselves (see Fig. 1), in great contrast to
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FIG. 4. Link correlations for ε = 0.30 and different strain orientations (a) θ = 0, (b) θ = π/6, (c) θ = π/3, (d) θ = π/2, (e) θ = 2π/3,
and (f) θ = 5π/6. The left (right) column corresponds to maxima (minima) in E0(θ ) of Fig. 3. (a), (c), and (e) For energy maxima, links
with antiferromagnetic correlations form 2D oblique Lieb-like lattices. (b), (d), and (f) For energy minima, links form 1D-like arrays with
stronger (darker) antiferromagnetic correlations. In all panels U = 5. The inset above (b) shows nearest-neighbor vectors to help identify the
link orientations.

what happens with the remaining ones; for example, a2 lines
are alternatingly coupled with one another in Figs. 4(b) and
4(c).

To gain more intuition on the behavior of E0 vs θ shown
in Fig. 3, we analyze the nature of the maxima and minima
of E0(θ ). Intuitively, one would expect the system to be more
frustrated if all couplings were equal. It is thus reasonable to
explore the distinct hoppings t j along different lattice vec-
tors a j , as the strain changes them according to Eq. (2).
We quantify the isotropy of the couplings by analyzing their
distribution, as a smaller dispersion in hopping constants fa-
vors frustration in the system’s ground state. The simplest
measure of dispersion of hoppings is given by the variance
σ 2. We introduce the inverse of σ 2 as a measure of the ho-
mogeneity of the couplings, defining a geometric frustration
function as

ζ (θ ) = 1

σ 2
= Nt (Nt − 1)∑Nt

j=1(t j − t̄ )2
= 6∑3

j=1(t j − t̄ )2
, (5)

where t̄ = (t1 + t2 + t3)/3 and Nt = 3 is the number of dis-
tinct hoppings in the kagome lattice. Note that Eq. (5) depends
implicitly on θ through both t j and t̄ .

This quantity can be scaled and compared with the ground-
state energy E0(θ ) [46]. Figure 3 shows ζ (θ ) as a black dashed
curve; evidently, the scaled function ζ (θ ) follows E0(θ ) quite
well. As mentioned above, the results for LCG are more
affected by end effects and the agreement is poorer. Never-
theless, the positions of maxima and minima predicted by
ζ (θ ) agree quite nicely with E0(θ ) for both FRG and LCG
configurations obtained via DMRG. These results suggest that
the maxima of E0(θ ) are obtained whenever the geometric
frustration in the system is higher, even for the case U = 5
(metallic regime when unstrained) shown in Fig. 3.

We now turn our attention to the effect of strain on the
spin-spin correlations in the kagome ribbon. Figure 4 shows
the heatmap of Clink for angles where E0 and ζ have maxima,
i.e., higher frustration θ = 0, π/3, and 2π/3 [Figs. 4(a), 4(c),

and 4(e)], or minima, i.e., lower frustration θ = π/6, π/2, and
5π/6 [Figs. 4(b), 4(d), and 4(f)]. We note that Clink exhibits a
structure of connected oblique Lieb-like lattices [47] for strain
directions where ζ is maximum [Figs. 4(a), 4(c), and 4(e)].
The links are homogeneous in strength/intensity throughout,
with links stretched the most (those along θ ) having nearly
vanishing correlation strength. In contrast, for angles where
E0 is minimum [Figs. 4(b), 4(d), and 4(f)], the Clink distri-
bution appears as quasi-independent one-dimensional (1D)
chains of strong correlation links at angles orthogonal to strain
direction θ .

These features in the overall link distribution are even
more pronounced for larger values of the Coulomb interaction
U , as charge fluctuations are suppressed and antiferromag-
netic correlations enhanced overall. This is evident in Fig. 5,
which shows link correlations for U = 10 [Figs. 5(a) and
5(b)] and U = 20 [Figs. 5(c) and 5(d)]. Figures 5(a) and 5(c)
and Figs. 5(b) and 5(d) refer to θ = π/3 and π/6, which
compare with Figs. 4(c) and 4(b), respectively. Note that the
Néel-like lines [Figs. 5(b) and 5(d)] and the oblique 2D lattice
structures [Figs. 5(a) and 5(c)] are much more pronounced in
this figure than in Fig. 4. We also note relatively little variation
between U = 10 and 20.

While ζ (θ ) is a good indicator of θ values that most affect
the ground-state energy E0, it does not directly quantify the
spin frustration that may be present in the system. (Yet an-
other indicator is discussed in Appendix B). A useful way to
quantify the frustration content of the ground state is via the
quantity

f G
j = 1 − 4

J̃ j

∣∣∣∣∣∣∣
∑

(m,n)∈C j
B

Jmn〈Sz
mSz

n〉

∣∣∣∣∣∣∣, (6)

which accounts for the spin-spin correlations within a given
unit cell of the kagome system. In this expression, Jmn =
4t2

mn/U represents the exchange coupling between neighbor
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FIG. 5. Link correlations for ε = 0.30 (a) and (c) along a1 [θ = π/3, a maximum in E0(θ )] and (b) and (d) orthogonally to a2 [θ = π/6,
a minimum in E0(θ )] for (a) and (b) U = 10 and (c) and (d) U = 20. These configurations occur whenever strain is applied along a1 and
orthogonally to a2, in this order [see the inset above (b)]. Compared to Figs. 4(b) and 4(c), the correlations here are much more pronounced,
with little difference between U = 10 and 20.

spins (m, n) within the unit cell considered, C j
B, and included

in the sum. The unit cell used is shown by magenta dashed
lines in Fig. 1. Finally, J̃ j ≡ ∑

(m,n)∈C j
B

Jmn. In this definition,

f G
j accounts for the couplings (including their the sign) be-

tween each pair of spins in all unit cells. Notice that f G
j → 1

for uncorrelated cells, while f G
j → 0 for both fully ferro- and

antiferromagnetic correlated links.
Figure 6 shows the average of this indicator over the en-

tire system, f G(θ ), for three distinct values of U , over the
range 0 < θ < π/2; apart from small end-effect asymmetry,
similar results are obtained for π/2 < θ < π . Notice that for
large U = 10 and 20, where antiferromagnetic correlations
are better defined in the system, f G drops in value overall and
exhibits well-pronounced maxima and minima that agree well
with the corresponding behavior of E0(θ ) in Fig. 3. The nearly
flat behavior of f G(θ ) for U = 5 is likely associated with
charge fluctuations in the system, suppressing local moments
in lattice sites for weak interactions. This indicator is then
not as effective in providing a quantitative assessment in the
weak-interaction regime, despite the clear impact of strain on
the Clink distribution.

FIG. 6. Plot of f G(θ ) vs θ for ε = 0.30 and U = 5 (red squares),
U = 10 (blue circles), and U = 20 (black diamonds). Note that for
larger values of U , the maxima and minima become more pro-
nounced, as expected. Dashed lines indicate θ = π/6, π/3 for the
minimum and maximum in E0.

B. Coexistent magnetization and Néel structures

Let us go back to link correlations for the strained case and
take a closer look at Fig. 4. Note that for angles where ζ or
E0 have a minimum [Figs. 4(b), 4(d), and 4(f)], the formation
of 1D correlated lines conspire to leave the sites between
lines only loosely coupled to their neighbors. This suggests
the coexistence of antiferromagnetic links and paramagnetic
sites in the lattice. One would further expect these two types
of sites (free and correlated) would respond differently to an
applied magnetic field. The (antiferromagnetically) correlated
spins would require a larger field to be polarized, as the field
should compete with the effective exchange interaction. On
the other hand, the loose spins would align readily with the
field.

To verify this reasoning, we apply a small magnetic field in
the z direction to the entire system and analyze the behavior of
the spatially resolved magnetization over the lattice. Figure 7
shows the local z magnetization Mz

j = 〈Sz
j〉 for the ground

state in a small applied field Vz = 0.05 and for the same strain
angles as in Fig. 4. Colored dots at each site of the lattice
indicate whether that spin is polarized towards +ẑ (red) or −ẑ
(blue) or unpolarized (white), as per the color scale. Let us
analyze what is shown in Fig. 7. Starting with the case of θ =
0 [Fig. 7(a)], we observe a pattern consisting of alternating
positive/negative Mz

j for j on the line along the vectors a1 or
a2 with all positive Mz

j along a3. This pattern can be connected
with Fig. 4(a) as follows: Since the weakest link correlations
are seen there along a3, the application of a magnetic field
easily polarizes all spins parallel to the field for sites along
a3; in contrast, sites along a1 and a2 align antiferromagnet-
ically to those polarized by the field. The antiferromagnetic
(AF) links remain intact because, for this weak field, it is
still energetically favorable to form the Néel lines along with
strong link correlations. Similar conclusions can be made for
the cases of θ = π/3 and 2π/3, except that the weakest links
in these cases lie along a1 and a2, respectively. We emphasize
that sites aligned with the field and lying along a3 in Fig. 7(a)
are consistent with the formation of AF lines along a1 and a2

in Fig. 4(a) and that the AF many-body correlations are not
suppressed for small fields, as one would expect.

Let us now look at Figs. 7(b), 7(d), and 7(f) for which
the frustration ζ and E0 have minima. The Néel lines with
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FIG. 7. Magnetization Mz
j for Vz = 0.05 and (a) θ = 0, (b) θ = π/6, (c) θ = π/3, (d) θ = π/2, (e) θ = 2π/3, and (f) θ = 5π/6. For all

panels, we set U = 5 and ε = 0.30. Faint dots in (b), (d), and (f) (where E0 has minima in Fig. 3) feature sites belonging to Néel-like lines,
while dark red dots correspond to loose sites readily polarized by the field. The inset above (b) helps identify, e.g., the red lines in (c) as being
in the strain direction a1.

strong link correlation of Fig. 4(b) (for θ = π/6) lie parallel
to the lattice vector a2. This is manifested in the faint, nearly
unpolarized sites along a2 in Fig. 7(b), suggesting that the
Néel lines are not affected by the external field. Note also
in Fig. 7(b) that the alternating polarization of sites is not
as well pronounced as for the maximal E0 cases. Most im-
portant, however, are the dark red sites between Néel lines
which strongly polarize regardless of their neighbors and are
scattered throughout the system. This is consistent with the
idea that loosely connected sites exist over the lattice that
respond efficiently to the applied field.

The coexistence of distinct magnetic structures, strongly
correlated links, and easily polarizable loose sites is expected
to be more pronounced for larger values of U . To test this,
Fig. 8 shows Mz

j for U = 10 [Figs. 8(a) and 8(b)] and U = 20
[Figs. 8(c) and 8(d)] for the same magnetic field Vz = 0.05.
Figures 8(a) and 8(c) and Figs. 8(b) and 8(d) correspond to
θ = π/3 and π/6, respectively, corresponding to the lattice
strains in Fig. 5. We again observe in Figs. 8(a) and 8(c)
that the weakly correlated sites along the θ direction a1 be-
come easily polarized by the field, while the neighboring sites
are/remain strongly AF correlated along a2 and a3 [as in

Fig. 7(c)]. Figures 8(b) and 8(d) show that the energy is mini-
mized on alternating diagonal lines that weakly polarize in the
field while coexisting with strongly polarized sites through the
structure, similarly to Fig. 7(b).

Finally, one may wonder whether the applied magnetic
field destroys the many-body spin correlations. We expect
them to be robust along well-defined Néel lines. To confirm
this, Fig. 9 shows the link correlations for systems as in
Figs. 4(a) and 4(b) under an applied field. Comparing these
two figures, it is clear that correlations along the strong links
are indeed preserved for the applied field Vz = 0.05. Inter-
estingly, correlations along the lower edge are more affected,
likely due to their fewer neighbors. Notice again that the Néel
lines are parallel to the lattice vector a2 in Figs. 9(b) and 4(b)
as the sites in between adjacent lines are weakly correlated
to their neighbors and are then strongly polarizable by the
field, as seen in Fig. 7(b). These sites behave as a collection
of paramagnetic (noninteracting) polarizable spins, while the
sites belonging to Néel lines form a separate set of AF 1D
chains. The coexistence of these two classes of sites and the
dependence of their appearance and orientation with applied
strain represent the main unexpected results of this work.

FIG. 8. Local magnetization Mz
j for Vz = 0.05 and strain applied along (a) and (c) θ = π/3 and (b) and (d)θ = π/6 for (a) and (b) U = 10

and (c) and (d)U = 20. As in Fig. 7, faint dots in (b) and (d) represent sites belonging to Néel AF lines, while dark red dots correspond to
loose sites more easily polarized by the field. Notice how the most energetically favorable top left to bottom right red-then-blue pattern results
along a2-connected spins. For all panels, ε = 0.30.
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FIG. 9. Link correlations for ε = 0.30 and Vz = 0.05, with (a)
θ = 0 and (b) θ = π/6, corresponding to the maximum and mini-
mum of the frustration quantifier shown in Fig. 3. In (a) all sites are
connected with neighbors along Néel AF lines forming a 2D lattice.
In (b) Néel lines are disconnected from each other, leaving many sites
nearly fully uncorrelated. In both panels U = 5.

IV. CONCLUSION

We have studied a kagome nanoribbon using a Hub-
bard model to describe how anisotropies induced by uniaxial
strain break the symmetry and affect the correlations due
to electronic repulsion. We found that even for relatively
weak interactions, the competing correlations and frustration
develop coexisting systems of strongly antiferromagnetic cor-
relations between neighboring sites and weakly connected
sites that are easily polarizable in a magnetic field. The spatial
distribution of the strong links and interspersed paramagnetic
sites depends strongly on the orientation of the uniaxial strain
and opens the possibility of exploring an experimentally tun-
able probe that can give rise to different correlated behavior
in a given lattice. The need to consider charge fluctuations
to define a function that quantifies correlations, especially for
weak U values, and that complements f G remains an interest-
ing theoretical question. With the growing interest in metallic
kagome materials displaying strongly correlated behavior, it
may be possible to apply external strain fields and explore

FIG. 10. Plot of r(θ ) vs θ for ε = 0.30. Note that this quantity is
U independent. Dashed lines indicate θ = π/6, π/3 for a minimum
and maximum in E0.

some of the phenomena our models describe. It would be
interesting, moreover, to explore how distinct Fermi levels
and proximity to Van Hove singularities in different mate-
rials affect this behavior. As a final reflection, there might
be a connection between our results and the spin Jahn-Teller
effect. The idea that spontaneous distortions could play a
role in kagome materials is appealing and deserves future
investigation.
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APPENDIX A: STRAINED COUPLINGS

The deformed nearest-neighbor vectors are given by

a′
j = (I + ε̄)a j, (A1)

with

a1 = a0

2
(1,

√
3), a2 = a0

2
(1,−

√
3), a3 = a0(−1, 0),

and the strain tensor ε̄ is given by Eq. (3). We set the lattice
constant a0 = 1. Using trigonometric identities, we can read-
ily write

ε̄ = ε

2
[(1 − ν)I + (1 + ν)R̃(θ )], (A2)

where

R̃(θ ) =
[

cos(2θ ) sin(2θ )
sin(2θ ) − cos(2θ )

]
= R̃

T
(θ ), (A3)

which is then an orthogonal symmetric tensor

R̃(θ )R̃
T

(θ ) = R̃
T

(θ )R̃(θ ) = [R̃(θ )]2 = I. (A4)

Now, by defining α± ≡ (1 ± ν)/2, we can recast Eq. (A1) as

a′
j (θ ) = [(1 + α−)I + α+R̃(θ )]a j . (A5)

The strained hopping terms to be calculated are given by

t j (θ ) = t j exp{−β[‖a′
j (θ )‖ − 1]}. (A6)

The strained vectors moduli ‖a′
j (θ )‖ =

√
a′

j (θ ) · a′
j (θ ), and

since R̃ is both symmetric and orthogonal, we get

a′
j (θ ) · a′

j (θ ) = [α2
+ + (1 + α−)2]a j · a j + 2α+(1 + α−)a j

· ã j (θ ), (A7)

where ã j (θ ) ≡ R̃(θ )a j . Finally, using the traditional defini-
tion of antiferromagnetic energy scale Jn = 4t2

n /U , we obtain
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the effective strain-induced Heisenberg couplings

Jn(θ ) = Jn exp

{
−2β

[(
[α2

+ + (1 + α−)2] + 2α+(1 + α−)
1

x2
n + y2

n

[(
x2

n − y2
n

)
cos(2θ ) + 2xnyn sin(2θ )

])1/2

− 1

]}
, (A8)

where a j = (x j, y j ).

APPENDIX B: COUPLING RATIOS

For each angle θ , we display the ratio r(θ ) ≡
Jmin(θ )/Jmax(θ ) between the smallest and largest couplings in
Fig. 10. This is a nonanalytical function, with cusps located

at the stationary points in Fig. 3. Consistent with Eqs. (5) and
(6), the plot reflects that r(θ ) values closer to one indicate
greater homogeneity of couplings, thus implying higher
frustration, hence the peak at, e.g., θ = π/3 being taller
than the one at θ = π/6. We conclude that r(θ ) is a much
coarser way to infer frustration and therefore not as useful an
indicator as those discussed in the main text.
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