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Chiral Stoner magnetism in Dirac bands
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Stoner magnetism in bands endowed with Berry curvature is shown to be influenced by the coupling between
spin-chirality density s · (∂xs × ∂ys) and Berry’s orbital magnetization. The key effect is that carriers moving
in the presence of a spin texture see it as a source of a geometric magnetic field coupled to the carrier’s
orbital motion through a spin-dependent Aharonov-Bohm effect. This interaction was recently predicted to
enable chiral magnons propagating along system boundaries. Here we show that it also favors chiral spin
textures such as skyrmions—the topologically protected objects with particle-like properties, stabilized in the
ground state. Unlike previously studied systems, here skyrmion textures can arise in the absence of microscopic
spin-dependent interactions such as spin-orbit coupling or Zeeman coupling. The threshold for Stoner instability
is found to soften, rendering chiral spin-ordered phases accessible under realistic conditions. We present a
detailed analysis of the chiral effect for Bernal bilayer graphene and discuss the unique properties of skyrmion
textures in graphene multilayers.
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The advent of electron systems hosting topological flat
bands and strong interactions [1–5] raises fascinating ques-
tions about the impact of Berry curvature on many-body
physics. Recent work has focused on graphene multilayers
such as moiré graphene [6–12], where flat bands emerge when
the moiré twist angle is tuned to a magic value [4]. Addi-
tionally, research has explored field-biased non-moiré bilayers
and trilayers [13–17], systems in which bands are flattened by
a transverse electric field [18]. The small kinetic energy of
carriers in flattened bands and the strong electron interactions
characteristic of graphene create a setting in which a variety of
ordered many-body phases can be realized and explored. The
wide variety of observed orders, including cascades of mag-
netic phases polarized in isospin (spin and valley) alongside
the insulating and superconducting phases, prompts seeking
new interactions and previously unknown many-body orders
in these systems.

With this motivation, here we consider itinerant magnetic
metals with spontaneously spin-polarized carriers in bands
equipped with Berry curvature. We find that such systems
possess a geometric coupling of the orbital and spin degrees
of freedom that favors nonzero spin chirality s · (∂1s × ∂2s),
where s(x) is the spin density and ∂1,2 are spatial derivatives.
Such geometric coupling, enabled by Berry curvature and
electron exchange interactions, is allowed to exist by general
symmetry arguments. Below we develop a microscopic theory
of this effect, with a particular focus on itinerant graphene flat-
band systems in which carriers are polarized in spin and/or
valley (the 1/2-metal and 1/4-metal phases) as well as par-
tially isospin-polarized (PIP) phases. The underlying physics
can be understood as electromagnetic coupling −MB between
orbital magnetization M due to the band Berry curvature and
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the geometric magnetic field B originating from spin chirality.
From a more general point of view, it can be thought of
as an emergent spin-orbit interaction (SOI) driven by elec-
tron exchange, with the coupling strength taking a universal
value mandated by properties of the geometric phase and
topological constraints.

This geometric SOI has several implications. One is the
existence of new collective excitations—chiral magnons prop-
agating along the edges of the system [19]. These chiral spin
waves, induced by the geometric SOI, are expected to emerge
robustly in all itinerant spin-polarized phases in bands with
Berry curvature. Another implication, discussed in this paper,
is the emergence of new magnetic phases in which spins form
textures such as spin-density waves or skyrmions. Below,
after demonstrating the effect microscopically, we analyze
the stability of a uniformly polarized phase. We find that in
the presence of geometric SOI, it becomes unstable towards
formation of skyrmion textures at sufficiently low carrier den-
sities (see Fig. 1).

The interplay between orbital effects and spin degrees of
freedom is a topic that has been widely studied in mag-
netism, where microscopic spin-orbit interactions have been
used to stabilize different kinds of helical and chiral orders in
magnetic systems. Of special interest are the chiral magnetic
phases, wherein spins wrap around the Bloch sphere. Chiral
spin textures have been explored in various magnetic systems
[20,21]. In systems explored to date, chirality is typically
driven by spin-orbit interactions, such as the Dzyaloshinskii-
Moriya (DM) coupling. This interaction favors a variety
of spin textures [22], including helical spin-density waves
[23–25] and skyrmions—the seminal topologically protected
particle-like spin configurations [26]. Much less is known
about the possibility to achieve a chiral spin order in graphene-
based systems. At first sight, this may seem problematic
as staple SOI interactions that stabilize chiral magnetic or-
ders are absent or extremely weak in graphene. Indeed, in
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FIG. 1. The mean-field phase diagram for chiral magnetic order
in the quadratic Dirac model, Eqs. (4) and (6), away from charge
neutrality at D = 0. Transition between uniformly spin-polarized and
unpolarized phases is first-order, occurring on a straight line in the
n-D plane given by Eq. (42). Transition between skyrmion phase and
uniformly polarized phase is second order, with skyrmion density
vanishing at the phase boundary given by Eq. (53). Phase boundaries
are found by focusing on spin polarization in one valley and ignoring
valley ordering (see text).

noncentrosymmetric magnets—the bulk chiral magnetic met-
als [27–32] and magnetic layers [33,34]—skyrmions are
stabilized by the DM coupling governed by the microscopic
spin-orbit interactions [20,22]. However, the microscopic SOI
in graphene is usually negligible compared to other energy
scales [35]. Likewise, the mechanisms that utilize frustration
[36–38] are not found in graphene systems. Yet, as will be
demonstrated below, the geometric SOI originating from the
interplay of a band curvature and spin polarization can mimic
some of the physics emerging from the conventional SOI. In
particular, it favors chiral spin orders without requiring inter-
actions breaking SU(2) spin-rotation symmetry, microscopic
SOI or frustrations. These effects provide an alternative route
to phases with helical and chiral spin order. The geometric
SOI effect therefore provides an appealing route to phases
with chiral spin order, such as skyrmion crystals and liquids.

I. SYMMETRY OF THE CHIRAL EFFECT

The quantity that will be central to our discussion is the
chirality density, or topological density, of a spin texture s(x)
defined as a scalar triple product

�(x) = 1
2εμνs(x) · (∂μs(x) × ∂νs(x)), (1)

where εμν a 2 × 2 antisymmetric tensor. This quantity, which
characterizes spin density twisting in the texture, has several
properties mandated by symmetry. First, despite being a func-
tion of angles, which cannot be reduced to a function of the
modulus |s|, chirality is invariant under SU(2) spin rotations.
Second, it is odd under time-reversal and spin-reversal oper-
ations, t → −t and s → −s. The SU(2) symmetry property
suggests that chirality could emerge from the standard spin-

exchange interaction that obeys SU(2) symmetry. However,
being odd under time- and spin-reversal symmetries excludes
this quantity from basic models of magnetism such as the
Heisenberg model and its extensions. Yet, as we will see, this
quantity is required by symmetry for magnetism in bands with
Berry curvature.

Specifically, despite its exotic symmetry properties, this
quantity appears naturally in the problem of itinerant spin
magnetism in Dirac bands such as those found in graphene
multilayers, moiré [4,6,39] and non-moiré [18,40]. In these
systems carriers reside in valleys K and K ′ that are mapped
to one another under time-reversal symmetry. at the same
time, the band dispersion and interactions in each valley
individually are not constrained by time- and spin-reversal
symmetries. As a result, the symmetry constraints for the
quantities such as chirality are relaxed. Allowed by the sym-
metries of the microscopic Hamiltonian, these quantities must
be included in the theoretical description of the magnetic
order. Furthermore, the analysis described below, which links
these quantities to geometric gauge fields, predicts a universal
value of the coupling constant that is large enough to signifi-
cantly alter the physics of the ordered phase. As we will see,
the interaction proportional to the chirality density in Eq. (1)
can lower the threshold for Stoner instability and stabilize
chiral spin textures in the ordered phase. Figure 1 illustrates
this for a quadratic Dirac band model of field-biased bilayer
graphene (BBG) analyzed below.

The effect responsible for this behavior arises from the
coupling between orbital magnetization due to k-space Berry
curvature of Dirac carriers and chirality density of position-
dependent spin polarization, described as

δF =
∫

d2x
∑

i=K,K ′
−(Mi,+ − Mi,−)bi(x), (2)

where Mi,± is the orbital magnetization of the majority-spin
and minority-spin carriers in valleys K and K ′ [see Eq. (35)].
This interaction can be viewed as an extension of the basic
electromagnetic coupling of a magnetic moment and external
field, E = −M · B, where the “magnetic field” bi(x) is defined
as topological density of spin texture in each valley multiplied
by the flux quantum φ0,

bi(x) = φ0

4π
si · (∂1si × ∂2si ), φ0 = hc/e, (3)

with si(x) the unit-vector field representing spin polariza-
tion of carriers in valleys i = K, K ′. The quantity bi(x)
represents a geometric “magnetic field” associated with the
spin-dependent (geometric or chiral) Aharonov-Bohm effect.
This effect originates from the fundamental properties of spin
textures si(x) in which the position-dependent quantization
axis along which carrier spins are polarized is, in general,
allowed to twist in space. Spins of carriers moving through a
texture and coupled to it by exchange undergo adiabatic spin
rotation, which leads to geometric phase and magnetic field
bi(x) associated with the Aharonov-Bohm effect due to this
phase. The magnetic field originates from carrier movement
through the texture, is coupled to orbital degrees of freedom
of carriers, leading to the −	Mibi coupling to orbital magne-
tization of carriers appearing in Eq. (2).
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Since Mi describes orbital magnetization whereas bi is a
property of spin degrees of freedom, the interaction in Eq. (2)
can be viewed as an emergent spin-orbit coupling effect that
originates from spin exchange and does not rely on a mi-
croscopic spin-orbital coupling. To understand the symmetry
properties of this interaction, it is instructive to compare it to
the atomic spin-orbital interaction (SOI) E ∼ L · S. The SOI
locks spin polarization s to the orbital angular momentum
vector L. As a result, it is not invariant under SU(2) spin ro-
tations. To the contrary, the chiral interaction originates from
microscopic SU(2)-invariant spin exchange interactions, and
is therefore invariant under spin rotations. Indeed, both quan-
tities featured in Eq. (2)—the direct-space geometric phase,
which gives rise to bi(x), and momentum-space Berry cur-
vature responsible for Mi,± are SU(2)-invariant. As a result,
perhaps somewhat unexpectedly, the chiral interaction in Eq.
(2) is also invariant under spin rotations. This is a high sym-
metry which is not expected for interactions originating from
a microscopic SOI but is completely natural for geometric SOI
considered here.

Furthermore, the interaction in Eq. (2) also respects dis-
crete symmetries of BBG, including the time-reversal and
mirror symmetries. Indeed, the time-reversal symmetry maps
sK to −sK ′ , therefore it maps bK to −bK ′ . Simultaneously,
the orbital magnetization MK is mapped to −MK ′ . Conse-
quently, Eq. (2) is invariant under time-reversal symmetry.
Likewise, the mirror symmetry maps MK to −MK ′ , whereas
bK is mapped to −bK ′ . Indeed, taking for example the mir-
ror lying in yz plane, the gradient components (∂1, ∂2) are
mapped to (−∂1, ∂2), leaving the chirality density in Eq. (1)
unchanged. Consequently, Eq. (2) respects mirror symmetry.
Same conclusion applies to the other two mirrors as they are
equivalent to the yz mirror up to a C3 rotation.

We note that in this reasoning, due to the absence of
microscopic SOI, the spin and orbital degrees of freedom
are decoupled and we do not need to account for the mir-
ror symmetry action on spin degrees of freedom. However,
it is straightforward to show that the conclusion would re-
main the same if we accounted for mirror symmetry action
on spin. Indeed, the yz mirror maps sK = (sx

K , sy
K , sz

K ) to
(sx

K ′,−sy
K ′ ,−sz

K ′ ), which leaves the chiral density invariant.
Further, we note parenthetically that the C2 symmetry that
interchanges the top and bottom graphene layers is broken
in the systems of interest due to the presence of a transverse
electric field. This is a crucial condition for the system to host
the chiral coupling because otherwise (in the presence of the
C2 symmetry) the orbital magnetization would not be allowed
by symmetry and must vanish.

This discussion demonstrates that the interaction given in
Eq. (2) follows the form allowed by symmetry. This symmetry
property has two implications. First, while the interaction
in Eq. (2) obeys the continuous spin-rotation symmetry as
well as the discrete time-reversal and mirror symmetries,
these symmetries may be broken in the system ground state,
either together or individually, leading to a variety of broken-
symmetry phases. Indeed, as illustrated by Fig. 1, this is what
happens in the system of interest. Second, all interactions of
the form allowed by symmetry are expected to be supported
by a generic realistic Hamiltonian. Therefore, the details of
the microscopic derivation presented below notwithstanding,

all conclusions of our analysis can be justified based on sym-
metry grounds alone. This makes the results of the analysis
presented below applicable broadly, being valid outside the
specific assumptions under which the analysis will be carried
out. Likewise, from the symmetry point of view, the properties
of electron bands in rhombohedral multilayer graphene are the
same as those in BBG. Therefore, the analysis carried out for
BBG is applicable to a wider variety of multilayer graphene
systems, such as rhombohedral-stacked trilayer, tetralayer and
pentalayer graphene.

It is also worth noting that the chiral interaction that
stabilizes skyrmions in our theory is distinct from various
effects considered in the literature. In particular, skyrmions
in isospin-polarized moiré graphene flat bands have been
invoked to predict exotic superconductivity [41,42]. The
mechanism that stabilizes skyrmions in these papers is an
isospin extension of quantum Hall ferromagnet physics, in
which skyrmions emerge in Landau levels spin-split by ex-
change interactions [21,43–45]. Skyrmions of this type have
been predicted [46,47] and recently observed [48,49] in
graphene at high magnetic fields.

II. ITINERANT MAGNETISM IN A BAND
WITH BERRY CURVATURE

Here, we discuss Stoner magnetism in a graphene bilayer
Dirac band. This analysis will set the stage for deriving micro-
scopically the interaction between spin-chirality and orbital
magnetization enabled by Berry curvature, Eq. (2). This will
be achieved by perturbation theory expansion in gradients of
spatially varying spin polarization, assumed to be weak. Our
starting point is a fully SU(2)-invariant Hamiltonian involving
a single-particle Hamiltonian and electron-electron interac-
tions, but not involving any microscopic SOI,

H = H0 + Hint. (4)

We take the single-particle part H0 to be a quadratic Dirac
Hamiltonian of a Bernal-stacked graphene bilayer

H0 =
∑
η,p

c†
η,pHη(p)cη,p (5)

where Hη(p) is a 2 × 2 Hamiltonian

Hη(p) =
(

D (p1−iηp2 )2

2m
(p1+iηp2 )2

2m −D

)
. (6)

Here, η = ±1 for the valleys K and K ′; the quantities cη,p,
c†
η,p are spinors with the A and B sublattice components and

the ordinary spin-1/2 components. The Hamiltonian Hη(p)
possesses particle-hole symmetry, with the effects of particle-
hole asymmetry and trigonal warping ignored for simplicity.
Incorporating these terms later or generalizing to other Dirac
band types would be straightforward. Estimates for realistic
parameter values are provided in Sec. VII [see discussion
beneath Eq. (53)].

Next, we consider the electron-electron interaction. For
simplicity, we focus on the intravalley spin exchange and
ignore the exchange interaction between electrons in val-
leys K and K ′. The inter-valley processes are expected to
be weak as they involve a large momentum transfer, and
are therefore subleading to the intra-valley processes. Indeed,
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the electron-electron interaction predominantly arises from
Coulomb interaction, which decreases as 1/k as a function of
the momentum transfer k. Restricting the exchange interaction
to electrons in the same valley, we introduce a spin-exchange
coupling of the form

Hint = −1

2

∑
η,k

U (k) : sηα (k)sηα (−k) : . (7)

Here the exchange interaction is written in terms of spin
density sηα (k) = ∑

p c†
η,p+kσαcη,p with Pauli matrices σα

representing ordinary spin-1/2 variables, α = 1, 2, 3. Micro-
scopically, the spin-exchange coupling originates from the
Coulomb interaction. However, directly starting from micro-
scopic interactions will significantly complicate the analysis.
Here, to illustrate the physics of interest within a simplest
formulation, we replace the microscopic exchange interaction
with a toy-model dependence

U (k) = U0e−k2ξ 2
, (8)

where ξ is a correlation lengthscale.
Equivalently, the spin-exchange Hamiltonian given in

Eq. (7) can be written in coordinate representation as

Hint =
∑

η

−1

2

∑
x,x′

U (x − x′) : sηα (x)sηα (x′) :, (9)

with a nonlocal spin-spin interaction

U (x − x′) = 4πU0ξ
−2e−(x−x′ )2/4ξ 2

(10)

normalized to
∫

d2xU (x) = U0. As we will see, tuning the
interaction radius ξ provides a convenient knob for studying
the spin-polarized phase, analyzing fluctuations and charting
the phase diagram of skyrmion textures.

In our model, given by Eqs. (6) and (7), the electrons in two
valleys are decoupled. Therefore, in the analysis below we can
consider the K valley alone. It should be noted that in reality
the electrons in valleys K and K ′ also interact through a direct
density-density interaction (the Hartree energy). However, we
do not need to include this interaction in the model because
this term only gives a charging energy that determines the
total electron density. As such, it does not affect the spin
polarization in each valley, which is quantity of interest.

III. MEAN-FIELD THEORY FOR SPIN TEXTURES

To describe spin textures, we perform a mean-field anal-
ysis in which the field describing ensemble-averaged spin
polarization is allowed to vary in space. Since the exchange
interactions are predominantly intravalley it will be sufficient
to carry out the analysis for an individual valley and consider
the role of valley degrees of freedom later. The Hubbard-
Stratonovich (HS) transformation is carried out using an
ordering field h(x) with both the modulus and orientation

being position-dependent,

exp

(∫
dt

∑
k

U (k)

2
sk · s−k

)

=
∫

D[h] exp

(∫
dt

∑
k

hk(t ) · s−k − hk(t )h−k(t )

2U (k)

)
,

(11)

where D[h] = ∏
k,t dhk(t ). Here we introduced Fourier har-

monics of the HS field and spin density hk = ∫
d2xh(x)e−ikx,

sk = ∫
d2xs(x)e−ikx. Integrating out fermions and assuming

a time-independent h(x), we obtain the free energy with a
nonlocal h(x)h(x′) interaction

F = Tr log [iω − H (p) − hα (x)σα] +
∑

k

hkh−k

2U (k)
, (12)

where, for conciseness, the chemical potential μ is incorpo-
rated in H and Tr denotes

∑
x

∫ dωd2 p
(2π )3 Tr 2×2. Equation (12)

is an exact result for the fermion partition function, with no
approximations made, which is applicable for any position-
dependent ordering field h(x).

In this framework, the behavior of the states with uniform
polarization and those with a general space- and time-
dependent h(x, t ) can be compared on equal footing. The
saddle point condition δF = 0 yields a time-independent h =
|h|, which is nothing but the Stoner mean-field value

h = U (0)(n+ − n−)/2, (13)

where n+ and n− are local densities of carriers with spins
parallel and antiparallel to local spin quantization axis h(x).
We will call these spin species the majority and the minority
spins, respectively. When the system is fully polarized, the
mean field equals h = U (0)n/2.

Next, we consider weakly inhomogeneous h(x). The term
−hα (x)σα describes electron spins coupled to a spin tex-
ture with a position-dependent magnetization polarized along
the unit vector s(x) = h(x)/h, where |h(x)| = h. We therefore
write h(x) = h0 + δh(x), where δh(x) ⊥ h0, and approximate
the dependence of the free energy on δh(x) as a second-order
functional derivative

δF = F [h(x)] − F [h0] =
∑

k

1

2

∂2F

∂hk∂h−k
δhkδh−k, (14)

where F [h0] is the free energy evaluated for spatially uni-
form h(x). Expanding the logarithmic term in the free energy
[Eq. (12)] in δh(x) to second order yields

δF =
∑

k

1

2
χ±(k)δhk · δh−k + δhk · δh−k

2U (k)
, (15)

where χ±(k) is the Lindhard function of spin-polarized Fermi
sea.

This result can be used to evaluate spin stiffness. In do-
ing so, we expect that the k = 0 contributions of χ±(k) and
1/U (k) cancel out, since only the spatially varying part of
h(x) contributes to the energy of a weakly inhomogeneous
symmetry-broken state (as required by Goldstone’s theorem)
[50]. Accordingly, we consider the dependence F vs. δhk
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assuming that the local spin-quantization axis is slowly vary-
ing, ξ∂μSα � 1. This is the case when large spin stiffness
makes the short-wavelength fluctuations in h(x) costly and,
therefore, weak. Expanding in k at second order, U −1(k) ≈
U −1(0)(1 + k2ξ 2), χ±(k) ≈ χ±(0) + ak2, gives the depen-
dence of the free energy on δhk,

δF =
∑

k

1

2

(
χ±(0) + ak2 + 1 + k2ξ 2

U (0)

)
δh−kδhk. (16)

Taking into account that χ±(k) is evaluated for the spin-
polarized state, we confirm that k = 0 contributions cancel out
owing to the Stoner mean-field relation, Eq. (13). This yields
the gradient expansion

δF =
∑

x

1

2
J (∂μSα )2, J = ξ 2h2

U (0)
+ ah2. (17)

This result indicates that the spin-stiffness parameter J is
dominated by U (k) expansion to order k2 when the correlation
length ξ is large. For a contact interaction the stiffness is
dominated by Lindhard function expansion. For a realistic
short-range interaction, both contributions to stiffness are ex-
pected to be equally important.

The value and sign of a are sensitive to the details of the
band structure and may potentially result in a negative spin
stiffness J . To ensure that J remains positive, we focus here
on the large-ξ regime where ξ 2 � aU (0). In this case, the
stiffness value is dominated by the first term in Eq. (17),

J ≈ ξ 2h2

U (0)
. (18)

The positivity of J is crucial because otherwise, a spin-density
wave pattern would emerge, rendering the approach relying on
perturbation theory around the uniform saddle point invalid.

IV. SPIN-DEPENDENT GEOMETRIC MAGNETIC FIELD

Next, we extend the mean-field framework to describe
spin textures. This can be done by considering the spatial
dependence of the spin-polarization field h(x). In this section,
we show that the spin texture generates a geometric spin-
dependent magnetic field b(x) given by Eq. (3), which couples
to electrons as described in Eq. (2).

We first give a heuristic argument for the origin of
the field b(x). Microscopically, it arises from the adiabatic
spin-rotation effect for spins of electrons moving through a
long-period spin texture to which they are coupled by ex-
change interaction. The spin rotation describes evolution of
an electron spin being locked to the local spin-quantization
axis and tracking it along the electron trajectory. In the adia-
batic regime, the effect can be described by a spin-dependent
geometric phase that depends on position-dependent spin
polarization in the texture. This adiabatic framework is ap-
plicable when the Stoner spin gap is large compared to
h̄v/�, where � is the characteristic spatial lengthscale of the
spin-texture modulation and v is the Fermi velocity. Berry
curvature associated with the vector potential describing this
geometric phase, defines a geometric magnetic field

b(x) = h̄c

e
ẑ · [∇x × a(x)]. (19)

Below, we derive the quantities a and b from spin-dependent
gauge fields obtained from the microscopic Hamiltonian. By
carrying out an expansion in gradients of a, assumed to be
small, we demonstrate that b equals, up to a universal factor,
to the chirality density given in Eq. (1). From this, we derive
the geometric coupling between b and electrons’ orbital mag-
netization, which is the interaction given in Eq. (2).

Next, we formally introduce a gauge field describing a
position-space Berry phase for electrons in the presence
of a slowly varying spin texture. In that we follow the
procedure developed some time ago in the literature on quan-
tum antiferromagnets and high-temperature superconductivity
[51–54] (see also [55]) and, more recently, in the literature
on frustrated magnetic systems [56–58]. Below we present a
step-by-step derivation of the gauge field picture starting with
the microscopic Hamiltonian introduced in Sec. II. In doing
so, it will be shown explicitly that a spin texture gives rise
to an effective gauge field whose flux density is associated
with the spin chirality. In our analysis below, without loss of
generality, we focus on spins in valley K and suppress the val-
ley label. A spin texture is described by a position-dependent
ordering field h(r) introduced in Sec. III through a Hubbard-
Stratonovich mean-field analysis, which we will write as

h(x) = hs(x) (20)

where s(x) is a unit-vector field, |s(x)| = 1. In what follows,
we will ignore fluctuations of the order parameter magnitude h
and focus on the fluctuations of s(x) orientation in spin space.

The first step is to perform an SU(2) spin rotation to bring
all the local spin polarization to the same orientation and,
in this way, generate a Hamiltonian that features a geomet-
ric spin-dependent gauge field. We start with a one-electron
Hamiltonian in valley K , writing it in position space,

H (r) =
(

D (p1−ip2 )2

2m
(p1+ip2 )2

2m −D

)
1S − h1Ls(r) · σ (21)

where 1S and 1L represent the identity matrices in the spin
and sublattice subspaces, respectively. In the first term, p1,2 =
−i∂1,2 (here we set h̄ = 1, restoring dimensional units later).
The second term represents the effect of a position-dependent
spin polarization arising after a Hubbard-Stratonovich trans-
formation, see Eq. (12).

The coordinate-dependent spin-rotation operator T (x) that
rotates all spins from the local polarization direction s(x) to
the +z direction is defined through

|z±〉 = T (x) |s(x)±〉. (22)

When acting with this spin rotation on the Hamiltonian in
Eq. (21), the coordinate-dependent ordering field in the term
hα (x)σα is transformed to a uniform field pointing in +z
direction,

hσ3 = T (x)hα (x)σαT †(x). (23)

However, the simplicity comes at a price: the momentum
operator in the Hamiltonian, Eq. (21), is transformed by T
to a long derivative with a 2 × 2 matrix gauge field. Namely,
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the Hamiltonian is transformed to

Hz(x) = T (x)H (x)T †(x),

=
(

D (�1−i�2 )2

2m
(�1+i�2 )2

2m −D

)
1S − h1Lσ3 (24)

where

�μ = −iT (x)∂μT †(x) = pμ + Aμ,

Aμ = −iT (x)[∂μ, T †(x)], μ = 1, 2. (25)

Here A1,2 are 2 × 2 matrices representing an SU(2) gauge
field, and the square brackets represent commutators. The
quantities Aμ can be expressed in terms of Pauli matrices,

Aμ =
∑

i=1,2,3

aμ,iσi, (26)

where the coefficients aμ,i are the scalar quantities

aμ,i(x) = 1

2
Tr (σiAμ) = − i

2
Tr (σiT (x)∂μT †(x)). (27)

This analysis, which is exact so far, simplifies in the adiabatic
regime, where all spins track the spin-up and spin-down states
in rotated basis. In this case, the off-diagonal components
aμ,1 and aμ,2 describe coupling between spin states split by
exchange. Such couplings only contribute at subleading order
since they induce off-resonant transitions between local spin-
up and spin-down states, which are weak in the adiabatic limit.
We can therefore retain only the diagonal σ3 spin components,
given by Eq. (27). This gives

�μ = pμ + aμσ3, (28)

where from now on aμ will be used as a shorthand for aμ,3.
Plugging this back to Eq. (24), and absorbing μ in Hz(p), we
have the following form of free energy

F = Tr log [iω − Hz(p + aσ3) − hσ3] + Fh (29)

where Tr denotes
∫

d2x
∑

ω,p Tr 2×2 and Fh is the spin-
stiffness energy given in Eq. (16).

The results indicate that the spin-up and spin-down elec-
trons in the rotated basis, describing the majority and minority
spin in the original basis, experience U (1) gauge fields of
opposite signs. After some algebra, which follows closely that
in Ref. [57], one finds

aμ = − 1
2 (1 − cos θ )∂μφ (30)

where θ and φ are the spherical polar and azimuthal angles
measured with respect to the z axis introduced in Eq. (22).
The geometric magnetic field b = h̄c

e ẑ · [∇ × a] is then given
by

b(x) = h̄c

e
εμν∂νaμ = h̄c

2e
εμνs · (∂μs × ∂νs), (31)

which is nothing but the chirality density given in Eq. (1). The
result in Eq. (30) indicates that the geometric phase picked up
by an electron moving in the magnetic field b(x) is equal to
1/2 of the solid angle swept by the spin-quantization axis.

So far, we have utilized the “geometric” units where h̄ = 1
and the units for p and a are inverse length. Consequently,
the geometric field b is expressed in units of inverse length
squared. It is interesting to examine how these quantities
and their relationships alter when physical units are restored,
setting the units for pμ and aμ to h̄ over length.

The relationship between �μ and pμ given in Eq. (28)
remains unchanged upon reintroducing physical h̄ units. It is
instructive to compare Eq. (28) to the canonical electromag-
netic coupling,

� = p − e

h̄c
A. (32)

Clearly, while the coupling between the geometric field a and
orbital degrees of freedom in Eq. (28) mirrors the canonical
coupling in form, the coupling strength is quite different from
that in Eq. (32). This has a number of implications. Notably,
the coupling to geometric gauge field leads to energy scales
that are independent of e and c. Therefore, these energy scales
are not small in the electromagnetic fine structure parameter
1/137. Rather, the energy scales are governed by the length-
scales describing spatial periodicity of skyrmion textures and
can be relatively large [see Eq. (56) and accompanying dis-
cussion].

V. GRADIENT EXPANSION IN a(x)

The analysis in Sec. IV establishes that the geometric mag-
netic field b = h̄c

e ẑ · [∇ × a] is perceived by electrons as a
pseudomagnetic field pointing along ẑ and coupled to orbital
degrees of freedom with an effective strength given by

b(x) = φ0

2π
�(x), (33)

where φ0 = 2π h̄c
e is the flux quantum. This relationship arises

from interpreting Eq. (31) as a magnetic field associated with
a skyrmion texture. Namely, a skyrmion texture with topolog-
ical charge

N =
∫

d2x
1

4π
εμνs · (∂μs × ∂νs), (34)

translates into N flux quanta of an effective magnetic field
seen by an electron.

This observation has direct implications for the coupling
strength of the chiral interaction given in Eqs. (2) and (3). The
appreciable strength of this coupling implies that skyrmion
textures are capable of inducing strong orbital current ef-
fects. One such effect is the anomalous Hall response. The
estimates provided above indicate that the anomalous Hall
effect generated by spin texture is equivalent to the Hall effect
induced by a large magnetic field. This behavior resembles the
behavior observed in Nd2Mo2O7 [59], where a non-coplanar
spin texture led to a significant anomalous Hall effect.

We are interested in the instability of a spatially uniform
magnetic order towards a twisted state with a nonzero gauge
field a. We therefore consider power-series expansion of the
electronic energy in Eq. (29) in small a. We neglect the
longitudinal fluctuations of h, which are gapped, focusing on
the soft angular fluctuations, δh(x) ⊥ h. For a slowly varying
unit-vector field s(x) = h/|h|, the dependence on a in the first
term of Eq. (29), hereafter referred to as F1, is of the form
given by the Peierls substitution p → p + aσ3. The expansion
in powers of a, because of the gauge covariance of the free
energy F1, must involve gauge-invariant quantities expressed
as gradients of a such as b = h̄c

e ẑ · [∇ × a]. At first order in a,
the dependence on a can be linked to orbital magnetization by
following a standard argument from electromagnetic theory.
Namely, for both the majority-spin and minority-spin carriers,
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one can write the coupling between orbital currents and geo-
metric vector potential as δH = − 1

c j · a, and then rewrite it
in terms of the geometric magnetic field given in Eq. (33) as
−Mb using ∇ × Mẑ = 1

c j and h̄c
e ẑ · [∇ × a] = b. In a similar

manner, we can write terms second order in a2 as 1
2χb2, where

χ is the orbital diamagnetic susceptibility. Putting everything
together we arrive at

F1 =
∑
±

E± − 	Mb + 1

2
χb2, 	M = M+ − M−,

E± =
∑

k

(ε±
k − μ) f (ε±

k ), χ = χ+ + χ−, (35)

where the quantities M± and χ± are the orbital magnetizations
and the Landau diamagnetic susceptibilities of the majority
and minority spins, which develop in the presence of Stoner
band splitting but in the absence of the pseudomagnetic field
b(x) = h̄c

e ẑ · [∇ × a] [see Eq. (33)].
Namely, we assume that the spin imbalance, established

by exchange interactions, is a leading-order effect, whereas
the geometric field b(x) is a relatively small effect. This is
so because an expansion in gradients of a, carried out in the
long-wavelength limit, can only generate a small correction to
the energy, as expected from Goldstone theorem. Accordingly,
the E± contributions are the energies of spin-majority and
spin-minority fermions in the bands with an exchange spin
splitting, εs

k = εk ∓ h, evaluated at a = 0, whereas the second
and third terms represent the dependence on the pseudomag-
netic field ∇ × a, which vanishes for a spatially uniform a.
The diamagnetic susceptibility χ of BBG as a function of
band occupancy was analyzed in Ref. [66].

The contributions ∓M±b describe orbital magnetization of
spin-majority and spin-minority carriers, arising due to Berry
curvature, coupled to the pseudomagnetic field. Crucially,
both the conduction and valence bands contribute to M. There-
fore, perhaps counterintuitively, both up-spin and down-spin
contributions to M matter even if the conduction band is fully
polarized. The values M± depend on the band filling and will
be discussed below. The sign ∓ accounts for the fact that the
Berry phase for the carriers with opposite spins, moving in a
slowly varying texture h(x), has opposite signs, described by
the σ3 factor in Eq. (29). In this form, Eq. (29) describes the
limit of a weak, nonquantizing pseudomagnetic field b, which
is sufficient for the purpose of analyzing the transition from
zero to nonzero b.

VI. STONER INSTABILITY IN THE ABSENCE
OF THE CHIRAL EFFECT

Putting everything together, and for now ignoring the chiral
interaction, we can write the system energy in the absence of
pseudomagnetic field b as

F =
∫

d2x

[
E+ + E− + h2

2U (0)
+ J

2
(∂μs)2

]
. (36)

Using this expression, we can seek the ground state by com-
paring the energies of the ordered and disorder states. To
account for the effect of a long-range 1/r density-density
interaction without incorporating it explicitly in the mean-
field analysis, we consider different states at the same total
carrier density n. This approach is valid due to the large charg-
ing energy values Ec = 1

2V0n2, which typically exceed other

energy scales in the system. When Ec is included in the anal-
ysis, the dependence of the total energy on n is dominated by
the following terms:

V0n2

2
− μn = V0

2

(
n − μ

V0

)2

− μ2

2V0
. (37)

These terms pin the density to n = μ

V0
regardless of the order

type. Therefore, comparing energies of different states at the
same μ in the presence of Ec is equivalent to comparing their
energies at the same n.

To analyze the ordering described by Eq. (36) we proceed
in two steps: First analyze the Stoner instability while tem-
porarily ignoring b. Next, we consider the dependence on B
and the transition from a uniform magnetic order to a twisting
order.

In the absence of b, Eq. (36) describes the standard Stoner
instability—a transition from a disordered state to a uniformly
polarized state. Since the density of states in the quadratic
Dirac band monotonically decreases as a function of energy,
the ground state configuration is either fully spin polarized
or spin unpolarized, depending on the band parameters and
interaction strength. [For a more general band dispersion,
partial spin polarization can also occur.] The energy density
of a fully polarized phase with n+ = n and n− = 0 is given by

Ffp = Etot (n) − U0n2

2
(38)

where n is a given total carrier density. We have used Eq. (13).
Here

Etot (n) =
∫ √

4πn

0

d2k

4π2
εk (39)

represents the total kinetic energy of electrons of density n in
one spin one valley in the absence of interaction. Similarly, the
energy of unpolarized state where n+ = n− = n/2 is given by

Funp = 2Etot (n/2). (40)

Here, we have used h = 0 in unpolarized phase. For our
quadratic Dirac band, Etot takes the following form:

Etot (n) = mD2

4π
(log(x +

√
1 + x2) + x

√
1 + x2), (41)

where x = 2πn
mD is a dimensionless density parameter. The

regime of interest is that of strong exchange interaction, which
corresponds to low values n � 2mD. In this case, we can use
power-series expansion Etot (n) = mD2

2π
(x + 5

12 x3 + ...). This
allows a direct comparison of the energies of polarized and
unpolarized states. Simple algebra then predicts the fully po-
larized state to win when

n

D
<

2m2U0

5π2
. (42)

Therefore, the phase boundary is a straight line on the D-n
phase diagram (see Fig. 1). This phase transition is first-order
since the full polarization occurs abruptly.

VII. THE CHIRAL EFFECT AND ENERGETICS
OF SPIN TEXTURES

Next, we consider spin textures s(x) and derive the con-
dition for skyrmion proliferation in the presence of chiral
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interaction. From Eqs. (35) and (36), we see that system
energy depends on s as Es = ∫

d2x[ J
2 (∂μSα )2 ∓ 	Mb + χ

2 b2].
Therefore, the spin texture enters the energetics in two ways:
through pseudomagnetic field b, which is proportional to the
spin-chirality density Eq. (31), and through the spin-stiffness
energy 1

2 J (∂μs)2. However, the latter contribution has a lower
bound associated with spin chirality

1

2

∫
d2x(∂μs)2 � 1

2

∫
d2x|εμνs · (∂μs × ∂νs)|.

This relation follows from the well-known identity [26],∫
d2x[(∂μs)2 ∓ εμνs · (∂μs × ∂νs)] (43)

= 1

2

∫
d2x(∂μs ± εμνs × ∂νs)2 � 0. (44)

Expressing the stiffness energy through |b| gives

Es[b] =
∫

d2x

[
−	Mb + 2Je

h̄c
|b| + χ

2
b2

]
. (45)

Naturally, the quantity Es[b] is only well-defined when spin
polarization occurs, with b nonzero for a chiral spin texture
and zero for a uniformly polarized state. We can now derive
the condition for spin textures to be favored. The free energy
in Eq. (45) gives the threshold for nucleating chiral spin tex-
tures in the ground state,

	M � 2Je/h̄c. (46)

As a reminder, 	M = M+ − M−, M± = M(μ ± h) in one
particular valley. Below, without loss of generality, we focus
on K valley.

The net orbital magnetization of all electrons in one val-
ley is governed by the Dirac band and its Berry curvature.
This quantity, evaluated in our particle-hole-symmetric Dirac
model, takes a simple form (see Ref. [60] and Appendix),

MK (μ) =

⎧⎪⎨
⎪⎩

eD
2π h̄c , μ > D

eμ
2π h̄c , −D < μ < D

− eD
2π h̄c , μ < −D

, (47)

taking opposite values in valleys K and K ′. This result is
derived following the approach in Ref. [60], where a sim-
ilar result was established for a monolayer graphene with
a staggered sublattice potential. Reference [60] derived the
valley-dependent magnetization in a gapped Dirac band, arriv-
ing at a relation between the orbital magnetization (per spin)
and the band Berry curvature �(k),

M = e

h̄

∫
d2k

(2π )2
μ�(k) f (εk ) (48)

where �(k) is of opposite signs in the particle and hole bands,
f (εk ) is the Fermi-Dirac distribution. However, as argued
in Ref. [60], this relation between M and �(k) holds for a
generic band with particle-hole symmetry.

Applying this formalism to quadratic Dirac band model
yields the orbital magnetization in Eq. (47). We note that the
dependence in Eq. (47), with M being constant in each band,
is a unique property of the quadratic Dirac band dispersion,
Eq. (6). A more general band dispersion would yield M that
depends on doping in each band. These points are further
discussed in Appendix, where, for illustration, the orbital

magnetization given in Eq. (47) is derived without invoking
the Berry phase.

For a fully spin-polarized state at a carrier density n,
M+ = eD

2π h̄c whereas M− depends on density. To calculate
M− we first calculate the chemical potential using μ + h =√

D2 + ( 4πn
2m )2, which gives

μ =
√

D2 + (2πn/m)2 − U (0)
n

2
∼ D − U (0)

n

2
, (49)

where the terms O(n2) were ignored since we are interested in
the low-density regime. Plugging this into Eq. (47) yields

M− = M(μ − h) = (D − U (0)n)
e

2π h̄c
. (50)

As a result, the quantity 	M = M+ − M− equals

	M = U (0)n
e

2π h̄c
. (51)

Plugging this into Eq. (46) and using an estimate for spin
stiffness obtained above, J ∼ ξ 2h2

U (0) , we find a condition for the
transition from a fully polarized state to a chiral spin state,

eU (0)n

2π h̄c
� 2e

h̄c

ξ 2U (0)n2

4
. (52)

This condition can be expressed in terms of carrier density and
the correlation length ξ introduced in Sec. II,

nξ 2 � 1

π
. (53)

Since our mean-field analysis works for ξ exceeding the Fermi
wavelength λF , the condition in Eq. (53) is marginally met.
The threshold Eq. (53) can be further softened in multilayer
graphene (such as trilayer, quadlayer, or pentalayer) since
	M is proportional to the valley Chern number. For N-layer
graphene, in a simplest model, C can take values that scale
with the number of layers, C = N/2. As a result, the threshold
softens to

nξ 2 � C

π
. (54)

Using these results, we can predict schematic phase diagram
in which the chiral phase (skyrmions) coexists with a uni-
formly spin-polarized phase, as shown in Fig. 1.

Applying the condition for instability given in Eq. (54)
toward skyrmion texture to realistic systems requires estimat-
ing the values of ξ obtained from microscopic parameters. In
system of interest, the carrier density nc at the onset of Stoner
transition can be estimated from Eq. (42). For interaction
strength U (0) = 5 × 103 meV nm2, a band mass m = 0.03me

and a typical high value [13–17] D = 100 meV, it predicts
Stoner instability at nc ∼ 3 × 1011 cm−2. This carrier density
indeed lies within the density range where the Stoner insta-
bility is observed [13–17]. Equation (53) then predicts that to
nucleate skyrmions the characteristic lengthscale ξ must sat-
isfy ξ � 15 nm, a value comparable to the screening length of
Coulomb interaction in realistic settings. To further stabilize
the chiral spin texture, one can reduce the spin stiffness J ,
which can be achieved by suppressing the correlation length
of the spin-spin exchange interaction.

A phase diagram describing the competition between the
orders described above is shown in Fig. 1. The transition line
from uniformly polarized phase to skyrmion phase is given
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by Eq. (53). We note that, compared to the transition line
between the uniformly polarized phase and unpolarized phase,
the transition line between skyrmion phase and unpolarized
phase is pushed slightly into the unpolarized phase. This is be-
cause when skyrmion condenses, the energy contribution from
pseudomagnetic field Eq. (45) is always negative and tends
to stabilize ordered state. This phase boundary is a first-order
phase transition because the translation symmetry and the spin
SU(2) symmetry are simultaneously broken on this line.

We emphasize that our analysis above focused on the case
of fully spin-polarized phase. Extending it to partially spin-
polarized phases, where both spin-up and spin-down Fermi
seas exist, encounters a subtle issue. Namely, for a partially
spin-polarized quadratic Dirac band, the quantity 	M naively
vanishes because of the orbital magnetization being constant
for μ values within the conduction and hole bands [see
Eq. (47)]. It is interesting to note that 	M also vanishes for
the linear Dirac band, cubic Dirac band, and so on. However,
this is almost certainly merely a coincidence, i.e., a result
specific for ideal Dirac bands, which does not hold for realistic
multilayer graphene bands. Indeed, for a generic graphene
system, a chiral interaction is allowed by symmetry and is
therefore expected to be nonzero on general grounds unless
it vanishes accidentally.

We also note that the condition for skyrmion instability
Eq. (53) can be softened in Dirac bands with larger valley
Chern numbers, since 	M is proportional to the total Hall
conductivity in the lower band. Large valley Chern numbers
can be achieved in graphene multilayers, such as trilayer,
quadlayer, or pentalayer. Another appealing system is moiré
graphene, where valley-Chern minibands [39] give rise to a
doping-dependent orbital magnetization, potentially leading
to a skyrmion instability triggered by spin-polarization onset.

The emergence of skyrmions through the mechanism dis-
cussed above can lead to different ground states depending
on the interactions between skyrmions and the strength of
the spin-order parameter zero-point or thermal fluctuations.
Strong repulsive interactions would stabilize a chiral skyrmion
crystal state, whereas strong fluctuations would lead to a chiral
skyrmion liquid. Overall, these phases are expected to have
properties similar to those of the vortex lattice and vortex
liquid phases in superconductors [61–64]. Which of the two
states—skyrmion crystal or skyrmion liquid—wins in the true
ground state is an interesting topic for future work.

These two phases can be readily distinguished by transport
measurements. In the presence of a valley polarization, such
as the one seen in Bernal bilayer graphene as well as rhom-
bohedral multilayer graphene systems and moire graphene
systems, we expect quantized topological Hall effect (QHE)
in both states in the absence of an applied magnetic field
[58,65]. This QHE contribution will appear in addition to
(nonquantized) valley Hall effect.

So far we discussed skyrmions in one valley. If, however,
the system is valley unpolarized but each valley exhibits
Stoner spin-polarized order, skyrmions can occur in both
valleys. The valleys K and K ′ are related by time-reversal
symmetry, which requires opposite signs of the band Berry
curvature and associated orbital magnetization, MK = −MK ′ .
This imposes a peculiar relation between skyrmion chiralities
in the two valleys, which can be understood from the chiral

interaction in Eq. (2),

δF =
∫

d2x[−	MK bK − 	MK ′bK ′ ], (55)

where 	MK = MK,+ − MK,− and 	MK ′ = MK ′,+ − MK ′,−,
with the plus and minus indicating contributions of majority-
spin and minority-spin carriers. Ignoring, at first, the interval-
ley exchange interaction, the system can be viewed as two
identical Stoner problems with Berry curvatures of opposite
signs in the two valleys. In this case, spin polarization direc-
tions in the two valleys are completely decoupled. Then, time-
reversal symmetry of the Hamiltonian predicts equal degrees
of spin polarization in valleys K and K ′, and requires MK,+ =
−MK ′,+ and MK,− = −MK ′,−, namely, 	M+ = −	M−. In-
deed, under time reversal the majority (minority) spins in
valley K are always mapped to the majority (minority) spins
in valley K ′. As a result, the SU(2)K ⊗ SU(2)K ′ symmetry
of the microscopic Hamiltonian in the absence of intervalley
exchange interactions, enforces the property 	M+ = −	M−
regardless of whether spin polarization directions in the two
valleys are parallel, antiparallel, or canted relative to one
another. Therefore, in this case, the system will favor spin
textures of opposite chiralities in the two valleys.

In realistic systems, however, the spins in the two val-
leys are weakly coupled by intervalley exchange interactions,
which are much weaker than the intravalley interactions. The
intervalley exchange is expected to be of a ferromagnetic sign
in the regime of low carrier density [68]. To optimize this
intervalley interaction, spin textures in valleys K and K ′ would
need to be of identical direction and sign, i.e. sK (x) = sK ′ (r).
However, this would result in equal-sign chirality densities in
valleys K and K ′. Such spin textures do not optimize the chiral
interaction in Eq. (55), which favors opposite chiral densities
in valleys K and K ′. Therefore, in this case, our system is
expected to exhibit a frustration effect—the energies of all
terms in the Hamiltonian cannot be simultaneously optimized.
As a result, many states can be envisaged as candidates for
the ground state. One possibility is a two-valley chiral liquid
where spin long-range order is washed out, but the chirality
densities being of opposite signs in two valleys and exhibiting
a long-range order. Another interesting option is a staggered
skyrmion lattice, in which skyrmions formed by electrons in
valleys K and K ′ are arranged in two interpenetrating lattices.
Understanding such frustrated skyrmion phases represents an
interesting direction for future work.

When time reversal is not spontaneously broken (no valley
polarization), one expects a quantized topological valley Hall
effect but no charge Hall effect, since the time-reversal sym-
metry requires skyrmions in valleys K and K ′ to have opposite
chiralities. In addition, the longitudinal transport will be very
different in the two phases—vanishing for skyrmion crystal
and nonzero for skyrmion liquid, dual to that of superconduct-
ing vortex crystals and liquids.

VIII. SOME IMPLICATIONS OF THE CHIRAL EFFECT

In conclusion, this paper predicts a geometric spin-orbit
coupling that arises in spin-polarized bands endowed with
Berry curvature. The mechanism underpinning this coupling
is that a spin of an electron moving through a spin texture is
rotated in spin space. This spin-rotation effect, arising due to
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an electron spin being locked to the local spin-quantization
axis and tracking it along the electron trajectory, is described
by a spin-dependent geometric phase. The adiabatic regime in
which the geometric phase picture applies occurs when the
Stoner spin gap is large compared to h̄v/�, where � is the
characteristic spatial lengthscale of the spin-texture modula-
tion and v is Fermi velocity.

This coupling leads to an instability of a uniformly spin-
polarized state towards skyrmions. Occurring in an itinerant
magnetic system, the skyrmions have several interesting prop-
erties. One is that they act on electrons as a geometric
pseudomagnetic field, such that each skyrmion effectively
generates one flux quantum of the field. The effective strength
of this field is proportional to skyrmion density ns and can be
expressed as

beff = 4.13 × 10−11 × ns[cm−2] Tesla. (56)

For skyrmion density of ns ≈ 1010 cm−2 this predicts beff on
the order 0.5 Tesla. The field Beff grows rapidly as ns in-
creases. The Landau levels induced by beff introduce a new
energy scale, which governs the skyrmion-induced topologi-
cal gap in the system spectrum.

The geometric field beff , if present, would result in a topo-
logical Hall effect, manifested through a nonvanishing Hall
conductivity occurring in the absence of an applied magnetic
field. Because the geometric magnetic field has opposite signs
for carriers with opposite spins, this Hall conductivity will
exhibit a characteristic dependence on spin polarization, dis-
tinguishing it from the typical charge Hall conductivity. At
carrier densities corresponding to ν electrons per skyrmion,
where ν is an integer, the system will host ν fully filled
skyrmion-induced Landau levels, leading to a quantized Hall
conductivity

σH = ν
e2

h
. (57)

For skyrmion crystal or liquid of a high density such that
the number of electrons per skyrmion is small, this scenario
predicts a state with large Beff and a large topological gap.

In the extreme limit, when the skyrmion density achieved
through this mechanism is large enough to be close to the
density of itinerant carriers, the system can spontaneously
adopt an insulating ground state where all electrons occupy
one or several lowest Landau levels. This scenario may poten-
tially apply to the quantized Hall phases recently observed in
pentalayer graphene in the absence of a magnetic field [67,69].
The predicted phase diagram (Fig. 1), in which the chiral spin
texture emerges at low carrier density, aligns with the density
regime where the quantized Hall effect is observed in penta-
layer graphene. The predicted dependence on the number of
layers, implying that more layers tend to lower the threshold
for the onset of spin chirality, potentially explains why this
effect occurs in pentalayer rather than bilayer and trilayer
systems.
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APPENDIX: VALLEY-DEPENDENT ORBITAL
MAGNETIZATION IN GRAPHENE BILAYER

To gain more insight into the physics of the orbital mag-
netization, Eq. (47), here we rederive this known result [60]
by a method that does not explicitly use Berry curvature. Our
plan is to calculate the orbital magnetization in an individual
graphene valley using thermodynamic relation

MK = −∂�K

∂B
, (A1)

where �K is the thermodynamic potential of electrons in this
valley, defined as

�K =
∑

α

(εα − μ) f (εα ), f (ε) = 1

eβ(ε−μ) + 1
, (A2)

where εα are the Landau level energies in the particle and hole
bands, labeled by α = {±, n}.

In order to obtain the magnetization at B = 0 we first
calculate the Landau level energies εα and, by using the Euler-
Maclaurin summation formula, extract the part of the sum
over α in Eq. (A2), which is linear in B at small B. As we will
see, the contribution linear in B is equal to that originating
from the anomalous Landau levels reduced by a factor of two,
as discussed below. We will end this section by discussing the
general character of this result and its relation to the spectral
flow.

The Landau level energies can be derived directly from the
BBG Hamiltonian [18,70]. For illustration, here we do it for
a simplified form of the Hamiltonian involving no trigonal
warping terms

HK (p) =
⎛
⎝D + p2

2m0
+ p2

2ma
− (p1−ip2 )2

2m

− (p1+ip2 )2

2m −D − p2

2m0
+ p2

2ma

⎞
⎠. (A3)

Magnetic field can be incorporated in the Hamiltonian through
the substitution p → p − e

c a. We will first carry out the anal-
ysis ignoring the terms p2/2m0 and p2/2ma. This is justified
because these two terms are subleading for a realistic BBG
band [18]. For the same reason we ignore the trigonal warping
term [not shown in Eq. (A3)]. To illustrate the generality of
our results, we will subsequently present the analysis for the
full Hamiltonian in Eq. (A3), finding that the quadratic terms
p2/2m0 and p2/2ma do not affect the result.

Next we consider the Landau levels formed in the presence
of a B field, at first excluding the quadratic terms in the diago-
nal elements. As is well known, in each valley—K or K ′—the
Hamiltonian in Eq. (A3), with the quadratic terms excluded, in
the presence of a magnetic field generates three groups of Lan-
dau levels: (i) a pair of anomalous Landau levels at the edges
of the hole band for valley K and particle band for valley K ′,
and (ii) two sequences of Landau levels in the particle and hole
bands that are related by particle-hole symmetry. The energies
of these Landau levels in valley K can be written as [66]

ε±,n = ε±(xn) = ±
√

x2
n − 1

4
h̄2ω2

c + D2, n � 2,

ε0,1 = −D, xn = h̄ωc

(
n − 1

2

)
, (A4)
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where ωc = eB/mc is the cyclotron frequency. For valley K ′
similar expressions arise; however, the anomalous Landau
levels are positioned at the particle band edge, ε0,1 = D.

Accordingly, the thermodynamic potential �K in the pres-
ence of a B field is a sum of three contributions

�K = �+ + �− + �01, (A5)

where

�± = eB

hc

∑
n

(ε±,n − μ) f (ε±,n), (A6)

�01 = 2eB

hc
(−D − μ) f (−D), (A7)

with eB/hc representing the numbers of electrons in each
Landau level per unit area.

Magnetization is given by the linear [O(B)] term in �K (B).
The O(B) contribution from the anomalous levels in each
valley is already clearly written in Eq. (A7). To calculate
the O(B) contribution from �± we use the Euler-Maclaurin
formula, which approximates a sum by an integral. For the
contribution of the particle band we have

�+ = eB

hc

[
1

h̄ωc

∫ ∞

xn=2

dx(ε(x) − μ) f (ε(x))

+ 1

2
(ε(xn=2) − μ) f (ε(xn=2))

]
+ O(B2), (A8)

where xn=2 = 3
2 h̄ωc, see Eq. (A4). Here we have used

ε(∞) f (∞) = 0. Working out the integral gives

�+ = −eB

hc
(D − μ) f (D) + O(B2). (A9)

Similarly, the O(B) contribution of the lower-band Landau
levels is given by

�− = −eB

hc
(−D − μ) f (−D) + O(B2). (A10)

After plugging Eqs. (A7), (A9), and (A10) into Eqs. (A1) and
(A5), we arrive at

MK (μ) =

⎧⎪⎨
⎪⎩

2eD
2π h̄c , μ > D

e(μ+D)
2π h̄c , −D < μ < D

0, μ < −D

. (A11)

We note that this dependence differs by a constant shift of
	MK = eD

2π h̄c from the result in Eq. (47) that was inferred from
the general expression for orbital magnetization obtained in
Ref. [60]. This constant shift arises from the way the contri-
bution of the deep-lying levels is cut off, which is different
from the conventional way [60]. However, this difference is

immaterial because the deep-lying states, due to their uncer-
tain valley character and identical occupancies for opposite
spins, are not expected to affect physical observables.

Indeed, at the bottom of the graphene band the carrier
states cannot be unambiguously identified with the K and
K ′ valleys. Therefore the ambiguity arising from the cutoff
is a matter of convention rather than a physical effect.
Furthermore, the quantity that matters for the physics of
interest is the difference of the contributions from the spin-up
and spin-down bands, 	M = MK,↑ − MK,↓. The bands for
opposite spins are filled equally at the bottom, such that the
contributions of the deep-lying states to MK,↑ and MK,↓ cancel
each other.

The meaning of the resulting dependence MK (μ), in which
MK is constant when the Fermi level lies within one of the
bands, can be understood in terms of a spectral flow induced
by a variation of B. Namely, the role of the Landau levels mov-
ing up and down is merely to cancel half of the contribution
to magnetization MK of the anomalous Landau levels in the
corresponding bands. As a result, there is no μ dependence
when the Fermi level lies outside the gap. In that each anoma-
lous level contributes a half of the ‘nominal value’ of a single
Landau level. This contribution comes with a plus sign or a
minus sign depending on whether an anomalous Landau level
is present or absent for the band and valley in question. The
resulting dependence of orbital magnetization is identical for
the K and K ′ valleys up to a sign reversal, MK (μ) = −MK ′ (μ).

This analysis can be applied to a realistic model of Bernal
bilayer graphene, where the band Hamiltonian takes a more
complicated form [18]. Here we show that adding the two
quadratic terms given in Eq. (A3) that were neglected tem-
porarily, does not alter the result for MK (μ).

The term p2/2ma is an identity matrix in the sublattice
variables. As a result, it merely shifts the energy eigenvalues
without affecting the electron wavefunction that determines
the orbital magnetization. Therefore, this term only affect the
diamagnetic susceptibility but does not affect the magnetiza-
tion at B = 0. Indeed, adding it in Eq. (A8) yields an O(B2)
contribution to the thermodynamic potential, changing some-
what the diamagnetic susceptibility but not changing MK (μ).

The term p2/2m0 has a σ3 sublattice structure. Such a
term does affect the wavefunctions, and yet, this term alone
does not break the particle-hole symmetry. Also, this term
does not affect the energy of the lowest Landau level in the
particle band. As a result, the two conditions necessary for
the reasoning above [from Eqs. (A5)–(A10)]—the particle-
hole symmetry and the presence of two anomalous Landau
levels—remain valid. As a result, the answer for magnetiza-
tion given above remains unchanged.
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