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Large magnon magnetoresistance of two-dimensional ferromagnets
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The magnon current holds substantial importance in facilitating the transfer of angular momentum in spin-
based electronics. However, the magnon current in three-dimensional magnetic materials remains orders of
magnitude too small for applications. In contrast, magnon numbers in two-dimensional systems exhibit sig-
nificant enhancement and are markedly influenced by external magnetic fields. Here, we investigate the magnon
current in a two- dimensional easy-axis ferromagnet and find a large magnon magnetoresistance (LMMR) effect,
wherein the change of the magnon conductance can reach as high as a thousand percent in a moderate magnetic
field. Moreover, the magnitude of the LMMR exhibits significant dependence on the orientation of the magnetic
field due to the interplay between magnon-conserving and non-magnon-conserving scattering. We propose a
nonlocal magnon-mediated electrical drag experiment for the possible experimental observation of the predicted
effect. With the LMMR effect and a much larger magnon number, magnon current in 2D materials shows promise
as a primary source for spin transport in spintronics devices.
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I. INTRODUCTION

Magnons, also known as spin wave quanta, are low-energy
excitations of magnetically ordered states, holding signifi-
cance in spintronics for their role in spin transport properties.
Analogous to electron spins, magnons carry angular momenta
and magnon current serves as a spin current that traverses
magnetic media. Transport properties of magnons in various
magnetically ordered states, including ferromagnetic, anti-
ferromagnetic, and noncollinear magnetic structures, have
been extensively investigated both experimentally and the-
oretically [1–9]. In these studies, the magnon current of
three-dimensional magnets is generated through spin injection
from boundaries or a thermal gradient; however, its magnitude
remains orders of magnitude smaller than the conventional
electron spin current, limiting the application of the magnon
current as a primary source of spin information carriers.

Recent advances in the experimental development of
two-dimensional (2D) magnetic materials [10–22] provide
further opportunity to explore novel magnon transport. In
particular, it has been demonstrated [5] that the magnon
conductivity in thin YIG films greatly surpasses that of their
three-dimensional counterparts. In this article we argue that
magnon transport should see an even greater enhancement in
a truly two-dimensional ferromagnetic insulator. Compared
to conventional magnon transport properties in 3D systems,
low-dimensional magnets experience much stronger spin
fluctuations. Owing to the Mermin-Wagner theorem, thermal
fluctuations destroy long-range magnetic ordering for the
isotropic short-range Heisenberg Hamiltonian [23] and the
spatial random field breaks the uniform magnetization into
domains [24]. Breaking the continuous SO(3) symmetry by
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introducing magnetocrystalline anisotropy and/or external
field induces a gap, �, in the excitation spectrum. In the
long-wavelength limit, the magnon dispersion is given by
ωk ∼ � + Jk2, where J is the exchange constant. The
equilibrium magnon number N0 = ∫

d2k[exp(βωk ) − 1]−1

(with inverse temperature β) varies weakly with the gap but
diverges logarithmically as � → 0. If there is any magnetic
anisotropy in the sample the magnon number remains finite,
but still much larger than that for a three-dimensional magnet.
Since the gap can be controlled by the external magnetic field,
one would expect that the magnon number varies strongly
with external field. The magnon conductivity, σ ∼ N0τ , with
τ the magnon lifetime, is therefore expected to be much more
sensitive to an external magnetic field in a two-dimensional
sample, implying a larger magnon magnetoresistance (MMR)
effect is possible.

In this article we demonstrate that the influence of the
external field on the magnon lifetime and gap leads to a large
magnon magnetoresistance (LMMR) in two-dimensional fer-
romagnets with easy-axis exchange anisotropy. We find that
for fields parallel to the easy axis the magnon transport
properties are governed primarily by changes in equilibrium
magnon number. However, nonparallel fields generate non-
magnon-conserving scattering processes [25] which greatly
reduce the lifetime at small field strengths in 2D. By explic-
itly calculating the magnon conductance for this model, we
find the magnetoresistance could reach thousands of percent
for a moderate strength of the magnetic field. Furthermore,
MMR is highly dependent on the direction of the field
due to the competition between the magnon-conserving and
non-magnon-conserving scattering in the model Hamiltonian.
Such large magnon magnetoresistance is orders of magnitude
larger than the conventional magnetoresistance of magnetic
materials and is comparable to the magnetic oxides near the
metal-insulator transition temperatures [26–29]. We empha-
size, however, that the MMR presented in this article does
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FIG. 1. Equilibrium magnetization direction M in the presence
of an external field Hext in the xz plane.

not rely on any phase transition, and the underlying physi-
cal mechanism is entirely different from that of the colossal
magnetoresistance in magnetic perovskite materials.

The remainder of this article is organized as follows. In
Sec. II we introduce the model Hamiltonian and derive the
scattering vertices. In Sec. III the scattering widths are dis-
cussed. The magnon magnetoresistance effect is presented in
Sec. IV, and a possible experimental realization is discussed
in Sec. V.

Throughout this article we set h̄ = kB = c = 1.

II. MODEL

We consider an easy-axis ferromagnetic Heisenberg model
on a two-dimensional lattice with out-of-plane exchange
anisotropy and arbitrary external field Hext, which points at
an angle θH from the z axis. The Hamiltonian is

H = −
∑
〈i, j〉

(
JSi · S j + JzS

z
i Sz

j

) −
∑

i

H0 · Si, (1)

with J > 0 the isotropic exchange coupling and Jz > 0 the
exchange anisotropy, taken along the positive z axis. Si is the
spin operator for lattice site i, and in the first term we sum over
nearest neighbors i and j. The parameter H0 = μHext, with μ

the magnetic moment per unit spin, has been introduced as
shorthand. Competition between the anisotropy and external
field will shift the ground state magnetization away from the
easy axis (z axis). We describe the equilibrium magnetization
M by an angle θ as in Fig. 1. In order to expand Eq. (1) about
its classical ground state, the spin operators are first expressed
in a rotated frame, S = RS′, with the z′ axis parallel to M. In
this rotated frame Eq. (1) becomes

H = −
∑
〈i, j〉

(
JS′

i · S′
j + Jz

[
sin2 θS′x

i S′x
j + cos2 θS′z

i S
′z
j

− sin θ cos θ (S′x
i S′z

j + S′z
i S

′x
j )
])

−
∑

i

(
Hx

0

[
cos θS′x

i + sin θS′z
i

]
+ Hz

0

[ − sin θS′x
i + cos θS′z

i

])
, (2)

which may now be expanded in small fluctuations by means
of the usual Holstein-Primakoff (HP) transformation. Up to
cubic order in the boson operators we have

S′z
i = S − a†

i ai, S′+
i =

√
2S

(
1 − a†

i ai

4S

)
ai,

S′−
i =

√
2Sa†

i

(
1 − a†

i ai

4S

)
. (3)

This truncation of the HP transformation is sufficient to pro-
duce the lowest order corrections to the magnon lifetime
at low temperatures (T � TC with TC the Curie tempera-
ture), where the magnon density is not too large. Applying
Eq. (3) to Eq. (2) yields the Hamiltonian for the interacting
magnon system, H = H (0) + H (1) + H (2) + H (3) + H (4) with
H (n) containing n boson operators. The first two terms are

H (0) = −SN[α + αz cos2 θ + H0 cos(θH − θ )], (4)

H (1) =
√

S

2
[αz sin 2θ − H0 sin(θH − θ )]

∑
i

a†
i + ai, (5)

and describe the classical ground state energy and shift due
to uniform canting of the lattice spins toward the anisotropy
axis, respectively. Above, we have defined the anisotropy and
exchange parameters αz = JzSNδ and α = JSNδ , with Nδ the
number of nearest neighbors for each lattice site. N is the total
number of lattice sites. For simplicity, we assume a lattice with
inversion symmetry. The angle θ is defined by minimizing
H (0), or equivalently, setting H (1) = 0, and is given by the
solution to

αz sin(2θ ) = H0 sin(θH − θ ). (6)

The interacting magnon Hamiltonian is then obtained by
application of the Fourier transform ai = 1√

N

∑
k

eik·Ri ak :

H =
∑

k

ωka†
kak + V (2)

k (aka−k + a†
−ka†

k )

+ 1√
N

∑
k1,k2,k3

V (3)
k1,k2,k3

(a†
k1

a†
k2

ak3 + a†
k3

ak2 ak1 )

+ 1

N

∑
k1,k2,k3,k4

V (4)
k1,k2,k3,k4

a†
k1

a†
k2

ak3 ak4 . (7)

Defining the lattice factor γk = 1
Nδ

∑
δ

e−k·δ , with δ a vec-

tor from each site to its nearest neighbors, the full magnon
dispersion and interaction vertices are

ωk = −(2α + αz sin2 θ )γk + 2(α + αz cos2 θ )

+ H0 cos(θH − θ ), (8)

V (2)
k = −αz sin2(θ )

2
γk, (9)

V (3)
k1,k2,k3

= −δk1+k2−k3√
2S

αz sin(2θ )γk1 , (10)

V (4)
k1,k2,k3,k4

= δk1+k2−k3−k4

2S
α(γk4 + γk1 − 2γk2−k3 ). (11)
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Since we have limited our analysis to the lowest order correc-
tions to the magnon lifetime, it is sufficient to consider only
terms up to order O(a4). Moreover, the off-diagonal terms
V (2)

k (aka−k + a†
ka†

−k ) are treated as scattering processes in the
Dyson series for the self-energy. To lowest order in αz they do
not contribute any broadening and are from here on neglected.
Our treatment is similar to that in [30] in the limit T 	 αz.
Additionally, in H (4) we have neglected terms proportional to
αz on the grounds that Jz � J , and so the two-magnon scat-
tering processes will be dominated by the exchange coupling.

For a square lattice in the long-wavelength limit the
magnon frequency reduces to the quadratic form ωk = � +
ω0k2 with gap

� = αz(3 cos2 θ − 1) + H0 cos(θH − θ ) (12)

and frequency

ω0 = 2α + αz sin2 θ

4
≈ α/2. (13)

The frequency is governed primarily by the exchange cou-
pling, and is largely unaffected by the external field. The
gap, Eq. (12), is strongly dependent on the field strength
and has a somewhat complicated relationship with the field
direction. Numerically analysis of Eqs. (12) and (6) shows that
� develops a minimum for H0 > 0 when θH � θc ≈ 0.424π .
This minimum reaches its lowest value of �min = αz when
θH = π/2 and at the critical field Hc = 2αz. For θH < θc the
gap is a monotonically increasing function of the external
field.

In this limit the interaction vertices reduce to

V (3)
k1,k2,k3

= −δk1+k2−k3√
2S

αz sin(2θ )
(
1 − k2

1/4
)
, (14)

V (4)
k1,k2,k3,k4

= δk1+k2−k3−k4

8S
α
[
k2

4 + k2
1 − 2(k2 − k3)2]. (15)

The potential V (3) in Eq. (7) describes the spontaneous
decay of one magnon into two, and vice versa, and is strongly
dependent on the direction of the external field. From Eq. (6)
one finds that for θH = 0, θ = 0 and for field strengths H0 >

2αz, θH = π/2 ⇒ θ = π/2. We conclude that non-magnon-
conserving processes (V (3)) vanish for external fields parallel
to the easy axis, or for fields H0 > Hc = 2αz perpendicular
to it. The final term in Eq. (7) describes magnon-magnon
scattering with potential V (4) which is independent of the
equilibrium magnetization direction [see Eq. (15)]. Impor-
tantly, this potential is directly proportional to the magnon
energy, V (4) ∼ Jk2, which is assumed small. For thermal
magnons Jk2 ∼ T , and these two vertices may be comparable
over a wide range of magnon energy for temperature well
below TC .

III. SCATTERING WIDTHS

The scattering widths for each process are calculated
to single-loop order using the standard diagrammatic tech-
niques [31,32]. We denote by �NC the width for non-
magnon-conserving scattering (V (3)), and by �C for magnon-
conserving scattering (V (4)).These scattering widths are
plotted as a function of the dimensionless energy parameter
z = ω0k2/T for several different external field magnitudes in

ΓNC

ΓNC

ΓNC

ΓC
ΓC

ΓC

(a)

ΓNC

ΓNC

ΓNC

ΓC

ΓC

ΓC

(b)

FIG. 2. Comparison of the non-magnon conserving and magnon
conserving scattering widths for external field at an angle θH = π/6
to the easy-axis. (a) Scattering widths as a function of the dimen-
sionless energy parameter z = ω0k2/T for different external field
strengths H0. (b) Widths as a function of external field strength
for different z in the range 0 < z < 1. We use red curves for �NC

and blue for �C . The parameters chosen here are Jz/J = 10−5 and
T/TC = 10−2. We assume a square lattice in the long-wavelength
limit, for which the Curie temperature is approximately TC/J ∼ 0.1.
The momentum cutoff zc is chosen so that ωk � T .

Fig. 2. The results presented above are for the field angle
θH = π/6, but remain qualitatively similar for 0 < θH < θc.
For parallel fields, �NC = 0 but otherwise the results for �C

are mostly unaffected. Fields at angles θH � θc have a more
significant influence on �NC , and this case is discussed sepa-
rately below. Full details of these calculations can be found in
the Appendix. Here, we briefly summarize some of the more
salient features found within Fig. 2.

The peak in �NC in Fig. 2(a) can be understood as follows.
The vertex V (3) for nonconservative scattering is independent
of momentum, and so apart from an energy-conserving cutoff
at very low magnon energy (see Appendix), this scattering
width is governed by the Bose distribution and therefore dom-
inated by low-energy magnons. Above the cutoff, then, �NC

rises sharply to its peak before quickly decaying toward higher
energies. Because the magnon-conserving vertex V (4) scales
with momentum, �C is suppressed at low energies.

From Fig. 2(a) it is apparent that the width �C is suppressed
by an increasing external field, consistent with the notion that
increasing the gap suppresses the number of magnons, thereby
reducing the scattering width. The relationship between �NC

and H0 is, however, more complex. This is shown more clearly
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(a) (b)

(c) (d)

FIG. 3. (a) Energy gap, (b) equilibrium magnetization direction,
(c) magnon-conserving scattering width, and (d) non-magnon-
conserving scattering width as a function of external field strength
for in-plane fields. All other parameters are as in Fig. 2.

in Fig. 2(b), in which we plot each scattering width as a
function of external field strength at several values of z within
the available momentum range. The peak in �NC results from
competition between the strengthening vertex [Eq. (14)] and
widening gap. As H0 increases, the magnetization angle θ

increases from zero and approaches the limit θH . At the same
time, the gap [Eq. (12)] increases monotonically for θH < θc.
The width �NC , then, increases from zero until the magnetiza-
tion angle is saturated by the external field, at which point the
increase in vertex strength is overtaken by the growth in �.

For field angles θH � θc the gap does not increase mono-
tonically with field, but develops a minimum for small H0.
This is most pronounced for in-plane fields, where the mini-
mum is reached exactly as the magnetization angle is saturated
by the external field, θ → π/2. Both scattering widths should
therefore be increasing for 0 � H0 < 2αz. The vertex V (3),
however, vanishes when the magnetization switches to in-
plane, and so �NC drops abruptly to zero from its maximum
value at the critical field Hc. The full scattering width, then,
will change dramatically as the field is tuned across this criti-
cal point (see Fig. 3).

IV. MAGNON MAGNETORESISTANCE

The magnon conductivity can be calculated from a
linearized Boltzmann equation in the relaxation time
approximation σ = ∫

d2 pv2∂n/∂ωτ , or,

σ = 4π

β

∫ zc

0
dz

zez+β�

�(z)(ez+β� − 1)2 , (16)

where � = �NC + �C . From Figs. 2 and 3 it is clear that
the nonconservative scattering is dominant in the small-

FIG. 4. LMMR effect as a function of external field strength and
direction. (a) Magnon magnetoresistance ratio at several different
directions of the external field. (b) Anisotropic magnon magnetore-
sistance ratio at several different strengths of the field.

momentum regime, where the Bose distribution is largest.
One therefore anticipates that these processes have a greater
influence over the conductivity. Indeed, we find a large MMR
effect for nonparallel external fields. Of particular interest are
in-plane fields, for which we find a significant spike in the
magnon resistivity at fields H0 < 2αz which drops rapidly
to zero at the critical point. In Fig. 4(a) we present the
magnon magnetoresistance ratio as a function of external field
strength. In the figure ρ0 = ρ(H0 = 0) and �ρ = ρ − ρ0. The
magnon conductivity is also influenced by the direction of
the external field, and the anisotropic magnon magnetoresis-
tance ratio is plotted in Fig. 4(b). Here ρ‖ = ρ(θH = 0) and
�ρ‖ = ρ − ρ‖. That this LMMR should be so large can,
again, be seen as a consequence of the sharply peaked width �

due to nonconservative scattering. Heuristically, ρ ∼ 〈�〉 /N0

with 〈·〉 denoting the thermal average over the Bose distribu-
tion. Due to its logarithmic dependence on the gap, N0 is only
slightly influenced by the external field compared to � for
nonparallel fields. The MMR is then governed primarily by
the nonconservative scattering processes at low temperatures.

It should be noted that the predicted LMMR is most pro-
nounced for field strengths H0 ∼ αz, and is significantly less
pronounced for larger fields. The anisotropic MMR, however,
remains significant for H > Hc [see Fig. 4(b)]. At the critical
field, the magnon resistivity is enhanced by as much as 1000%
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FIG. 5. Schematic of experimental setup for nonlocal electri-
cal drag measurement. Two metallic strips (NM) are placed some
distance apart on a two-dimensional ferromagnetic insulator (FI).
Driving a current (Iin) in the left strip injects a spin current (Js)
into the FI via the spin Hall effect. This in turn excites a magnon
current (JM ) which is transported diffusively through the FI where it
encounters the other NM strip. Here, the magnon current excites a
spin current which is then converted to an electrical current Iout via
the inverse spin Hall effect.

relative to its value at parallel field. However, even at much
larger fields the MMR can reach up to 500%.

V. EXPERIMENTAL REALIZATION

We now elaborate on potential experimental approaches
to realize the predicted LMMR effect. Typically, the magnon
current is investigated either by the spin Seebeck effect [1]
through inducing a temperature gradient or by applying an
electric current in a heavy metal, thus injecting a spin Hall
current into the contacting magnetic layer [4,5]. Here, we
focus on the latter method, wherein the magnetic layer is a
2D magnet insulator. The setup proposed here differs from
the magnon conductivity measurements in thin YIG films of
[5] only in that the magnetic layer is two-dimensional, and the
external field is allowed out of the sample plane.

As in Fig. 5 the injected spin current excites a magnon
current in the magnetic layer which is then converted into a
spin current in another metal layer some distance away. The
spin current is then converted to an electrical current via the
inverse spin Hall effect. The resistance of the device can be
readily determined from the nonlocal voltage produced, from
which the magnon conductivity can be deduced.

Given that the spin direction of the spin Hall current
from the heavy metal is in-plane, the magnon current would
predominantly respond to the in-plane component of the mag-
netization. By manipulating the magnitude and orientation of
the applied magnetic field, one can align the magnetization
in any desired direction, accommodating either perpendicular
or in-plane anisotropy of the 2D magnet. Assuming magnon
scattering dominates over other forms of scattering such as
magnetic defects, the observed inverse spin Hall signals in
the detecting heavy metal bar would delineate the magnitude
and directional dependence of the magnetic field, effectively
manifesting the predicted LMMR effect.

VI. DISCUSSION

In conclusion, we have calculated the magnon conductance
of the ferromagnetic Heisenberg model on a two-dimensional

lattice with out-of-plane exchange anisotropy and external
magnetic fields. Due to the inherently strong spin fluctua-
tions in this low-dimensional system, the magnon population
and conductance are much larger compared to those in
three-dimensional systems. More interestingly, the external
magnetic field has a profound effect on the magnon con-
ductance, leading to significant magnon magnetoresistance
(LMMR). Furthermore, we find that the LMMR is highly
dependent on the orientation of the external field, primarily
due to non-magnon-conserved scattering processes where the
significant angular dependence of magnon scattering plays a
dominant role in LMMR. These properties provide an encour-
aging prospect for the application of 2D magnets in spintronic
devices, where the magnon current serves as angular momen-
tum carriers.

Both magnon-conserving and non-magnon-conserving
scattering are present in three dimensions as well, suggesting
that an anisotropic magnetoresistance effect is not unique
to low-dimensional systems. We have argued, however, that
the effect is amplified in two dimensions. The ratio of non-
magnon-conserving scattering widths in two dimensions to
that of three dimensions can be shown to scale as [see dis-
cussion at the end of Appendix 1 and Eq. (A9)]

�
(2D)
NC

�
(3D)
NC

∼
⎡
⎣

√
�

ω0
ln

1

β�

⎤
⎦

−1

. (17)

Clearly, this ratio diverges in the limit � → 0, signaling that
the anisotropic magnetoresistance effect should be enhanced
by the stronger fluctuations in two-dimensional systems.

We wish to point out that two other magnon scattering
mechanisms may reduce the LMMR. The magnon-phonon
interactions are always present in 2D magnetic insulators.
Further study is needed to quantitatively determine the rel-
ative strength of magnon-phonon contributions in order to
determine the conditions under which the LMMR effect
is observable in a realistic sample. Additionally, magnetic
impurities, defects, and interface roughness could also be
significant sources of scattering. However, we expect that
such scattering will be limited with the improvement of high-
quality 2D single crystals.
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APPENDIX: DERIVATION OF SCATTERING WIDTHS

In this section we derive in detail the two scattering widths,
�NC and �C , from the usual Matsubara formalism in Green’s
function theory.

1. Nonconservative scattering

Up to one-loop order in the Dyson series, the second line
in Eq. (7) generates the two self-energy diagrams shown in
Fig. 6. The polarization-bubble type diagram, �3a, is a finite-
temperature effect which dominates the magnon lifetime for
T > 0. �3b, on the other hand, describes spontaneous magnon
decay and is present even at T = 0 [33,34].
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FIG. 6. All single-loop order corrections to the self-energy gen-
erated by the cubic terms in Eq. (7). Vertices are given by Eq. (14).

Following the Matsubara formalism these corrections are
calculated as, respectively,

�3a(ω, k) = 1

N

∑
q

[
V (3)

q + V (3)
k

]2 n(ωk+q) + n(ωq)

iω − ωk+q + ωq
, (A1)

�3b(ω, k) = 1

N

∑
q

V (3)
k−q

[
V (3)

k−q + V (3)
q

]1 + n(ωq) − n(ωk−q)

iω − ωq − ωk−q
.

(A2)

Above, n(ω) = (eβω − 1)−1 is the equilibrium magnon dis-
tribution at inverse temperature β = 1/T , and all sums over
constrained momenta have been carried out so that the vertices
read V (3)

k = V0(1 − 1
6 k2) in the long-wavelength limit, where

V0 = αz√
2S

sin(2θ ). Within this limit integration is commonly

carried out over all q ∈ R2, reasoning that any error intro-
duced by including large q should be suppressed by the Bose
distributions. However, these processes involve spontaneous
creation/annihilation of magnons. Due to the presence of the
gap, ωk = � + ω0k2, the initial and final states must have a
finite energy, and so there must be a lower bound for the
external momenta in Fig. 6. As will be shown below, this
lower bound is sensitive to the choice of integration cutoff for
the internal momentum, qc.

The scattering widths for Eqs. (A1) and (A2) are
constrained on-shell by the following kinematic relations.
�3a(k) = −2Im(�3a) > 0 only for momenta k satisfying
ωk = ωk+q − ωq ⇒ 2ω0k · q = �. For finite internal mo-
mentum q, then, the available scattering states are bounded
below by k > �/2ω0qc. �3b is constrained by ωk = ωk−q +
ωq, which is satisfied only for q ∈ [q−, q+] with

q± = 1
2 (k ±

√
k2 − 2�/ω0). (A3)

These decay processes are therefore only allowed for magnons
with a kinetic energy ω0k2 > 2�, which is a sensible

constraint for the spontaneous emission of two magnons with
a gapped spectrum.

The momentum cutoff is chosen so that ωk � T , and
so the Bose distributions can be roughly approximated as
n(ω) ∼ 1/βω. Then

�3a ≈ 2V 2
0

πβ

∫
d2q

(
1

ωq
+ 1

ωp + ωq

)
δ(2ω0 pq cos φ − �),

(A4)

where we have ignored the momentum dependence of the
vertex. The δ function is used to eliminate the integral over
angle, yielding

�3a = 2V 2
0 q0

πβ�

∫ qc

q0

qdq√
q2 − q2

0

(
1

ωq
+ 1

ωq + ωp

)
(A5)

with q0(k) = �/2ω0k. As k → �
2ω0qc

, �3a → 0. Similarly,

�3b = V 2
0

πβ

∫ q+

q−

qdq√
(q2+ − q2)(q2 − q2−)

×
(

1 + 1

ωq
− 1

ωk − ωq

)
. (A6)

Both integrations are easily carried out. In terms of
the dimensionless variables z = βω0k2, zc = βω0q2

c , and
z− = βω0q2

0(qc),

�3a = V 2
0

πω0

⎡
⎢⎣ tan−1

(√
4zc (z−z− )

β�(4z+β�)

)
√

β�(4z + β�)

+
tan−1

(√
4zc (z−z− )

(2z+β�)2+4zβ�

)
√

(2z + β�)2 + 4zβ�

⎤
⎥⎦. (A7)

To leading order in β� this width scales as �3a ∼
V 2

0 /4ω0
√

zβ�. The enhancement with decreasing gap can be
understood as a consequence of the increase in magnon num-
ber. As � decreases, there are more magnons in the system,
and therefore more scattering events.

For the spontaneous decay we obtain

�3b = V 2
0

8ω0
�(z − 2β�). (A8)

Apart from the constraint z > 2β� this width is independent
of momentum, temperature, and gap. For small fields �3a 	
�3b and so this spontaneous decay process has only a small

FIG. 7. All single-loop order corrections to the self-energy generated by the quartic terms in Eq. (7). Following [32], the dashed lines
represent vertices given by Eq. (15) and solid lines are magnon lines. We include among these corrections the time reversal of each diagram,
in order to account for detailed balance [35,36].
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influence on the magnon lifetime above zero temperature. The
discontinuity at z = 2β� is responsible for the sudden jumps
in �NC in Fig. 2.

The enhancement of the scattering is not strictly unique
to two-dimensional systems, though it is straightforward
to show that the scaling for this width with � in three
dimensions is weaker. Beginning from Eq. (A4) and adjust-
ing the integral for three-dimensional scattering it is found

that �3D
3a ∼ V 2

0 ln(1/β�)/(4π2
√

zβω3
0 ). Similarly, �3D

3b ∼
V 2

0 /4π2√(z − 2β�)/4βω0. As in the two-dimensional case,
this term does not contribute significantly to the overall scat-
tering width. The ratio of the non-magnon-conserving widths
in two dimensions to three therefore scales as

�2D
NC

�3D
NC

∼
⎡
⎣

√
�

ω0
ln

(
1

β�

)⎤
⎦

−1

. (A9)

Clearly the ratio diverges as � → 0, suggesting that �NC ,
and therefore the anisotropic magnetoresistance effect, is en-
hanced by the larger spin fluctuations in two-dimensional
systems.

2. Conservative scattering

Following the general procedure for calculating self-
energy corrections due to two-particle scattering outlined in
[32], we consider the following first-order self-energy dia-
grams (Fig. 7), generated by the quartic terms in Eq. (7).

Excluding the time-reversed contributions, the self-energy
correction is

�4 = 1

N2

∑
k1,k2,k3

V (4)
1,2,p,3

(
2V (4)

p,3,1,2 + V (4)
p,3,2,1

)

× [1 + n(ωk1 )][1 + n(ωk2 )]n(ωk3 )

iω − ωk1 − ωk2 + ωk3

. (A10)

The time-reversed diagrams are a consequence of detailed
balance, and introduce a factor of (1 − e−βωp ) to the scattering
width �C = −2Im(�4) [35,36]. The width is most easily ana-
lyzed in the center-of-momentum frame. Defining K = (k1 +
k2)/2 and Q = (k1 − k2)/2 and assuming small momenta as
in the previous section the width can be approximated roughly
as

�C ≈ ωp

2πβ2

∫
d2Kd2Q

× W (p, K, Q)

ωK+QωK−Q(2ωK + 2ωQ − ωp − 2�)

× δ(2ω0(p2 + K2 − Q2 − 2p · K)), where (A11)

W (p, K, Q) = V (4)
K+Q,K−Q,p,2K−p

× (
2V (4)

p,2K−p,K+Q,K−Q + V (4)
p,2K−p,K−Q,K+Q

)
.

(A12)

In contrast to the previous section, all states are available for
this kind of scattering, �C > 0 for all p. The δ function is

used to eliminate the angular integral for K. In terms of the
dimensionless variable z the width can be written

�C =
( α

8S

)2 z + β�

4β3ω4
0

I (z, β�), (A13)

where I is a dimensionless integral given by the rather com-
plicated expression

I (z, β�) =
∫ zc

0
dx

∫ (
√

x+√
z)2

(
√

x−√
z)2

dy

× F (x, y, z, β�)√
[(

√
x + √

z)2 − y][y − (
√

x − √
z)2]

× 1

2(x + y) − z + β�
,

F = 1

a
√

a2 − b2

[
V1 + a

b2

(
a −

√
a2 − b2

)
V2

+ a
√

a2 − b2 − a2 + b2

b2
V3

+
(
a − √

a2 − b2
)2

b2
V4

]
,

a = x + y + β�, b =
√

2xy,

V1 = 1

4
(3x + z − y)x + z − 3y,

V2 = 3xy − 8
√

xzy cos φ,

V3 = 4yz,V4 = 4yz cos2 φ, cos φ = x + z − y

2
√

xz
.

(A14)

A normalized plot of I vs β� is shown in Fig. 8 for several
values of z. For z < 0.5, the integral scales as 1/β� < I <

1/
√

β�. From this we conclude that the scattering width
Eq. (A13) scales weakly with the field at small momenta,
where the Bose distribution gives the largest contribution.
Changes in the magnon resistivity due to conservative scat-
tering are, therefore, governed primarily by the change in
magnon number. Because �C is only weakly suppressed by

FIG. 8. Scaling of the dimensionless integral I with parameter β�.
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the external field, the magnon resistivity, ρ ∼ �/N0, is still
enhanced due to the suppression in magnon number. At higher

temperatures � ≈ �C , and so the MMR effect will be much
smaller, and governed by changes in magnon number.
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