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Conformal anomaly in finite-temperature magnetic response of one-dimensional spin systems
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The conformal anomaly indicates the breaking of conformal symmetry (angle-preserving transformations) in
quantum theory by quantum fluctuations, and is a close cousin of the gravitational anomaly. We show that the
conformal anomaly controls the variance of the local magnetization Mloc at finite temperatures in spin chains
and spin ladders. This effect is predicted to appear at constant and variable temperature across the sample. The
change of Mloc induced by the conformal anomaly is of the order of 3–5% of angular momentum h̄/2 at 1 K
for (C7H10N)2CuBr4 (DIMPY) or copper pyrazine nitrate (CuPzN) and increases linearly with temperature.
Further, for a temperature gradient of 10% across the sample, the time relaxation of the nonequilibrium Mloc

is of the order of nanoseconds. Thus, we believe that experimental techniques such as neutron scattering,
nuclear magnetic resonance (NMR), spin noise, and ultrafast laser pumping should determine the presence of
the conformal anomaly. Therefore, we outline a method to detect the conformal anomaly in spin observables of
strongly interacting low-dimensional magnets.
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I. INTRODUCTION

The study of quantum anomalies is one of the most rapidly
developing fields at the interface between condensed matter
experiment and high-energy theory. A quantum anomaly is a
violation of classical conservation laws due to quantum fluc-
tuations. Understanding such conservation law violations has
played an important role in the development of the standard
model. However, experimental access to these phenomena
is often hindered by the extremely high energies required
in particle physics experiments. Recently, such anomalies
have been accessed and experimentally studied in Weyl and
Dirac semimetals. This new direction in the study of solids
resulted in recent observations of signatures of the chiral
[1–6] and mixed axial-gravitational [7] anomaly manifesting
as additional field-dependent contributions to the longitudinal
components of the conductance and thermoelectric conduc-
tance tensors.

Thus far experimental studies of quantum anomalies in
solids have mainly focused on signatures of anomalies in
nearly free electron systems such as the Weyl semimetals.
However, anomalies also play a role in strongly correlated
systems, where interactions cannot be treated as a simple
perturbation to the physics of free quasiparticles. In this ar-
ticle, we study strongly interacting spin chain systems using
quantum field theory to predict experimental signatures of the
conformal anomaly. Conformal symmetry plays an important
role in many branches of physics including string theory [8],
quantum entanglement [9,10], holography [11], topologically
ordered phases [12,13], and symmetry-protected topological

*These two authors contributed equally to this work.

phases [14], and it guides our understanding of universality
and criticality [15–17].

Knowledge of the conformal anomaly of a system near
criticality helps in determining the conformal field the-
ory (CFT) describing the critical point. More precisely, the
anomaly itself is the phenomenon of symmetry breaking upon
quantization and it is quantified by the so-called left- and
right-moving central charges, c and c̄, respectively. These
numbers quantify the amount of left- and right-moving de-
grees of freedom, respectively. They are characteristic of
any (1 + 1)-dimensional CFT. For instance, a Tomonaga-
Luttinger liquid (TLL) has c = c̄ = 1 while the Ising model,
at its crititcal point, has c = c̄ = 1/2. Therefore, one can say
that the Ising CFT has half as many degrees of freedom as the
TLL. As such, the conformal anomaly distinguishes between
different classes of CFTs and vastly narrows down the set of
candidate CFTs describing the critical point.

In this article, we predict consequences of the conformal
anomaly for magnetic properties of strongly interacting one-
dimensional (1D) Heisenberg spin-1/2 chains and ladders.
Recent studies of 1D quantum magnets have shown that the
ground states of both the Heisenberg spin-1/2 chain and the
magnetized spin-1/2 ladder belong to the universality class of
the TLL [18–20]. The TLL, due to its one-dimensionality and
divergence of susceptibilities, lives at the verge of an ordering
instability, making it a realization of the z = 1 quantum crit-
ical state. As such the TLL is expected to exhibit no internal
energy scales apart from temperature, and thus features the
conformal anomaly. Indeed the free energy of quantum critical
systems [21,22] was discussed in the context of the conformal
anomaly; however, those works focus on the appearance of
the conformal anomaly in thermodynamic properties such as
specific heat [22] and thermal conductivity [23]. In addition,
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FIG. 1. Plot of spin susceptibility QT (k, ω) at T = 15 K, in units
of a2 h̄2K/π . The Dirac delta distribution in Eq. (C5) is represented
by η/π

(ω2+η2 )
with η = 0.3kBT in this plot. Note that, due to the anti-

ferromagnetic interaction, this plot is shifted in a magnetic Brillouin
zone π h̄/a in momentum.

thermal effects for curved space were connected to the con-
formal anomaly in [24–26], which are difficult to observe in
experiments. Altogether, to date there exist no predictions on
how the conformal anomaly is manifested in spin observables.
However, rapid development of spectroscopic techniques and
growth of excellent material realizations of low-dimensional
magnetic Hamiltonians [27–33] has opened a new avenue for
observation of signatures of the conformal anomaly in flat
spacetime by directly investigating spin observables.

In this article, we analyze (quasi)one-dimensional spin
chains and extract the central charge, which characterizes the
conformal anomaly, from the magnetic properties of these
materials. Gapless dispersion relations, as read out from the
spin susceptiblity in Fig. 1, are a requirement for confor-
mal symmetry. Moreover, the Fourier transform of the spin
susceptibility gives the value of the central charge. Further-
more, we predict new signatures of the conformal anomaly
at finite temperatures, such as an energy-integrated structure
factor combined with the local on-site variance of magneti-
zation. We perform analyses for equilibrium states at finite
temperature, but also for nonequilibrium states with varying
temperature profiles. In particular, we show that the local
variance of magnetization scales linearly with the tempera-
ture and can be measurable in many quasi-1D materials such
as (C7H10N)2CuBr4 (DIMPY) and copper pyrazine nitrate
(CuPzN). We identify how these new quantities can be mea-
sured in neutron scattering, NMR, atomic force microscopy
(AFM) and spin noise. Moreover, we predict that the dy-
namics of the local magnetization should lie in the range
of nanoseconds, and thus it is accessible in ultrafast laser
spectroscopy.

II. PREREQUISITES

A. A brief introduction to the conformal anomaly

The conformal anomaly is associated with conformal
symmetry, which is a hallmark of a system at criticality.

FIG. 2. Conformal transformations are angle-preserving trans-
formations, as indicated by the grids. The transformation here relates
a zero-temperature system, drawn as plane, to a thermal ensemble
at temperature T , depicted by a cylinder of circumference β0 =
(kB/T )−1.

Such systems are classically invariant under angle-preserving
transformations as seen in Fig. 2 for a transformation relating
the infinite plane, parameterized by complex coordinates
(z, z̄), to a cylinder, parameterized by complex coordinates
(w, w̄). The plane can be thought of as a zero-temperature
setup, while the cylinder carries the interpretation of a
system at temperature T = (kBβ0)−1. Physically, the cylinder
coordinates (w = uτ − ix, w̄ = uτ + ix) decompose into
the spatial coordinate of the physical system x ∈ R and a
compact Euclidean temporal coordinate τ ∈ [0, h̄β0], with u
being the velocity of the bosonic quasiparticles. Temperature
introduces a scale, to which the quantized critical system
responds via the conformal anomaly, or more precisely
the central charge. This is seen in the expectation value
of the left-moving and right-moving components of the
energy-momentum tensor, which vanish at zero temperature,
〈T 〉 = 0 = 〈T̄ 〉. Upon thermally exciting the system via the
conformal transformation z = exp( 2π iw

uh̄β0
), a shift in energy

controlled by the central charges c and c̄ occurs,

〈T (w)〉β0 = π2c
6uh̄β2

0

, 〈T̄ (w̄)〉β0 = π2c̄
6uh̄β2

0

, (1)

as reviewed in Appendix A. In general c̄ �= c; however, in the
systems of interest in this manuscript we have c = c̄. This
brief introduction reveals a physical aspect of the conformal
anomaly. Whenever a macroscopic scale is introduced to the
CFT, as exemplified in Eq. (1) with temperature [34], the
CFT responds with the central charge, i.e., by the conformal
anomaly.

B. Spin models

The models of interest to us are 1D spin systems of
length L, such as a spin- 1

2 chain with Hamiltonian HSC =∑
i[J

∑
b=x,y Sb

i Sb
i+1 + JzS

z
i Sz

i+1 − BSz
i ] where B is a magnetic

field perpendicular to the chain. The system size L is chosen
much larger than the lattice constant a. If Jz = J⊥, the Hamil-
tonian HSC becomes that of the Heisenberg chain, HHC =
J

∑
i(�Si · �Si − BSz

i ). The spin-z operator bosonizes according
to [19,20]

Sz(x)

a h̄
= m 1 − ∂xϕ

2πR
+ 1

π
cos

(
ϕ(x)

R
− 2kF (h)x

)
, (2)

where the compactification radius R = 1√
4πK

is related to the

Luttinger parameter K = π
2(π−χ ) , u = π

2
sin χ

χ
[35] is the ve-

locity of the bosonic quasiparticles with cos χ = Jz/J , and
kF (h) = kF + πm is the Fermi momentum shifted by the
magnetization per site, m = 〈Sz(x)〉/L. Note that the bosonic
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velocity u does not equal the Fermi velocity vF . In this
paper we are not concerned with the ladder operators S±,
and thus we omit their bosonization prescription. The spin
chain Hamiltonian HSC reduces to that of the TLL [19,20],
HTLL = h̄u

2

∫
dx[(∂xϕ)2/K + K (∂xθ )2] up to terms irrelevant

in the renormalization group sense. This system is classically
conformally invariant. However, upon quantization it features
the conformal anomaly, which we exploit below.

A more elaborate case of a 1D spin system is a spin lad-
der, in which two spin- 1

2 Heisenberg chains, i.e., with Jz = J
in their Hamiltonian HHC, are coupled to each other via an
interaction term Hladder = H (1)

HC + H (2)
HC + J⊥

∑
i
�S(1)

i · �S(2)
i . The

superscripts indicate the respective chain and we have chosen
a magnetic field aligned with the total spin in the z direction.
This model possesses magnon excitations which furnish a spin
triplet. At zero magnetic field these excitations are degenerate
and gapped. Upon turning on a magnetic field, the Zeeman
spliting of the triplet moves one of the magnons closer to zero
energy. At a critical magnetic field Bcrit, this mode becomes
gapless. In the low-energy limit, attention is restricted to this
degree of freedom, which is described by the TLL Hamilto-
nian HTLL [36], so long as J⊥ 	 J . The bosonization of the
Sz operator takes the same shape as (2), but with different
numerical values for the Luttinger parameter K (and u) [36].

III. CONFORMAL ANOMALY IN THERMAL SPIN
CORRELATORS

A. Constant temperature

As explained in the Introduction, the anomaly resides with
the energy-momentum tensor, which in the bosonic TLL lan-
guage is given by a point splitting procedure,

T (w)

2πuh̄
= − lim

w′→w

[
∂ϕ(w′)∂ϕ(w) + 1

4π (w − w′)2

]
, (3)

where ∂ = ∂w. A similar expression holds for T̄ (w̄). This
makes clear, together with (1), that the thermal correlator

〈∂ϕ(w)∂ϕ(w′)〉β0

w′→w= − 1

4π (w − w′)2
− π

12(uh̄β0)2
+ O(w − w′) (4)

contains the central charge. Indeed, taking an expectation
value at inverse temperature β0 of (3) and plugging (4) into it,
the thermal expectation value (1) is readily recovered, along
with the well known values c = 1 = c̄ for the TLL.

Since the Sz operator (2) contains ∂ϕ, the central charge
must reside in the Green’s function

Gβ0 (ξ1; ξ2) = 〈Sz(ξ1)Sz(ξ2)〉β0
− 〈Sz(ξ1)〉β0

〈Sz(ξ2)〉β0
, (5)

where we introduce the spacetime label ξ = (τ, x) = (w, w̄)
for observables containing both w and w̄ dependence. This
correlator is evaluated explicitly in Appendix B.

If the system has translation symmetry, the Green’s func-
tion Gβ0 (ξ1; ξ2) can be simplified to Gβ0 (ξ1 − ξ2). The Fourier
transformation of Eq. (5) is denoted by spin susceptibility
QT (k, ω):

QT (k, ω) =
∫∫

Gβ0 (x, t )e−ikx+iωt dx dt . (6)

The spin susceptibility QT (k, ω), is plotted in Fig. 1 and
explored in depth in the next section. As we show below, in-
tegrating the data of the plot over momentum q and frequency
ω, one obtains the central charge.

In order to extract the central charge similar to (4), the
coincidence limit ξ2 → ξ1 needs to be taken in Gβ0 (ξ1; ξ2),
which is, however, divergent and a regularization is required.
We choose to subtract the zero temperature value, i.e., at
β0 → ∞, taken as well in the coincidence limit, providing the
normalized variance of local magnetization,

M2
loc(ξ, β0) = lim

ξ ′→ξ
[Gβ0 (ξ ′; ξ ) − G∞(ξ ′; ξ )]/S2

max, (7)

where Smax = h̄
2 is the magnitude of the spin. It measures how

much the variance of local magnetization in the z direction
deviates at fixed temperature β0 from its value at zero tem-
perature. Note that M2

loc is dimensionless, and its square root
Mloc is the standard deviation in statistics. A careful evaluation
of the limit (7), which is shown in detail in Eq. (B7) of
Appendix B, yields [37]

M2
loc(ξ, β0) = 2Ka2

π2uh̄
[〈T (w)〉β0 + 〈T̄ (w̄)〉β0 ]

= Ka2

3(uh̄β0)2
(c + c̄), (8)

where (1) has been plugged into the second equality. For the
TLL one has c = c̄ = 1. In the second line of the above equa-
tions, the translation symmetry is assumed. In this case, the
variance of local magnetization M2

loc only depends on the tem-
perature and will be denoted by M2

loc(β0) for simplicity. This is
the first main result of this article. The attentive reader might
have noticed that the cosine term in (2) does not contribute to
(8), as demonstrated in (B7) of Appendix B. This is due to the
limit ξ ′ → ξ in the local magnetization (7). It removes all but
the nonconstant orders in the product Sz(ξ1)Sz(ξ2), of which
the cosine term contributes none in the situations studied here,
as shown in Appendix B.

Modeling the spin ladder material DIMPY
[(C7H10N)2CuBr4] by Hladder, one has a = 7.51 Å, and
the TLL parameters at B ≈ 8.7 T (tesla) are K ≈ 1.2, uh̄/a ≈
2.34 meV [38]. This yields M2

loc = 1.1 × 10−3(T/K)2,
where K stands for kelvin (and T for temperature). At
B ≈ 20T, one has K ≈ 1.2, uh̄/a ≈ 1.62 meV, giving
M2

loc = 2.3 × 10−3(T/K)2. For the Heisenberg spin chain
material copper pyrazine dinitrate (CuPzN) [33,39], one has
a = 6.7 Å, J = 0.9 meV and TLL parameters K = 1/2,
h̄u = Jaπ/2. This yields M2

loc = 1.2 × 10−3(T/K)2. These
results are plotted in Fig. 3. The experimental detection of
M2

loc(ξ, β0) is discussed below; see Eqs. (18) and (19).

B. Temperature gradients and M2
loc

The signal (8) can be amplified by preparing the system
in a nonequilibrium initial state defined by a nonconstant
temperature profile β(x) interpolating between constant val-
ues βL,R = (kBTL,R)−1 at the left and right extremes of the
sample, with a kink at x = 0 [24,40,41]. One example of such
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FIG. 3. Normalized variance of local magnetization M2
loc(ξ, β0)

for DIMPY and CuPzN.

a temperature profile is given in [40]

β1(x) = 1
2 {βL + βR − (βL − βR) tanh [x/δ]}, (9)

where δ indicates the rate of temperature change across the
sample. This profile is plotted in Fig. 4. It is convenient
to introduce an effective sample size , beyond which the
temperature profile is saturated at its asymptotic values βL/R.
Since the temperature profile is controlled by the new length
scale δ, so is . In Fig. 4 one can choose  = 250a, where a is
the lattice constant and δ = 0.1. Since this is the actual length
scale relevant to our analysis, we refer to  as the sample
size.

In this section, we revert to real time, τ = it so that w =
i(ut − x) and rotate this onto the real line, w− = iw and
w+ = −iw̄, resulting in light-cone coordinates w± = x ± ut .
Moreover, all results we present in this section are valid only
in the thermodynamic limit, which means that the actual sam-
ple size L → ∞.

FIG. 4. A nonequilibrium temperature profile T1(x) =
1/[kBβ1(x)] based on (9) is plotted for TL = 5 K and TR = 4.5 K.
The sample size is chosen to be  = 250a and the rate of temperature
change is δ = 0.1.

In the language of the previous sections a nonconstant tem-
perature profile is depicted as deformed cylinder, viz., Fig. 5.
A conformal mapping

y± = f (w±) =
∫ w±

0
βav/β(s)ds (10)

reshapes this cylinder into one with uniform radius βav,
corresponding to a system of constant average temperature
(kBβav)−1 = (TL + TR)/2. The new coordinates y± are natu-
rally adapted to the symmetries of the system, similarly to how
spherical problems are best handled in polar coordinates. In-
deed, the transformation y± shows that the deformed cylinder
has the same amount of symmetries as the case of uniform
temperature, described in the previous section.

As derived in [40], the expectation value of the energy-
momentum tensor becomes

〈T±(w±)〉β(ξ ) = π2 c
6uh̄β(w±)2

− uh̄ c
12

S f (w±), (11)

with Schwarzian derivative S f (s) = 1
2 [β ′(s)/β(s)]2 −

β ′′(s)/β(s). Evaluated on the profile (9), for instance,
the Schwarzian becomes

S f1(x) = (βL − βR)

cosh4
(

2x
δ

) βR − βL + 2(βL − βR) cosh
(

2x
δ

) − 2(βL + βR) sinh
(

2x
δ

)
2δ2

[
βL + βR + (βR − βL ) tanh

(
x
δ

)]2 . (12)

By removing the rate of temperature change, i.e., δ → ∞, we
see that the temperature profile (9) becomes trivial and the
Schwarzian (12) disappears. Equation (11) then reduces to (1).
For finite δ, (11) shows that a nontrivial temperature profile
introduces a new macroscopic scale δ or equivalently  in the
CFT. Indeed, comparing with the case of constant tempera-
ture, where 〈T 〉β0 ∝ c/β2

0 , there is an additional Schwarzian
contribution in (11), which is proportional to c/δ2.

As explained in Appendix A, the derivation of M2
loc

is entirely analogous to the case of constant temperature
and thus M2

loc(ξ, β(ξ )) is obtained by simply inserting (11)

into (8),

M2
loc(ξ, β(ξ )) = 2Ka2

π2h̄u

∑
σ=±

[
π2 c

6uh̄β(wσ )2
− uh̄ c

12
S f (wσ )

]
.

(13)

This is the second main result of this article. It shows that the
lack of translation invariance in the spatial direction due to
β(x) also induces time dependence in M2

loc, as visualized in
Fig. 6 for CuPzN. At the hot (cold) extreme of the sample, de-
picted in red (blue), M2

loc(ξ, β(x)) = M2
loc(ξ, βL (R) ). At t > 0
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FIG. 5. In the Euclidean setting, a smooth, nonconstant temper-
ature profile may be seen as a deformed cylinder with two distinct
circumferences βL,R at its ends. This can be mapped into a system of
constant average inverse temperature βav by the conformal transfor-
mation y± = f (w±) = ∫ w±

0 βav/β(s)ds.

the peak separates in two waves which leave behind an equi-
librated region (pink) for which M2

loc(ξ, β(ξ )) = M2
loc(ξ, βav).

M2
loc is strongest in the vicinity of x = 0 when t = 0, where

the magnitude of M2
loc(ξ, β(ξ )) > M2

loc(ξ, βL ). We predict
nonequilibrium dynamics on the scale of nanoseconds (see
Fig. 6), which should be measurable by ultrafast spectroscopy
techniques [42]. Experimental setups are discussed in the next
section.

C. Experimental consequences

Focusing on the constant temperature profile for now, we
emphasize the system’s translation symmetry. As mentioned
before, the spin susceptibility QT (k, ω) at temperature T is
given by the Fourier transformation of the Green’s function
Gβ0 (x, t ) with β0 = 1/(kBT ) in Eq. (6). In Fig. 1, we show
the regularized spin susceptibility at T = 15K as an example,
and the related calculation is in Appendix B. The spin sus-
ceptibility has been measured already in neutron scattering
experiments; see for instance [28]. From the spin suscepti-
bility QT (k, ω), the Green’s function can be obtained by the
inverse Fourier transformation

Gβ0 (x, t ) =
∫

dω

2π

∫
dk

2π
QT (k, ω)e−iωt+ikx, (14)

and therefore Gβ0 (0, 0) = ∫
dω

∫
dk QT (k, ω)/(2π )2. Ac-

cording to Eq. (7), in the presence of translation symmetry,
Gβ0 (0, 0) = g0 + M2

loc(β0) holds for any specific position x

FIG. 6. M2
loc(ξ, β(ξ )) from (13) is depicted for temperature pro-

file β1(x) in CuPzN over a region x ∈ [−, ] with  = 250a with
a = 6.7 Å. The parameters are TL = 5K (hot), TR = 4.5K (cold),
δ = 4a. Time is measured in units a/u ≈ 0.5 ps. The explicit form
of the Schwarzian, (12), was employed.

and time t , and g0 is a constant independent of temperature.
The quantity M2

loc(β0) carries the information of the central
charges c and c̄ [see Eq. (8)], i.e., it corresponds to the
conformal anomaly. Therefore, we have the following rela-
tion between the integrated spin susceptibility and the local
magnetization, which in turn contains the central charge:∫ � dω

2π

∫
dk

2π
QT (k, ω) = g0 + M2

loc (15)

= g0 + Ka2

3(uh̄β0)2
(c + c̄).

One observes that a natural way to obtain c from a spin sys-
tem is to measure QT (k, ω) in neutron scattering experiments
and integrate it in both momentum k and energy h̄ω. We
introduced the upper limit � in the ω integration in Eq. (15)
because spin susceptibility might include other contributions
independent of the central charge, for instance high-energy
modes.

We suggest two alternative ways of accessing the cen-
tral charge in spin systems. For example, one can measure
the local fluctuations Gβ0 (0, t ) by NMR [43,44], AFM [45],
or muon spin spectroscopy (μSR) [46] to obtain the local
dynamical structure factor �(ω) = ∫

Gβ0 (x, t ; x, 0)eiωt dt . It
is related to QT (k, ω) by a momentum integration �(ω) =∫

dk QT (k, ω). Taking NMR as an example, instead of
taking the detailed information of QT (k, ω), the momentum-
integrated quantity �(ω) is extracted from experiment: the
so-called NMR relaxation rate 1/T1 is given by [47–50]

1/T1 = γ 2A2
H

2

∫
dkQT (k, ω), (16)

with γ the nuclear gyromagnetic ratio, and AH the hyperfine
coupling constant.

Generally speaking, the function �(ω) extracted from the
NMR relaxation rate 1/T1 depends on the nuclear Larmor
frequency ω [51,52], which can be tuned by the magnetic
field B through ω = γ B, with γ = qg/(2m), q is the nuclear
charge, m is the nuclear mass, and g is the g-factor [53].
Therefore, if one varies the magnetic field from 0 to Bmax,
with ωmax = γ Bmax, one obtains the quantity∫ ωmax

0
dω �(ω). (17)

If the value of h̄ωmax is several times that of kBT , according to
Appendix C, we can simply write∫ ωmax

0
dω �(ω) = Ka2

3uh̄
(c + c̄)T 2 + const, (18)

in which the constant does not depend on temperature. The
maximum frequency ωmax plays the role of the upper limit �

of the integration in Eq. (15).
NMR explores the frequency region around ω = 0 [49]. In

order to reach the energy range up to h̄ωmax, we suggest to use
electron paramagnetic resonance (EPR), which replaces the
nuclear resonance with electron resonance. Due to the mass
of the electron being approximately 2000 times smaller than
that of the proton, the Larmor frequency is much higher in
EPR that in NMR. Therefore, it may be useful to combine the
information of �(ω) in the high frequency region from EPR
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and the �(ω) data in the low frequency region from NMR.
Then we can obtain the information of the central charge,
according to Eq. (18).

Another way to detect the central charge is to measure
the equal-time correlation by neutron diffraction, where one
obtains the energy-integrated momentum dependent structure
factor �(k) = ∫

QT (k, ω)dω. Integrating k over the Brillouin
zone (−π/a, π/a),

∫ +π/a

−π/a
dk �(k) = Ka2

3uh̄
(c + c̄)T 2, (19)

produces the central charge. Furthermore, the information of
�(k) around k = 0, i.e.,

∫
QT (0, ω)dω, can be obtained by

small-angle neutron scattering or by noise measurement. We
elaborate briefly on the noise measurement. The average spin
along the z axis is denoted by S = (

∑
i Sz

i /N ) where i labels
the site of the spin and N is the total number of the spins. The
noise measures the correlation function 〈S (t )S (0)〉 between
time t and 0 [54,55]. Noticing that

1

N2

∑
i, j

〈
Sz

i (t )Sz
j (0)

〉 = 1

L

∫
dxGβ0 (x, t ), (20)

one observes that the Fourier transformation of the correlation
function 〈S (t )S (0)〉 measures QT (0, ω); see Appendix C for
details.

Now we turn to nonuniform (but static) temperature pro-
files discussed in Sec. III B. Both ends of the spin chain are
in contact with heat reservoirs of different temperatures, TL

and TR. After a while, the system reaches a steady state, such
that the temperature profile does not change significantly with
time. At this time, which we call t = 0, a nontrivial tempera-
ture profile T (x) = [kBβ(x)]−1 required for the discussion of
Sec. III B arises. The variance of local magnetization M2

loc be-
comes (13). Furthermore, with t = 0 fixed, M2

loc is a function
of the spatial coordinate and remains fixed (static) as long as
the temperature profile is stable. M2

loc assumes the t = 0 form
depicted in Fig. 6.

The case t < 0 represent the process in which the system
approaches its stationary state. When the system reaches said
stationary state, the physical observables do not change essen-
tially with time, but they have spatial dependence. In order to
detect the space dependent effects, one can perform the local
measurement described above to obtain the local dynamical
structure factor, which leads to Eq. (18) but the temperature
T in the right-hand side will be replaced by the temperature
profile in the final (steady) state T (x). One can also measure
the equal-time structure factor along the whole sample, e.g.,
by neutron diffraction, to obtain some similar result as in
Eq. (19).

Next, we turn to the situation where the heaters are turned
off. This corresponds to t = 0 in Fig. 6. For t > 0, the system
starts to evolve into constant temperature state, visible in the
pink region of Fig. 6. As time progresses this region spreads
over the sample. This occurs within /u ∼ nanoseconds where
 is the range of observation satisfying  � δ. Experimentally
this can be investigated via ultrafast laser spectroscopy [42]
in the nanosecond spectrum range (see our predictions in
Fig. 6) via a pump-and-probe approach. This is reflected in

optical properties such as reflectivity, absorption, or Raman
scattering.

IV. CONCLUSIONS

In this paper, we have shown the presence of the conformal
anomaly in finite temperature spin-spin correlators Gβ (ξ1; ξ2),
concretely the normalized variance of local magnetization
M2

loc. This allows us to access the anomaly, more specifically
the central charge, in a pure spin observable. We stress that
our results are analytical even for strongly interacting 1D spin
systems, and can be applied when the Luttinger paramaters K
and u are known. Finally, we discussed experimental setups
to probe the central charge and thus the conformal anomaly.
For a constant temperature profile, M2

loc ∝ cT 2. The local
magnetization can be measured in NMR, μSR, and neutron
diffraction as long as the massless Luttinger liquid is a good
description of the spin system. Moreover, we showed how the
application of temperature gradients across the sample intro-
duces space and time dependence in the local magnetization
M2

loc; see (13). In particular, the signal is enhanced in a small
neighborhood of the temperature kink at x = 0. In spin chains
with a steady but nonuniform temperature profile, one could
measure a space-dependent local dynamical structure factor or
could detect the magnetization dynamics in the ultrafast laser
spectroscopy.

While we focused on spin-1/2 chains and ladders, it
would be interesting to see if our results can be extended
to spin systems of spin s > 1/2, which are associated with
Wess-Zumino-Witten models [20]. Another interesting pos-
sibility is to extend our findings to higher order moments
〈Sz(0)∂t Sz(ξ )〉, which may be accessible experimentally. An-
other direction is to consider space-dependent magnetic fields
by exploiting the fact that these translate into space-dependent
chemical potentials.
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APPENDIX A: THE CENTRAL CHARGE AND THE
ENERGY-MOMENTUM TENSOR

In CFT, there is a special class of fields, called pri-
mary fields, labeled by left- and right-moving conformal
weights (h, h̄). These are the scaling fields of the CFT due to
their characteristic transformation behavior under conformal
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transformations z → g(z),

χh,h̄(g(z), ḡ(z̄)) =
(

∂g

∂z

)−h(
∂ ḡ

∂ z̄

)−h̄

χh,h̄(z, z̄), (A1)

where g(z) is a holomorphic function of z. Primary fields
organize the spectrum in that they are the ground states of
so-called conformal towers, and the set of all conformal tow-
ers comprises the full Hilbert space of the CFT. In a free
boson theory, such as the Luttinger liquid, one can easily write
down two such fields. Starting from ϕ(z, z̄) = φ(z) + φ̄(z̄),
the derivatives ∂φ and ∂̄ φ̄ are primary with conformal weights
(h, h̄) = (1, 0) and (h, h̄) = (0, 1), respectively. Together they
provide ∂xϕ in (2). But also the identity field 1 and the cosine
term in (2) are primary fields. Hence in the next section we
study the details of correlators of primaries. Before that, how-
ever, we take a closer look at the energy-momentum tensor.

The left-moving energy-momentum tensor T (z) has di-
mensions (h, h̄) = (2, 0) while the right-moving component

T̄ (z̄) has dimensions (h, h̄) = (0, 2). Due to the conformal
anomaly, both fail to transform according to (A1),

T (g(z)) =
(

∂g

∂z

)−2[
T (z) − c

12
(Sg)(z)

]
,

T̄ (ḡ(z̄)) =
(

∂ ḡ

∂ z̄

)−2[
T̄ (z̄) − c̄

12
(Sḡ)(z̄)

]
, (A2)

with Schwarzian derivative

(Sg)(z) = g′′′(z)

g′(z)
− 3

2

(
g′′(z)

g′(z)

)2

. (A3)

A transformation from a zero-temperature system, coordina-
tized by z, to a thermal ensemble with temperature 1/β0,
coordinatized by w, is

z = exp

(
2π iw

uh̄β0

)
, w = uh̄β0

2π i
ln z, z̄ = exp

(
−2π iw̄

uh̄β0

)
, w̄ = −uh̄β0

2π i
ln z̄. (A4)

It has Schwarzian derivative (Sw)(z) = 1
2z2 , so that

Tβ0 (w) = −
(

2π

uh̄β0

)2[
Tplane(z)z2 − uh̄ c

24

]
,

T̄β0 (w̄) = −
(

2π

uh̄β0

)2[
T̄plane(z̄)z̄2 − uh̄ c̄

24

]
, (A5)

where we indicate the geometry on which the T are defined
by subscripts. Note that we reinstated uh̄ as prefactors of c
and c̄ for dimensional reasons. These expressions lead to a
very simple evaluation of the expectation value of the energy-
momentum tensor in a thermal ensemble. Indeed, fixing our
reference energy such that 〈Tplane(z)〉 = 0, one easily finds

〈T (w)〉β0 =
(

π

β0

)2 c
6uh̄

, 〈T̄ (w̄)〉β0 =
(

π

β0

)2 c̄
6uh̄

, (A6)

where we have moved the subscript on Tβ0 to the expectation
value in order to conform with the notation in the main text.
Hence, the expectation value of the energy-momentum tensor
is given entirely by the Schwarzian derivative term.

Since conformal transformations form a group, the
Schwarzian derivative does as well, meaning that concate-
nations of Schwarzian derivatives are again described by a
Schwarzian derivative. This is relevant in turning to the non-
constant temperature case described in Sec. III B. There, the
geometry of nonconstant temperature 1/β(x) is first mapped
into one with constant average temperature βav and thereafter,
similarly to just now, into a zero-temperature system.

Evaluating the Schwarzian derivative contribution in this
scenario provides readily Eqs. (11) where the Schwarzian
derivative (A3) evaluated on (10), adapted here to Euclidean

coordinates,

y = f (w) =
∫ w

0

βav

β(s)
ds, ȳ = f (w̄) =

∫ w̄

0

βav

β(s̄)
ds̄,

(A7)
yields

S f (s) = 1

2

(
β ′(s)

β(s)

)2

− β ′′(s)

β(s)
. (A8)

as written in Sec. III B. The energy-momentum tensor is then

Tβ(w)(w) =
(

∂ f (w)

∂w

)2

Tβ0 ( f (w)) + c
12

S f (w)

= −
(

2π

β(w)uh̄

)2

Tplane(z) z2

+
(

π

β(w)

)2 c
6uh̄

+ uh̄ c
12

S f (w) (A9)

and similarly for T̄ . In going to the second line Eq. (A5)
and ∂ f

∂w
= β0

β(w) were employed. When taking the expectation
value, 〈Tplane(z)〉 = 0 almost results in (11) after w → w− and
T → T−. We note here without derivation that the Schwarzian
S f (w) picks up an extra sign when Wick rotating, S f (w) →
−S f (w−) This game is repeated for T̄ → T+ with w̄ → w+,
leading to (11) [40]. Our derivation here is the Euclidean time
analog.

There is an important caveat when translating our Eu-
clidean derivation to real time stemming from a subtlety in
Wick rotating [40]: The expectation value of the energy-
momentum tensor picks up an additional Schwarzian-like
contribution stemming from the curvature of the deformed
cylinder in Fig. 5 when switching between real and imaginary
time. Working strictly in either real or imaginary time from
the start, these contributions do not appear. Since we are
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interested in settings in Minkowski spacetime, we worked
with real time in Sec. III B. For proof of principle, here we
stick with Euclidean time, to show that everything may be
computed directly either in real or imaginary time.

APPENDIX B: CORRELATORS

Conformal symmetry constraints two-point functions at
zero temperature to be

〈χh1,h̄1
(z1, z̄1) χh2,h̄2

(z2, z̄2)〉 = N δh1,h2

(z1 − z2)2h1

δh̄1,h̄2

(z̄1 − z̄2)2h̄1
.

(B1)
The constant N is a normalization for each operator and
usually it is chosen to be 1. Here, it is left undetermined, so
that the reader may adapt this to their favorite conventions.

For primaries, correlators at finite temperature can easily
be obtained from (B1) by using the transformation (A1) to-
gether with the thermalizing conformal transformation (A4).
This yields

〈χ1(w1, w̄1)χ2(w2, w̄2)〉β0

= N
(

π

uβ0h̄

)2(h1+h̄1 )

σ (w1 − w2)−2h1σ (w̄1 − w̄2)−2h̄1δh̄1,h̄2
,

(B2)

where σ (w) = sin( πw
uβ0 h̄ ). This opens the door to the computa-

tion of (5),

Gβ0 (ξ1, ξ2) = 〈Sz(ξ1)Sz(ξ2)〉β0
− 〈Sz(ξ1)〉β0

〈Sz(ξ2)〉β0
(B3)

= a2h̄2

〈
∂xϕ(ξ1)

2πR

∂xϕ(ξ2)

2πR

〉
β0

+ a2h̄2

〈
1

π
: cos

(
ϕ(ξ1)

R
− 2kF (h)x1

)
:

1

π
: cos

(
ϕ(ξ2)

R
− 2kF (h)x2

)
:

〉
β0

(B4)

= K

(
a

2β0u

)2

[σ (w1 − w2)−2 + σ (w̄1 − w̄2)−2] + h̄2 λ a2

(2π )2

(
π

β0uh̄

)2K

× σ (w1 − w2)−Kσ (w̄1 − w̄2)−K 2 cos[kF (h)(x1 − x2)] (B5)

with a model dependent constant λ accounting for the contributions of cos φ operator in Sz. In going to the second line, (2)
and 〈Sz(w2)〉β0 = m were employed, together with the fact that none of the fields in Sz have the same conformal weights (h, h̄).
Therefore, there are no cross-correlators between fields; for instance 〈∂xϕ : cos( ϕ(w1 )

R − 2kF (h)x1) :〉 = 0. Using

∂xϕ(w)

2πR
=

√
K[J (w) + J̄ (w̄)] (B6)

and the fact that J = i√
π
∂ϕ has (h, h̄) = (1, 0) and J̄ = − i√

π
∂̄ϕ has (h, h̄) = (0, 1) as well as h = h̄ = K/2 for the cosine

operator, the result (B5) is straightforwardly derived through application of (B2). The correlator of the cosine operators is best
handled by writing them in terms of exponentials and using the global U (1) symmetry of the model which constrains correlators
according to 〈eiαϕ(z1 )eiβϕ(z2 )〉 ∝ δα+β,0.

Using expansions as in (4) on the full correlator (B5), it is possible to take the limit for the on-site variance (7),

M2
loc(ξ, β0) = lim

ξ ′→ξ

1

S2
max

[〈Sz(ξ )Sz(ξ ′)〉β0 − 〈Sz(ξ )〉β0〈Sz(ξ ′)〉β0 − (〈Sz(ξ )Sz(ξ ′)〉∞ − 〈Sz(ξ )〉∞〈Sz(ξ ′)〉∞)]

= lim
ξ ′→ξ

h̄2a2

S2
max

[
K

(2π )2

1

(w − w′)2
+ K

(2π )2

1

(w̄ − w̄′)2
+ 1

(2π )2

λ

|w − w′|2K
+ Kc

12(uβ0 h̄)2
+ K c̄

12(uβ0 h̄)2

+ O(w − w′) −
(

K

(2π )2

1

(w − w′)2
+ K

(2π )2

1

(w̄ − w̄′)2
+ λ

(2π )2

1

|w − w′|2K

)]

= 2Ka2

uh̄π2

[〈T (w)〉β0 + 〈T̄ (w̄)〉β0

]
. (B7)

As mentioned above, the cosine term in (2) is not neglected on physical grounds but does in fact not contribute to M2
loc in the

first place, as seen here by the cancellation of the terms proportional to λ. Moreover, the only contribution is due to the central
charge, i.e., this result is entirely quantum in nature. This confirms that the construction of (7) is a very natural way of extracting
the central charge in correlations, as all other data are projected out.

This calculation allows one to distinguish M2
loc clearly from existing quantities employing the correlator (5). For instance the

susceptibility, as defined in [56], is given by

Gβ0 = β0

8π2

∫ ∞

−∞

[(
uβ0 h̄

π
σ (w)

)−2

+
(

uβ0h̄

π
σ (w̄)

)−2]
dx, (B8)

where we recall w = uτ − ix and w̄ = uτ + ix. When τ �= 0 this expression can be evaluated yielding Gβ0 = 1/(2πu). In order
to see whether this expression secretly carries the central charge, it is necessary to recall that c can arise from σ (w)−2 if w → 0,
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as seen from (7) and (8). By extension, (B8) needs to be evaluated at τ = 0, in which case the anomaly contributes when the
integration over x crosses x = 0. As it turns out, the integral over x does not converge in this limit. Therefore, this simple way of
identifying the central charge c in Gβ0 does not allow to extract a dependence on the central charge. It may nevertheless be that
the anomaly sits in higher order terms of σ (w)−2, but it is unclear how to extract such a dependence in Gβ0 . In contrast, the local
magnetization M2

loc does contain the central charge c in a straightforward manner.
The analysis of (B7) can be repeated for the case of nonconstant temperature. First, a two point function is now found by the

additional transformation (A7) relating constant and nonconstant temperature,

〈χ1(w1, w̄1)χ2(w2, w̄2)〉β =
2∏

i=1

(
df

dw

)hi
∣∣∣∣
w=wi

(
df

dw̄

)h̄i
∣∣∣∣
w̄=w̄i

〈χ1( f (w1), f (w̄1))χ2( f (w2), f (w̄2))〉β0

= N
(

π2

u2h̄2β(w1)β(w2)

)h1(
π2

u2h̄2β(w̄1)β(w̄2)

)h̄1

sin−2h1

(∫ w1

w2

π

uh̄β(s)
ds

)

× sin−2h̄1

(∫ w̄1

w̄2

π

uh̄β(s̄)
ds̄

)
δh1,h2δh̄1,h̄2

. (B9)

This allows one to compute the analog of (4):

〈∂ϕ(w1)∂ϕ(w2)〉β = −
(√

π

2uh̄

)2 1

β(w1)β(w2)
sin−2

(∫ w1

w2

π

uh̄β(s)
ds

)
(B10a)

w1→w2= − 1

4π (w1 − w2)2
−

[
π

12[uh̄β(w2)]2
+ 1

24π

{
1

2

(
β ′(w2)

β(w2)

)
− β ′′(w2)

β(w2)

}]
+ O((w1 − w2))

(B10b)

= − 1

4π (w1 − w2)2
−

[
π

12[uh̄β(w2)]2
+ 1

24π
S f (w2)

]
+ O((w1 − w2)). (B10c)

Note again that, when Wick rotating, S f (w) → −S f (w−). In
contrast to the case of constant temperature, the Schwarzian
derivative (A8) appears. The other difference is of course the
replacement β0 → β(w2) in the first piece of the O((w1 −
w2)0) term. As before, by adjusting proportionality fac-
tors, the O((w1 − w2)0) term is identified with 〈T 〉β , found
in (11). Then, by the same logic that led up to (8) one
can compute M2

loc(ξ, β(ξ )). The analysis is identical, so
one is free to simply plug (11) into (8), as mentioned in
Sec. III B.

APPENDIX C: ABOUT THE UPPER BOUND OF THE
ENERGY/MOMENTUM MEASUREMENT

In reality, measuring QT (k, ω) or �(ω) at ω = ∞ is im-
practical. As in Eq. (18), one has to introduce a cutoff energy
ωmax as a truncation. How do we choose ωmax to avoid huge
errors when we try to measure the central charge? To answer
this question, it is necessary to analyze the two-point Green’s
function

Gβ (x, t ) = Ka2

π

Tr(e−βH ∂xφ(x, t ) ∂xφ(0, 0))

Tr(e−βH )
. (C1)

With the help of mode expansion

φ(x, t ) =
∫

d p

2π
√

2εp
(ape−iεpt+ipx + a†

peiεpt−ipx ), (C2)

we find that Gβ (x, t ) = g(x, t ) + Ḡβ (x, t ), in which

g(x, t ) = Ka2

π

∫
d p

4πεp
p2e−iεpt+ipx, (C3)

Ḡβ (x, t ) = Ka2

π

∫
d p

2πεp
p2nB(εp) cos(εpt − px). (C4)

Only the latter function, Ḡβ (x, t ), carries the full temper-
ature dependence. Comparing with Eqs. (7), (8), and (1),
it becomes clear that Ḡβ (x, t ) contains the information of
the central charge. One recognizes the Bosonic distribution
function nB(εp) = 1/(eβεp − 1), which decreases quickly as
εp � kBT . After applying Fourier transformation to Ḡβ (x, t ),
we obtained the spin susceptibility in momentum-energy
coordinates,

Gβ (q, ω) = Ka2

π

q2

2εq
nB(εq)δ(ω − εq), (C5)

which is shown in Fig. 1.
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