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Classical spin models and basic magnetic interactions on 1/1-approximant crystals
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We study classical spin models on the 1/1 Tsai-type approximant lattice using Monte Carlo and mean-
field methods. Our aim is to understand whether the phase diagram differences between Gd- and Tb-based
approximants can be attributed to anisotropy induced by the crystal-electric field. To address this question,
we treat Gd ions as Heisenberg spins and Tb ions as Ising spins. Additionally, we consider the presence of
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction to replicate the experimentally observed correlation
between magnetic properties and electron concentration. Surprisingly, our findings show that the transition
between ferromagnetic and antiferromagnetic order remains unaltered by the anisotropy, even when accounting
for the dipole interaction. We conclude that a more comprehensive model, extending beyond the free-electron
gas RKKY interaction, is likely required to fully understand the distinctions between Gd- and Tb-based
approximants. Our work represents a systematic exploration of the impact of anisotropy on the ground-state
properties of classical spin models in quasicrystal approximants.
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I. INTRODUCTION

Quasicrystals provide a unique setting to theorists and
experimentalists alike; as well as having crystallographically
forbidden rotational symmetries, quasicrystals possess macro-
scopic structural order that never repeats [1–3]. As most of
solid-state physics relies on periodicity, there is considerable
difficulty in adapting existing methods to treat quasiperiodic
systems. However, a possible stepping stone towards study-
ing quasicrystals presents itself in the form of approximants,
which are sequences of periodic materials with increasing
unit cell sizes. Locally, their structure is the same as that
of the limiting quasicrystal; if the correlation length of the
observables of interest is shorter than the size of the unit
cell, then one would therefore expect the physical proper-
ties to be similar. Furthermore, a thorough understanding of
the properties of the approximants is necessary to identify
what makes the quasiperiodic phase unique. In this paper,
we present a theoretical study of classical spin models on a
Tsai-type approximant as a baseline for further work on their
magnetic properties.

Tsai-type materials [4] are a class of complex inter-
metallics which can occur both in quasicrystalline form and
as periodic approximants. The materials contain at least two
different elements [5] and are built from clusters of several
concentric polyhedral shells. Of particular interest is the icosa-
hedral shell, which can host the magnetic rare-earth elements.
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Since the discovery of Tsai-type clusters containing rare-earth
elements there has been extensive research into their magnetic
properties, with the main focus on finding a quasiperiodic
system with long-range magnetic order [6]. A quasicrystalline
ferromagnet was found by Tamura et al. [7] in a Tsai-type
Au-Si-Tb system in 2021, but antiferromagnetic order is yet to
be observed in quasicrystals despite antiferromagnetic phases
being allowed by symmetry arguments [8].

As Tsai-type quasicrystals are difficult to investigate from
both theoretical and experimental viewpoints, a recurring
theme has been to study the periodic approximants to de-
termine which parameter ranges to prioritize in the pursuit
of quasiperiodic magnetic order [9,10]. The approximants
are labeled by a rational number approximating the golden
ratio, τ = (1 + √

5)/2. Simplest among the approximants are
the 1/1 approximants, which resemble body-centered cubic
lattices decorated with Tsai-type clusters; see Fig. 1 for the
magnetic lattice. For the rest of this paper, the word approxi-
mant is strictly referring to a 1/1 Tsai-type approximant.

Suzuki et al. noted that the Curie-Weiss temperature, which
is proportional to the mean magnetic coupling, varies with the
conduction electron density for a set of ternary approximant
materials [11]. We reproduce their result in Fig. 2, where
we have modified the abscissa to represent the Fermi wave
vector as estimated by Eq. (6). There is a critical value for
kF below which Tb-based approximant samples transition
from ferromagnetic (FM) to antiferromagnetic (AFM) [12].
However, Gd-based approximants favor FM order, and their
transition point is at a much lower electron concentration than
their Tb counterparts in spite of the similarities in Curie-Weiss
temperatures. The leading hypothesis is that this is due to the
difference in on-site anisotropies experienced by Gd and Tb
ions [13].

The simplest way to model the conduction electrons is to
treat them as a Fermi gas with a spherical Fermi surface which
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FIG. 1. Geometry of the cubic unit cell, in units of the lattice
parameter. Rare-earth sites occur on the vertices of the icosa-
hedra, which in turn are centered at (0, 0, 0) (labeled “A”) and
(1/2, 1/2, 1/2) (labeled “B”), respectively. Clusters from outside the
unit cell are grayed out. JO, JI , and JR denote the three nonequiva-
lent nearest-neighbor distances we consider for the direct exchange
terms; see Sec. II C.

is coupled to the rare-earth magnetic moments through an an-
tiferromagnetic exchange term. This gives rise to an effective
coupling between the rare-earth moments: the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [14–16]. Sugimoto
et al. [17] presented a phenomenological model of ap-
proximants based on the RKKY interaction and easy-plane
anisotropy, which reproduces magnetic states observed in
neutron diffraction experiments on Tb-Au-Si approximants.
Miyazaki et al. [18] investigated classical Heisenberg spins
interacting through RKKY; the resulting ground-state phase
diagram as a function of electron concentration correlates with
that found in experiments.

FIG. 2. Experimentally measured reduced Curie-Weiss tempera-
tures in Kelvin for Gd-based (top, red dots) and Tb-based (bottom,
blue dots) 1/1-approximants versus akF , lattice constant a times the
Fermi wave vector kF . Background colors illustrate an approximate
magnetic phase diagram. The ordinate values have been divided
by the de Gennes factor; see Eq. (5) and the following discussion.
Dashed lines are guides to the eye. Adapted from Suzuki et al. [11].

In this work, we study classical spin models on the Tsai-
type 1/1 approximant lattice using a Monte Carlo approach.
We investigate the magnetic properties under the RKKY inter-
action, but we also consider direct exchange and dipole-dipole
interactions in a systematic fashion. In order to connect the
simulations to neutron diffraction results, focus lies on the
ground-state properties of each class of interaction as well
as on investigating how the phase diagram under the RKKY
interaction is affected by including the direct exchange and
dipole interactions. Furthermore, we introduce an Ising ansatz
to model the crystal field effect on Tb to determine if strong
anisotropy has an effect on the magnetic properties. This
model has easy-axis anisotropy, and we contrast it against
the case of the isotropic Heisenberg spin symmetry as a
model for Gd. Understanding the difference between Tb- and
Gd-based approximants could be important for synthesizing
magnetic quasicrystals, as approximants have a greater param-
eter range where they are thermodynamically stable compared
to their quasicrystalline counterpart. Therefore, understand-
ing how different rare-earth ions behave in Tsai-type clusters
could be important for engineering the quasicrystal magnetic
properties [6].

The paper is organized as follows: In Sec. II, we introduce
our model, starting with the lattice geometry, followed by a
discussion of the easy-axis model we employ for the crystal
electric field, before ending on a presentation of the Hamilto-
nians under study. In Sec. III, we describe our Monte Carlo
approach. The results are presented and discussed in Sec. IV,
where we begin by determining the magnetic properties of the
direct exchange, RKKY and dipole terms separately. Finally,
we consider how dipole and direct exchange terms influ-
ence the RKKY ground states as the Fermi wave vector is
changed.

II. MODEL

A. Lattice

If rare-earth ions are present in the Tsai-type 1/1 approxi-
mant, then they are located at the positions shown as vertices
in Fig. 1. The magnetic lattice is a body-centered cubic (BCC)
arrangement of clusters of rare-earth ions, which are in turn
located on the vertices of icosahedra. The vertices of an icosa-
hedron can be represented by the cyclic permutations of the
position vector ri ∝ (±1 ± τ 0), where τ = (1 + √

5)/2 is the
golden ratio. The cubic unit cell parameter, a, is approxi-
mately 15 Å. In this work we take the radius of the icosahedral
clusters to be rIco ≈ 0.365a.

The full decoration of the BCC unit cell is made up of a se-
ries of concentric shells; an illustration is provided by Suzuki
et al. [11]. The icosahedra containing rare-earth ions are sur-
rounded by shells containing Au and Si. For our purpose, the
key property is this: Certain lattice sites are partially occupied
by either Au or Si, and this occupancy can be tuned by sample
composition. As Au and Si have different valency, one can
synthesize materials with different conduction electron den-
sity, which we model with a corresponding Fermi wave vector.
In spite of the disordered nature of the materials we aim to
study, we take the icosahedra to be perfectly symmetric and
of the same radius throughout the lattice.
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FIG. 3. Spin symmetry of the Ising kind. Transparent hexagon
denotes a mirror plane of the lattice, thick black line the normal
vector of the icosahedral cluster, and orange vectors show the two
possible choices of directions for the Ising spin Si.

B. Spin symmetry

The crystal electric field in real materials typically induces
a magnetic anisotropy depending on the orbital states of the
electrons in the unfilled ionic shells. Thus, the local magnetic
moments have a set of preferred directions. In this study, our
starting point is to neglect the anisotropy and model the ionic
magnetic moments as classical Heisenberg spins. This model
should approximate the behavior of Gd-based compounds: By
Hund’s rules, the electronic ground state of a free Gd ion has
zero orbital angular momentum and its 4 f -electron density is
spherically symmetric; therefore the crystal electric field will
have little effect on its magnetic properties [19].

To study the hypothesis that the main difference between
the Tb and Gd approximant phase diagrams is due to on-site
anisotropy, we model the Tb moments as Ising spins pointing
along the icosahedral cluster normal and inside a mirror plane
of the lattice. For example, we assume the site at r ∝ (τ10)
has two possible choices for the Ising spin Si ∝ ±(−1τ0): see
Fig. 3. We neglect any angular deviation from the idealized
case discussed above as the point is not to match the actual
anisotropy present in the material but to put our model in
as stark a contrast to the Heisenberg symmetry as possible
to maximize the difference in the observed phase diagram.
We note, however, that magnetic structures close to those that
are acquired from our ansatz have been derived as possible
solutions in point charge model calculations as well as found
through neutron scattering experiments on Tb-based approxi-
mants [20,21].

C. The Hamiltonian

We study the thermodynamic properties of classical
Heisenberg and Ising model spins interacting via the Hamil-
tonian

H = HDE + HRKKY + HDipole. (1)

The class of terms contained in HDE are short-range direct
exchange (DE) interactions of the exchange form,

HDE = −
∑
i, j

Ji jSi · S j ; (2)

where Ji j = 0 if |ri, j | � 0.39a, and otherwise takes the val-
ues JO for |ri, j | ≈ 0.360a, JI for |ri, j | ≈ 0.378a, or JR for
|ri, j | ≈ 0.392a according to the relative placement of sites
i and j according to Fig. 1. These three shortest distances
are within ∼10% of one another, whereas the next shortest
distance is approximately 0.532a, and we neglect the corre-
sponding direct exchange term. Given the bipartite nature of
the lattice, the key geometrical observation is the following:
Only JO acts between sublattices A and B, whereas both JI

and JR act within the same sublattice.
The RKKY interaction originates from the indirect ex-

change mediated by the conduction electrons, and is of the
form [14–16]

HRKKY = −JRKKY

∑
|ri, j |<rc

(2kF rIco)3 f (2kF |ri, j |)Si · S j, (3)

where rc = 5a is a cutoff radius, kF is the Fermi wave vector,
and f (r) is given by

f (r) = sin(r) − r cos(r)

r4
. (4)

The presence of the cutoff of the RKKY interaction is mo-
tivated by disorder in the lattice: The effective range of the
interaction is limited by the conduction electron mean-free
path. As the Fermi wave vector is changed through doping,
rc should in principle correlate with kF . However, we neglect
this relation and instead choose a cutoff radius rc = 5a, as we
find convergence of our coupling constants at this point.

The relative strength of the RKKY interaction depends on
the distance between the spins, the electron density, and the
rare-earth element:

JRKKY = 9πmeJ2
sfν

2

32h̄2k2
F

1

(2kF rIco)3
G, (5)

where ν is the number of valence electrons per atom, me

is the electron mass, Jsf is a coupling constant between the
conduction and f -shell electrons, and G = (g − 1)2J (J + 1)
is the de Gennes factor for total angular momentum modulus
J (in units of h̄). Neglecting partial occupancies, the total
number of atoms per cubic unit cell is Na ≈ 176 [21], and
the Fermi wave vector can be related to the electron-per-atom
ratio ν as [22]

kF = (3π2Naν)1/3/a. (6)

In order to investigate the experimentally relevant interval
ν ∈ [1, 2.2], we study the corresponding interval for the di-
mensionless parameter akF ∈ [17, 22.5].

The dipolar interaction is defined by

HDipole = −JD

∑
i, j

r3
Ico

3(Si · r̂i, j )(S j · r̂i, j ) − Si · S j

|ri, j |3 , (7)

where r̂i, j is the relative unit vector between sites i and j.
Assuming free rare-earth ions, JD is given by [19]

JD = μ0

4π

μ2
B

r3
Ico

(gJ )2. (8)

Inserting values for Gd, we find JD ≈ 0.2 K, and for Tb,
JD ≈ 0.3 K. Taking the typical value for the exchange pa-
rameter Jsf ∼ 0.2 eV in Eq. (5) [19], and me taken to be
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the free electron mass, the estimated magnitude for JRKKY in
Gd-based approximants is found to be ∼0.3 K—of compara-
ble magnitude to JD. Thus, we stress that we cannot neglect
the dipole interaction a priori, as is usually done for, e.g.,
room-temperature ferromagnets [23].

III. METHODS

In this section we introduce the methods we use to ana-
lyze the properties of the terms in Eq. (1). To begin with,
we reproduce the mean-field theory description of a bipartite
Heisenberg model in Sec. III A. The purpose of this is twofold:
First, it connects to the recent experimental focus on deter-
mining the Curie-Weiss temperature and, second, it provides
an intuitively clear framework for explaining the transition
between ferro- and antiferromagnetic order we observe in the
Monte Carlo simulations, and in particular the role of the
effective intersublattice coupling uAB.

A. Mean-field theory

Consider a general Hamiltonian with scalar couplings,

H = −
∑

i j

Ji jSi · S j . (9)

In the framework of mean-field theory one neglects the cor-
relations between spins, and each site interacts magnetically
with the average field generated by the others. For Heisenberg
spins, each site in Fig. 1 is equivalent by symmetry. Thus, one
can make the ansatz that the z components of spins on the re-
spective sublattices all have the same mean value: 〈Sz

i∈A〉 = sA

and 〈Sz
i∈B〉 = sB. The self-consistency condition for a spin at

site i in the A sublattice becomes

sA = Tri[sieβ(uAAsA+uABsB+hext )si ]

Tri[eβ(uAAsA+uABsB+hext )si ]
, (10)

where Tri(·) = ∫ +1
−1 2πdsi(·) is an integral over the possible

orientations of Si in a coordinate system where the local field
is along the z axis, and the mean-field couplings are given by

uAA =
∑
j∈A

Ji j, i ∈ A, (11)

describing the effective coupling within sublattices, and

uAB =
∑
j∈B

Ji j, i ∈ A, (12)

describing the effective coupling between sublattices. There
are analogous expressions for i ∈ B. By symmetry, uBB = uAA

and uBA = uAB. We use the letter u here as opposed to the
customary J to distinguish the mean-field effective couplings
from the model parameters in the Hamiltonian.

Computing the traces in Eq. (10) and expanding to linear
order in β, one arrives at a matrix system for the average
configurations,[

uAA − 3/β uAB

uBA uBB − 3/β

][
sA

sB

]
= −hext

[
1
σ

]
, (13)

where σ = +1 (σ = −1) probes for FM (AFM) order; see
Eq. (22). Inverting the matrix and differentiating the resulting

magnetization with respect to hext, one arrives at

χzz ∼ 1

1 − β(uAA + uAB)/3
, (14)

corresponding to σ = +1 in Eq. (13), and a staggered
susceptibility

χs ∼ 1

1 − β(uAA − uAB)/3
, (15)

corresponding to σ = −1. In both cases, the critical tempera-
ture is given by

Tc ∼ uAA + |uAB|
3

. (16)

A property of this mean-field solution that turns out to be
important is the following: The sign of uAB indicates whether
one can expect a ferromagnet or an antiferromagnet, which we
use to discuss the magnetic phase diagrams in Sec. IV [19].

B. Numerical methods

We use two different Monte Carlo approaches: the
Metropolis algorithm [24] for Ising spins and the heat-bath
[25] algorithm for Heisenberg spins. Unless otherwise noted,
we simulate a system size of 24 · 43 = 1536 sites, i.e., a linear
system size of L = 4 cubic unit cells. Furthermore, we em-
ploy periodic boundary conditions. In order to determine the
ground state, we employ the simulated annealing approach us-
ing 106 updates per site and temperature and use a uniformly
spaced distribution of 10 temperatures.

When simulating dipolar systems using periodic boundary
conditions, care has to be taken as the series in Eq. (7) is in that
case conditionally convergent. Any physical sample, however,
has a boundary whose shape will influence the magnetostatic
energy. The usual way to implement the boundary is through
a shape-dependent Ewald sum, which for a spherically shaped
sample yields the effective dipole Hamiltonian [26]

HD = −1

2
JD

∑
i 	= j

(Si · ∇)(S j · ∇)ψ (ri j ) + HBoundary, (17)

where the scalar potential is

ψ (r) =
∑
n∈Z3

erfc(α|r + n|)
|r + n|

+
∑
|n|	=0

1

π |n|2 e2π in·re−π2|n|2/α2
,

(18)

and HBoundary is given by

HBoundary = 2π

3

JD

L3

∑
i j

Si · S j . (19)

The parameter α sets the convergence rate of the two different
series in Eq. (18): A large α means that the first series requires
fewer terms to converge and the second series requires more
terms and vice versa. For our simulations, we used α = 1/L as
an approximation to the optimal value for efficient calculation
of ψ [27].
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FIG. 4. An example AFM state which maximizes the staggered
cluster magnetization |Ms|, and therefore also sublattice magneti-
zation. Interstitial octahedron highlighted in orange to illustrate the
depth, as the spins are staggered along the 111 direction.

C. Observables under study

Using the methods described in Sec. III B, we calculate the
thermal expectation values of a set of observables. To probe
for FM order, we define the magnetization M as

M =
∑

i

Si, (20)

and from the variance of the z component of the magnetization
we define the differential susceptibility,

χzz = 〈MzMz〉 − 〈Mz〉 〈Mz〉
NkBT

. (21)

As the lattice is of the BCC class with icosahedral clusters
at the BCC sites, one can define a staggered cluster magneti-
zation in analogy with undecorated BCC lattices,

Ms =
∑
i∈A

Si −
∑
i∈B

Si, (22)

where A and B are sublattices denoted by the corresponding
letter in Fig. 1. An example of a state maximizing |Ms| is
found in Fig. 4. Note that a state for which 〈|Ms|〉 = 0 could
still have antiferromagnetic correlations between neighboring
icosahedral clusters. For the purposes of this paper, however,
antiferromagnetic order is defined as staggered magnetic or-
der of the form given in Fig. 4.

IV. RESULTS AND DISCUSSION

In this section, we investigate the differences between the
Heisenberg and Ising spin symmetries in the lattice in Fig. 1.
With the numerical method outlined in Sec. III, we consider
nearest neighbor, RKKY, and dipole interactions separately
in Secs. IV A–IV C. Next, we consider the interplay between
the RKKY and dipole terms in Sec. IV D, as the directional

FIG. 5. Ground-state phase diagram for Heisenberg spin symme-
try under HDE acquired via MC simulation. We have set JI = +1, and
modify the values of JO and JR along the x and y axis, respectively.
Orange denotes antiferromagnetic order, and blue ferromagnetic or-
der, as defined by Eqs. (20) and (22). Gray denotes states without a
sublattice magnetization.

dependence in the dipole interaction might affect the sym-
metry properties of the ground states. Finally, we modify the
intersublattice coupling uAB by considering JO and JRKKY and
study their mutual effect on the AFM/FM transition.

A. Direct-exchange interactions

We begin the presentation of our results by studying the
short-range interactions in HDE, Eq. (2). Although HDE does
not capture the dependence of the magnetic properties on
the electron concentration, its conceptual simplicity allows
for direct comparison with mean-field theory. Furthermore, as
chemical disorder provides an effective cutoff on the RKKY
interaction, with a suitable choice of parameters HDE can be
seen as a strong disorder limit of HRKKY.

At zero temperature, only the relative magnitudes of cou-
plings matter for the determination of the magnetic state.
Thus, the only parameters determining the ground states of
HDE are JO/JI , JR/JI , and the sign of JI . Therefore, we con-
sider the two cases JI = +1 and JI = −1 separately and study
the ground state as a function of JO and JR using Monte
Carlo simulation. As seen in Fig. 1, JO sets the strength of
the intersublattice coupling, i.e., uAB ∼ JO, whereas JI and
JR contribute to the intrasublattice coupling uAA. By requir-
ing that Tc > 0 in Eq. (16), one can achieve a qualitative
description of the phase boundaries of the nearest-neighbor
Hamiltonian under Heisenberg symmetry: In the case of
JI = +1 and JR > 0, Fig. 5, the magnetic ordering is de-
termined by the sign of JO, whereas when JR � −1, larger
magnitudes of JO are needed to observe the AFM/FM ground
states in order to overcome the negative uAA. Similarly, when
JI = −1, the transitions occur at larger |JO|; see Fig. 6. The
actual parameter magnitudes at the phase boundaries do not
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FIG. 6. Ground-state phase diagram for Heisenberg spin symme-
try under HDE acquired via MC simulation. We have set JI = −1, and
modify the values of JO and JR along the x and y axis, respectively.
Orange denotes antiferromagnetic order, and blue ferromagnetic or-
der, as defined by Eqs. (20) and (22). Gray denotes states without a
sublattice magnetization.

agree with the estimates acquired from Eq. (16), which is
likely due to the fact that the result for Tc is obtained via a
high-temperature expansion and the exclusion of states with
zero sublattice magnetization from our analysis.

The Ising-spin symmetry appears not to have finite values
for the magnetization/staggered magnetization except when
fine tuning the couplings; see Fig. 7, where we fix JI = +1.
We find magnetic order defined by Eqs. (20) and (22) only
within thin lines in the regime where JR � 0. It appears that
the short-range interactions favor ground states without sub-
lattice magntization, except for the narrow 
-shaped region in
Fig. 7. There is a marked contrast between the behaviors of the
easy-axis spin system we propose here to the easy-plane one
proposed by Sugimoto et al. [17], the latter showing sublattice
magnetization when considering the RKKY interaction trun-
cated to nearest neighbors without fine-tuning the parameters
as seen necessary in Fig. 7. In order to fully understand the
phase diagram, one would need to extend the parameters
under study, e.g., consider spin-spin correlation functions—a
task beyond the scope of this paper.

B. Pure RKKY interaction

When the Hamiltonian contains the RKKY terms in Eq. (3)
only, the ground-state configuration acquired from Monte
Carlo simulation correlates with the sign of uAB at a given
Fermi wave vector but not with the Curie-Weiss temperature
(uAB + uAA)/3. That is, it is only the intersublattice com-
ponent of the Curie-Weiss temperature that is an indicator
for the magnetic ground state. In Fig. 8, we show the phase
boundaries for the Heisenberg spin symmetries overlapped
with uAB and the Curie-Weiss temperature as a function of kF .
However, as in the case of the direct-exchange Hamiltonian,

FIG. 7. Ground-state phase diagram for Ising spin symmetry
under HDE acquired via MC simulation. We have set JI = +1, and
modify the values of JO and JR along the x and y axis, respectively.
Orange denotes antiferromagnetic order, and blue ferromagnetic or-
der, as defined by Eqs. (20) and (22). Gray denotes states without
a sublattice magnetization. The axis of symmetry given by JO = 0
persists as in Fig. 5, but magnetized states are only found in a

-shaped region.

Eq. (2), the mean-field description only manages to capture
the transitions between states with sublattice magnetization.
Similarly to the experimental situation for Tb- and Gd-based
approximants, we find FM and AFM phases for both Ising and
Heisenberg spin symmetries under RKKY.

As in Miyazaki et al. [18], the Heisenberg model reaches
saturation magnetization for all kF in the FM regime. How-
ever, since both the interactions and the spin symmetry
are isotropic, the model cannot select a particular direction.

FIG. 8. Pure RKKY phase diagram. Orange (blue) color high-
lights the phase boundaries of the AFM (FM) states. Black lines and
dotted line show � and uAB, respectively—the latter only defined
for Heisenberg symmetry. Regions in white are without sublattice
magnetization.
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FIG. 9. Local cluster orderings in the Ising model system, de-
noted by the Miller indices of the net magnetization direction: (a) the
τ10 state and (b) the 111 state. The two spins with differing direc-
tions between the two states are highlighted in red. We find both
antiferromagnetic and ferromagnetic arrangements of these cluster
orderings.

Furthermore, we do not find the incommensurate regime be-
tween the FM/AFM phases reported by Miyazaki et al., which
could be due to us simulating a smaller system size. In the case
of the Ising model, the magnetization saturates at about 53%
of the Heisenberg case; see the ferromagnetic ground state in
Fig. 9. The possible axes of magnetization for the Ising model
ground states are found to point toward the 12 vertices of an
icosahedron. Thus, we label its FM (AFM) ground states as
FM τ10 (AFM τ10). We note that the symmetry operations
relating these directions are not related to the cubic symmetry
of the lattice. However, adding the dipole interaction changes
this; see Sec. IV D.

For smaller kF , both the Heisenberg and Ising models
show antiferromagnetic order which is staggered along the

FIG. 10. Heisenberg symmetry dipole interaction ground state,
neglecting the boundary term. We bring attention to the fact that
the structure is not perfectly collinear; see, e.g., neighboring spins
highlighted by the dashed purple ellipse.

111 direction. The antiferromagnetic states are related to their
ferromagnetic counterparts through inverting the spins located
on the B clusters in the cubic unit cell; see Fig. 1. The position
of the AFM/FM transition is approximately equal in both of
the spin symmetries, which could be due to the long-range
interactions coupling sites where the easy-axis vectors are
parallel; e.g., the antipodal points in the icosahedral cluster.
Thus, those Ising model correlations mimic more closely the
ground states found in the Heisenberg symmetry case than
under the nearest-neighbor interaction. We discuss this further
in Sec. IV E.

C. Pure dipole interaction

First, we consider the ground state of the dipole Hamilto-
nian described by Eq. (7) with the boundary term in Eq. (19)
subtracted, yielding so-called Ewald boundary conditions.
This subtraction allows us to study the magnetic structure
within the magnetic domains [28]. We find that Heisenberg
spin symmetry yields almost collinear ferromagnetic order in
the 111 direction as shown in Fig. 10. Note that this is also
close to one of the ground states under the RKKY interaction,
which means that there may not necessarily be a competition
between these two interactions at low temperature. Enforcing
Ising symmetry removes the overall magnetization, and the
ground-state spin configuration features chiral order along the
111 direction; see Fig. 11. The rotation is clockwise for the A
clusters and anticlockwise for the B clusters.

Since the ground state of the Heisenberg approximant
model is a dipolar ferromagnet, we would expect a boundary
term to lead to a low-temperature plateau in the susceptibility
[28]. Indeed, on reintroducing the boundary term, we observe
a minimum in 1/χzz at N = 1/3, the demagnetization factor
for a spherical sample, but note that the susceptibility rises
slightly as the temperature is lowered; see Fig. 12. This behav-
ior might be caused by the slight angular deviations from the
mean magnetization axis seen in Fig. 10; another explanation
could be that it is due to a finite-size effect, given that the
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FIG. 11. Dipole interaction ground state under Ising symmetry.
Note the chirality displayed by the clusters along the 111 direction.

result for L = 5 deviates from the smaller system sizes at low
temperatures.

D. Interplay between RKKY and dipole interactions

As we found in Sec. IV B, anisotropy does not affect
the AFM/FM transition point of the approximants under the
RKKY interaction. This might be due to the long-range,
angularly independent nature of the interaction. Therefore,
we investigate the effect of breaking the global rotation
symmetry by adding to the RKKY Hamiltonian, Eq. (3), a
dipolar perturbation, Eq. (7), to see the effect on the phase
diagram.

With a small dipole interaction alongside the RKKY inter-
action (JD/JRKKY = 0.1), the Ising model displays additional

FIG. 12. Magnetic susceptibility for the dipole Hamiltonian,
Eq. (7), under Heisenberg symmetry for different linear system sizes
L. Note the minimum at 1/χzz = N = 1/3, the demagnetizing factor
for a spherical sample.

FIG. 13. Phase diagram for the Ising spin symmetry with both
dipole and RKKY interactions present, FM (AFM) denoted by blue
(orange), and clusterwise order 111 (τ10) by striped (single-color)
boxes. Parameters: (a) JD/JRKKY = 0.1, (b) JD/JRKKY = 0.3, and
(c) JD/JRKKY = 0.5.

ground states ordered along the 111 directions; see Fig. 13(a).
The antiferromagnetic (AFM-111) and ferromagnetic (FM-
111) states are related by flipping the spins located on the B
cluster; see Fig. 1. The FM-111 state is shown in Fig. 14 and
resembles the ferromagnetic states found in Au-Si-Tb [11,13].
The AFM-111 state have been found in both Au-Si-Ho and
Au-Si-Tb compounds [21] and in Au-Al-Tb [29]. Increasing
the dipole interaction to JD/JRKKY = 0.5, the states whose

FIG. 14. The FM 111 state, so denoted since the net magnetiza-
tion direction is along the 111 direction. Total magnetization at 49%
of the corresponding Heisenberg ferromagnet. We bring attention
to the ferromagnetic correlation between spins lying in the mirror
planes of the lattice bisecting the icosahedra.
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FIG. 15. Critical values for akF as a function of JO. Mean field
estimates from the point where uAB changes sign, while keeping
Tc > 0, Eq. (16). Since the experimental value for the critical akF

is beyond the reaches of the models studied here, we suggest that
the band structure must be taken into account when computing the
RKKY couplings.

clusterwise magnetization is aligned along the τ10 directions
almost disappear from the phase diagram; see Fig. 13(c). We
note here that a similar effect was found by Sugimoto et al.
[17] by adding an on-site anisotropy term.

Considering combined RKKY and dipolar interactions
under Heisenberg spin symmetry leads to a similar phase
diagram as in Fig. 8. However, the FM/AFM axes point along
the 111 direction for arbitrarily small JD, similarly to Fig. 10.
Thus, for both Heisenberg and Ising spin symmetries, and
with a dipole interaction stronger than roughly JD/JRKKY =
0.5, the ground states are eightfold degenerate and based
on our model we predict that approximants will have their
magnetization axes along the 111 direction.

Experimentally, the transition between FM and AFM
ground states occurs at larger electron concentrations, ν, than
those observed here. As seen in Fig. 13, the critical νc is
not affected by tuning the strength of the dipole interaction.
Nevertheless, the dipole interaction seems to be important in
order to acquire experimentally relevant ground states for this
model.

E. Interplay between RKKY and DE interactions

As neither anisotropy nor the dipole interaction was suffi-
cient to explain the shift between Gd and Tb approximants, we
turn to the interplay between the direct-exchange and RKKY
terms. Here focus lies on the only parameter in HDE that
modifies the observed magnetic order, JO.

When the intersublattice direct-exchange term JO < 0, it
widens the antiferromagnetic region in Fig. 8, and increases
the critical value for the electron density. It also narrows the
ferromagnetic region, in accordance with Eq. (16). However,
assuming the relationship between kF and ν in Eq. (6), the
transition point is still for smaller ν than experimentally ob-
served. As seen in Fig. 15, both the Heisenberg and Ising

spin symmetries studied here follow roughly the estimate
of the transition point computed from the mean-field theory
presented in Eq. (16). The drifts for larger amplitudes |JO|
are expected: The behavior should be more mean-field-like
since the effective coordination number is large when HRKKY

dominates, as long as the model does not become frustrated.
The discrepancy in the Ising case can be expected given the
assumption of isotropy in deriving the mean-field results, and
the fact that fixed relative angles between nearest-neighbor
easy axes reduce the effective impact of JO by a factor of
cos θ = τ/(1 + τ 2) ≈ 0.45.

The different scaling of the critical Fermi wave vector
versus JO for the Heisenberg and Ising spin symmetries could
explain the shift in the AFM/FM transition point between Gd-
and Tb-based materials if JO > 0 and taken as equal for the
different materials. However, this further pushes the transition
point away from the experimental value. Another explanation
in the framework of our model could be that Gd- and Tb-based
materials have a different JO.

For JO � −10, the FM (AFM) ground states for the Ising
case have their magnetization (staggered magnetization) or-
dered along the τ10 directions and instead align along the 111
directions. The total magnetization per spin is again found to
be 49% of that of a free ion. Thus, the addition of a nearest-
neighbor interaction mimics the effect of including a dipole
interaction and yields ground states reminiscent of the ex-
perimental spin structures observed in Tb-based approximant
materials.

V. CONCLUSIONS

We present a systematic study of the classical magnetic
properties of the 1/1 Tsai-type approximant. The key ob-
servation is that the spin symmetry in the form of Ising
or Heisenberg spins does not significantly affect the Fermi
wave vector at which the ground state switches from an an-
tiferromagnet to a ferromagnet when considering the RKKY
interaction. This suggests that the differences between Gd-
based and Tb-based approximants stem from another source.
Our results also show that the difference is most likely not
due to the dipolar interaction, and a remaining possible expla-
nation within our model is a material-dependent short-range
interaction. In addition, the free-electron model might be in-
sufficient to model the conduction band.

For the approximant we find that the key parameter deter-
mining whether the ground state is ferro- or antiferromagnetic
is not the much-used Curie-Weiss temperature but rather the
sign of the intersublattice mean-field uAB. This is the case for
the direct exchange interaction, for which uAB is proportional
to the direct exchange parameter JO, and for the RKKY in-
teraction, where the kF dependence of uAB correlates with the
ground-state magnetization of both Heisenberg and Ising spin
symmetries.

For Ising spin symmetry, the most significant effect of
perturbing the RKKY Hamiltonian with a dipolar contribution
is a slight change in the ground-state configuration. The new
ground states resemble ones experimentally observed in Tb-
and Ho-based approximants [11,13,21,29]. We find the that
the RKKY-induced FM/AFM transition point itself is remark-
ably stable with respect to dipolar perturbations. On the other
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hand, the ground state of the approximant under Heisenberg
spin symmetry and pure dipolar interaction is a ferromagnet,
with an expected associated plateau in the susceptibility below
the transition. We find that the plateau has a slight slope,
which we believe to be caused by the noncolinear magnetic
ground state. The residual gradient detected below the crit-
ical temperature resonates with similar findings reported by
Tamura et al. [7], who observed a plateau with a slight slope
at low temperatures in a newly discovered Gd-based magnetic
quasicrystal. Nevertheless, it is essential to acknowledge the
potential influence of a finite-size effect on our findings.

In conclusion, our study provides evidence against the
hypothesis that the crystal electric field along with the nearly-
free electron description of the conduction band are sufficient
to explain the ground-state differences between terbium and

gadolinium. It would therefore be interesting to investigate
whether the anisotropy makes a difference when using a non-
spherical Fermi surface to compute the RKKY couplings.
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