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Influence of capacitance and thermal fluctuations on the Josephson
diode effect in asymmetric higher-harmonic SQUIDs
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Asymmetric two-junction SQUIDs with different current-phase relations in the two Josephson junctions,
involving higher Josephson harmonics, demonstrate a flux-tunable Josephson diode effect (asymmetry between
currents flowing in the opposite directions, which can be tuned by the magnetic flux through the interferometer
loop). We theoretically investigate influence of junction capacitance and thermal fluctuations on performance of
such Josephson diodes. Our main focus is on the “minimal model” with one junction in the SQUID loop possess-
ing the sinusoidal current-phase relation and the other one featuring additional second harmonic. Capacitance
generally weakens the diode effect in the resistive branch (R state) of the current-voltage characteristic (CVC)
both in the absence and in the presence of external ac irradiation. At the same time, it leads to qualitatively new
features of the Josephson diode effect such as asymmetry of the retrapping currents (which are a manifestation
of hysteretic CVC). In particular, the limiting case of the single-sided hysteresis becomes accessible. In its
turn, thermal fluctuations are known to lead to nonzero average voltages at any finite current, even below the
critical value. We demonstrate that in the diode regime, the fluctuation-induced voltage can become strongly
(exponentially) asymmetric. In addition, we find asymmetry of the switching currents arising both due to thermal
activation and due to Josephson plasma resonances in the presence of ac irradiation.
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I. INTRODUCTION

While superconducting systems demonstrating nonrecipro-
cal transport properties (the diode effect) have been known
for a long time [1–3], they have become the focus of many
studies during recent years. This superconducting diode effect
(SDE) is currently actively investigated both theoretically and
experimentally in various physical systems [4]. The physical
mechanisms causing the SDE turn out to be quite diverse, so
it can be considered as a spectacular manifestation of various
fundamental physical processes. At the same time, the SDE
can potentially find useful applications in superconducting
electronic devices.

The necessary ingredients of the SDE are usually bro-
ken time-reversal and inversion symmetries, which can be
realized, e.g., due to magnetic field (or exchange field in
ferromagnets) and spin-orbit coupling (or spatial asymmetry).
The SDE can also be realized due to vortices moving in asym-
metric potentials or due to current-generated magnetic fields.
The above mechanisms have been theoretically studied and
experimentally demonstrated in many publications [5–26].

Similar physical mechanisms [27–43] can lead to the SDE
in various types of Josephson junctions (JJs); in this context it
is called the Josephson diode effect (JDE). This brings the rich
physics of the Josephson effect [1,2,44] into play. Asymmetry
of the Josephson effect characteristics with respect to the
current direction implies realization of the JDE.

Of particular interest are SQUIDs, tunable Josephson sys-
tems of interferometer type [1,2,44]. A basic system of this

type is shown in Fig. 1; the interferometer loop contains two
JJs and is threaded by external magnetic flux �. The up-down
asymmetry of such a system (asymmetry between junctions a
and b) in the presence of magnetic flux may lead to the left-
right asymmetry for the current (the JDE). This is exemplified
by SQUIDs with asymmetry of effective inductances included
into the two interferometer arms [2,45,46]. While this effect
has been known for a long time, miniaturization of SQUID
systems diminishes inductive effects and thus suppresses this
kind of the diode effect.

At the same time, it was recently demonstrated [47–49]
that the up-down asymmetry of the SQUID due to higher
Josephson harmonics in the current-phase relation (CPR) of
the JJs can also lead to the JDE. This is so even in the absence
of inductive effects (hence, the mechanism is effective even in
the case of small systems). Generally, the JDE then takes place
in the case of different harmonic content of the CPRs Ia(ϕ)
and Ib(ϕ) of the two JJs. The higher Josephson harmonics
(contributions to the supercurrent of the form sin nϕ with
n > 1, where ϕ is the superconducting phase difference across
a JJ) naturally arise in various types of JJs with not too low
transparencies of their weak-link regions (represented by insu-
lators, normal metals, or ferromagnets) [1,44,50]. Josephson
elements with essential contribution of higher harmonics can
also be engineered on purpose [51,52].

The JDE in the above-mentioned SQUIDs is absent only
in certain special cases, e.g., (a) in a symmetric SQUID
with Ia(ϕ) = Ib(ϕ) (at arbitrary number and amplitudes of
the harmonics), (b) in the case when Ia(ϕ) and Ib(ϕ) are
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both described by the same single harmonic (with arbitrary
amplitudes in the two junctions), (c) at “trivial” values of
the magnetic flux � (integer of half-integer in units of the
flux quantum �0). Otherwise, the JDE is generally present.
The “minimal model” of the asymmetric higher-harmonic
SQUID is the case in which one JJ has the sinusoidal CPR and
the other one features additional second Josephson harmonic
[47,48],

Ia(ϕ) = Ia1 sin ϕ, Ib(ϕ) = Ib1 sin ϕ + Ib2 sin 2ϕ. (1)

Various SQUIDs and SQUID-like systems effectively
implementing the higher-harmonic JDE mechanism have al-
ready been investigated both theoretically and experimentally
[29,53–63]. The basic quantities of interest here are the
direction-dependent critical currents (I+

c and I−
c ) and asym-

metry of the current-voltage characteristic (CVC) I (V ) both
in the absence and in the presence of external irradiation. The
CVC in Josephson systems can be described with the help of
the standard resistively shunted junction (RSJ) model [2,44].
The JDE in SQUIDs with higher harmonics is fully captured
by this model once the proper CPR is plugged into it.

A natural extension of the RSJ model is the resistively
and capacitively shunted junction (RCSJ) model which takes
possible capacitance (charging) effects into account [2,44].
While the mechanical analogy of the RSJ model corresponds
to strongly damped motion, the RCSJ model adds inertial
effects to it. As a result, it is possible to trace crossover
between overdamped and underdamped regimes. A natural
question then is how the presence of capacitance influences
the JDE. The RSJ model can also be extended to include a
fluctuating current to describe thermal fluctuations [64–66],
and one may expect that fluctuations lead to strong asymmetry
of the CVC under the conditions of the JDE. In the context
of the JDE, various charging and temperature effects have
been studied before both theoretically and experimentally in
Refs. [61,67–69].

In this paper, we analyze the influence of capacitance on
the JDE in asymmetric higher-harmonic SQUIDs in different
regimes, from underdamped to overdamped. We also consider
asymmetries of the current caused by thermal fluctuations.

The paper is organized as follows: In Sec. II, we formulate
general equations of the RCSJ model suitable for describing
the SQUIDs with higher Josephson harmonics and underline
basic features of the system which are essential for further
analysis. In Sec. III, we analyze the main features of the asym-
metric CVC of the minimal model with nonzero capacitance.
In Sec. IV, we analyze the influence of capacitance on the
CVC in the presence of external irradiation. In Sec. V, we
consider manifestations of thermal fluctuations in the context
of the JDE. In Sec. VI, we discuss the obtained results and
their possible applications. In Sec. VII, we present our con-
clusions. Finally, some details of calculations are presented in
the Appendices.

II. MODEL AND GENERAL EQUATIONS

A. Asymmetric SQUID

In this section, we present the theoretical model in which
we investigate the JDE. It is an extension of the model
described in Refs. [47–49]. We consider a two-junction

Ia(φ)

I

Ib(φ)

Φ

FIG. 1. Asymmetric SQUID with different CPRs Ia(ϕ) and Ib(ϕ)
in the two JJs.

asymmetric SQUID consisting of two JJs connected in par-
allel and possessing different CPRs with higher Josephson
harmonics, see Fig. 1.

We mainly focus on the minimal model in this paper. In this
model, one junction has the standard sinusoidal CPR while the
other one also has the second Josephson harmonic in its CPR,
see Eq. (1). The external magnetic field creates flux � through
the SQUID loop. The flux leads to the difference between the
phase jumps at the two JJs:

ϕa − ϕb = φ, φ = 2π�/�0. (2)

Defining ϕ as the average of the two phase jumps, we can
write the effective CPR of the SQUID as

Is(ϕ) = Ia(ϕ + φ/2) + Ib(ϕ − φ/2). (3)

In the case of the minimal model, it takes the simple form

J (ϕ) = Is(ϕ)/I1(φ) = sin ϕ + A sin(2ϕ − φ̃), (4)

where we define the amplitude of the first Josephson harmonic
of the SQUID I1(ϕ), dimensionless amplitude of the second
Josephson harmonic A, and phase shift φ̃ as

I1(φ) =
√

I2
a1 + I2

b1 + 2Ia1Ib1 cos φ, A = Ib2/I1(φ), (5)

tan γ = Ia1 − Ib1

Ia1 + Ib1
tan

φ

2
, φ̃ = φ + 2γ (φ). (6)

Equation (4) describes the CPR of the whole SQUID as a
single effective JJ.

B. RCSJ model

We are interested in asymmetries in the SQUID behavior
(CVC, Shapiro steps, etc.) when the system is subject to
external currents, dc current with amplitude Idc and ac current
with amplitude Iac and frequency �. The extension of our
model as compared to the model of Refs. [47,48] is that we
now consider the cases of nonzero capacitance C and nonzero
temperature T . We figure out how their presence affects the
strength and manifestations of the JDE in the system.
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To describe the dynamics of our system, we use the RCSJ
model. In this model, the Josephson equations take the follow-
ing form:

h̄C

2e
ϕ̈ + h̄

2eR
ϕ̇ + Is(ϕ) = Idc + Iac cos(�t + δ) + I f (t ), (7)

V = (h̄/2e)ϕ̇, (8)

where R is the normal resistance, V is the voltage bias across
the SQUID, I f (t ) is thermally induced fluctuating current, and
δ is the initial phase of the ac current.

We rewrite these equations in dimensionless variables. It
can be done in several ways. The first form that we call β

representation is convenient for analysis of the CVC in the
nonstationary (resistive) regime and in the small-capacitance
limit. In this representation, time is measured in units of the
oscillation time in the R state. As a result, the McCumber
parameter β appears:

β = (2e/h̄)I1R2C, τ = ωJt, ωJ = (2e/h̄)I1R, (9)

where ωJ is the Josephson frequency. The McCumber pa-
rameter determines the strength of the charging effects (the
larger this parameter is, the stronger the capacitive effects are).
Equations (7) and (8) in this representation take the following
form:

β
d2ϕ

dτ 2
+ dϕ

dτ
+ J (ϕ) = jdc + jac cos(ωτ + δ) + ξ (τ ), (10)

v = dϕ/dτ, (11)

where jdc/ac = Idc/ac/I1, v = V/I1R, and ω = �/ωJ . Thermal
fluctuations of the current in Eq. (10) are considered as a
white noise with correlator 〈ξ (τ )ξ (τ ′)〉 = 2θδ(τ − τ ′), where
θ = 2eT/h̄I1 = T/EJ is dimensionless temperature and
EJ = h̄I1/2e is the Josephson energy.

The second representation, which we call ε representation,
is more convenient for considering the junction behavior when
energy dissipation in the system is small and for the analysis
of the oscillations in the stationary (S) state. In this case, time
is measured in units of the oscillation time of the particle in
the potential well (see Sec. II C). In this representation, the
new parameter appears in the Josephson equations:

ε = 1/
√

β, τ̃ = ωpt, ωp =
√

2eI1/h̄C, (12)

where ωp is the plasma frequency and ε has the meaning of
the dissipation factor. In the ε representation, Eqs. (7) and (8)
take the following form:

d2ϕ

d τ̃ 2
+ ε

dϕ

d τ̃
+ J (ϕ) = jdc + jac cos(ω̃τ̃ + δ) + ξ (τ̃ ), (13)

v = εdϕ/d τ̃ , (14)

where ω̃ = �/ωp and the noise correlator is 〈ξ (τ̃ )ξ (τ̃ ′)〉 =
2θεδ(τ̃ − τ̃ ′). Equations (10), (11), and (4) [or equivalently
Eqs. (13), (14), and (4)] fully determine the CVC of the
system, that is the dependence of the average voltage on the dc
current, 〈v( jdc)〉, where . . . means time averaging and 〈. . . 〉
means averaging over thermal fluctuations.

Finally, we underline that in this paper we consider the
system in the current-source regime with jdc = const and
jac = const.

FIG. 2. (a) Potential U (ϕ) from Eq. (15) for A = 1, φ̃ = π/2,
and jdc = ±0.5. The overall potential shape and particularly the
number of minima depend on the current direction. (b) Asymmetry of
the main features of U (ϕ): oscillation frequencies at the well bottom
ωA±, curvatures of the barrier ωB±, and heights of the potential
barriers �U±.

C. Asymmetric potential

To understand the origin of the JDE in our system, we use
the mechanical analogy [2,44,70]. If we neglect the ac current
and thermal fluctuations in Eq. (10), then it takes the form of
Newton’s equation that describes the motion of a particle with
mass β in the “washboard” potential,

U (ϕ) = − jdcϕ − cos ϕ − (A/2) cos(2ϕ − φ̃), (15)

with dissipation; see Fig. 2
As shown in Fig. 2, the potential shape depends on the

current direction (sign of jdc) when A sin φ̃ �= 0 (as we will
see later this combination is typical for asymmetries). Impor-
tantly, the value of A determines the numbers of minima per
period: at A < 1/4, the potential has only one minimum per
period, while at A > 1/4, another minimum appears at certain
values of jdc.

In the presence of only one minimum per period, we define
the oscillation frequencies at the well bottoms ωA±, curva-
tures (imaginary frequencies) of the barriers ωB±, and barrier
heights �U±. The ‘±’ sign in subscripts indicates the branch
of the CVC (plus for jdc > 0 and minus for jdc < 0). We
measure these frequencies in units of ωp and the potential
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FIG. 3. Asymmetry of the oscillation frequencies ωA± and the
corresponding switching currents jsw± arising as a result of resonant
synchronization of internal oscillations with applied external ac irra-
diation (see Sec. IV C) at A = 0.25 and φ̃ = π/2.

barriers in units of EJ . They can be found in the case of small
amplitude of the second harmonic A � 1:

ω2
A± =

√
1 − j2

dc

(
1 ± A| jdc|3 − 2 j2

dc

1 − j2
dc

sin φ̃

)

+ 2A
(
1 − j2

dc

)
cos φ̃, (16)

ω2
B± =

√
1 − j2

dc

(
1 ± A| jdc|3 − 2 j2

dc

1 − j2
dc

sin φ̃

)

− 2A
(
1 − j2

dc

)
cos φ̃, (17)

�U± = 2 jdc arcsin jdc − π | jdc|

+ 2
√

1 − j2
dc(1 ± A| jdc| sin φ̃). (18)

Equations (16)–(18) are applicable below the critical currents,
that is when | jdc| < 1 and A � 1 − j2

dc.
The same quantities can be found at the “maximum asym-

metry point” (φ̃ = π/2 where sin φ̃ = 1) without expansion
with respect to A:

ω2
A± = ω2

B± =
√

4A(A − jdc) +
√

8A(A + jdc) + 1 − 1

× (
√

8A(A + jdc) + 1)/2
√

2A, (19)

�U± =
√

4A(A − jdc) +
√

8A(A + jdc) + 1 − 1

× (
√

8A(A + jdc) + 1 + 3)/4
√

2A − π | jdc|

+ 2 jdc arcsin

(√
8A(A + jdc) + 1 − 1

4A

)
. (20)

In the vicinity of the critical currents (� j = jc± − | jdc| �
jc±), they have the following asymptotic behavior:

�U± = uc±(� j)3/2, uc± = 4
√

2

3
√

1 ± 4A
, (21)

ωA± = ωB± = ωc±(� j)1/4, ωc± = 2(1 ± 4A)1/4. (22)

Asymmetries of the oscillation frequencies and potential bar-
riers are illustrated in Figs. 3 and 4, respectively.

FIG. 4. Asymmetry of the potential barriers �U± at A = 0.25
and φ̃ = π/2 that leads to exponentially strong asymmetry of the
CVC in the low-temperature limit.

In general, asymmetry of the potential shape leads to dif-
ferent characteristics of the “particle” motion [for example,
v( jdc)] for different motion directions.

D. Hysteresis of the CVC

In the case of finite capacitance, β �= 0, the CVC may
become hysteretic [2,44,70]. For example, consider the case
when jac = 0, T = 0, and A = 0 (without the JDE). In this
case, the CVC is symmetric and depends on the history of
current variation. Assume that initially the junction is in the
S state, 0 < jdc < jc. As the current increases, the junction
remains in the S state until the current reaches jc. At larger
currents, the junction immediately switches to the R state.
After that, as the current decreases, the junction returns to the
S state only at the retrapping current value jr � jc. As a result,
in the range jr < jdc < jc there are two possible branches (S
and R), and the system chooses one of them depending on the
history.

Similarly, hysteretic behavior occurs in the case of
A sin φ̃ �= 0 when the JDE is present in the system. The main
difference is that in this case the CVC is asymmetric, and the
hysteresis is asymmetric too, see Fig. 5. For example, two
different values of the retrapping currents are expected, jr+ �=
jr− (for the positive and negative currents, respectively).

III. ASYMMETRIC CVC

In this section, we investigate manifestations of the JDE
in the CVC of the minimal model with nonzero capacitance.
As mentioned in the previous section, when β �= 0 and
A sin φ̃ �= 0, the CVC becomes hysteretic and asymmetric.
We consider asymmetries of the characteristic features of the
CVC (critical currents jc±, retrapping currents jr±, behavior
near Ohm’s law, etc.) and discuss how capacitance affects
them.

In this section, we assume T = 0 and jac = 0 (influence of
finite T and jac on the CVC is studied in next sections). In the
β representation, the Josephson equation takes the following
form:

βϕ̈ + ϕ̇ + sin ϕ + A sin(2ϕ − φ̃) = jdc. (23)
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FIG. 5. Asymmetric CVC at A = 0.25 and φ̃ = π/2 at different
values of the McCumber parameter β. Arrows indicate switching
from the S to R state at the critical currents jc±. As capacitance
increases, the R state of the CVC becomes more symmetric and the
JDE weakens.

Alternatively, in the ε representation we have

ϕ̈ + εϕ̇ + sin ϕ + A sin(2ϕ − φ̃) = jdc. (24)

In each case, the dot implies derivative with respect to the
corresponding time (τ and τ̃ in the β and ε representation,
respectively).

A. Asymmetry of the critical currents

Asymmetry of the critical currents jc+ �= jc− does not de-
pend on the value of the McCumber parameter and is presents
even at β = 0. This asymmetry was studied in detail for differ-
ent setups in Refs. [47–49,53,61]. Here, we briefly summarize
the results for the minimal model. In this model, the diode
efficiency

η = | jc+ − jc−|
jc+ + jc−

(25)

reaches its maximum possible value

η = 1/3, (26)

at A = 0.5 and φ̃ = π/2, with jc+ = 1.5 and jc− = 0.75.
In the limit of small amplitude of the second harmonic

A � 1, the critical currents are given by the following expres-
sion:

jc± = 1 ± A sin φ̃. (27)

They can also be found at arbitrary A value at φ̃ = π/2:

jc+ = 1 + A, jc− =
{

1 − A, A < 1/4,

A + 1/8A, A > 1/4.
(28)

B. Suppression of the JDE by capacitance

We now investigate how capacitance affects the strength
of the JDE. Figure 5 demonstrates the numerically calculated
CVC of the minimal model at different β. As the McCumber
parameter β increases, asymmetries of the CVC in the R state
get suppressed.

In addition to numerical calculations, we investigate the
suppression of the JDE by capacitance analytically. We work

in the β representation and consider the large-capacitance
limit near Ohm’s law where v = jdc [accurate conditions of
applicability will be written below, see Eqs. (32) and (33)]. We
calculate the first nontrivial asymmetric correction to Ohm’s
law using the “harmonic perturbation theory” (HPT) [48].

Generally, the solution can be represented in the form

ϕ(τ ) = vτ +
∞∑

n=1

(an cos nvτ + bn sin nvτ ), (29)

where we take into account that the slope of the linearly
growing term is exactly equal to v, while the remaining part
oscillates with frequencies that are multiples of v (which is a
manifestation of the voltage periodicity with period 2π/v).

While representation (29) is general, its parameters an,
bn, and v have to be determined from a complicated sys-
tem of equations, which can be done only numerically. At
the same time, in certain limiting cases, they can be found
perturbatively:

ϕ(τ ) = jdcτ +
∞∑

k=1

ϕ(k), v = jdc +
∞∑

k=1

v(k),

an =
∞∑

k=1

a(k)
n , bn =

∞∑
k=1

b(k)
n , (30)

where ϕ(k), a(k)
n , b(k)

n , and v(k) are contributions to the phase
across junction, amplitudes of the nth harmonics, and the
average voltage in the kth order of the perturbation theory. The
HPT that we employ below is thus a way to find perturbative
expansions (30) for the parameters of the general harmonic
representation (29).

Substituting Eq. (29) into Eq. (23), expanding the resulting
equation into the Fourier series, and solving it, we obtain the
CVC, see Appendix A 1. Note that we do not expand cos nvτ

and sin nvτ into series. In this method, corrections to the av-
erage voltage v(k) appear only due to constant (nonoscillating)
terms generated by products of trigonometrical functions. The
resulting CVC takes the following form:

v = jdc − 4 + A2

8β2 j3
dc

+ 16 + A2 + 24Aβ cos φ̃

32β4 j5
dc

− 15A sin φ̃

16β4 j6
dc

.

(31)

The last term in Eq. (31) is asymmetric [breaks the symmetry
v( jdc) �= −v(− jdc)] and thus demonstrates the JDE. From
Eq. (31) we see that the actual parameters of the perturbation
theory in the large-capacitance limit are

β j2
dc 	 1, β jdc 	 1, (32)

and the expansion Eq. (30) is carried out according to these
parameters.

The same approach can be used to determine the CVC in
the small-capacitance limit:

jdc 	 1, β jdc � 1. (33)

In both the cases of Eqs. (32) and (33), we assume that the
CVC is approximately given by Ohm’s law (this is guaranteed
by the first condition in each of the equations). At the same
time, the second condition in Eqs. (32) and (33) determines
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relative importance of the inertial and dissipative terms in
Eq. (23). In the large-capacitance limit, corrections from the
inertial term dominates over corrections from the dissipative
term, and vice versa in the small-capacitance limit.

Asymmetric CVC in the small-capacitance limit was cal-
culated in Ref. [48] at β = 0. The leading asymmetric term at
β �= 0 is the same. The result is

v = jdc − (1 + A2)/2 jdc − 3A sin(φ̃)/4 j2
dc. (34)

Comparing Eqs. (31) and (34), we can conclude that asym-
metry of the CVC in the large-capacitance limit lies in higher
orders of the perturbation theory than in the small-capacitance
limit.

C. Asymmetry of the retrapping currents

In the previous subsections, we considered the manifesta-
tions of the JDE that are present even in the zero-capacitance
limit (asymmetry of the critical currents and the CVC near
Ohm’s law). We now investigate asymmetry of the retrapping
currents which have nontrivial values jr �= jc only at β �= 0.
Analytical results can be obtained in the limit of weak dissi-
pation, ε � 1, and small amplitude of the second harmonic,
A � 1. The ε representation is convenient in this case. We
introduce the energy of the system E and rewrite Eq. (13) as

E [ϕ(t )] = E0 − ε

∫ ϕ

ϕin

ϕ̇dϕ, (35)

E0 =
(

ϕ̇2

2
+ U (ϕ)

)∣∣∣∣
ϕin

, (36)

where E0 and ϕin are the initial energy and phase, respectively.
The last term in Eq. (35) determines the energy dissipation,
and it is parametrically small in this limiting case [ jr± is also
small, see Eq. (37)].

We therefore employ the perturbation theory with respect
to ε � 1 [71]. The retrapping current corresponds to the sep-
aratrix trajectory ϕ(t ) that connects two neighboring maxima
of the potential (ϕmax and ϕmax ± 2π ), starts with zero initial
velocity and in the final state has the same energy as in the
initial one:

jr± = ε

2π

∫ ϕmax±2π

ϕmax

ϕ̇dϕ. (37)

The perturbation theory implies the following steps. First, we
determine the locations of the potential maxima ϕmax and
the corresponding energies E0. Second, we express ϕ̇ from
Eq. (35), in which we replace ϕ̇ in the dissipative term by its
value obtained at the previous step. Finally, we substitute the
resulting expression for ϕ̇ to Eq. (37) and obtain jr±.

As a result of this procedure (see Appendix B), the retrap-
ping currents take the following form:

jr± = 4ε

π

(
1 − A cos φ̃

3
± (π2 − 6)εA sin φ̃

3π

)
. (38)

The first term here coincides with the well-known result
[2,44,71] for the retrapping current in the large-capacitance
limit at A = 0.

The last term in Eq. (38) is asymmetric. Note that asym-
metry jr+ �= jr− is in contrast to Ref. [69] where the regime

of extremely low dissipation was considered, ε → 0. At the
same time, asymmetry is proportional to ε2, hence it arises in
the second order of the perturbation theory.

To describe asymmetry of the retrapping currents at arbi-
trary ε and A, we perform numerical calculations. The results
are shown in Figs. 6 and 7. Asymmetry of the retrapping
currents depends both on A and ε, as expected. In the case
of strong dissipation, ε 	 1, the retrapping currents coincide
with the critical currents. On the contrary, in the weak-
dissipation limit, ε � 1, the retrapping currents by themselves
are small, jr± � jc±; at the same time, asymmetry of their
values is weak [see Eq. (38)]. The most interesting case is
thus the regime of moderate dissipation, ε ∼ 1, in which case
the retrapping currents differ from the critical ones (at least,
in one current direction) while the asymmetry is still strong.

D. Single-sided hysteresis

In the RCSJ model with sinusoidal CPR, the CVC is known
to become hysteretic (with jr �= jc) only if the dissipation
factor is less than a critical value, ε � εcr ≈ 1.18 [2,70,72].
In the minimal model, this critical value depends on the
current direction, εcr+ �= εcr−. This implies that in the range
max(εcr+, εcr−) > ε > min(εcr+, εcr−), the hysteresis of the
CVC is present in only one current direction, while in the op-
posite direction the CVC is nonhysteretic [61]. We call
this behavior “single-sided hysteresis.” Manifestations of the
single-sided hysteresis are illustrated in Figs. 5 and 6. In
Fig. 5, the green curve has a nontrivial value of the retrapping
current jr+ �= jc+ in the positive current direction and the
trivial value in the negative direction, jr− = jc−. In Fig. 6(b),
switching from the hysteretic behavior for both the current
directions to the single-sided hysteresis and back is demon-
strated as A grows.

To investigate the single-sided hysteresis in more detail,
we numerically calculate εcr±(A), the dependence of the dis-
sipation factor on A for the positive and negative currents.
The results shown in Fig. 8 demonstrate that it is possible to
observe the single-sided hysteresis in our system in a wide
range of ε (or β).

IV. JDE IN THE PRESENCE
OF MICROWAVE IRRADIATION

In this section, we discuss the CVC of the asymmetric
SQUID under the influence of external microwave irradiation
that generates the ac current jac �= 0. Except in Sec. IV C, we
consider the zero-temperature limit, corresponding to ξ = 0
in the Josephson equation in the β representation:

βϕ̈ + ϕ̇ + sin ϕ + A sin(2ϕ − φ̃) = jdc + jac cos(ωτ + δ).

(39)

A. Asymmetry of the critical currents at jac �= 0

First, we investigate the effect of external ac irradiation on
asymmetry of the critical currents.
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FIG. 6. Dependence of the retrapping currents jr± on the amplitude of the second harmonic A at φ̃ = π/2 and at different values of the
dissipation factor ε = 1/

√
β. Dashed lines demonstrate the jc±(A) dependence. (a) Retrapping currents jr±(A) at ε = 5. In this case, for both

current directions and within the selected range of A the CVC is nonhysteretic and jr± = jc±. (b) Retrapping currents jr±(A) at ε = 1. In this
case, for positive current direction the CVC is always hysteretic. At the same time, the CVC for the negative direction can be both hysteretic
and nonhysteretic depending on the A value. In the range A ≈ (0.25, 0.75), the dashed blue line coincides with the thick blue line, which
indicates nonhysteretic CVC. Out of this range, the lines do not coincide, which means that the CVC is hysteretic. (c) Retrapping currents
jr±(A) at ε = 0.4. In this case, for both current directions the CVC is hysteretic and jr± < jc±. Dashed lines are outside the shown range.

1. Quasistationary regime

At ω � ωA±( jdc)/
√

β (the period of oscillations in the S
state is much smaller than the period of the ac signal) and
ω � 1 (the relaxation time is much smaller than the period of
the ac signal), the ac current changes very slowly compared
to the junction dynamics. The phase dynamics is then quasis-
tationary and the ac and dc currents simply add up [2,60,73].
In this case, the critical currents jmwc± under external irradia-
tion are given by the simple expression

jmwc± = jc± − jac. (40)

As a result, the diode efficiency in the presence of microwave
irradiation is given by

ηmw = | jmwc+ − jmwc−|
jmwc+ + jmwc−

= | jc+ − jc−|
jc+ + jc− − 2 jac

. (41)

FIG. 7. Asymmetry of the retrapping currents jr± at φ̃ = π/2
and A = 0.25 for arbitrary values of the dissipation factor ε = 1/

√
β.

Dashed lines demonstrate the values of the critical currents jc±. The
CVC for each current direction changes its behavior from hysteretic
(at small ε) to nonhysteretic (at large ε) when the thick line crosses
the dashed line with the same color. The crossing points are different
for different current directions.

The diode efficiency can thus be enhanced by external mi-
crowave irradiation [60]. It reaches its maximum possible
value ηmw = 1 at jac = min( jc+, jc−).

2. Zero-voltage step

In the case of nonquasistationary dynamics, to obtain an-
alytical results, we assume that J (ϕ) � jac and employ the
perturbation theory with respect to this smallness:

ϕ(τ ) = ϕ(0)(τ ) + ϕ(1)(τ ) + . . . . (42)

We consider the S state with v = 0, which means that ϕ does
not grow in time.

In the zeroth order of the perturbation theory, the supercur-
rent and the corresponding dc current in the S state are small.
The phase dynamics is then determined only by the external
ac current:

βϕ̈(0) + ϕ̇(0) = jac cos(ωτ + δ),

ϕ(0)(τ ) = φ0 + a sin(ωτ + δ̃),

FIG. 8. Asymmetric dependence of the critical dissipation factor
εcr = 1/

√
βcr that determines the boundaries between the hysteretic

( jr �= jc) and nonhysteretic ( jr = jc) CVCs, on A for different cur-
rent directions at φ̃ = π/2. The region between the red and blue
curves is the region of the single-sided hysteresis, where the CVC
is hysteretic only in the positive current direction.
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a = jac

ω
√

(βω)2 + 1
, δ̃ = δ + arctan βω, (43)

where φ0 is the (arbitrary) initial phase across the junction.
Substituting ϕ(0)(τ ) from Eq. (43) to the supercurrent term

in Eq. (39), in the first order of the perturbation theory we
obtain

βϕ̈(1) + ϕ̇(1) + J (τ ) = jdc, (44)

J (τ ) =
∞∑

n=−∞
(−1)n[Jn(a) sin(φ0 − nωτ − nδ̃)

+ AJn(2a) sin(2φ0 − nωτ − nδ̃ − φ̃)], (45)

where Jn are the Bessel functions of the first kind.
Oscillating terms in Eq. (44) are responsible for oscillating

corrections to the phase, while the nonoscillating term [time-
averaged current J (τ )] corresponds to the dc current in the S
state, jdc = J (τ ). This value depends on φ0, and the critical
currents in this case are thus given by

jmwc± = |max(min)
φ0

[J0(a) sin φ0 + AJ0(2a) sin(2φ0 − φ̃)]|.
(46)

As we see, Eq. (46) reproduces the result for the critical cur-
rents in the minimal model but with renormalized amplitudes
of the first and second Josephson harmonics. Equation (46)
is applicable if Jn(a) and Jn(a)/ω are small, for example at
jac 	 1 and ω ∼ 1.

Despite decreased absolute values of the critical currents,
in this case the diode efficiency can still reach its maximum
possible value for the minimal model ηmw = 1/3 at φ̃ = π/2
if AJ0(2a) = J0(a)/2.

B. Asymmetry of the Shapiro steps

It is well known fact that the external current can synchro-
nize with the internal oscillations of the phase. As a result,
the peculiarities called the Shapiro steps arise in the R state
in the CVC at v = (n/k)ω, where n and k are integers [2,74].
Below, we analytically investigate asymmetry of the height
of the first Shapiro steps j±1 (corresponding to v = ±ω) in
the two limiting cases: (i) large-capacitance limit [defined by
Eq. (32)] at jac � 1, and (ii) small-capacitance limit [defined
by Eq. (33)].

We employ a slight modification of the HPT described in
Sec. III B. The difference is that we now find the dependence
jdc(v) instead of v( jdc). We use the expansion (29) with

ϕ(τ ) = vτ +
∞∑

k=1

ϕ(k), jdc = v +
∞∑

k=1

j (k)
dc . (47)

Employing the modified HPT (see Appendix A 2), we obtain
asymmetries of the heights of the first Shapiro steps in the
small-capacitance limit:

j±1 = jsym ± jasym,

jsym = jac/ω, jasym = 9 jacA sin(φ̃)/4ω2. (48)

FIG. 9. Asymmetric Shapiro steps in the R state at A = 0.5,
jac = 0.5, φ̃ = π/2, and different β. Asymmetry of the main integer
(v = ±1) and half-integer (v = ±1/2) Shapiro steps are most clearly
visible. As β increases, this asymmetry weakens. This is a manifes-
tation of the suppression of the JDE in the R state by capacitance.

Similarly, we find the same quantities in the large-capacitance
limit:

jsym = jac/βω2, jasym = 45 jacA sin(φ̃)/16β3ω5. (49)

In both results (48) and (49), we keep only the leading
terms in the symmetric, jsym, and asymmetric, jasym, parts
of the step heights. Similar to Sec. III B, asymmetry in the
large-capacitance limit arises in a higher order of the HPT than
in the small-capacitance limit.

In addition to the analytical results for the first steps, we
perform numerical calculations to study asymmetry of all pos-
sible steps. The results are shown in Fig. 9. Both the heights
of the Shapiro steps and asymmetry of their heights decrease
as β increases. This is a manifestation of the suppression of
the JDE in the R state by capacitance.

C. Asymmetry of the resonance frequencies

As discussed in Sec. II C, the general form of the potential
and, in particular, the oscillation frequency at the well bottom
ωA±, depend on the current direction. When the system is
exposed to external microwave radiation, in addition to the
appearance of the Shapiro steps in the R state, resonances
in the S state might occur at ω̃ 
 ωA±( jdc). We confine our
attention to the regime of weak perturbation of the Brownian
motion of the particle in the potential well at T �= 0 by weak
ac signal [73,75,76]. In this regime, the Josephson resonance
manifests itself in the great enhancement (with factors γ±)
of the thermal escape rates from the S to R state under the
influence of weak ac irradiation in junctions with high quality
factors Q±( jdc) = ωA±( jdc)ωpRC 	 1:

�mw±( jdc, ω̃) = γ±( jdc, ω̃)�±( jdc), (50)

where �± are the thermal escape rates in the absence of ac
irradiation (see Sec. V B) and �mw± are the modified escape
rates in its presence. Due to difference in the oscillation
frequencies ωA±( jdc), the enhancement factors for different
current directions would differ: γ+( jdc, ω̃) �= γ−( jdc, ω̃).
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Moreover, it is known that the junction can actually switch
from the S to R state at currents below the critical values due
to thermal escapes of the particle from the potential well. It is
possible to find the distribution of the corresponding switch-
ing currents. In the absence of external ac irradiation, this
distribution has peaks at the thermal switching current values.
In the presence of microwave irradiation, new peaks appear in
the switching current distribution due to the Josephson plasma
resonances in the S state [73,77]. Positions of these peaks can
be found from the resonance condition ω̃ = ωA±( jsw±). In the
case of small second harmonic, from Eq. (16) we obtain

jsw± =
√

1 − ω̃4 + 2Aω̃6 cos φ̃√
1 − ω̃4

± A(1 + 2ω̃4) sin φ̃, (51)

which is applicable not too close to the critical currents, i.e.,
when Eq. (16) is applicable and A � 1 − ω̃4.

Asymmetry of the switching currents is illustrated in Fig. 3.
The values of the switching currents can significantly differ
for different current directions in the presence of ac irradiation
due to the difference in the oscillation frequencies at the well
bottom.

V. THERMAL FLUCTUATIONS

In previous sections, we mainly discussed the CVC in the
absence of thermal fluctuations (i.e., at T = 0). In this section,
we take them into account in Eq. (10) in the simplified case of
jac = 0:

βϕ̈ + ϕ̇ + sin ϕ + A sin(2ϕ − φ̃) = jdc + ξ (τ ). (52)

The presence of thermal fluctuations causes escapes of the
particle from the potential minima due to thermal activation.
This results in nonzero escape rates from the S state and leads
to modification of the CVC [2,44,64,65]. We consider to the
low-temperature limit in the sense that θ � �U±. In this case,
the escape time is much larger than the sliding time after
thermal activation.

A. CVC at T �= 0 in the zero-capacitance limit

We start our consideration from the zero-capacitance limit
β = 0. In this case, it is possible to obtain analytical ex-
pression for asymmetric CVC in the asymmetric potential
of general form Uasym(ϕ) = − jdcϕ − ∑∞

k=1 Ak cos(kϕ − φ̃k ).
For convenience, below in this section we assume that jdc > 0,
and then to describe the negative branch of the CVC we use
the symmetry

v(− jdc, φ̃k ) = −v( jdc,−φ̃k ). (53)

Technically, this method implies considering two potentials
with jdc > 0 (for the positive and negative branch of the CVC,
respectively):

Uasym±(ϕ) = − jdcϕ −
∞∑

k=1

Ak cos(kϕ ∓ φ̃k ), jdc > 0.

(54)

Below, we apply the method by Ambegaokar and Halperin
[65]. We follow the standard procedure and convert Eq. (52)
to the Fokker-Planck equation for the stationary distribution

function σst (ϕ):

∂σst/∂ϕ + (1/θ )(∂Uasym±/∂ϕ)σst = Q±, (55)

where Q±( jdc) is a constant, which should be found from
the normalization condition and periodicity of the distribution
function:∫ 2π

0
σst (ϕ)dϕ = 1, σst (ϕ + 2π ) = σst (ϕ). (56)

In this language, the expressions for the average voltages
in the positive and negative branches are given by

〈v±( jdc)〉 = ±2πθQ±( jdc). (57)

The expression for Q± can be obtained by taking the
integral

1

Q±
= −

∫ 2π

0
dϕ exp

(
−Uasym±(ϕ)

θ

)

×
∫ ∞

ϕ

dx exp

(
Uasym±(x)

θ

)
. (58)

To calculate the integrals in Eq. (58), we employ the
saddle-point approximation. In the low-temperature limit, the
maxima and minima of the potential are well separated from
each other, and both the integrals are determined by small
vicinities of the potential extrema (minima for the external
integral and maxima for the internal one). We denote the lo-
cations of those maxima and minima as ϕmax ±,m and ϕmin ±,n,
respectively. The result of integration can then be written as

1

Q±
=

∑
n,m

′
√

2πθ

|U ′′
asym±(ϕmin ±,n)|

√
2πθ

|U ′′
asym±(ϕmax ±,m)|

× exp[−Uasym±(ϕmin ±,n) + Uasym±(ϕmax ±,m)], (59)

where the prime sign indicates that at fixed n the sum is taken
over such m that satisfy the following relation: ϕmax ±,m >

ϕmin ±,n (so that the corresponding maxima are within the inte-
gration region of the internal integral). Equations (57) and (59)
determine the asymmetric CVC due to thermal fluctuations for
arbitrary asymmetric potential in the low-temperature limit at
currents below the critical one.

In the minimal model, in the presence of only one mini-
mum per period,1 one can rewrite the general expression (59)
in notations of Sec. II C and obtain the asymmetric CVC in
the following form:

〈v±( jdc)〉 = ±2ωA±ωB± sinh

(
jdcπ

θ

)
exp

(−�U± − jdcπ

θ

)
.

(60)

At φ̃ = π/2, the quantities entering Eq. (60) are given by
Eqs. (19) and (20). At the same time, the most interesting case
θ � A � 1, in which, despite the smallness of the second har-
monic, asymmetry is exponentially strong, can be considered
at arbitrary φ̃. In this limit, we keep only the leading term of

1In the presence of two nontrivial minima per period, the stochastic
dynamics become more complicated due to interplay between differ-
ent S states of the junction [78].
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the first order with respect to A and obtain (for more details,
see Appendix C)

〈v±( jdc)〉 = ± 2 sinh

(
jdcπ

θ

)√
1 − j2

dc

×
(

1 ± A jdc
3 − 2 j2

dc

1 − j2
dc

sin φ̃

)

× exp

{
− 2

θ

[√
1 − j2

dc(1 ± A jdc sin φ̃)

+ jdc arcsin jdc
]}

. (61)

Note that in Eqs. (60) and (61), asymmetric terms appear
both in the prefactor (due to asymmetry of the oscillation
frequencies ωA± and ωB±) and in the exponent (due to asym-
metry of the potential barrier heights �U±). As expected,
asymmetry of the potential barriers leads to exponentially
strong asymmetry of the CVC.

B. Escape rates at nonzero capacitance

At β �= 0, there is no simple expression for the CVC in
the presence of thermal fluctuations. However, it is possible to
obtain analytical results for the escape rates from a potential
well of the arbitrary asymmetric potential Uasym± defined by
Eq. (54), under the assumption that it has only one maximum
ϕmax ± and minimum ϕmin ± per period. As in the previous
subsection, we employ the Fokker-Planck equation for the
distribution function σ (ϕ, v, τ̃ ), which in this case is nonsta-
tionary:

∂σ

∂τ̃
= − ∂

∂ϕ
(pσ ) + ∂

∂ p

[(
∂Uasym±

∂ϕ
+ εp

)
σ

]
+ εθ

∂2σ

∂ p2
,

(62)

where we use the ε representation for the ease of comparison
with previous works [66,69].

Thermal fluctuations stimulate escapes of the particle from
the potential minima. The states in the potential wells thus
become metastable with finite lifetimes τl±. This lifetime (in
units of ω−1

p ) was found in Refs. [66,79,80] in a broad range
of the McCumber parameters, from the overdamped to under-
damped regimes. Generalizing this results to the case of the
asymmetric potential, we obtain

τ̃−1
l± = ωA±

2πωB±

[(
ε2

4
+ ω2

B±

)1/2

− ε

2

]
exp

(
−�U±

θ

)
,

(63)

where ωA± is the oscillation frequency at the well bottom,
ωB± is the imaginary oscillation frequency of the barrier, and
�U± is the height of the potential barrier of Uasym±. In the
minimal model, these quantities are given by Eqs. (16)–(20).
The general expression (63) can be simplified in two limiting
cases:

τ̃−1
l± =

{
ωA±ωB±

2πε
exp

(−�U±
θ

)
, ε 	 1,

ωA±
2π

exp
(−�U±

θ

)
, ε � 1.

(64)

The above results (63) and (64) are applicable if the dis-
sipation is not extremely small: ε 	 ωB±θ/�U± [80]. When
this condition is violated, it is necessary to take into account
the depopulation below the barrier top. In the very-large-
capacitance limit (so-called extremely underdamped regime),
the switching rate was found in Refs. [69,79]:

τ̃−1
l± = εωA±S±

2πθ
exp

(
−�U±

θ

)
, ε � θ/S±. (65)

Here, S± = S±( jdc) is the action of the separatrix motion
corresponding to the trajectory that starts at a maximum ϕmax ±
with zero initial velocity and after one oscillation in the po-
tential well [with turning point ϕtp± such that Uasym±(ϕtp±) =
Uasym±(ϕmax ±)] returns back to the maximum:

S± = 2
∫ ϕmax ±

ϕtp±

√
2[Uasym±(ϕmax ±) − Uasym±(ϕ)]dϕ. (66)

Note that in all the cases above, asymmetric lifetime can be
written in the following form:

τ̃−1
l± = ω̃att±

2π
exp

(
−�U±

θ

)
, (67)

where ω̃att± is the effective attempt frequency of the thermal
activation process.

To emphasize the physical meaning of τ̃−1
l± , we note that it

is nothing but the escape rates �± entering Eq. (50). These
rates are also related to the average voltage by the simple
expression in the overdamped regime:

〈v±( jdc)〉 = ±2πε(�± − �←
± ), �←

± = exp

(
−2 jdcπ

θ

)
�±.

(68)

Here, �± is the escape rate from the potential well to the right
while �←

± is the escape rate to the left. Equation (68) demon-
strates the equivalence between Eqs. (60) and (64). Note that
Eqs. (60) and (64) are written in different representations and
this is why the ε factor appears in Eq. (68).

C. Asymmetry of the switching currents

Escapes from the potential wells due to thermal activation
processes lead to switching from the S to R state of the
junction at switching currents jsw± < jc±. Assume that the
current is initially zero, and then it slowly increases linearly
with time [44]:

jdc(τ̃ ) = aτ̃ , aτ̃l± � 1. (69)

The probabilities to remain in the potential well when the
current reaches the value jdc are then given by

σsw±( jdc) = exp

[
−1

a

∫ jdc

0
τ̃−1

l± ( j)d j

]
. (70)

In the low-temperature limit, due to the fast decrease of the
exponential in τ̃l±, the probability at this value takes the form

σsw±( jsw±) = exp

(
−θ

a
τ̃−1

l± ( jsw±)

∣∣∣∣d�U±( jdc)

d jdc

∣∣∣∣
−1

jdc= jsw±

)
.

(71)
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Following Ref. [69], we define the switching currents from the
relation

σsw±( jsw±) = 1/2. (72)

The implicit expression for the switching currents then takes
the form

a ln 2 = θ τ̃−1
l± ( jsw±)

∣∣∣∣d�U±( jdc)

d jdc

∣∣∣∣
−1

jdc= jsw±
. (73)

In the most general case, the lifetime is given by Eq. (67) and
the equation for the switching current takes the form

�U±( jsw±)

θ
= ln

(
θω̃att±( jsw)

2πa ln 2

∣∣∣∣d�U±( jdc)

d jdc

∣∣∣∣
−1

jdc= jsw±

)
. (74)

To obtain explicit expressions for the switching currents, one
should substitute here asymptotic expressions for �U± and
ω̃att± and then solve the resulting transcendental equation.

We apply this general scheme [44,69] to our minimal
model at A < 1/4 and φ̃ = π/2 for the overdamped and un-
derdamped regimes. Since we consider the low-temperature
limit, the switching current is close to the critical one. We
therefore use the asymptotic expressions (21) and (22) for the
barrier heights and oscillation frequencies, obtaining

jsw± = jc± −

⎧⎪⎪⎨
⎪⎪⎩

(
θ

uc±
ln 2θω2

c±
(6π ln 2)εauc±

)2/3
, ε 	 1,(

θ
uc±

ln 2θωc±
(6π ln 2)auc±

)2/3
, ε � 1,

(75)

where jc± is given by Eq. (28). Note that the expression for
the switching current at ε � 1 is obtained with logarithmic
accuracy, while at ε 	 1 the number under the logarithm is
exact.

As expected, in the overdamped regime the difference be-
tween the switching and critical currents is smaller than the
same quantity in the underdamped regime (due to the factor
ε in the denominator). For completeness, we note that, as
shown in Ref. [69], in the extremely underdamped regime, one
finds jc± − jsw± ∼ (θ ln εS±)2/3. This asymptotic behavior
replaces our result jc± − jsw± ∼ (θ ln θ )2/3 that was obtained
in the underdamped regime.

VI. DISCUSSION

The minimal model of a Josephson element demonstrat-
ing the JDE is given by Eq. (4). It can be realized, e.g., in
asymmetric higher-harmonic SQUIDs. The higher harmonics
of the single-junction CPR naturally arise in various types of
JJs with not too low transparencies of their weak-link regions
[44,50]. At the same time, we note that effective CPR of this
and actually arbitrary form can be engineered with the help
of purely sinusoidal JJs connected in series and possibly in
multiloop configurations [53,56,61,81].

As discussed in Sec. IV, when the system is exposed to
small external ac current, the Josephson plasma resonances
in junctions with ε � 1 arise when the external frequency
satisfies the resonance condition ω̃ 
 ωA±( jdc). In this case,
the ac current can greatly enhance the thermal escape rate for
one current direction (which satisfies the resonance condition)
and thus stimulate switching from the S to R state, while

leaving the system in the S state for the opposite current
direction (which does not satisfy the resonance condition). As
shown in Fig. 3, this behavior occurs at | jdc| < jc±. Therefore,
this makes it possible to expand the operational range of the
Josephson diodes when external ac current is applied. To this
end, it is preferable to apply frequency ω̃ in resonance with
the largest of the two values ωA±. This is due to the fact
that the enhancement factor of thermal escapes γ (ω̃) rapidly
decreases at ω̃ > ωA( jdc) [73,75,76]. The above procedure
helps avoid parasitic switching from the S to R state in the
opposite current direction.

The single-sided hysteresis also provides new opportuni-
ties for tuning the JDE, as illustrated in Fig. 10. Assume that
the negative part of the CVC has only one stable branch at a
fixed current value: the S state at | jdc| < jc− and the R state at
| jdc| > jc−, while the positive part of the CVC has two stable
branches in the range jr+ < jdc < jc+. In the latter case, it
is possible to switch the system from the S to R state (or
backward from the R to S state) by applying the rectangu-
lar current pulse with appropriate amplitude jpulse and with
pulse duration τ � ω−1

J . The amplitude jpulse should satisfy
the condition jdc + jpulse > jc+ for switching from the S to
R state [see Fig. 10(a)] and the condition jdc − jpulse < jr+
for switching from the R to S state [see Fig. 10(b)]. At the
same time, this pulse does not change the junction state in the
case of negative jdc [due to the absence of hysteresis in this
direction, see Fig. 10(c)]. As a result, the above procedure
makes it possible to change the diode state in one current
direction while leaving the diode state intact in the opposite
current direction.

Overall, our consideration demonstrates new possibilities
for Josephson diode control in the case of finite capacitance
of the junctions. For manipulation of the diode state by reso-
nant ac current, junctions with β 	 1 are preferable. At the
same time, junctions with β ∼ 1 open up additional ways
of control in the regime of single-sided hysteresis while still
being protected from strong suppression of the JDE by capac-
itance in the R state (generally, asymmetry of the CVC in the
nonstationary regime weakens as β increases). Finally, in the
context of thermal fluctuations, junctions with β � 1 could
be more practical because they are more stable with respect to
temperature. For example, due to jr = jc it is easier to return
them to the S state after a thermal escape.

VII. CONCLUSIONS

In the framework of the RCSJ model, we have theoretically
investigated the influence of junction capacitance and ther-
mal fluctuations on the JDE in asymmetric higher-harmonic
SQUIDs. In this model, the strength of charging and tempera-
ture effects is determined by the McCumber parameter β and
dimensionless temperature θ . In our work, we mainly focused
on the minimal model in which the CPR of the SQUID in
addition to the first Josephson harmonic also has the second
one with dimensionless amplitude A and phase shift φ̃, see
Eq. (4). We employed a combination of various perturbative
methods, explicit analytical calculations, and numerical anal-
ysis to describe asymmetries of the CVC. Efficiency of the
JDE and its polarity are determined by φ̃ and thus depend on
the external magnetic flux �.
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FIG. 10. Control of the diode state by applying the rectangular current pulse with amplitude jpulse and duration τ � ω−1
J in the regime

of single-sided hystersis: (a) and (b) hysteretic CVC for positive current direction, and (c) nonhysteretic CVC for negative current direction.
Colored points represent different junction states at different moments in time: at the initial moment t (blue point), when the pulse is applied
(black point), and after the end of the pulse at t + τ (red point if the final state differs from the initial one and blue point otherwise). (a) Evolution
of the junction from the initial S state. Under the pulse action, the junction switches to the R state if jdc + jpulse > jc+. In this case, when the
pulse ends, the junction final state is on the R branch. (b) Evolution of the junction from the initial R state. Under the pulse action, the junction
switches to the S state if jdc − jpulse < jr+. In this case, when the pulse ends, the junction final state is on the S branch. (c) Evolution of the
junction from the initial S state in the nonhysteretic regime. After the pulse action, the junction returns to the initial state.

In the presence of nonzero capacitance β �= 0, the CVC of
the system may become hysteric and consist of two branches
corresponding to the R and S states. Two new qualitative
features arise in this case. One of them is asymmetry of the
retrapping currents jr± and the second one is the single-sided
hysteresis which can be observed within a certain range of β,
see Fig. 8. In this range, the system demonstrates qualitatively
different behavior for different current directions (hysteretic
CVC in one direction and nonhysteretic CVC in the opposite
one).

The oscillation frequency in the S state ωA± of such a
device depends on the current direction. This leads to asym-
metric resonances and correspondingly to different values of
the switching currents jsw± in the presence of external ac
irradiation.

At the same time, the JDE is suppressed in the R state with
increasing junction capacitance. Particularly, in the presence
of ac irradiation this phenomenon manifests itself in weaken-
ing of asymmetry of the Shapiro steps as β grows.

Thermal fluctuations at θ �= 0 lead to modifications of
the CVC due to thermal activation processes. At β = 0, in
the low-temperature limit we implemented the Ambegaokar-
Halperin method and obtained exponentially strong asym-
metry of the CVC analytically for arbitrary CPR at currents

below the critical values. At β �= 0, we calculated the
asymmetric lifetimes τ̃l± of the S states and then obtained
expressions for the thermal switching currents jsw±.
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APPENDIX A: HARMONIC PERTURBATION THEORY

Below, we demonstrate how the HPT works in calculations
of the corrections to the CVC in the large-capacitance limit
and of the heights of the first Shapiro steps in the small-
capacitance limit.

1. CVC in the large-capacitance limit

To apply the HPT in the large-capacitance limit, we repre-
sent the phase and voltage as series, see Eqs. (29) and (30).
Then, we substitute these expansions to Eq. (23), expand the
equation into the Fourier series, and solve it in the required
order of the perturbation theory assuming conditions (32).

a. First order

In the first order, we need to take into account only the first and second harmonics in the Fourier series. The expansions (29)
and (30) then take the following form:

ϕ(1)(τ ) = v(1)τ + a(1)
1 cos vτ + a(1)

2 cos 2vτ + b(1)
1 sin vτ + b(1)

2 sin 2vτ, v = jdc + v(1). (A1)

In the leading order of the HPT,

−β j2
dc

(
a(1)

1 cos vτ + 4a(1)
2 cos 2vτ + b(1)

1 sin vτ + 4b(1)
2 sin 2vτ

) = −v(1) − sin vτ − A sin(2vτ − φ̃). (A2)

Note that the condition β jdc 	 1 allows us to neglect the contributions arising from the dissipative term in Eq. (23) in this order
of the HPT.

As a result, we obtain

v(1) = 0, a(1)
1 = 0, b(1)

1 = 1/β j2
dc, a(1)

2 = −A sin(φ̃)/4β j2
dc, b(1)

2 = A cos(φ̃)/4β j2
dc. (A3)

In this order, there is no correction to the average voltage.
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b. Second order

In the second order, we need to take into account the corrections to the first and second harmonics in the Fourier series, arising
from the dissipative term, and also correction to the average voltage arising from the supercurrent term in Eq. (23):

ϕ(2)(τ ) = v(2)τ + a(2)
1 cos vτ + a(2)

2 cos 2vτ + b(2)
1 sin vτ + b(2)

2 sin 2vτ, v = jdc + v(2). (A4)

Equation (23) then takes the following form:

−β j2
dc

(
a(2)

1 cos vτ + 4a(2)
2 cos 2vτ + 9a(2)

3 cos 3vτ + 16a(2)
4 cos 4vτ + b(2)

1 sin vτ

+ 4b(2)
2 sin 2vτ + 9b(2)

3 sin 3vτ + 16b(2)
2 sin 4vτ

)
= − jdc

(−a(1)
1 sin vτ − 2a(1)

2 sin 2vτ + b(1)
1 cos vτ + 2b(1)

2 cos 2vτ
) − v(2) − (1/2)

[
a(1)

1 + 2Aa(1)
2 cos φ̃ + 2Ab(1)

2 sin φ̃
]
.

(A5)

Note that the constant (nonoscillating) corrections in Eq. (23) arise from expansion of sin ϕ + A sin(2ϕ − φ̃). These terms are
responsible for corrections to the average voltage (in this order, it is the last term in the square brackets). As a result,

a(2)
1 = 1

β2 j3
dc

, b(2)
1 = 0, a(2)

2 = A cos φ̃

8β2 j3
dc

, b(2)
2 = A sin φ̃

8β2 j3
dc

, v(2) = −a(1)
1 + 2A(a(1)

2 cos φ̃ + b(1)
2 sin φ̃)

2β j2
dc

= 0. (A6)

In this order, the corrections to the average voltage cancel each other.

c. Higher orders

Continuation of the above procedure to higher orders of the
HPT is straightforward. One should substitute the expansion
(29) into Eq. (23) in each order of the perturbation theory,
solve the resulting equation for the Fourier coefficients, and
then collect the constant terms [which appear from the expan-
sion of sin ϕ + A sin(2ϕ − φ̃)] which determine the correction
to the average voltage. As a result of this procedure, we obtain
the asymmetric CVC (31).

2. First Shapiro steps

We also employ the HPT in the presence of the ac current
to calculate asymmetry of the heights of the first Shapiro
steps v = ±ω. To this end, as mentioned in the main text, we
slightly modify the HPT. We fix the average voltage v = const
and find the corresponding current jdc(v). Technically, we
substitute the expansion (47) into Eq. (39) and then solve
the equation in the required order of the perturbation theory.
As mentioned in Sec. IV, the HPT works in the two limit-
ing cases, the large- and small-capacitance limit [defined by
Eqs. (32) and (33), respectively].

To demonstrate how the HPT works in this case, we cal-
culate the heights of the first Shapiro steps at β = 0. We
emphasize that at β �= 0, the leading asymmetric term in the
heights will be the same. Similarly, the results for the large-
capacitance limit can be obtained by this technique.

a. HPT for the first Shapiro steps at β = 0

At β = 0, the first Josephson equation (39) takes the fol-
lowing form:

ϕ̇ + sin ϕ + A sin(2ϕ − φ̃) = jdc + jac cos(ωτ + δ). (A7)

In the first order of the perturbation theory, we write

ϕ(1)(τ ) = a(1)
1 cos vτ + b(1)

1 sin vτ

+ a(1)
2 cos 2vτ + b(1)

2 sin 2vτ,

jdc = v + j (1). (A8)

Solving the resulting equation on the Fourier coefficients,

v
( − a(1)

1 sin vτ + b(1)
1 cos vτ − 2a(1)

2 sin 2vτ + 2b(1)
2 cos 2vτ

)
= j (1) + jac cos(vτ + δ) − sin vτ − A sin(2vτ − φ̃),

(A9)

we find the solution

ϕ(1) = [ jac sin(vτ + δ) + cos vτ

+ (A/2) cos(2vτ − φ̃)]/v, j (1) = 0. (A10)

In the second order of the HPT, we write

ϕ̇(2) = j (2) + ϕ(1)(τ )[cos vτ + 2A cos(2vτ − φ̃)]. (A11)

The solution of this equation takes the form

ϕ(2) = 1

24v2 [−30A sin(vτ − φ̃) − 24A jac cos(vτ − φ̃ − δ)

+ 6 jac cos(2vτ + δ) − 6 sin(2vτ )

+ 8A jac cos(3vτ + δ − φ̃)

− 3A2 sin(4vτ − 2φ̃) − 10A sin(3vτ − φ̃)], (A12)

j (2) = (1 + A2 + jac sin δ)/2v. (A13)

The first two terms in the expression (A13) produce correc-
tions to Ohm’s law, and they are present even at jac = 0. The
last term depends on jac and is responsible for the heights of
the Shapiro steps. As mentioned earlier, the initial phase δ can
be arbitrary. The last term in Eq. (A13) can thus take different
values depending on δ. As a result, one particular voltage
v = ±ω corresponds to a range of current values jdc (hence,
the step in the CVC). In the lowest order of the perturbation
theory, the heights of the first Shapiro steps are equal to jac/ω.

Continuing this procedure in the next order of the pertur-
bation theory, we obtain

j (3) = −3A sin φ̃

4v2 − 9A jac cos(φ̃ + δ)

8v2 . (A14)
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Note that both the corrections (A13) and (A14) at jac = 0
coincide with the correction to the CVC obtained in Ref. [48].
The ac-dependent correction to the current can be written in
the following form:

� j = jac

2ω

[(
1 ± 9A sin φ̃

4ω

)
sin δ ∓ 9A cos φ̃

4ω
cos δ

]
. (A15)

As a result, in the leading order of the HPT, asymmetry of the
heights of the first Shapiro steps takes form of Eq. (48). Note
that in this equation, jac and A are assumed to be small only
compared to large ω.

APPENDIX B: CALCULATION
OF THE RETRAPPING CURRENTS

Below, we calculate the retrapping currents jr± employing
the perturbation theory with respect to the small parameters
A � 1 and ε � 1. We apply the general scheme described
in Sec. III C, sequentially in each step of the perturbation
theory. For convenience, we assume jdc > 0 and find jr+. To
obtain jr−, we only need to substitute φ̃ �→ −φ̃ in the final
expression.

1. First order with respect to ε and the zeroth
order with respect to A

We start by reproducing the well-known answer for the
retrapping current in the large-capacitance limit at A = 0
(without the JDE). The expressions for ϕmax and E0 take the
form

ϕmax = −π, E0 = 1. (B1)

Due to weak dissipation (ε � 1), in this order of the perturba-
tion theory we can neglect both the dissipative term in Eq. (35)
and jr in U (ϕ). Additionally, we neglect the A term in the
potential. As a result, we obtain

ϕ̇ =
√

2(1 + cos ϕ). (B2)

From Eq. (37), we then find

jr± = ε

2π

∫ π

−π

√
2(1 + cos ϕ)dϕ = 4ε

π
. (B3)

2. First order with respect to ε and to A

Next, we consider the effect of the second harmonic on
the retrapping current in the first order of the perturbation
theory with respect to A. Corrections to ϕmax and E0 take the
following form:

ϕmax = −π − A sin φ̃, E0 = 1 − (A/2) cos φ̃. (B4)

In this order of the perturbation theory, we must take into
account the A term in U (ϕ) but can still ignore jr± and the
dissipative term in Eq. (35). As a result,

ϕ̇ =
√

2(1 + cos ϕ) + A[cos(2ϕ − φ̃) − cos φ̃], (B5)

jr± = (4ε/π )[1 − A cos(φ̃)/3]. (B6)

Equation (B6) takes into account the corrections to the retrap-
ping current in the first order with respect to A. However, the
retrapping current in this order is symmetric and, as one can
check, this will be so in any order with respect to A in the
first order with respect to ε [because in the first order of the
perturbation theory with respect to ε we neglect the dc-current
contribution in Eq. (35)]. Therefore, we need to consider the
next order of the perturbation theory to find asymmetry of the
retrapping currents jr+ �= jr−.

3. Second order with respect to ε and the first
order with respect to A

In this order, we replace jdc by its value from the previ-
ous step of the perturbation theory [Eq. (B6)] and ϕ̇ in the
dissipative term in the rhs of Eq. (35) with the value from
Eq. (B5). However, first we determine the location of the
potential maximum and the initial energy:

ϕmax = −π − A sin φ̃ − 4ε

π

(
1 + 5A cos φ̃

3

)
,

E0 = 1 − A cos φ̃

2
+ 4εA sin φ̃

π
+ 4ε

(
1 − A cos φ̃

3

)
. (B7)

After that, we calculate corrections to ϕ̇ from Eq. (35) with
ϕin = ϕmax:

ϕ̇ =
[

2(1 + cos ϕ) + A(cos(2ϕ − φ̃) − cos φ̃) + 8ε(ϕ + π )

π

(
1 − A cos φ̃

3

)

− 2ε

∫ ϕ

−π−A sin φ̃

√
2(1 + cos x) + A(cos(2x − φ̃) − cos φ̃)dx

]1/2

. (B8)

We substitute expression (B8) for ϕ̇ and expression (B7) for ϕmax to Eq. (37). After that, we expand the result to the first order
with respect to A and ε, and calculate the integrals. As a result, we obtain Eq. (38).

APPENDIX C: CALCULATION OF THE CVC AT T �= 0 IN THE ZERO-CAPACITANCE LIMIT

We use the general formula (59) assuming that θ � A � 1 and keeping only the leading terms with respect to A. We also
assume that jdc > 0 and use the general symmetry (53) to obtain the negative branch of the CVC. In this limit, the potential has
only one minimum and maximum per period. Their locations are given by

ϕmin ± = arcsin jdc − 2A jdc cos φ̃ ∓ 2A j2
dc sin φ̃√

1 − j2
dc

± A sin φ̃√
1 − j2

dc

, (C1)
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ϕmax ±,m = 2πm + π − arcsin jdc − 2A jdc cos φ̃ ± 2A j2
dc sin φ̃√

1 − j2
dc

∓ A sin φ̃√
1 − j2

dc

. (C2)

The values of the potential energy and its second derivative at the extrema are given by expressions

Uasym±(ϕmin ±) = −
√

1 − j2
dc(1 ± A jdc sin φ̃) − jdc arcsin jdc + A

(
j2
dc − 1/2

)
cos φ̃, (C3)

Uasym±(ϕmax ±,m) =
√

1 − j2
dc(1 ± A jdc sin φ̃) − π jdc(2m + 1) + jdc arcsin jdc + A

(
j2
dc − 1/2

)
cos φ̃, (C4)

U ′′
asym±(ϕmin ±) =

√
1 − j2

dc

(
1 ± A jdc

3 − 2 j2
dc

1 − j2
dc

sin φ̃

)
+ 2A

(
1 − j2

dc

)
cos φ̃, (C5)

|U ′′
asym±(ϕmax ±,m)| =

√
1 − j2

dc

(
1 ± A jdc

3 − 2 j2
dc

1 − j2
dc

sin φ̃

)
− 2A

(
1 − j2

dc

)
cos φ̃. (C6)

The sum over m in Eq. (59) can be easily calculated as a sum of a geometric progression and yields the factor [1 −
exp (−2π jdc/θ )]−1.

Substituting these expressions into Eqs. (59) and (57), we obtain Eq. (61) for the CVC.
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Chen, M. V. Milošević, H. Wang, R. Divan, J. E. Pearson, P.
Wu, F. M. Peeters, and W.-K. Kwok, Superconducting diode ef-
fect via conformal-mapped nanoholes, Nat. Commun. 12, 2703
(2021).

[18] A. Daido, Y. Ikeda, and Y. Yanase, Intrinsic superconducting
diode effect, Phys. Rev. Lett. 128, 037001 (2022).

[19] N. F. Q. Yuan and L. Fu, Supercurrent diode effect and finite-
momentum superconductors, Proc. Natl. Acad. Sci. USA 119,
e2119548119 (2022).
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