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Inelastic neutron scattering (INS) has traditionally been one of the primary methods for investigating quantum
magnets, particularly in identifying a continuum of excitations as a hallmark of spin fractionalization in quantum
spin liquids (QSLs). However, INS faces severe limitations due to its inability to distinguish between such QSL
signatures and similar excitation continua arising from highly frustrated magnetic orders with large unit cells
or classical spin liquids. In contrast, two-dimensional coherent spectroscopy (2DCS) has emerged as a powerful
tool to probe nonlinear excitation dynamics, offering insights into the underlying mechanisms behind these broad
spectral features. In this paper, we utilize classical molecular dynamics techniques to explore the 2DCS responses
of frustrated magnets with dominant Kitaev interactions. Comparing the classical and quantum versions of the
pure Kitaev model, our results indicate both clear similarities, in the form of sharp line features, and clear
distinctions, in the locations of these features and in selection rules. Moreover, in the extended K��′ model,
we show that the 2DCS response of the Kitaev spin liquid is completely distinct from that of large unit cell
magnetic orders, despite both generating a broad continuum in INS. Additionally, we demonstrate the extreme
sensitivity of classical 2DCS to thermal fluctuations and discuss the potential significance of quantum coherence
in experimental settings. Overall, our paper illustrates the potential of 2DCS in resolving the complex physics
underlying ambiguous spin excitation continua, thereby enhancing our understanding of the dynamics in these
frustrated systems.
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I. INTRODUCTION

Detecting quantum spin liquid (QSL) states in experiments
has remained a difficult feat given that there are no direct
spectroscopic probes for its fractionalized excitations [1–4].
The dynamical spin correlations captured by inelastic neu-
tron scattering (INS) offer a potential pathway, predicting a
continuum of excitations attributed to the fractionalization
of the spins in the QSL state [5,6]. However, alternative
phenomena—such as frustrated magnets with large thermal
fluctuations, large unit-cell magnetic orders, or impurity-
induced damping of magnons—can similarly manifest broad
and featureless INS signals [7]. Additionally, a continuum
of excitations is not exclusive to quantum states of matter;
classical spin liquids, which may arise from materials with
large spin-S moments, can produce qualitatively similar exci-
tation continua [7–9]. In principle, the excitation continuum
of many quantum spin liquids should exhibit a momentum-
dependent lower edge of the continuum, but INS may not have
the low-energy resolution to observe such a feature. Hence,
it is difficult to pinpoint the exact origins of the appearance
of a spin excitation continuum with INS, a probe that only
accesses the linear response regime.

Two-dimensional coherent spectroscopy (2DCS) has
emerged as a powerful tool to explore the nonlinear re-
sponse in various systems [10–12]. Instead of measuring the

response to one pulse field as in conventional pump-probe
(PP) experiments, multiple pump fields are employed, induc-
ing higher-order optical processes, including the generation
of higher harmonics as well as the production of sum and
difference frequencies. Both theoretical and experimental
studies have demonstrated sharp signals in the nonlinear
spectroscopic response of various elementary excitations in
quantum materials otherwise inaccessible from linear probes
[13–27]. These include the superconducting Higgs mode in
NbN [19], Josephson plasmons in layered superconductors
[20], spinons in the transverse field Ising chain [21,22,28,29],
higher harmonic generation from interacting magnons in a
canted antiferromagnet [23,24,30], and Majorana fermions
in the Kitaev spin liquid (KSL) [25,26]. Notably, 2DCS on
the Kitaev honeycomb model has uncovered sharp diagonal
signals separated by two-flux or four-flux vison gaps. This
naturally leads to the questions of whether 2DCS can illumi-
nate the origins of the spin excitation continua seen with INS,
and whether it can be used as a tool to rule out less exotic
phenomena behind these measured continua.

In this paper, we provide insights into these questions by
studying the 2DCS of classical frustrated magnets with large
Kitaev interactions [31]. It is well-known that simulations of
the dynamical spin structure factor (DSSF) from the classical
Kitaev model produce qualitatively similar results as its quan-
tum counterpart [7–9,32–34]. The similarities arise due to the
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momentum and energy dependence of the spin correlations
being largely dictated by the degenerate classical ground-state
manifold. The primary difference between the classical and
quantum KSLs originates from the two-flux vison gap seen in
the quantum model, which may be on the order of 0.6 meV if
the Kitaev exchange is about 6 meV as in α − RuCl3 [35].
Such a small gap would be difficult to resolve in INS ex-
periments. Here, we first consider the pure Kitaev model at
zero temperature and compare and contrast the 2D nonlinear
spectroscopic responses in the classical and quantum models.
For the classical model, we compute the 2DCS spectra using
molecular dynamics (MD) simulations in conjunction with
classical Monte Carlo (MC) simulations. Somewhat surpris-
ingly, we observe sharp horizontal, vertical, diagonal, and
antidiagonal line signals in the 2D frequency space. Such
sharp line features are characteristic of the quantum KSL,
as reported earlier [25,26], and demonstrate that even clas-
sical dynamics can produce sharp nonrephasing (NR) and
rephasing (R) line features. However, the classical model does
not give rise to the two-flux and four-flux gaps responsi-
ble for separating and shifting the signals in the quantum
case. Furthermore, we see finite responses in various spin
polarization channels where signals would be theoretically
forbidden in the quantum model. Moving to finite tempera-
ture, we observe that the diagonal and antidiagonal signals
are highly sensitive to thermal fluctuations, with a temper-
ature of T/|K| = 0.001 already enough to wash out these
signals.

Lastly, we consider a minimal but realistic K��′ model
[36–38] for the candidate Kitaev material α-RuCl3 [39–46].
A recent experiment applying high magnetic fields oriented
perpendicular to the honeycomb plane reported a finite region
of stability for a possible QSL phase [46]. Based on theoret-
ical studies of the K��′ model, this phase corresponds to a
quantum paramagnet [47], whose status as a spin liquid phase
remains to be explored. In the classical limit, this region of
the phase diagram corresponds to various competing large
unit-cell magnetic orders at zero temperature, which form
a thermal ensemble at finite temperature [48]. Remarkably,
the DSSF of this ensemble of orders also yields an excita-
tion continuum [7], even though its origins are completely
distinct from those from the KSL phase. Despite sharing
a qualitatively similar DSSF, we observe strikingly distinct
2DCS responses for the classical KSL versus the ensemble of
magnetic orders. The classical KSL shows sharp but smooth
lines, in complete contrast to the dense collection of discrete
points arising from magnons in the ordered phases. We there-
fore propose 2DCS as a potentially powerful probe for the
underlying excitations of the putative QSL phase in α-RuCl3

under an out-of-plane magnetic field.
The rest of this paper is organized as follows. Section II

outlines the 2DCS formalism, as well as the numerical meth-
ods used to compute the 2DCS. Section III presents our results
for the pure Kitaev model, with a review of the results of the
quantum model in Sec. III A, along with the zero and finite
temperature results in Secs. III B and III C. We present the
2DCS results for various ordered phases with spin excitation
continua in Sec. IV and compare it to the pure Kitaev model.
Finally, Sec. V summarizes our key findings and points out
some open questions for future studies.

FIG. 1. (a) Schematic of the 2DCS experiment with incident
pulses BA and BB separated by time τ . The signal field BNL =
BAB − BA − BB is measured at a time t after the second pulse. The
incident pulses are polarized in the local z direction, depicted in (b).
The spin axis (Sx, Sy, Sz ) is coming out of the plane and the global
axis (a, b, c) is shown in the basis of the local coordinates.

II. MODEL AND METHODS

Throughout this paper, we consider the general K��′
model with a Zeeman coupling given by

H =
∑
〈i j〉∈λ

ST
i HλS j − hT

∑
i

Si, (1)

where

Hx =
⎡
⎣K �′ �′

�′ 0 �

�′ � 0

⎤
⎦, Hy =

⎡
⎣ 0 �′ �

�′ K �′
� �′ 0

⎤
⎦,

Hz =
⎡
⎣ 0 � �′

� 0 �′
�′ �′ K

⎤
⎦, (2)

and h is an external magnetic field. To study the nonlinear re-
sponse of this Hamiltonian, we consider two linearly polarized
and spatially uniform incident pulses BA and BB separated
by a delay time τ , with the magnetization measured at a
measurement time t after the second pulse; see Fig. 1(a). The
pulses linearly couple to the local moments and modify the
Hamiltonian by

Htot(t
′) = H − (BA(t ′) + BB(t ′)) ·

∑
i

Si, (3)
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inducing a transient time-dependent magnetization MAB(t, τ ).
The nonlinear magnetization can then be extracted by sub-
tracting off the leading contributions from the linear response,

MNL(t, τ ) = MAB(t, τ ) − MA(t, τ ) − MB(t, τ ), (4)

where MA and MB are the magnetizations of the system when
only pulses A and B are present, respectively. Finally, the 2D
nonlinear spectroscopic responses can be obtained by Fourier
transforming in t and τ , resulting in MNL(ωt , ωτ ). For the rest
of this paper, we take BA, BB to be polarized in the local z
direction, while h is applied in the global c direction, or [111]
in the local frame [see Fig. 1(b)].

To simulate the dynamics induced by the incident pulse
fields, we first study the static Hamiltonian in Eq. (1) using
classical Monte Carlo methods, in which we treat the spins
as vectors Si = (Sx

i , Sy
i , Sz

i ). We then time evolve the resulting
spin configurations in the presence of the pulse fields using
the Landau-Lifshitz-Gilbert (LLG) equations of motion [49],

d

dt ′ Si = −Si × ∂Htot(t ′)
∂Si

, (5)

where Htot(t ′) is given by Eq. (3). Using this method, we
can directly compute Eq. (4), and the 2DCS is obtained by
performing a 2D discrete Fourier transform. More details of
the numerical techniques can be found in Appendix A.

III. KITAEV MODEL

First, we focus on the pure Kitaev limit, where we can
directly compare our simulations on the classical model to the
results of the exactly solvable quantum model. For purposes
of comparison, we provide a brief overview of the expected
2DCS signals for the Kitaev spin liquid before we present our
MD results.

A. Quantum model

The induced nonlinear magnetization, MNL, for the
quantum model can be obtained by calculating

Mz
NL(t, τ )/2N = χ (2),z

zz (t, τ )Bz
ABz

B

+ χ (3),z
zzz (t, τ, 0)Bz

ABz
ABz

B

+ χ (3),z
zzz (t, 0, τ )Bz

ABz
BBz

B + O(B4), (6)

where the nonlinear susceptibilities can be computed using
time-dependent perturbation theory [10]. For the Bz

ABz
B pulse

configuration, the second-order susceptibility χ (2),z
zz (t, τ ) is

zero [25], and thus the third-order susceptibilities fully dictate
the behavior of MNL. χ (3),z

zzz (t3, t2, t1) is computed from the
four-point correlation functions R(l ),z

zzz , given by

χ (3),z
zzz (t3, t2, t1) = 1

N
Im

[
4∑

l=1

R(l ),z
zzz (t3, t2, t1)

]
, (7)

where

R(1),z
zzz (t3, t2, t1) = 〈M̂z(t3 + t2 + t1)M̂z(t2 + t1)M̂z(t1)M̂z〉,

R(2),z
zzz (t3, t2, t1) = 〈M̂zM̂z(t2 + t1)M̂z(t3 + t2 + t1)M̂z(t1)〉,

R(3),z
zzz (t3, t2, t1) = 〈M̂zM̂z(t1)M̂z(t3 + t2 + t1)M̂z(t2 + t1)〉,

R(4),z
zzz (t3, t2, t1) = 〈M̂z(t1)M̂z(t2 + t1)M̂z(t3 + t2 + t1)M̂z〉.
Using the resolution of identity, we can rewrite these four-

point correlation functions in Lehmann representation. For
example, R(3),z

zzz (t, 0, τ ) can be written as

R(3),z
zzz (t, 0, τ ) =

∑
jklm

∑
PQR

e−i(ER−EQ )t e+i(EP−E0 )τ

× 〈0|σ̂ z
m|P〉〈P|σ̂ z

l |Q〉〈Q|σ̂ z
k |R〉〈R|σ̂ z

j |0〉, (8)

where j, k, l, m are site indices and P, Q, R label the energy
eigenstates. Here, |0〉 is the ground state representing the zero
flux and zero matter sector. The action of the local spin op-
erators σ̂ x

j , σ̂
y
j , σ̂

z
j on |0〉 represents the creation of two fluxes

across the x, y, or z bonds, respectively, connected to site j,
while also creating a local excitation in the matter sector. An
illustration of a possible χ (3),z

zzz (t, 0, τ ) pathway is shown in
Fig. 2(a), and is an example of how one could deduce the en-
ergies of the intermediate excited eigenstates in the flux sector.
For instance, the A pulse polarized in the z direction excites a
matter fermion and two fluxes across the z bond. Then, the B
pulse interacts twice, first creating a four-flux configuration,
then annihilating a flux pair and returning to the two-flux
sector. A measurement in the z direction finally returns the
two-flux state to the vacuum, obeying the cyclic property of
the trace in Eq. (8). Notably, trying to measure in the σ̂ x and
σ̂ y channels for the BA ‖ ẑ, BB ‖ ẑ pulse configuration will not
yield a finite signal as there lacks an operation that would
return us to the flux-free ground state. This principle gives
rise to the selection rules in the quantum model: given two
incident pulses in the z direction, the only finite component of
the magnetization is in the z direction. Furthermore, the same
principles dictate that the second-order susceptibility must be
zero with this pulse configuration.

Equipped with the energies of the intermediate eigenstates,
we can roughly predict where the signals should appear in
χ (3),z

zzz (ωt , 0, ωτ ), a sketch of which is shown in Fig. 2(b).
Note that this sketch is an illustration of the constraints on
χ (3),z

zzz (ωt , 0, ωτ ) rather than an actual calculation of the ma-
trix elements. The main features from each correlator are the
diagonal and antidiagonal signals separated by the two-flux or
four-flux gaps. Furthermore, the R(2,3),z

zzz and R(4),z
zzz signals are

offset in ωt and ωτ . Additionally, as reported earlier [25], the
χ (3),z

zzz (ωt , ωτ , 0) channel [obtained from Fourier transforming
χ (3),z

zzz (t, τ, 0)] gives rise to horizontal and vertical signals with
offsets in ωt and ωτ by two-flux or four-flux gaps (not shown
here). With these features, along with the selection rules de-
scribed above in mind, we will compare the results from the
quantum model [25,26] to our MD results in the following
subsections.

B. Classical model: Zero temperature

We first simulate the classical Kitaev model at zero tem-
perature to directly compare against the quantum model. For
ease of reference, we plot the dynamical spin structure factors
for the ferromagnetic and antiferromagnetic Kitaev model
from Zhang et al. [7] in Figs. 3(a) and 3(b), which qualita-
tively reproduce the results of the quantum model except for
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FIG. 2. (a) Illustrative example of the flux selection rules for the χ (3),z
zzz (t, 0, τ ) nonlinear susceptibility. Each σ̂ z operator creates or destroys

a flux pair across the z bond. The red pulse corresponds to the incident A pulse, while the two purple pulses correspond to B pulses that interact
twice. (b) Sketch of the two-dimensional Fourier spectrum of the third-order susceptibility χ (3),z

zzz (t, 0, τ ). The contributions of each four-point
correlation functions obtained by the flux selection rules are indicated. Note that R(3),z

zzz (t, 0, τ ) = R(2),z
zzz (t, 0, τ ) = R(2,3),z

zzz . On the axis ticks,
Eab = Ea − Eb. Only the flux energies and not the matter fermion energies are shown here for brevity.

FIG. 3. Dynamical spin structure factor [(a), (b)] and two-dimensional coherent spectroscopy [(c)–(n)] for the pure Kitaev models with
K = −1 and K = 1. (a) and (b) are replotted from Zhang et al. [7], and were performed at T/|K| = 0.001. |Mx

NL(ωt , ωτ )| (c)–(l), |My
NL(ωt , ωτ )|

(d)–(m), and |Mz
NL(ωt , ωτ )| (e)–(n) are shown for T/|K| = 0 and T/|K| = 0.001. All plots were normalized to their respective maximum

intensities. Before taking the Fourier transform, a Gaussian filter of e−η(t2+τ2 ) was applied, with η = 10−6.
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the two-flux gap [8,50]. The 2DCS for K = −1 and K = 1
for three measurement channels (x, y, and z) are shown in
Figs. 3(c)–3(e) and 3(i)–3(k), respectively. In both cases, we
see sharp diagonal nonrephasing signals in each measurement
channel, and faint but sharp antidiagonal rephasing signals
in the z measurement channel [in Figs. 3(e) and 3(k)]. The
sharp diagonal signal is reminiscent of the R(1),z

zzz contribution
from Fig. 2(b) in the quantum model, apart from the two-flux
gap. The horizontal and vertical signals are comparable to the
contributions from the χ (3),z

zzz (ωt , ωτ , 0) susceptibility, where
the A pulse interacts twice [25].

We can immediately notice a number of discriminating
features between the classical and quantum limits of the
model. First, since there is a finite signal in each measurement
channel, the classical model does not obey the flux selection
rules present in the quantum model (similar in spirit to the
linear response case, in which off-diagonal χ

(1),α
β vanish in

the quantum model but are finite in the classical model).
Second, although the classical model is able to produce sharp
horizontal, vertical, diagonal, and antidiagonal signals, there
is no offset of the signals by two- or four-flux gaps, as seen
in Fig. 2(b). In other words, the classical model cannot distin-
guish between the diagonal R(1),z

zzz and shifted diagonal R(4),z
zzz

contributions. Note though that both the flux selection rules
and hard flux gap discussed here are unique to the exactly
solvable Kitaev model. Upon including perturbing interac-
tions, these properties no longer necessarily apply, resulting
in more similar quantum and classical 2DCS responses.

One can further decompose the nonlinear response into
its even and odd components, MNL = MNL,even + MNL,odd,
where MNL,even(odd) consists of the even (odd) order responses.
By performing the simulation with the two pulses copolarized
in either the ±ẑ directions, the even (odd) order responses can
be separated into

MNL,even = 1
2 (M+

NL + M−
NL), (9)

MNL,odd = 1
2 (M+

NL − M−
NL), (10)

where M±
NL are the nonlinear magnetizations with both pulses

polarized in the ±ẑ direction. We present the separation
of the even- and odd-order responses for the pure Kitaev
model at zero temperature in Fig. 4. As mentioned earlier,
the χ (2),z

zz (t, τ ) (and higher even-order) response should be
exactly zero for the quantum model due to the flux selection
rules [25,26]. However, Fig. 4(a) shows a finite signal in the
even-order response, again consistent with the fact that the
classical model does not obey these selection rules. On the
other hand, we see an antidiagonal signal appear only in the
odd response shown in Fig. 4(b). At leading order, this signal
is unique to the third-order R(2,3),z

zzz rephasing response in the
quantum model, meaning that even at the classical level, we
observe the sharp line features at the correct order.

Overall, the classical model is able to capture global fea-
tures of the 2DCS response of the quantum spin-1/2 model,
including sharp line signals and the correct leading order
response. To properly differentiate between the two limits,
one must utilize the unique nonlinear 2DCS signatures arising
from the flux excitations (or visons) of the quantum model.

FIG. 4. (a) Even and (b) odd decomposition of the 2DCS for
the pure K = −1 model at zero temperature. M+

NL (M−
NL) refers to

the nonlinear response with two pulses polarized in the +ẑ (−ẑ)
direction. Before taking the Fourier transform, a Gaussian filter of
e−η(t2+τ2 ) was applied, with η = 10−6.

C. Classical model: Finite temperature

Next, we present the 2DCS for the pure Kitaev model at
T/|K| = 0.001, shown in Figs. 3(f)–3(h) for K = −1 and
Figs. 3(l)–3(n) for K = 1. Although the horizontal and vertical
signals survive, the diagonal nonrephasing and antidiagonal
rephasing signals are completely absent for both models, im-
plying that these signals are extremely sensitive to thermal
noise. The reasoning for the sensitivity to temperature in the
classical model is as follows. At zero temperature, the spin
configurations are in the lowest energy configuration (form-
ing a degenerate classical ground state manifold), meaning
that the spins are almost perfectly aligned towards the local
effective field Heff = ∂H

∂Si
, which appears in Eq. (5). When

performing the time evolution using the LLG equations, the
right-hand side of Eq. (5) is only finite when there are time-
dependent pulse fields present, thus the only spin dynamics
are due to the presence of the pulses. In contrast, as the tem-
perature is increased, the spins become misaligned with the
local field, meaning spin dynamics are already present due to
thermal fluctuations even without the pump fields. While these
thermally induced fluctuations are essential for the emergent
spin excitation continuum in the DSSF, they may wash out
the coherent nonlinear dynamics induced by the pulsed fields
in 2DCS. A more detailed discussion on the decoherence of
the spectroscopy is found in Appendix B. On the other hand,
the diagonal and antidiagonal signals may be more robust in
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FIG. 5. Field dependence of the dynamical spin structure factor (a)–(d) and two-dimensional coherent spectroscopy (e)–(l) for K = −1,
� = 0.25, and �′ = −0.02. (a)–(d) are replotted from Zhang et al. [7] and were performed at T/|K| = 0.001. |Mz

NL(ωt , ωτ )| is shown for
T/|K| = 0 (e)–(h) and T/|K| = 0.001 (i)–(l). (f) includes black solid, dashed, and dotted lines at energies corresponding to the three high
intensity peaks within the �0 continuum in (b). (g) includes a solid black line at the energy corresponding to the high intensity peak in (c) at
�0. In (h) and (l), TR = terahertz rectification, 2Q = two quantum, NR = nonrephasing, R = rephasing, PP = pump probe. M, The zero
temperature classical phase diagram at each field. ZZ = zigzag, 32 = 32-site, 50 = 50-site, 18 = 18-site, PM = polarized paramagnet.

the quantum model since the quantum coherent signals may
be less sensitive to thermal fluctuations. For the simpler case
of the 1D transverse-field Ising model, it was shown that
such signals can survive at finite temperatures [22]. Hence,
the investigation of the effects of temperature on the 2DCS
signals in the quantum Kitaev model is a fruitful topic for
future studies.

IV. SPIN EXCITATION CONTINUA
AND 2D SPECTROSCOPY

Motivated by recent experiments using high magnetic
fields to reveal a disordered quantum paramagnet at in-
termediate field strengths [46], we examine a minimal
model of α-RuCl3 at various magnetic fields. We choose
the parametrization (K, �, �′) = (−1, 0.25,−0.02), which
yields large unit cell magnetic orders at intermediate fields
between the zigzag (ZZ) order at zero field and polarized
phase at high field strengths. From the DSSF computed
in previous studies for this parameter set plotted in Figs.
5(a)–5(f), a continuum of excitations can be seen at interme-
diate fields in panels (b) (32-site unit cell) and (c) (50-site unit
cell). At finite temperatures, these fields host competing large
unit cell orders which form a thermal ensemble, giving rise to

continuum-like behavior [7,34]. Fig. 5(c), in particular, bears
resemblance to the continuum seen in the pure ferromangetic
Kitaev model in Fig. 3(a). From the DSSF alone, it is hard to
distinguish between this scenario and the continuum arising
from the fractionalized excitations in the Kitaev spin liquid.

We present the 2DCS for the K��′ model at zero tem-
perature in Figs. 5(e)–5(h) and at finite temperature in
Figs. 5(i)–5(l) in the z measurement channel. We observe
sharp peaks at zero temperature appearing at energies cor-
responding to the coherent magnon branches at the �0 point
in the DSSF. Each peak corresponds to a distinct nonlinear
optical process and will appear at frequencies with integer
multiples of En, the energy of the nth magnon branch. These
nonlinear processes are most clear in the polarized phase,
where only the lower magnon branch contributes to the 2DCS
response. For example, the peak at (ωt , ωτ ) = (Elower, 0) is
the so-called PP response [labeled in Figs. 5(h) and 5(l)].
In principle, each magnon band may exhibit such nonlinear
signals, as described in detail in Lu et al. [23], where they
measured the 2DCS spectra for the isolated magnon modes
of the canted antiferromagnet YFO. Thus, for larger unit cell
orders, we expect the 2DCS to be a collection of nonlinear
signals for each magnon mode. For the ZZ phase, we see
a collection of peaks in Fig. 5(e) at energies corresponding
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to the lower magnon branch from Fig. 5(a). The intensity
of the upper magnon branch is much weaker than the lower
one in the DSSF, thus the 2DCS is dominated by the latter.
For the 32-site and 50-site orders, each excitation on the
continuum could, in principle, contribute peaks corresponding
to all of the nonlinear processes described above, along with
sum and difference frequency generation between the modes.
As a result, the 2DCS exhibits a dense collection of many
discrete peaks. Although a continuum is present, we can make
out peaks in the 2DCS at energy scales corresponding to the
strongest intensity peaks in the DSSF. These energies are
shown in Fig. 5(f) as the black solid, dashed, and dotted lines
for the three intense branches from Fig. 5(b), while the highest
intensity peak from Fig. 5(c) is marked by black solid lines
in Fig. 5(g). This dense collection of peaks can be directly
contrasted with the continuous linear signals seen in the pure
Kitaev model in Fig. 3. Thus, although both scenarios yield
similar excitation continua in the DSSF, 2DCS produces qual-
itatively different results, reflecting the fundamentally distinct
physics underlying the broad spectra.

At finite temperature, in general, we observe far fewer
features than at zero temperature, similar to the pure Kitaev
model case. The disappearance of the features present at zero
temperature is particularly dramatic in Fig. 5 in panels (j)
through (l). For example, only the PP peak remains for the
polarized phase, and the two-quantum (2Q), terahertz recti-
fication (TR), NR and R peaks all disappear. However, these
peaks are still visible in experiments done at finite temperature
[23,24], whereas most of our peaks disappear at T/|K| =
0.001. The fragility of the signals at finite temperature again
demonstrates the sensitivity to thermal noise in our simula-
tions, drawing attention to the role that quantum effects may
play in stabilizing these signals in actual experiments.

V. DISCUSSION

To recap, we have demonstrated the strengths of 2DCS as a
probe for the underlying excitations of exotic states emerging
from frustrated spin systems. Using classical MD simulations
on the pure Kitaev model, we observed sharp linear signals,
notably diagonal nonrephasing and antidiagonal rephasing
signals at zero temperature, reminiscent of the sharp linear
features of the quantum model. Thus, the ability of purely
classical dynamics to produce such signals implies that they
alone cannot be taken as evidence of quantum spin liquid
physics. Rather, additional details are required. Aside from
the presence or absence of a gap, we presented additional
discriminating features between the classical and quantum Ki-
taev models. First, we observed finite signals in measurement
channels which should be forbidden in the quantum model
due to the flux selection rules. Second, the classical model
did not give rise to diagonal signals offset in ωt and ωτ , and
was therefore not able to distinguish between the diagonal and
shifted diagonal contributions in the quantum model. These
two features are hallmarks of 2DCS on the exactly solvable
Kitaev honeycomb model and can be used to differentiate be-
tween the quantum Kitaev model and its classical counterpart.

We also highlighted the usefulness of 2DCS in differenti-
ating between distinct mechanisms that can give rise to spin
excitation continua in INS. In the K��′ model, we previously

reported a broad continuum at finite fields arising from the
many excitations of an ensemble of large unit cell magnetic
orders [7]. Naively, this INS response looks similar to the
one that arises from the classical Kitaev spin liquid state.
However, using 2DCS, we observed a dense collection of
discrete points in the nonlinear response of these large unit
cell orders, in stark contrast with the sharp linear signals in
the pure Kitaev model. Thus, while linear response fails to
distinguish between excitation continua arising from spin liq-
uid physics and large unit cell magnetic orders, 2DCS exhibits
clear qualitative differences between the two cases.

Our paper establishes the ability of 2DCS to probe prop-
erties of excitations in spin systems otherwise inaccessible by
linear spectroscopies, not only for classical versus quantum
phenomena but also for revealing the intrinsic nature of the
excitations hidden in the broad spin excitation continua seen
in INS. However, a few open questions remain. For example,
what happens to the spectra in the quantum model in the
presence of an external magnetic field and finite tempera-
ture, especially in the crossover region between a KSL and
the polarized paramagnet? This question is relevant for dis-
tinguishing between a putative intermediate-field spin liquid
and the field-polarized state in candidate Kitaev materials.
Away from the exactly solvable point, the breaking of flux
conservation negates the strict flux selection rules and hard
flux gap, meaning that the quantum response should more
closely resemble the classical case. This poses a challenge
in identifying distinguishing characteristics of quantum spin
liquid physics. Additionally, in both the pure Kitaev and K��′
models, the 2DCS simulated using classical MD are very
sensitive to thermal noise, as many of the characteristic excita-
tions of the underlying ground state disappear. The robustness
of these signals in experiments [23,24] may imply the impor-
tance of quantum effects in stabilizing them in the presence
of thermal fluctuations. More generally, clarifying the role of
quantum effects in 2DCS is thus another important step in
understanding the nonlinear dynamics of frustrated magnets
and for quantum materials in general.
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APPENDIX A: DETAILS OF THE NUMERICAL METHODS

We used classical MC techniques to obtain the spin con-
figurations needed to compute the 2DCS. We implemented an
adaptive Gaussian update method [51], where each random
spin sampling process will attempt to update within a width σ

away from the current spin, where σ gets updated every sweep
to converge towards an optimal σ . This optimal σ is such that
the target acceptance rate is approximately 50%. We used this
algorithm to study system sizes of up to L = 20 × 20 × 2, and
we thermalized 200 independent Markov chains to the desired
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FIG. 6. Magnetization at zero versus finite temperature in the
presence of pulse A at various delay times τ for K = −1. The shaded
region depicts the response after the pulse arrived.

temperature using 106 MC sweeps via annealing. For faster
convergence, we also used 100 overrelaxation sweeps for
every MC sweep, where the spins are flipped along the local

fields [52]. For the zero-temperature (T/|K| = 10−7) configu-
rations, we performed 108 deterministic update sweeps, where
we randomly aligned the spins towards the local fields [53].

The spin configurations are then used as initial config-
urations for molecular dynamics, where each measurement
is time-evolved deterministically according to the Landau-
Lifshitz-Gilbert equations of motion as described in the main
text [49]. For the input pulses, we used Gaussian pulse shapes
described by A(t ) = exp [(−t/2t0)2] cos(2π f0t ), where t0 =
0.38|K|−1 and f0 = 0.33|K|. The strengths of the A and
B pulses were 0.1|K|S. For the numerical integration, we
used the SSPRK53 ODE solver from the DIFFERENTIALE-
QUATIONS.JL JULIA package [54,55]. We used a time window
of tmax = 600|K|−1 in time steps of δt = 0.25|K|−1 for the
simulations. These results were then numerically Fourier
transformed in the t and τ dimensions to obtain the 2DCS
spectra.

APPENDIX B: ROLE OF THERMAL FLUCTUATIONS
IN 2DCS FROM LLG

As mentioned in the main text, thermal noise can dramati-
cally change the signals seen in 2DCS. This can be understood
by looking at how the magnetization changes over time in
the presence of a single pulse field, plotted in Fig. 6. At zero
temperature, the magnetization is completely flat before the
pulse arrives, whereas at finite temperature there are already
nontrivial spin dynamics present. After the pulse arrives, at
time t ′ = −τ , the signals at zero temperature for each τ are
initially the same, just shifted by τ , whereas the signals at
finite temperature are dramatically different for each τ . The
presence of nontrivial dynamics, due to thermal fluctuations,
already present in the absence of any pulses leads to the
washing out of coherent signals in the resulting 2DCS spectra.
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