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Understanding the transport behavior of quantum many-body systems constitutes an important physical
endeavor, both experimentally and theoretically. While a reliable classification into normal and anomalous
dynamics is known to be notoriously difficult for a given microscopic model, even the seemingly simpler
evaluation of transport coefficients in diffusive systems continues to be a hard task in practice. This fact has
motivated the development and application of various sophisticated methods and is also the main issue of this
paper. We particularly take a barely used strategy, which is based on the recursion method, and demonstrate
that this strategy allows for accurate calculation of diffusion constants for different paradigmatic examples,
including magnetization transport in nonintegrable spin-1/2 chains and ladders as well as energy transport in the
mixed-field Ising model in one dimension.

DOI: 10.1103/PhysRevB.110.104413

I. INTRODUCTION

Dynamics in quantum many-body systems constitutes a
central question in various disciplines of modern physics
[1–7]. In particular, transport is a paradigmatic example of a
dynamical process and is concerned with the flow of a glob-
ally conserved quantity through a given system in the course
of time. While the study of transport has a long and fertile
history, it continues to be in the focus of ongoing research [7],
both experimentally and theoretically. A particular challenge
is understanding the behavior in the hydrodynamic regime,
i.e., at large length scales and in the long-time limit.

Within the class of physically relevant models, integrable
systems play a special role [8]. While the flow of energy is
typically ballistic in such systems, a richer phase diagram
can result for other transport quantities. A prime example in
this context is the prominent spin-1/2 XXZ model, which
features ballistic, superdiffusive, and diffusive dynamics in
different parameter regions [7]. On the one hand, the origin of
ballistic dynamics has been traced back to (quasi)local con-
served quantities [9–11]. On the other hand, other nonballistic
types of dynamics have been identified by the combination
of complementary analytical and numerical techniques over
many years. Recent progress is based on generalized hydro-
dynamics [12,13], which yields a comprehensive framework
in all parameter regimes. Similarly, rich features can be also
found in quantum many-body models with disorder [14,15],
long-range interactions [16,17], or constraints [18,19].

Integrable systems are the exception rather than the rule,
and nonintegrable systems represent the generic case. These
systems add another level of complexity, as they do not al-
low for an exact analytical treatment in the thermodynamic
limit. Still, a natural assumption for these models is the
emergence of diffusive dynamics [7], e.g., due to the on-
set of chaos and thermalization. However, this assumption
has as such no consequence for the value of the actual
transport coefficient. And in fact, the intricate calculation of
transport in nonintegrable and integrable systems has been

one motivation for the development and application of so-
phisticated approaches, where each approach has its own
advantage and disadvantage. These approaches range from
perturbation theory [20–22], over exact and Lanczos diagonal-
ization [23–25], quantum typicality [26,27], time-dependent
density-matrix renormalization group for correlation func-
tions or wave packets [28–30], quantum Monte-Carlo [31,32],
Lindblad formulation of steady-state transport [33–35], to
semiclassical and classical treatment [36–38], and probably
many more.

In view of this situation, this paper takes a fresh perspective
and barely explored strategy, which is based on the recursion
method [39–45]. In one of the few works that pursue a similar
approach, the authors employ a so-called modified Mori the-
ory to arrive at transport coefficients [40]. (Results similar to
those in Ref. [40] have also been reported later in Ref. [46].)
This approach requires the knowledge of sufficiently many
“Lanczos coefficients” (for definition see below). However, it
was never applied to transport in specific interacting quantum
models, most likely since the computation of the Lanczos
coefficients practically requires modern computing power.
Another way to compute diffusion constants from a finite
set of Lanczos coefficients has recently been suggested and
applied to energy transport in a tilted-field Ising chain in
Ref. [41]. This approach is based on the operator growth
hypothesis, similar to the technique suggested in the current
paper. The main difference is that the latter employs the linear
response theory, whereas the former does not. As a conse-
quence, the present approach is substantially more efficient,
especially in the thermodynamic limit. This opens for other-
wise challenging analyses, for example, the insensitivity of
the computed diffusion coefficient to the number of actually
employed Lanczos coefficients, the absence of which may in-
dicate ballistic behavior, becomes feasible, as will be detailed
below.

We demonstrate that our strategy practically and con-
sistently allows for the accurate calculation of diffusion
constants for different paradigmatic examples, including
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magnetization transport in nonintegrable spin-1/2 chains and
ladders as well as energy transport in the mixed-field Ising
model in one dimension, and compare to values from the
literature [47–52].

II. MODELS AND CURRENTS

In this paper, we consider three different paradigmatic
examples of quantum many-body systems, which have also
attracted significant attention in the literature on trans-
port before. The first model is a perturbed XXZ spin-1/2
chain [7],

H =
L∑

r=1

(
sx

r sx
r+1 + sy

rsy
r+1 + �sz

rsz
r+1 + �′sz

rsz
r+2

)
, (1)

where si
r (i = x, y, z) are the components of a spin-1/2 op-

erator at lattice site r, L is the total number of lattice sites,
and �, �′ are anisotropies in the z direction. For �′ = 0, the
model is integrable in terms of the Bethe Ansatz while, for any
�′ �= 0, this integrability is broken. For all values of �, �′, the
total magnetization Sz = ∑

r sz
r is conserved, i.e., transport of

local magnetizations sz
r is a meaningful question. Note that,

for this model and the other models below, periodic boundary
conditions are employed.

The second model is a XX spin-1/2 ladder [47–49]. It is
chosen as an example for a quasi-onedimensional system, and
its Hamiltonian is given by H = J‖H‖ + J⊥H⊥, where

H‖ =
L∑

i=1

2∑
l=1

(
sx

r,l s
x
r+1,l + sy

r,l s
y
r+1,l

)
,

H⊥ =
L∑

r=1

(
sx

r,1sx
r,2 + sy

r,1sy
r,2

)
(2)

are the Hamiltonians of the legs and rungs, respectively, with
corresponding exchange coupling constants J‖ and J⊥. For
J⊥ = 0, the model is integrable and identical to noninteract-
ing fermions by means of the Jordan-Wigner transformation
while, for any J⊥ > 0, the integrability is broken again. As
before, for all values of J‖, J⊥, the total magnetization Sz =∑

r,l sz
r,l is conserved.

The third and last model is the Ising spin-1/2 chain in the
presence of a mixed field [49–51]. Its Hamiltonian can be
written as H = ∑L

r=1 hr ,

hr = 4sz
rsz

r+1 + Bx
(
sx

r + sx
r+1

) + Bz
(
sz

r + sz
r+1

)
, (3)

where Bx and Bz are the strengths of the field in x and
z direction, respectively. The integrability of the model for
Bx = 0 or Bz = 0 is broken for other values of Bx, Bz. In
contrast to the previous models, the total energy H is the only
nontrivial conserved quantity, i.e., transport of local energies
hr is meaningful here.

A natural strategy for the investigation of transport is given
by currents [7]. The definition of local currents follows from
the continuity equation

q̇r = i[H, qr] = jr−1 − jr, (4)

where qr is the local transport quantity, i.e., either local mag-
netizations sr , sr,l or local energies hr for the models in this

paper. Within the theory of linear response, the autocorrelation
function of the total current J = ∑

r jr plays a central role and
reads

〈J (t )J〉 = tr[e−βH eiHt Je−iHt J]

Z
, Z = tr[e−βH ], (5)

where β = 1/T is the inverse temperature, which we set to
the still nontrivial value β = 0 in the following. To determine
transport coefficients, one can then define the quantity [53]

D(t ) = 1

χ

∫ t

0
dt ′ 〈J (t ′)J〉, χ = 〈Q2〉 − 〈Q〉2, (6)

where Q = ∑
r qr and χ is the static susceptibility. (For the

three models in this paper, expressions for χ and J can be
found in the Appendixes). For a diffusive system, the diffusion
constant is given by D = limt→∞ D(t ), provided that the ther-
modynamic limit is taken first. It is worth pointing out that the
quantity D(t ) additionally contains information at finite time
and length scales, as well as on other transport types [53]. As
apparent from Eq. (6), it is crucial to determine the area under
the autocorrelation function. While various approaches to this
area have been applied in the literature before, we take in this
paper a barely used strategy, which is based on the recursion
method.

III. FRAMEWORK AND ANALYTICAL RESULTS

In the following, it is quite convenient to switch to the
Hilbert of space of operators and denote its elements O
by states |O). This space is equipped with an inner prod-
uct (Om|On) = tr[O†

mOn], which defines a norm via ||O|| =√
(O|O)/tr[1]. The Liouvillian superoperator is defined by

L|O) = [H, O] and propagates a state |O) in time, such that an
autocorrelation function can be written as 〈O(t )O〉 ∝ C(t ) =
(O|eiLt |O)/||O||2.

The Lanczos algorithm can be employed to obtain a tridi-
agonal representation of L in a subspace determined by some
“seed” O. In this paper, we have O = J . To start the itera-
tive scheme, we take a normalized initial state |O0) ∝ |O),
i.e., (O0|O0) = 1, and set b1 = ‖LO0‖ as well as |O1) =
L|O0)/b1. Then, we iteratively compute

|O′
n) = L|On−1) − bn−1|On−2),

bn = ||O′
n||,

|On) = |O′
n)/bn. (7)

The tridiagonal representation of L in the Krylov basis {|On)}
results as

Lmn = (Om|L|On) =

⎛
⎜⎜⎜⎝

0 b1 0 · · ·
b1 0 b2

0 b2 0 . . .
...

. . .
. . .

⎞
⎟⎟⎟⎠

mn

, (8)

where the Lanczos coefficients bn are real and positive num-
bers. Their iterative computation is an elementary part of the
recursion method. For the remainder of this paper, we denote
|On) by |n) for simplicity.

In the context of the Mori theory [40,54], the time evolution
of a set of functions Cn(t ) can be expressed in terms of a set

104413-2



DIFFUSION CONSTANTS FROM THE RECURSION METHOD PHYSICAL REVIEW B 110, 104413 (2024)

of integro-differential equations (see Appendixes for details),

Ċn(t ) = −b2
n+1

∫ t

0
dt ′ Cn+1(t − t ′)Cn(t ′), (9)

C0(t ) = C(t ), and Cn(t ) = (n|eiLnt |n). The operator Ln is a
“submatrix” of L and defined as

Ln =
∑

m=n+1

bm[|m + 1)(m| + |m)(m + 1|]. (10)

Employing the Laplace transform of Cn(t ),

Fn(s) =
∫ ∞

0
dt e−st Cn(t ), (11)

one gets from Eq. (9) the expression

Fn(s) = 1

s + b2
n+1Fn+1(s)

. (12)

Thus, the Laplace transform of C0(t ) can be written in the
form

F0(s) = 1

s + b2
1

s+ b2
2

s+ b2
3···

. (13)

Then, recalling the definition of the diffusion constant in
Eq. (6), one has D = 〈J2〉F0(0)/χ and, using Eq. (13) and
iterating up to R, one has

F0(0) =

⎧⎪⎨
⎪⎩

FR(0)
∏ R

2
m=1

b2
2m

b2
2m−1

, even R

1
b2

RFR (0)

∏ R−1
2

m=1
b2

2m

b2
2m−1

, odd R
. (14)

To further simplify the expression, we write FR(0) as

FR(0) = 1

bR+1

∫ ∞

0
(R|ei LR

bR+1
(bR+1t )|R) d(bR+1t ) (15)

and FR(0) = pR+1/bR+1 with the dimensionless quantity

pR+1 =
∫ ∞

0
(R|ei LR

bR+1
t |R) dt =

∞∏
m=1

(
bR+m

bR+m+1

)(−1)m

. (16)

Therefore Eq. (14) can be written as

F0(0) =

⎧⎪⎨
⎪⎩

1
pRbR

∏ R
2
m=1

b2
2m

b2
2m−1

, even R

pR

bR

∏ R−1
2

m=1
b2

2m

b2
2m−1

, odd R
. (17)

Up to this point, everything is rigorous. If all bn are known,
pR can be calculated using Eq. (16) and F0(0) can be obtained
to arbitrary precision. In practice, however, only several of the
first bn are easily accessible. So, the question is to find a good
estimation of pR from those bn which are numerically acces-
sible. To this end, we employ the operator growth hypothesis
introduced in Ref. [41], which states that, in a chaotic system,
the bn have for sufficiently large n the asymptotic form

bn =
{

A n
ln n + o( n

ln n ), d = 1

αn + β + o(1), d > 1
. (18)

For dimension d > 1, neglecting the o(1) term, one can derive
an analytical expression for pR,

pR = �
(

R
2 + β

2α

)
�

(
R
2 + β

2α
+ 1

)
�2

(
R
2 + β

2α
+ 1

2

) . (19)

For d = 1, on top of the linear behavior, there is also a loga-
rithmic correction. If this correction only enters at very large
n, one can show that Eq. (19) still holds approximately.

Here, we use a rather simple approach, where α and β

are determined by bR and bR−1 only, i.e., αR = bR − bR−1 and
βR = RbR−1 − (R − 1)bR. This approach yields

pR � p̃R = �
(

R
2 + βR

2αR

)
�

(
R
2 + βR

2αR
+ 1

)
�2

(
R
2 + βR

2αR
+ 1

2

) . (20)

Then, substituting Eqs. (20) to (17), one obtains an approxi-
mation of F0(0),

F (R)
0 (0) =

⎧⎪⎨
⎪⎩

1
p̃RbR

∏ R
2
m=1

b2
2m

b2
2m−1

, even R

p̃R

bR

∏ R−1
2

m=1
b2

2m

b2
2m−1

, odd R
. (21)

It can be shown (in Appendixes) that p̃R → 1 for R → ∞ (or
βR

αR
→ ∞). In this large R case Eq. (21) is almost identical to

a result in Ref. [40], which is based on an ad hoc assumption
and has never been applied to specific many body systems,
as already outlined in the introduction. Correspondingly, one
obtains an approximation of the diffusion constant,

D � DR = 〈J2〉
χ

F (R)
0 (0), (22)

which is a main result of this paper.

IV. NUMERICAL RESULTS

Now, we check the estimation of D in Eq. (22) for the
three different examples of quantum many-body systems, with
a focus on model parameters in the nonintegrable regime.
First, we numerically calculate the Lanczos coefficients bn

in Figs. 1(a), 2(a), and 3(a), respectively. As visible in these
figures, a region with an approximately linear scaling of bn is
observed in all cases considered.

Next, we depict the corresponding estimates of D in
Figs. 1(b), 2(b), and 3(b). Remarkably, we observe in
Figs. 1(b) and 2(b) that DR saturates at a constant value for
R ≈ 5 already, while in Fig. 3(b) the saturation is less clear.
To check whether the value of DR indeed provides a good
estimate of the true D, we compare the results to existing
numerical results in the literature [47–52], where values for
D have been determined for the same model parameters. An
almost perfect agreement with the estimate is found in the
XXZ model (� = 0.5) and XX ladder shown in Figs. 1(b)
and 2(b). In the Ising model (Bx = 1.05, Bz = 0.5), DR(R ≈
40) approximately agrees with the results in Ref. [41] with
a deviation by a few percent [55]. Slightly larger deviation
(≈10%) is observed at Bx = 1.4, Bz = 0.9045 [Fig. 3(b)].
Whether or not this deviation would vanish if more bn (beyond
n=44) were taken into account remains unclear within our
investigation, due to numerical limitations. However, up to
R ≈ 40 the DR do not exhibit a systematic trend, rather they
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(a)

(b)

FIG. 1. Magnetization transport in the XXZ spin-1/2 chain with
perturbation �′ = 0.5. (a) Lanczos coefficient bn vs. n for various �.
(b) Corresponding diffusion constants DR. The dashed line indicates
D = 3.1 from Ref. [52] for � = 0.5.

vary visibly, thus indicating that an accurate result for the
diffusion constants might have not yet been reached. This is
different from the cases of the XXZ model and the XX ladder,
where the DR as obtained from Eq. (22) converge very quickly
to the corresponding results from the literature.

Moreover, in the Appendixes, we compare our results in
Figs. 1(b), 2(b), and 3(b) to the exact calculation of D in finite
systems, based on the relation in Eq. (6). For the treatable

(a)

(b)

FIG. 2. Magnetization transport in the XX spin-1/2 ladder (J‖ =
1). (a) Lanczos coefficient bn vs n for J⊥ = 1.0, 1.5. (b) Correspond-
ing diffusion constants DR. The dashed lines indicate D = 0.95 (from
Refs. [47–49]) and D = 0.55 (from Ref. [47]) for J⊥ = 1.0 and
J⊥ = 1.5, respectively.

(a)

(b)

FIG. 3. Energy transport in the spin-1/2 Ising chain with a mixed
field (J = 1). (a) Lanczos coefficient bn vs n for various Bz. (b) Cor-
responding diffusion constants DR. The dotted line indicates D =
1.675 [55] from Ref. [41] for Bx = 1.05, Bz = 0.5. The dashed line
indicates D = 1.44 from Ref. [50] for Bx = 1.4, Bz = 0.9045 (see
also Refs. [49,51]), and our result lies within a region of 10% (shaded
area).

system sizes, we find convincing agreement, which supports
the accuracy of the estimate.

V. CONCLUSION

In summary, we have discussed in this paper an alternative
method for the accurate estimation of diffusion constants in
quantum many-body systems, which is based on the recursion
method. By employing the operator growth hypothesis in
chaotic models, we have derived an estimate of the diffusion
constant. For several examples, we have found convincing
agreement of this estimate with results from the exact calcula-
tion in finite systems, and with existing results in the literature.
In particular, we have observed that in many cases several
of the first Lanczos coefficients are already sufficient to get
a good estimate, which can be obtained resource-efficiently in
comparison to other methods.
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APPENDIX A: DERIVATION OF EQ. (9)

In this section, we show the derivation of Eq. (9) in the
main text. To this end, we define some Ln which is made from
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L by erasing the first n row and the first n column:

Ln =
∑

m=n+1

bm(|m + 1)(m| + |m)(m + 1|). (A1)

Ln are Hermitian and we denote their eigenvectors by |kn):

Ln|kn) = Ekn |kn). (A2)

Firstly, we focus on L1. Making use of the basis {|k1), |0)},
L can be written as

L =
∑

k1

b1{|k1)(k1|1)(0| + |0)(1|k1)(k1|} + Ek1 |k1)(k1|.

(A3)

Now we switch to the interaction picture and taking L1 for the
noninteracting system, the perturbation reads

VI (t ) =
∑

k1

b1{|k1)e−iEk1 t (k1|1)(0| + |0)(1|k1)eiEk1 t (k1|}.

(A4)
The time evolution in the interaction picture given by

i
∂

∂t
|ψI (t )) = VI (t )|ψI (t )), (A5)

which in the basis {|k1), |0)} yields

ṙ0 = −ib1

∑
k1

(1|k1)eiEk1 t rk1

ṙk1 = −ib1(k1|1)e−iEk1 t r0, (A6)

where

r0 = (0|ψI (t )), rk1 = (k1|ψI (t )). (A7)

Integrating the second equation of Eq. (A6), one obtains

rk1 (t ) = rk1 (0) − ib1(k1|1)
∫ t

0
r0(t ′)e−iEk1 t ′

dt ′. (A8)

Choosing rk1 (0) = 0 and inserting Eq. (A8) into the first line
of Eq. (A6) yields

ṙ0(t ) = −b2
1

∫ t

0

∑
k1

|(k1|1)|2eiEk1 (t−t ′ )r0(t ′)dt ′, (A9)

which may be cast into the form of a standard integro-
differential equations as

ṙ0(t ) = −
∫ t

0
K1(t − t ′)r0(t ′)dt ′, (A10)

where

K1(τ ) =
∑

k1

b2
1|(k1|1)|2eiEk1 τ . (A11)

The memory kernel K1(τ ) can also be written in a more
compact form

K1(τ ) = b2
1C1(τ ), (A12)

where

C1(τ ) = (1|eiL1τ |1). (A13)

Noting that the probability at |0) are the same in the interac-
tion picture as in the Schrödinger picture, one has

Ċ0(t ) = ṙ0(t ) = −b2
1

∫ t

0
C1(t − t ′)C0(t ′)dt ′. (A14)

Repeating the above procedure, it is easy to get

Ċn(t ) = −b2
n+1

∫ t

0
Cn+1(t − t ′)Cn(t ′)dt ′, (A15)

where Cn(τ ) is defined as

Cn(τ ) = (n|eiLnτ |n). (A16)

APPENDIX B: DERIVATIONS OF EQ. (19)

In this section, we show the detailed derivation of Eq. (19)
in the main text. Inserting bn = αn + β to Eq. (16) yields

pR =
∞∏

k=1

(b2k+R−1)2

b2k+Rb2k−2+R

=
∞∏

k=1

(α(2k + R − 1) + β )2

(α(2k + R) + β )(α(2k − 2 + R) + β )

=
∞∏

k=1

(
k + αR+β

2α
− 1

2

)2(
k + αR+β

2α

)(
k + αR+β

2α
− 1

) . (B1)

Making use the following expression of Gamma function

�(z + 1) =
∞∏

k=1

[
1

1 + z
k

(
1 + 1

k

)z
]
, (B2)

it is easy to get

�(z − a + 1)�(z + a + 1)

�2(z + 1)
=

∞∏
k=1

(k + z)2

(k + z − a)(k + z + a)
.

(B3)

Comparing Eq. (B3) with Eq. (B1), and setting z = R
2 + β

2α
−

1
2 , a = 1

2 , one has

pR = �
(

R
2 + β

2α

)
�

(
R
2 + β

2α
+ 1

)
�2

(
R
2 + β

2α
+ 1

2

) , (B4)

which is the result of Eq. (19).

APPENDIX C: LOGARITHMIC CORRECTION OF bn

The derivation of our main result in Eq. (19) is based on
a linear asymptotic form of Lanczos coefficient bn. But it is
shown in Ref. [41] that on top of the main linear behavior,
for 1d system, there is a logarithmic correction for large n.
In this section, we show that in this case, Eq. (19) still holds
approximately.
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(a)

(c)(b)

FIG. 4. (a) | p′
R−pR

pR
|, (b) p′

R and (c) pR vs β/α for various R =
3, 4, . . . , 10 (from light to dark).

We consider pR and p′
R which are defined as

pR =
∞∏

k=1

(b2k+R−1)2

b2k+Rb2k−1+R
, p′

R =
∞∏

k=1

(b′
2k+R−1)2

b′
2k+Rb′

2k−1+R

, (C1)

where {
bn = αn + β

b′
n = A n

ln n + B
for n � R. (C2)

Here

A = (ln R)2

ln R − 1
α, B = β − αR

ln R − 1
, (C3)

are chosen such that the value of of bn and b′
n as well as

their first derivative coincide at n = R. Inserting Eq. (C2) to
Eq. (C1), one gets

p′
R =

∞∏
k=1

(
2k+R−1

ln(2k+R−1) + B
A

)2

(
2k+R

ln(2k+R) + B
A

)(
2k+R−2

ln(2k+R−2) + B
A

) , (C4)

pR =
∞∏

k=1

(
2k + R − 1 + β

α

)2(
2k + R + β

α

)(
2k + R − 2 + β

α

) . (C5)

According to Eq. (C3) one has

B

A
= β

α

ln R − 1

(ln R)2
− R

(ln R)2
. (C6)

From Eqs. (C4)–(C6), one can see that p′
R and pR depend

only on R and β/α. Different from pR, we do not have an
analytical expression for p′

R. But the convergence of the in-
finite product series in p′

R can be proved by making use of
Leibniz criterion. In numerical simulations, p′

R is estimated
by keeping the product series to k = 5 × 106. In Fig. 4(a), we
plot the difference between p′

R and pR as a function of β

α
for

(a)

(b)

FIG. 5. Magnetization transport in the integrable XXZ spin-1/2
chain [defined in Eq. (D1)]. (a) Lanczos coefficient bn vs n for
various �. (b) Corresponding diffusion constants DR.

various R. It is observed that for R � 4, the relative difference
| p′

R−pR

pR
| is below 1% for all values of β/α we consider. It

indicates that Eq. (19) still holds approximately in presence
of the logarithmic correction. In addition, in Figs. 4(b) and
4(c), we show p′

R and pR, from which one can see that both
p′

R and pR goes to 1 if either R or β/α goes to infinity.

APPENDIX D: DIFFUSION CONSTANT
IN INTEGRABLE MODELS

In addition to the nonintegrable models studied in the main
text, we also consider an integrable model, i.e., a spin-1/2
XXZ chain with only nearest-neighbor coupling,

H =
L∑

r=1

(
sx

r sx
r+1 + sy

rsy
r+1 + �sz

rsz
r+1

)
. (D1)

It is well-known that magnetization transport depends on the
value of � [7]: it is ballistic at � < 1, normal diffusive at
� > 1, and superdiffusive at � = 1. In Fig. 5, we show the
estimation of the diffusion constant by Eq. (22) in the main
text. A substantial difference in the behavior of DR is observed
for � < 1 compared to � > 1: DR appears to diverge for
� < 1 and tends to converge to some finite value for � > 1.
The (seemingly) divergence of DR is due to the pronounced
even-odd effect, in addition to the dominant linear increase of
Lanczos coefficients, i.e.,

bn ∼ αn + β + (−1)nγn. (D2)

Here, we are not aiming at a precise location of the transition
from ballistic to diffusive transport by making use of the
recursion method. This would definitely need the knowledge
of infinite number of Lanczos coefficient, which is clearly be-
yond the reach of the numerical method at hand. The primary
objective of this example is to show that “finite size scaling”
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(a)

(b)

FIG. 6. Time-dependent diffusion constant D(t ) in the XXZ
chain with parameters �′ = 0.5 and (a) � = 0.5 and (b) � = 1.5,
for system size L = 16, 18, . . . , 30 (from light to dark). The dashed
line indicates the average value of the last five DR shown in Fig. 1
(b). For (a), data for larger system sizes L = 33 can also be found in
Ref. [52].

of DR (dependence of DR on R) can at least show some hint on
the onset of the ballistic (or at least superdiffusive) behavior,
particularly when an overall increase of DR is observed.

APPENDIX E: TIME-DEPENDENT DIFFUSION
CONSTANT IN FINITE-SIZE SYSTEMS

In the spin-1/2 XXZ chain and XX ladder, we consider the
spin current

JS =
{∑L

r=1

(
sx

r sy
r+1 − sy

rsx
r+1

)
, XXZ

J‖
∑L/2

r=1

∑2
k=1

(
sx

r,ksy
r+1,k − sy

r,ksx
r+1,k

)
, XX

(E1)

with the time-dependent diffusion coefficient

D(t ) = 1

χ

∫ t

0
〈JS (t ′)JS〉 dt ′, χ = L

4
. (E2)

In the mixed-field Ising model, we instead consider the
energy-current operator

JE = 4Bx

L∑
r=1

sy
r

(
sz

r+1 − sz
r−1

)
(E3)

with the time-dependent diffusion constant

D(t ) = 1

χ

∫ t

0
〈JE (t ′)JE 〉 dt ′, χ = L(B2

x + B2
z + 1). (E4)

In Figs. 6–8, we calculate the time-dependent diffusion
coefficient D(t ) for finite systems, using dynamical typicality
[26,27]. In all three models, we can see a tendency that the
long-time value D(t ) becomes closer to our estimation DR

(a)

(b)

FIG. 7. Time-dependent diffusion constant D(t ) in the XX ladder
with parameters J‖ = 1.0 and (a) J⊥ = 1.0; (b) J⊥ = 1.5, for system
size L = 16, 18, . . . , 30 (from light to dark). The dashed line indi-
cates the average value of the last five DR shown in Fig. 2(b). Data
for larger system sizes L = 34 can also be found in Ref. [47].

(average over the last 5 values) for larger L. Whether or not
this value will converge to DR is in principle not clear, due to
the limited system size (L � 30). But based on the results, it
is reasonable to expect that the diffusion constant D(L → ∞)
is close to DR.

(a)

(b)

FIG. 8. Time-dependent diffusion constant D(t ) in the mixed-
field Ising chain with parameters (a) Bz = 0.5, Bx = 1.05 and (b)
Bz = 0.9045, Bx = 1.4, for system size L = 16, 18, . . . , 30 (from
light to dark). The dashed line indicates the average value of the last
five DR shown in Fig. 3(b). Data for larger system sizes can also be
found in Refs. [49–51].
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