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Distinguishing nodal and nonunitary superconductivity in quasiparticle interference of an Ising
superconductor with Rashba spin-orbit coupling: The example of NbSe2
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The NbSe2 monolayer with Rashba spin-orbit coupling represents a paradigmatic example of an Ising super-
conductor on a substrate. Using a single-band model and symmetry analysis, we present general superconducting
pairing functions beyond the nearest-neighbor approximation, uncovering new types of gap functions, including
the nodal singlet gap function and the triplet nonunitary pairing function that breaks time-reversal symmetry.
The nonunitarity builts in the asymmetrical band dispersion in the superconducting quasiparticle energy spectra.
Performing exact T -matrix calculations of quasiparticle interference due to a single scalar impurity scattering,
we found that the interference patterns possess characteristic features distinguishing the type of pairing and
possible nematic and chiral symmetry violations.
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I. INTRODUCTION

Since its initial discovery [1], transition-metal dichalco-
genides (TMDC) have attracted lots of attention due to their
intriguing electronic structure [2,3] and potential application
in many subfields of solid state physics such as spintronics
[4–9], valleytronic [10], optotronics [11], and supercon-
ductivity [12–22]. TMDC crystalizing in several structural
polytypes. Trigonal prismatic polytype is a stable structure of
NbSe2 exhibiting superconductivity in its bulk form [23–26]
as well as down to a single layer limit [27,28]. Monolayer
NbSe2, unlike the bulk structure, lacks inversion symmetry,
which leads to uniquely resolved large spin split bands due
to spin-orbit coupling near the K points [29]. Due to time-
reversal symmetry, the spins are locked to momentum with
opposite directions in K and K ′ points and D3h symmetry,
restricting the spins’ orientation to the out-of-plane direc-
tion. Formed Cooper pairs break their rotational invariance
in spin space leading to the novel pairing dubbed as Ising
superconductivity [27,30]. A key consequence of the Ising
superconductivity is robustness to the in-plane magnetic fields
exceeding considerably the Pauli limit [27,28]. The Ising su-
perconductivity is attracting significant attention [31–36] as it
is considered as a principal mechanism for the giant in-plane
upper critical magnetic field also observed in the bulk layered
misfit structures [37–39].

Misfit layered compounds are a class of heterostruc-
tured materials that consist of two structurally differ-
ent materials forming an ordered superstructure [40–42].
(LaSe)1.14(NbSe2)x, x = 1, 2 are examples in which the
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alternating LaSe and NbSe2 layers form a slab stacked along
their c direction with a mismatch along the a direction [43,44].
Electronic band structure near the Fermi level reminds Nb
d-band with an offset due to strong electron doping, from
0.5 to 0.6 electron per Nb [45,46]. The misfit structures, how-
ever, represent an unprecedented platform for charge transfer
control [47] providing access to topological superconductivity
[13] due to the high tunability of chemical potential that can
also be achieved by engineering La vacancies [38] or alloying.
The Ising superconductivity has been observed in the misfit
structures [37,39,45] suggesting that the spins near the K
valleys still possess significant out-of-plane components.

Classification of the possible superconducting states ac-
cording to the irreducible representations (IR) of a given
symmetry group [48,49] can be performed without entering
into the microscopical details of the origin of the super-
conductivity [50–52]. Although there are some analyses of
the superconducting TMDC systems with broken horizontal
mirror plane symmetry [53], the full classification of the
possible pairing functions is still missing. Doping control in
the misfit structures [45], prediction that superconductivity
in gated MoS2 [54,55] can possess exotic topological pairing
[53], as well as the recent experiment [56] reporting compe-
tition between the nodal and nematic superconductivity in a
monolayer NbSe2 on a substrate motivate us to study super-
conducting pairing in the reduced C3v symmetry case. In such
cases, both inversion and horizontal mirror plane symmetry
are broken, giving rise to the Rashba spin-orbit coupling that
tilts the spins to in-plane directions.

Electronic states of TMDC materials can be well de-
scribed near the K and � valleys using a single-band effective
tight-binding model [57]. We extend the model considering
spin-flip Rashba spin-orbit coupling term modeling effect of a
substrate, gating or electron doping of the NbSe2 monolayer
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FIG. 1. Perspective view of the NbSe2 monolayer crystal struc-
ture with the considered lattice vectors a1 and a2, vertical mirror
plane σv that coincides with the yz-plane, and the main C3 axis.

in the reduced C3v symmetry and constructed all possible
superconducting pairing functions classified according to the
irreducible representations (IRs) [58–61].

The benefit of the proposed general approach is that it
allows us to go beyond the nearest-neighbor approximation
for the pairing function. Consequently, we found novel exotic
types of gap functions such as the nodal singlet and nonunitary
triplet functions. The nonunitary superconductivity can be
detected using the magnetoelectric Andreev effect [62] once
the NbSe2 is built-in a suitable van der Waals heterostructure
with a topological metal.

As quasiparticle interference (QPI) has been used to in-
vestigate superconducting gap function [63–67], we calculate
QPI for each of the superconducting pairing functions. The
obtained QPI patterns have characteristic features that allow
distinguishing between the different types of pairing.

This paper is organized as follows. In Sec. II, we study all
possible types of a superconducting pairing function in a sys-
tem with C3v symmetry. In Sec. III, we present the numerical
method for QPI calculation and define the effective quasipar-
ticle BdG model for NbSe2 using the single-band model of the
NbSe2 monolayer with Rashba spin-orbit coupling described
in Appendix A.

In Sec. IV, by assuming a single scalar impurity scattering,
we analyze QPI patterns in the first Brillouin zone for different
types of gaps. Final remarks are given in the Conclusions
section, where we also summarize the main consequences of
our results.

II. GAP FUNCTIONS CLASSIFICATION ACCORDING TO
IRREDUCIBLE REPRESENTATIONS

In this section, we will focus on the construction of the
gap function for a system with the point group symmetry
C3v. The considered geometry of the system is shown in the
Fig. 1. The group contains six elements and two generators:
three-fold rotation C3 and vertical mirror plane σv. The su-
perconducting pairing can be transformed according to the
one-dimensional (1D) irreducible representations (IR) A1 or
A2, and two-dimensional (2D) IR E , see Table I.

Antisymmetry condition on the gap parameter due to
the Pauli principle implies that in the single band case,
the orbital part of the superconducting gap must be

TABLE I. Table of one-dimensional and two-dimensional IRs of
the group C3v, where s = 0, 1, 2 represents different elements of the
subgroup C3.

IR Cs
3 σvCs

3

A1 1 1
A2 1 −1

E

(
ei 2π

3 s 0
0 e−i 2π

3 s

) (
0 e−i 2π

3 s

ei 2π
3 s 0

)

symmetric/antisymmetric to the momentum change (k →
−k) in the singlet/triplet case. The straightforward way to im-
plement such a rule is to construct the order parameter using
the even/odd function. Here, we will use the trigonometric
cos / sin function in such a way that the translation invariance
of the system is preserved, with an argument that is a scalar
function of the type k · r.

The general formulation of the singlet and triplet gap func-
tions can be written as follows:

�s
μ,m =

∑
g∈C3v

�(μ)∗
mm (g) cos (k · D+(g−1r))d0,

�t,z
μ,m =

∑
g∈C3v

�(μ)∗
mm (g) sin (k · D+(g−1r))D−(g−1)dz,

�t,xy
μ,m =

∑
g∈C3v

�(μ)∗
mm (g) sin (k · D+(g−1r))D−(g−1)d1, (1)

where μ = A1, A2, E defines the IR, m = 1, . . . , |μ|, where
|μ| is the dimension of the IR μ, and �(μ)∗

mm (g) is the conju-
gated matrix element of the IR μ for the given group element
g. The spin space is spanned conventionally by the matri-
ces dl = iσlσy forming a pseudovector under rotation in spin
space, where σl are Pauli matrices for l = x, y, z, and σ0 is
the unit matrix. The component with l = 0 corresponds to
the antisymmetric part of the singlet pairing function, while
l = x, y, z components constitute the symmetric parts of the
triplet pairing functions. Whereas the singlet gap function can
be constructed using d0 solely, in the case of the triplet pairing
the gap function should be composed using the pseudovector
d = (dx, dy, dz ). Due to the C3v symmetry, it is possible to
decouple the dz component and the (dx, dy) multiplet, leading
to two types of triplet gap functions that can be constructed,
see Eq. (1). This is the reason for choosing the dz and d1

vectors, being equal to (0, 0, dz ) and (dx, 0, 0), and belonging
to the orthogonal subspaces of the pseudovector space.

The components of the normal vector and pseudovector
transform according to the matrix representations equal to

D±(C3) =

⎛
⎜⎝

cos 2π
3 − sin 2π

3 0

sin 2π
3 cos 2π

3 0

0 0 1

⎞
⎟⎠,

D±(σv) = ±
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠.

Representation for the other group elements can be obtained
using the multiplication rule D(g1)D(g2) = D(g1g2).
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A. Singlet gaps

Here we analyze the contribution of the first neighbors
and start the construction of the gap functions using r1 = aex

as the initial coordinate that coincides with one of the Bra-
vais lattice vectors (a1 = r1 and a2 = r2). The other vectors
are obtained by using the action of the elements of the C3v

group: r2 = D+(C3)r1, r3 = D+(C2
3 )r1, r4 = D+(σv)r1, r5 =

D+(σvC3)r1, r6 = D+(σvC2
3 )r1. The k-dependent functions

that can be used to construct the gap function are vi = k · ri,
(i = 1, . . . , 6). Note that under an element g of the point
group, k → gk and f (k · r) is mapped into f ((gk) · r) =
f (k · (g−1r)).

Using the symmetrization procedure in Eq. (1), we can
construct the order parameter function with cos having vi (or
some linear combination) as an argument. The gap function in
the IR A1 has the form

�s
A1

=
[

2 cos (kxa) + 4 cos
kxa

2
cos

√
3kya

2

]
d0. (2)

Note that, around the � point, �s
A1

≈ d0, resembling the well
known s-wave gap.

The IR E is a two-dimensional representation for which
we construct the order parameter in the two-component form
�s

E = (�s
E ,1,�

s
E ,2). The components are connected by the

vertical mirror plane symmetry σv as σv�
s
E ,1 = �s

E ,2 and read

�s
E ,1/2 =

[
cos (kxa) − cos

kxa

2
cos

√
3kya

2

± i
√

3 sin
kxa

2
sin

√
3kya

2

]
d0. (3)

Close to the � point, �s
E ,1/2 ≈ (k2

x − k2
y ) ± ikxky, resembling

the d + id type of a superconducting gap.
In the first neighbor approximation, the order parameter

that transforms according to the IR A2 is zero. To obtain
a nonzero gap function one needs to consider for the sym-
metrization procedure the initial vector r → 2a1 − a2 which
corresponds to the third neighbor. The gap function then reads

�s
A2

= 2

[
sin

kxa

2
sin

3
√

3kya

2
− sin (2kxa)

× sin (
√

3kya) + sin
5kxa

2
sin

√
3kya

2

]
d0.

The leading polynomial around the � is of the sixth order
and equals k5

x ky − 10/3k3
x k3

y + kxk5
y . If we express this term

in polar coordinates, we find that �s
A2

≈ sin (6ϕ)d0, has six
nodal lines.

B. Triplet gaps

In the case of the triplet pairing, the order parameter is
composed using the pseudovector d = (dx, dy, dz ), with com-
ponents in the matrix form equal to

dx =
(−1 0

0 1

)
, dy =

(
i 0
0 i

)
, dz =

(
0 1
1 0

)
. (4)

To construct an irreducible pseudovector, we will use the
sin functions (since the gap must be antisymmetric under

the change k → −k), while we can independently use the
multiplet of (dx, dy) that transform according to the IR E
and the pseudocomponent dz, transforming according to the
representation A2. Due to their different symmetry properties,
we construct the gap function using independently dz and the
(dx, dy) multiplet.

1. Triplets gap functions with dz pseudovector component

To construct triplet gap functions for the dz pseudovector
component solely, i.e., dz = (0, 0, dz ), we consider for the
initial coordinate the vector r = a1, meaning that the nearest-
neighbor approximation is employed. The gap function for the
A1 representations equals

�t,z
A1

=
[(

cos
kxa

2
− cos

√
3kya

2

)
sin

kxa

2

]
dz. (5)

Around the � point, this gap function can be approximated as
kx(3k2

y − k2
x )dz, representing the f -wave gap.

In the case of the A2 IR, we are unable to obtain the gap
function considering the nearest neighbors, but in the case of
second-neighbors, for the initial coordinate r → a1 − a2, the
nonzero gap of the form

�t,z
A2

=
[

sin (
√

3kya) − 2 sin

√
3kya

2
cos

3kxa

2

]
dz (6)

is constructed. Around the � point, the �t,z
A2

gap function can
be approximated as ky(k2

y − 3k2
x )dz, suggesting the f -wave

character of superconducting order parameter.
For the gap function within the two-dimensional IR E

considering the first neighbors we obtain

�t,z
E ,1/2 =

[
sin (kxa) + sin

kxa

2
cos

√
3kya

2

± i
√

3 cos
kxa

2
sin

√
3kya

2

]
dz. (7)

We have additionally checked that the relation σv�
t,z
E ,1 = �t,z

E ,2
is satisfied, meaning that the constructed gap fulfills the re-
quired symmetry. In the vicinity of the zone center, the gap
can be approximated as (kx ± iky)dz, resembling the p + ip
gap.

2. Triplets gap functions with dx and dy pseudovector components

We now construct triplet gaps using the doublet (dx, dy).
The gap function transforming according to the IR A1 is zero
for nearest neighbor coordinates. The nonzero contribution we
get for r → a1 + a2 reading

�
t,xy
A1

=
[

3 cos
kxa

2
sin

√
3kya

2

]
dx −

[√
3

(
2 cos

kxa

2

+ cos

√
3kya

2

)
sin

kxa

2

]
dy. (8)

Around the � point, the gap function can be approximated
as kydx − kxdy, consistent with the previous results based on
the method of invariants [68].

In the case of the IR A2 representation, we can obtain
a nonzero gap function considering nearest-neighbors in the
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form

�
t,xy
A2

=
[(

2 cos
kxa

2
+ cos

√
3kya

2

)
sin

kxa

2

]
dx

+
[√

3 cos
kxa

2
sin

√
3kya

2

]
dy. (9)

Around the � point, the gap function �
t,xy
A2

can be ap-
proximated as kxdx + kydy, as shown in Ref. [68]. Finally,
for the two-dimensional IR E we were unable to construct
the gap function using the initial coordinate r = aex for
nearest-neighbors, since the relation σv�

t,xy
E ,1 = �

t,xy
E ,2 is not

satisfied, but rather σv�
t,xy
E ,1 = −�

t,xy
E ,2. The solution �

t,xy
E =

(�t,xy
E ,1,�

t,xy
E ,2 ) that has the correct symmetry properties with

respect to the vertical mirror symmetry can be constructed
using the initial vector r → a1 + 2a2

�
t,xy
E ,1/2 =

[
2 sin (

√
3kya) − cos

3kxa

2
sin

√
3kya

2

± i
√

3 sin
3kxa

2
cos

√
3kya

2

]
dx

+
[√

3 sin
3kxa

2
cos

√
3kya

2

∓ 3i cos
3kxa

2
sin

√
3kya

2

]
dy. (10)

Around the � point, the gap function can be approximated as
�

t,xy
E ,1/2 ≈ (kxdy + kydx ) ± i(kxdx − kydy). Furthermore, it can

be shown that the gap functions �
t,xy
E ,1/2 are nonunitary. Ac-

cording to [69], the unitary gap function �(k) satisfies the
equation

�(k)�†(k) = �2
U (k)I2, (11)

where �2
U (k) is the norm of the unitary gap, while I2 is the

identity 2 × 2 matrix. By analyzing the equation

�
t,xy
E ,1/2

(
�

t,xy
E ,1/2

)† = 4

(
A2(k) 0

0 B2(k)

)
, (12)

where

A2(k) =
[

− 2 cos
3kxa

2
sin

√
3kya

2
+ sin (

√
3kya)

]2

,

B2(k) = 3 sin2

(
3kxa

2

)
cos2

(√
3kya

2

)
+

(
cos

3kxa

2

× sin

√
3kya

2
+ sin (

√
3kya)

)2

, (13)

one could conclude that the gap functions �
t,xy
E ,1/2 are nonuni-

tary, since the functions A2(k) and B2(k) are not identically
equal. As an illustration, we expand the functions A2(k)
and B2(k) around the � point up to the k2 term and get
A2(k) ≈ 0, B2(k) ≈ 27/4(k2

x + k2
y )a2. We note that the gap

functions �
t,xy
E ,1 and �

t,xy
E ,2 could realize a certain linear combi-

nation c1�
t,xy
E ,1 + c2�

t,xy
E ,2. Assuming that c1 and c2 are arbitrary

complex numbers, the unitarity given by Eq. (11) is restored
if and only if the relation |c1|2 = |c2|2 is satisfied.

III. EFFECTIVE QUASIPARTICLE BDG
MODEL FOR NbSe2

We are interested in studying the effects of electron super-
conducting pairing in monolayer NbSe2 at a low-temperature
regime, neglecting superconducting phase fluctuation [70].
We model the superconductivity by Bogoliubov de-Gennes
(BdG) formalism with Hamiltonian

HBdG = 1

2

∑
k

�
†
kHBdG

k �k, (14)

considering the Nambu spinor, �
†
k = [c†

k↑, c†
k↓, c−k↑, c−k↓]

with fermionic creation c†
k↑ and annihilation c−k↑ opera-

tors. The 4 × 4 BdG Hamiltonian in reciprocal space HBdG
k

reads [71]

HBdG
k =

(
He(k) �(k)

�†(k) −HT
e (−k)

)
, (15)

where the electron-like Hamiltonian He(k) is the effective
tight-binding Hamiltonian

He(k) = Horb(k) + HI(k) + HR(k), (16)

with the orbital part Horb describing the dispersion of the Nb
d-band in the vicinity of the Fermi level, intrinsic HI(k) and
Rashba spin-orbit coupling HR(k) contributions. More details
of the Hamiltonian are discussed in Appendix A.

The superconducting order parameter is equal to �k =
�0�

P
r (k), where �0 is the gap amplitude, while �P

r (k) is
the k-dependent part of the gap function respecting the point
group symmetry representations, r = {A1, A2, E}, for singlet
and triplet pairings, P = {s, t}, as discussed in Sec. II. Su-
perconducting critical temperature of monolayer 1H-NbSe2 is
Tc ≈ 2 K [25,72,73]. This yields from BCS theory for super-
conducting gap �(0 K) ≈ 0.3 meV. For simplicity, in what
follows, we will use �0 = 1 meV, approaching the same or-
der of magnitude as the extracted superconducting gap.

QPI and spectral functions

QPI is extracted from scanning tunneling spectroscopy
measurements by examining the Fourier transform of dI/dV
maps of the local density of states (LDOS). It is a quite
powerful qualitative tool and represents a unique probe
of wavelengths of LDOS-modulated oscillations caused by
impurities present in the system, which in turn contains infor-
mation on the electronic structure of the pure metallic [74,75],
semiconducting [76,77] and superconducting [78,79] systems.
Calculated QPI patterns are similar to those experimentally
observed [80] and have been used for identification of the
disorder type [81], superconducting gap features such as phase
structure, sign [82,83] and orbital order [84]. It has been
shown that quasiparticle responses of many impurities possess
identical poles as a single impurity case [85,86], therefore, we
approximate the description of the elastic scattering process
on a spin-conserving single impurity. Such impurity potential
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can be written in real Nambu space as

V = vτ3 ⊗ σ0, (17)

where v is the impurity strength, τ3 is the Pauli matrix for
electron-holes and σ0 is the identity operator in the spin space.
Considering the potential V as a perturbation, the LDOS can
be calculated using the T matrix approach via Green’s func-
tion written as

G(k, k′; ω) = G0(k, k′; ω) + δG(k, k′; ω) (18)

with

δG(k, k′; ω) =
∑
k1,k2

G0(k, k1; ω)T (k1, k2; ω)G0(k2, k′; ω),

(19)

where G0(k, k′; ω) is retarded bare Green’s function and
T (k, k′; ω) is the T matrix, represent the solution of the scat-
tering problem for single scalar impurity [87], and ω = ε + iδ
is the quasiparticle energy with small lifetime broadening
(δ ≈ 0.1 meV). The spin-conserving scalar impurity V leads
to a T -matrix independent of momentum. Hence, the T matrix
reads

T (ω) = V · [1 − V · G0(ω)]−1, (20)

where G0(ω) = 1/�
∫

[ω − H0(k)]−1 is the integrated bare
Green’s function within the first Brillouin zone (BZ). We
assume in normal phase H0(k) = He(k), and for supercon-
ducting phase H0(k) = HBdG

k . As QPI describes LDOS of
scattered quasiparticle process with momentum k → k + q,
we substitute momentum k′ with k′ = k + q and integrate the
Green’s function (18) over all possible k points in the first BZ.
After the integration, the scattered quasiparticle amplitude can
be expressed as follows:

ρ(q; ω) = − 1

π
Im

{
1

�

∫
dk δG(k, k + q; ω)

}
. (21)

The QPI ρ(q; ω) can be evaluated via convolution theorem
[88], which reduces computational complexity allowing to
study of fine grid maps with small broadening.

For calculating the spectral characteristics of the band
structure, we use an imaginary part of the spectral function
defined as

A(k; ω) = − 1

π
Im{Tr[G0(k; ω) · (1 − V · G0(ω))−1]}, (22)

obtained from Eq. (18) taking k′ = k. The Bloch spectral
(density) function has interpretation as k-resolved DOS [89].

IV. QPI PATTERNS

In this section, we discuss calculated QPI maps separately
for each derived superconducting gap function �

p
r (k) within

the C3v symmetry. The QPIs were calculated for the Fermi
energy of the single-band electron Hamiltonian He(k), see
Appendix A, that effectively describes doped NbSe2 by 0.56
electrons. Such doping corresponds to a rigid shift of the
Nb d-band as reported for (LaSe)1.14(NbSe2)2 misfit using
angle-resolved photoemission spectroscopy, scanning tunnel-
ing microscopy, and quasiparticle interference measurements

FIG. 2. Calculated spectral characteristics for doped NbSe2

monolayer by 0.56 electrons in normal state. (a) Spectral function
A(k) at the Fermi level and (b) QPI map for the scalar impurity with
the potential v = −0.1 eV.

[45]. Similar electron doping was reported also for interca-
lated bulk NbSe2 by imidazole cations [90].

In Fig. 2(a), we show spectral function A(k) for the doped
NbSe2 monolayer at the Fermi level with the Fermi pockets
around the � and K points. The QPI map for the scalar impu-
rity with the potential of v = −0.1 eV is shown in Fig. 2(b).
For small q momenta centered around the � point there are
three distinct contrasts forming contours that correspond to
�-intravalley and two K-intravalley scattering processes, see
schematically sketched q vectors in the Fig. 2(a). The two
distinct K-intravalley contours reflect strong spin-orbit split
bands at the K pockets. For large scattering q we identified
K-point centered patterns: intervalley K-K ′ scattering, and
two contours corresponding to the �-K intervalley scattering
implying the effect of the spin-orbit split bands around the K
point.
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HANIŠ, MILIVOJEVIĆ, AND GMITRA PHYSICAL REVIEW B 110, 104502 (2024)

(a) (b) (c)

FIG. 3. Calculated QPI patterns in the superconducting state for singlet order parameters for (a) A1, (b) A2, and (c) E representations.
Plots in the bottom row are the zone center zooms for the corresponding top row. The inset shows the first Brillouin zone with nodal lines.
For calculations superconducting pairing amplitude �0 = 1 meV, the real part of the quasiparticle energy ω equal to Fermi energy, and the
amplitude of the scalar impurity potential v = −0.1 meV was used.

Bogoliubov quasiparticles can be viewed as Bloch states
with modulated dispersion for which an elastic scattering can
also result in modulation of the QPI signal. As the single-
particle band structure is known in our case, from the contours
at the Fermi energy, see Fig. 2, k dependence of the gap
function, and density of states (DOS), see Appendix B, we can
identify the origin of the most relevant scattering channels. We
start by examining QPI map for the singlet gap functions. In
Fig. 3(a), we show a calculated QPI map for A1 representation.
The finite smearing of the entirely gaped system, see Fig. 4(a),
leads to a QPI signal that preserves contour features discussed
for the normal case.

For A2 representation the �-intravalley and intervalley �-K
scatterings maintain significant contributions. The nodal lines
connecting �-K , �-M, and K-K ′ points lead to a rich QPI
pattern resembling a dahlia flower, see Fig. 3(b). The in-gap
states for the �s

A2
gap function, see the v-shaped DOS de-

pendence shown in Fig. 4(b), lead to the small q momenta
scattering events well-visible near the � point as an inner
corolla. It combines the small momentum scattering near the
� and K pockets resulting in 18 petals. 12 petals point to
regions in between the nodal lines, and six petals point along
the �-M lines that contain the σv plane. The dahlia-like QPI
pattern near the � point follows the sixfold symmetry of the
�s

A2
≈ sin(6ϕ)d0, see the zone center zoom in Fig. 3(b).

In the case of E representations, for the 2D multiplet
(�E ,1,�E ,2) we will restrict our analysis to the first compo-
nent �E ,1 only, representing the energetically most favorable
situation [60]. The QPI pattern for the singlet pairing shows
similar contours as the normal phase. The gap function �s

E ,1
opens a global gap at the Fermi level, see Fig. 4(c). For
the � pocket, the gap function amplitude is smaller than for
the K pockets. This leads within the finite broadening to the
enhanced � intravalley contour, and �-K intervalley contours.
The finite broadening and reduced gap amplitude is also re-
sponsible for the enhanced signal at the zone center.

We now move on to the case of the triplet pairing with dz

pseudovector component. In Fig. 5, we plot QPI map for A1,
A2, and E representations. In the case of the A1 representation
the K-intravalley and K-K ′ intervalley scatterings are sup-
pressed. Instead, we observe a significant signal enhancement
close to the � and K points, see Fig. 5(a). The enhancement
is related to the presence of the nodal lines connecting �-M
points. The � pocket serves sixfold symmetric in-gap states.
As the quasiparticles can scatter preferentially along the nodal
lines with small momentum due to finite lifetime, the QPI
signal forms a daisylike flower pattern with six petals along
the nodal lines, see the zoom near the zone center and inset
of the first BZ showing the nodal lines. The fine structure
around the K point has threefold symmetry and the sharp
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FIG. 4. Calculated density of states for NbSe2 monolayer in the electric field of 0.1 V/nm perpendicular to the monolayer plane for singlet
gap functions (a) for A1 representation; (b) for A2 representation; (c) for E representation. Density of states for triplet gap functions with
pseudovector component dz (d) for A1 representation; (e) A2 representation; (f) for E representation; and for pseudovector multiplet (dx, dy )
(g) A1 representation; (h) for A2 representation; (i) for E representation. For calculations the amplitude �0 = 10 meV was used.

QPI signal is governed by the umklapp processed combining
quasiparticles scattered off the nodal line in-gap states within
the � pocket and the states within the K pocket. The K
pocket states are gaped, residing within the coherent peaks,
but due to a finite broadening they offer a significant number
of states to absorb the scattering. The gap function for the
A2 representation possesses sixfold nodal symmetry at the �

and K points. The nodal lines connect �-K and K-K ′ points.
The nodal quasiparticles modulate the QPI map such that it
resembles a daisy flower pattern, see Fig. 5(b). The pattern is
rotated by 30◦ compared to the A1 representation. The nodal
character of the gap function �t,z

A2
enhances the QPI signal

on the apexes of the petals pointing along the nodal lines.
The nodal character of the gap function also contributes to
the small q momenta scattering forming characteristic inner
corolla near the � point. Close to the K point the threefold
inner pattern is rotated by 60◦ compared to A1 representation
signaling the contribution from the K-K ′ scatterings. We note
that the K-K ′ processes can be distinguished as they form a
clear threefold symmetric pattern while the �-K processes

capture sixfold symmetry. We note that the nodal gap func-
tions for A1 and A2 representations result in v-shaped DOS,
see Figs. 4(d) and 4(e). In Fig. 5(c), we show the QPI map for
the E representation. The gap function �t,z

E ,1 is nonzero for the
considered Fermi energy, and the global gap is opened, see
Fig. 4(f). The Bogoliubov quasiparticles are gaped, however,
the amplitude of the gap for the � pocket is larger than for the
K pockets. We note that the gap amplitude drops to zero at
the K point, therefore the inner K pocket is less gapped than
the outer one. Due to the finite broadening the K intravalley
QPI contour is enhanced as well as the K-K ′ intervalley con-
tours in comparison to the processes involving the � pocket.

Finally, we analyze the triplet pairing constructed using the
multiplet (dx, dy). The QPI patterns for the A1, A2, and E rep-
resentations are similar, containing significant contour traces
of the K intravalley and all the intervalley scattering processes
except the � intervalley scattering which is suppressed, see
Fig. 6. The suppression is due to the gap opened for the �

pocket for A1 and A2 representations, while for the E repre-
sentation the gap has a node along the �-K lines. In Figs. 4(g)
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(a) (b) (c)

FIG. 5. Calculated QPI patterns in the superconducting state for triplet order parameters with pseudovector component dz for (a) A1, (b) A2,
and (c) E representations. Plots in the bottom row correspond to the zone center zoom. The insets show the first BZ with corresponding nodal
lines. The other parameters are as in Fig. 3.

and 4(h), we plot DOS for the A1 and A2 representations.
The main coherence peaks enclose the gap opened for the �

pocket with a constant density corresponding to linearly dis-
persing in gap states around the K valleys forming the narrow
v-shaped dependence near the zero energy. DOS for E rep-
resentation shows a broad finite valued v-shaped dependence,
see Fig. 4(i), due to the gapless spectrum around K valleys
and nodal features on the � pocket along the �-K directions.
Nematicity of the singlet and triplet with dz gap functions for
the two-dimensional representation E , as well as the chiral
symmetry violation of the triplet with (dx, dy) multiple, can
be detected with QPI. We discuss it in Appendixes C and D.

V. CONCLUSION

For a single-band model of NbSe2 monolayer, Ising super-
conductor with Rashba spin-orbit coupling, we constructed
using a group theoretical approach all possible superconduct-
ing gap functions beyond the nearest-neighbor approximation
for all irreducible representations of C3v symmetry. We found
the nodal gap function for the singlet pairing in A2 representa-
tion and nonunitary triplet gap functions for two-dimensional
E representation. Our analysis indicates that the nodal and
nematic superconducting pairing, recently observed experi-
mentally can be connected to the nodal and two-dimensional
superconducting pairing functions. Breaking the unitarity is

associated with the asymmetrical band dispersion in the super-
conducting energy spectra. Calculated QPI for single scalar
impurity revealed characteristic patterns for the pairing func-
tions. The symmetry-based approach of combining group the-
oretical analysis and the QPI technique paves the way toward
understanding exotic superconductivity. We showed that QPI
can capture nematic response for the two-dimensional repre-
sentation that breaks time-reversal symmetry for singlet and
triplet with dz, and chiral symmetry violation for the triplet
with (dx, dy) multiplet. Our approach to superconducting
gap function construction can be extended to the case of an
arbitrary class of the point group symmetry [91] and the case
of multiorbital superconductivity.
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FIG. 6. Calculated QPI patterns in the superconducting state for triplet order parameters with pseudovector (dx, dy ) multiplet for (a) A1,
(b) A2, and (c) E representations. Plots in the bottom row are the zone center zooms for the corresponding top row. The other parameters are
as in Fig. 3.
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APPENDIX A: MODEL HAMITONIAN

1. Effective tight-binding model for NbSe2

To describe efficiently electronic states of NbSe2 mono-
layer we consider an effective single-orbital tight-binding
model Hamiltonian [57]. The orbital part of the Bloch
Hamiltonian up to the seventh Nb neighbor atoms reads

Horb(k) = ε0 + 2t1(cos 2α + 2 cos α cos β )

+ 2t2(cos 2β + 2 cos 3α cos β )

+ 2t3(cos 4α + 2 cos 2α cos 2β )

+ 4t4(cos α cos 3β + cos 4α cos 2β

+ cos 5α cos β )

+ 2t5(cos 6α + 2 cos 3α cos 3β )

+ 2t6(cos 2β + 2 cos 3α cos β )

+ 4t7(cos 7α cos β + cos 5α cos 3β

+ cos 2α cos 4β ), (A1)

where α = kxa/2, β = √
3kya/2, a is the lattice constant, kx

and ky are components of the wave vectors in Cartesian frame,
ε0 is the energy offset of the corresponding to the chemical

TABLE II. Fitting parameters of the single-orbital band model
of NbSe2. Besides the energy offset ε0, seven hopping parameters ti,
i = 1, . . . , 7, model the spin-independent band structure. Spin-orbit
properties are described using the parameters λ

(1)/(2)
I and λ

(1)/(2)/(3)
R ,

representing the interaction strengths of the intrinsic and Rashba
spin-orbit Hamiltonian.

ε0 (meV) −346.26

t1 (meV) 33.52
t2 (meV) 97.26
t3 (meV) −2.11
t4 (meV) −13.53
t5 (meV) −10.30
t6 (meV) 3.48
t7 (meV) 1.69
λ

(1)
I (meV) 13.27

λ
(2)
I (meV) −1.94

λ
(1)
R (μeV) −9.60

λ
(2)
R (μeV) −0.29

λ
(3)
R (μeV) −4.70
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potential of the electron-doped NbSe2 layer with respect to
the isolated NbSe2 layer, and ti, i = 1, . . . , 7 are the real hop-
ping parameters. The model describes Nb d-band close to the
Fermi level. By including intrinsic SOC in accordance with
the D3h point group of the free-standing NbSe2 monolayer,
the effective d-band split and the horizontal mirror plane σh

constrains spins in the out-of-plane direction. The intrinsic
spin-orbit coupling Hamiltonian HI [57] up to the third neigh-
bor equals to

HI(k) = 2σz
(
λ

(1)
I (sin 2α − 2 sin α cos β )

+ λ
(3)
I (sin 4α − 2 sin 2α cos 2β )

)
, (A2)

where σz is the Pauli matrix, and the nonzero real parameters
λ

(1)
I and λ

(3)
I quantify the strength of the interaction in the first

and third neighbor approximation. The parameter λ
(2)
I = 0

due to vertical mirror plane symmetry.
When a monolayer of NbSe2 is placed on a substrate, the

horizontal mirror plane symmetry σh is broken, triggering the
appearance of Rashba spin-orbit due to a proximity effect by
virtue of an electrical field perpendicular to the plane. This
leads to a reduction of the D3h symmetry to C3v. The effective
Rashba spin-orbit coupling can be derived similarly as the
intrinsic counterpart. In real space, the Rashba Hamiltonian
has the following form:

HR = i
∑

l,i

λ
(l )
R

(
ez × e(l )

i

) · σ, (A3)

where λ
(l )
R are the real-valued Rashba parameters for the lth

order, ez is the unit vector in the z direction, and e(l )
i =

d(l )
i /|d(l )

i | is the normalized distance of each Nb atom from
the centered one. By performing the Fourier transform of the
Rashba Hamiltonian, we obtain the following form in the k
space

HR(k) = i
∑

l,i

λ
(l )
R eik·d(l )

i
(
ez × e(l )

i

) · σ. (A4)

Next, we consider contributions up to the third neighbors,
obtaining

HR(k) = 2λ
(1)
R (

√
3 cos α sin βσx − f (α, β )σy)

+ 2λ
(2)
R ((sin 2β + cos 3α sin β )σx

−
√

3 sin 3α cos βσy)

+ 2λ
(3)
R (

√
3 cos 2α sin 2βσx − f (2α, 2β )σy). (A5)

where f (α, β ) = (sin 2α + sin α cos β ), σx and σy are Pauli
matrices, while λ

(1)
R , λ(2)

R , λ(3)
R are parameters to be determined

by fitting the DFT data to the model Hamiltonian Horb(k) +
HI(k) + HR(k). In addition to the Rashba parameters, the or-
bital ε0, ti, i = 1, . . . , 7 and intrinsic λ

(1)/(3)
I parameters need

to be determined.

2. Fitting the model to the DFT data

To obtain relevant parameters for the single-band model,
which is, besides the superconducting gap function, one of the
inputs in BdG Hamiltonian, we performed DFT calculations
of electronic structure for the NbSe2 monolayer. This was

FIG. 7. Calculated energy bands dispersion close to the Fermi
level along high symmetry lines in the first Brillouin zone for NbSe2

monolayer in the electric field of 0.1 V/nm perpendicular to the
monolayer plane, and the corresponding spin expectation values. The
circles are DFT date, and the solid lines are effective single orbital
tight-binding model.

done using the plane wave DFT suite QUANTUM ESPRESSO

(QE) package [92,93] using the full relativistic SG15 opti-
mized norm-conserving Vanderbilt (ONCV) pseudopotentials
[94–96], with the kinetic energy cut-offs for the wave func-
tion and charge density 45 and 180 Ry, respectively. For the
Brillouin zone sampling, a 12 × 12 × 1 k-points mesh was
considered using the Monkhorst-Pack scheme. The energy
convergence threshold for self-consistent calculation, includ-
ing the spin-orbit coupling, was sent to 10−10 Ry/bohr. A
vacuum of 15 Å in the z direction was used.

We obtained the orbital and spin-orbital hopping param-
eters by fitting the DFT data for the NbSe2 monolayer in a
perpendicular field of 0.1 V/nm. The parameters are gathered
in Table II. A comparison between the numerical band struc-
ture and spin expectation values and our model is shown in
Fig. 7.

APPENDIX B: DENSITY OF STATES

In Fig. 4, we plot the density of states (DOS) as a function
of the quasiparticle energy for the BdG Hamiltonian consid-
ering superconducting gap functions derived in Sec. II. The
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TABLE III. Nematic gap functions dependencies near the Bril-
louin zone center for different phase angles.

ϕ π/4 π/2 3π/4

�s
E (ϕ)/d0 k2

x − k2
y (kx − iky )2 ikxky

�t,z
E (ϕ)/dz kx (kx − iky ) iky

energy dependencies were calculated using the linear tetrahe-
dron method with 8192 × 8192 k-point sampling of the first
BZ. We consider �0 = 10 meV in order to reduce the compu-
tational complexity in terms of k-sampling. We note that the
overall qualitative dependencies of the DOS are unaffected
when compared to �0 = 1 meV. For the singlet pairing the
gap has finite value for A1 and E representations, see Figs. 4(a)
and 4(c). The K pocket states form the gap coherence peaks
for the A1 representation, while for the E the peaks originate
from the � pocket. For the A2 representation the nodal line
character of the gap function results in a v-shape dependence,
see Fig. 4(b).

For the triplet pairing with dz pseudovector component the
gap functions for A1 and A2 representations show the v-shape

gap, see Figs. 4(d) and 4(e). For the E representation the
global gap is open with coherence peaks originating from the
K pocket.

The triplet pairing with (dx, dy) multiplet shows similar
v-shaped DOS for the gap functions for the A1 and A2, see
Figs. 4(g) and 4(h). In the case of the E representation, see
Fig. 4(i), the DOS is finite with a rather broad v-shape depen-
dence around the zero energy.

APPENDIX C: NEMATICITY RESPONSE IN QPI

The gap functions for the two-dimensional representation
E in singlet and triplet pairing lead to a nematic phase with
a global gap. This pairing type belongs to the chiral topo-
logical class [97]. Any combination of the form �P

E (ϕ) =
cos(ϕ)�P

E ,1 + sin(ϕ)�P
E ,2 follows the irreducible representa-

tion and can be detected by the QPI. The gap functions in
the lowest order in momentum in the vicinity of the Brillouin
zone center are listed in Table III. The ϕ rotates the gap
functions where for the singlet pairing one recognizes the
rotated d + id gap, while for the triplet with dz pseudovector,
it rotates the p + ip type gap. In Fig. 8, we plot the QPI
patterns for the singlet and triplet with dz, P = {s, (t, z)} and

FIG. 8. Calculated QPI patterns in the superconducting state for E representation for different phase angles. Singlet pairing (a) for ϕ =
π/4, (b) π/2, and (c) 3π/4. Triplet pairing with pseudovector dz (d) for ϕ = π/4, (e) π/2, and (f) 3π/4. The other parameters are as
in Fig. 3.
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TABLE IV. Symmetries of the �
t,xy
E gap function for different

phase angles ϕ.

�
t,xy
E unitary chiral

C3v
ϕ−→ C1 0 0

C3v
ϕ∈(3π/4+nπ )−−−−−−−→ C1 1 1

C3v
ϕ∈(π/4+nπ )−−−−−−→ C1v 1 1

phase angle ϕ = {π/4, π/2, 3π/4}. In case of �t,z
E (π/4) the

QPI pattern resembles py-like orbital for the small q. This can
be understood as the gap function having reduced amplitude
for kx  0 allowing due to the finite lifetime of quasiparticles
an enhanced scattering along the qy. Similarly one explains
other calculated QPI patterns.

APPENDIX D: CHIRAL SYMMETRY RESPONSE IN QPI

As discussed in Sec. II B 2, the triplet �
t,xy
E gap func-

tion is nonunitary except for the special phase angles ϕ.
In Table IV, we list the symmetry properties of the �

t,xy
E

gap function. The C3v symmetry is reduced to C1 for ϕ ∈
3π/4 + nπ and to C1v for ϕ ∈ π/4 + nπ , where n is the
integer. Along with the unitarity of the �

t,xy
E gap func-

tion, the chiral symmetry of the BdG quasiparticle spectra
is recovered for the above special angles. In Fig. 9, we
plot differences of the QPI signals �ρ(q, ω) = ρ(q, ω) −
ρ(q,−ω) for �

t,xy
E and energy ω = 0.07 eV that falls to the

spectral gap opened between electron and hole spin down
quasiparticle bands near the K points. The nonzero signal
of the �ρ(q, ω) demonstrates the chiral symmetry violation
of the BdG quasiparticle spectra. For the case of ϕ = 0,
Fig. 9(a), the signal preserves the threefold symmetry, while
for the ϕ = π/3, Fig. 9(b), the pattern breaks the threefold
symmetry.

FIG. 9. Calculated difference of the QPI patterns �ρ(q, ω) =
ρ(q, ω) − ρ(q,−ω) in the superconducting triplet state for E repre-
sentation with pseudovector (dx, dy ) multiplet for �0 = 10 meV and
ω = 0.07 eV. (a) phase angle ϕ = 0 and (b) π/3.

[1] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically
thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett.
105, 136805 (2010).

[2] E. S. Kadantsev and P. Hawrylak, Electronic structure of a
single MoS2 monolayer, Solid State Commun. 152, 909 (2012).

[3] E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón, and F.
Guinea, Tight-binding model and direct-gap/indirect-gap tran-
sition in single-layer and multilayer MoS2, Phys. Rev. B 88,
075409 (2013).

[4] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlögl, Giant
spin-orbit-induced spin splitting in two-dimensional transition-
metal dichalcogenide semiconductors, Phys. Rev. B 84, 153402
(2011).

[5] A. Kormányos, V. Zólyomi, N. D. Drummond, P. Rakyta, G.
Burkard, and V. I. Fal’ko, Monolayer MoS2: Trigonal warping,
the � valley, and spin-orbit coupling effects, Phys. Rev. B 88,
045416 (2013).

[6] L. Sun, J. Yan, D. Zhan, L. Liu, H. Hu, H. Li, B. K. Tay,
J.-L. Kuo, C.-C. Huang, D. W. Hewak, P. S. Lee, and Z. X.
Shen, Spin-orbit splitting in single-layer MoS2 revealed by
triply resonant Raman scattering, Phys. Rev. Lett. 111, 126801
(2013).
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