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Magnetic symmetries of terbium tetraboride (TbB4) revealed by resonant x-ray Bragg diffraction
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A recent experimental study of TbB4 at a low temperature using resonant x-ray Bragg diffraction implies a
magnetic symmetry not found in any other rare-earth tetraboride. The evidence for this assertion is a change in
the intensity of a TbB4 Bragg spot on reversing the handedness (chirality) of the primary x-ray beam [R. Misawa,
K. Arakawa, T. Yoshioka, H. Ueda, F. Iga, K. Tamasaku, Y. Tanaka, and T. Kimura, Phys. Rev. B 108, 134433
(2023)]. It reveals a magnetic chiral signature in TbB4 that is forbidden in phases of rare-earth tetraborides known
to date, as the previous magnetic symmetries are parity-time (PT) symmetric with anti-inversion present in the
magnetic crystal class. Misawa et al. appeal to a PT-symmetric diffraction pattern to interpret their interesting
diffraction patterns. In addition to the use of symmetry that does not permit a chiral signature, calculated
patterns impose cylindrical symmetry on Tb sites with no justification. We review magnetic symmetries for
TbB4 consistent with a published neutron powder diffraction pattern and susceptibility measurements. On the
basis of this information, noncollinear antiferromagnetic order exists below a temperature ≈ 44 K with no fer-
romagnetic component. Our symmetry-informed patterns encapsulate Tb electronic degrees of freedom in terms
of multipoles consistent with established sum rules for dichroic signals. The investigated symmetry templates
are noncentrosymmetric, noncollinear antiferromagnetic constructions with propagation vector k = (0, 0, 0).
An inferred chiral signature for a parity-even absorption event has an interesting composition. There is the
anticipated product of Tb axial dipoles and chargelike quadrupoles (from Templeton-Templeton scattering).
Beyond this contribution, though, symmetry allows a product of dipoles in the chiral signature. A predicted
change in the intensity of a Bragg spot with rotation of the crystal about the reflection vector (an azimuthal angle
scan) can be tested in future experiments. Likewise contributions to Bragg diffraction patterns from Tb anapoles
and higher-order Dirac multipoles.

DOI: 10.1103/PhysRevB.110.104405

I. INTRODUCTION

Rare-earth borides display a raft of interesting electronic
properties, including superconductivity and frustrated mag-
netism [1]. Tetraborides adopt a tetragonal structure and
develop collinear or noncollinear antiferromagnetic orders at
low temperatures. Terbium tetraboride, of interest here, dis-
plays two phase transitions [2]. Neutron powder diffraction
patterns for TbB4 are consistent with noncollinear antiferro-
magnetic order below a temperature ≈ 44 K [3]. This type of
magnetic order persists beyond a second transition at ≈ 24 K,
where terbium dipoles tilt toward the a or b axes. Mag-
netic susceptibility measurements rule against a ferromagnetic
component [2], and, reassuringly, there is no trace of it in
neutron powder diffraction patterns [3]. Magnetic structures
present magnetoelectric and concomitant parity-time (PT)
symmetry [4].
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A new magnetic symmetry of TbB4 can be inferred from a
Bragg diffraction pattern measured by resonant x-ray diffrac-
tion with a sample temperature ≈ 30 K, and it is the principal
subject of the present paper. A key feature of the pattern
reported by Misawa et al. [5] is found in their Fig. 4(e). It
shows that the intensity of the (3, 0, 0) space-group forbidden
Bragg spot changes on reversing the chirality of the primary
x rays, from right-handed to left-handed circular polariza-
tion, say. Such signatures may be present when magnetic and
charge contributions to a diffraction amplitude are separated
by a 90◦ phase shift. Notably, it is forbidden by anti-inversion
(1′) in PT-symmetry. For example, magnetoelectric com-
pounds GdB4 (magnetic crystal class 4/m′m′m′), CuMnAs
(m′mm), and Cu2(MoO4)(SeO3) (2′/m) do not present chiral
signatures [4,6–8].

The measured chiral signature Fig. 4(e) in Misawa et al.
[5] rules against the magnetic symmetry for a sample temper-
ature ≈ 30 K depicted in their Fig. 1(a), since the symmetry
elements of magnetic crystal class 4/m′m′m′ include anti-
inversion (1′). An appropriate magnetic symmetry for the
new phase of TbB4 must also account for the intensity of
a space-group forbidden Bragg spot displayed in Fig. 3 [5]
as a function of the rotation about the reflection vector (an
azimuthal angle scan).
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FIG. 1. Panel (a); Five irreps used in the construction of four
tetragonal templates defined and discussed in Sec. II. Two templates
(i) m�+

2 ⊕ m�−
1 (P4̄′21m′ , no. 113.270, magnetic crystal class 4̄′2m′)

and m�+
2 ⊕ m�−

2 (no. 90.97, 422′) match diffraction patterns for
TbB4 [5]. Panel (b); Depiction of axial dipoles with magnetic sym-
metry no. 113.270.

We successfully interpret observations on TbB4 reported
by Misawa et al. [5] with symmetry informed Bragg diffrac-
tion patterns. To this end, we use a theory of resonant x-ray
Bragg diffraction derived with standard Racah algebra for
atomic multipoles [6,9,10]. The theory is compatible with
tried and tested sum rules in dichroic signals [11–13]. This
desirable attribute is not fully realized in a phenomenological
theory used by Misawa et al. that contains free parameters
and a constraint to cylindrical Tb site symmetry [14–16]; see
footnote 9 in Ref. [14]. In consequence, diffraction amplitudes
are not guaranteed to be compatible with the full magnetic
symmetry. Returning to our elected theory, electronic mul-
tipoles inferred from experimental data supplied by Misawa
et al. [5] are listed in Table I. They can be confronted with
estimates using an atomic wave function for the resonant ion
[13,17,18], or simulations of electronic structure [19–21].

II. TEMPLATE SELECTION

The parent structure of TbB4 is no. 127 (crystal class
4/mmm) with Tb in sites 4g. Suitable templates exclude a
ferromagnetic moment [2,3]. For a second-order phase tran-
sition at TN, there is just one template that does not contain
anti-inversion, namely, no. 127.391 (BNS [22], 4′/mmm′),
which transforms as irreducible representation (irrep) m�+

2 .
It represents an antiferromagnetic structure with Tb axial

TABLE I. Multipoles for the magnetically ordered phase of TbB4

(30 K) inferred from experimental data depicted in Fig. 3 [5]. Equa-
tion (4) is intensity in the rotated channel of polarization |(π ′σ )|2 for
template (i) (no. 113.270). A fit to the displayed data as a function of
the azimuthal angle ψ is depicted in blue. Corresponding multipoles
are listed here as a function of the axial dipole 〈T 1

a〉 (arbitrary units).
It has a maximum value 〈T 1

a〉 = 1.77 when 〈T 2
+2〉′′ = 0.

〈T 1
a〉 〈T 1

c〉 〈T 2
+1〉′ 〈T 2

+2〉′′

1.7 1.08 0.34 0.13
1.5 0.99 0.66 0.34
1.3 0.88 0.85 0.46
1.1 0.77 0.98 0.55
0.9 0.65 1.08 0.62
0.3 0.30 1.23 0.75

dipoles aligned along the crystal c axis. With dipoles aligned
in this manner it is no surprise that the diffraction pattern
for no. 127.391 alone does not match diffraction patterns
supplied by Misawa et al. [5]. We therefore consider linear
combinations of irreps, but in this case the magnetic transition
must be first order. Admixing two irreps (more irreps make
the search intractable) gives five templates that do not con-
tain anti-inversion. They are no. 117.302 (magnetic crystal
class 4′m2′), no. 113.270 (4′2m′), polar no. 100.174, (4′mm′),
Sohncke-type no. 90.97 (422′ [23]), and no. 26.66 (422′), as-
sociated with direct sums of six irreps, namely, m�+

2 ⊕ m�−
3 ,

m�+
2 ⊕ m�−

1 , m�+
2 ⊕ m�−

4 , m�+
2 ⊕ m�−

2 , and m�+
2 ⊕ m�−

5 ,
respectively. We note that all templates include a m�+

2 mode.
The reflection condition (h, 0, 0) with h = 2n or equivalent
is not met by orthorhombic no. 26.66. The remaining four
tetragonal templates are noncentrosymmetric and describe
antiferromagnetic noncollinear motifs of Tb dipoles with a
propagation vector k = (0, 0, 0). Symmetry adapted modes
of magnetic dipoles therein are depicted in Fig. 1(a) for the
five irreps ultimately required (�−

5 in Pmc21 is absent). Tem-
plates m�+

2 ⊕ m�−
1 (no. 113.270, 4′2m′) and m�+

2 ⊕ m�−
2

[Sohncke-type (chiral) no. 90.97, 422′] are found to match all
aspects of the published x-ray diffraction patterns [5]. Cor-
responding diffraction amplitudes are presented in Sec. IV.
The remaining templates m�+

2 ⊕ m�−
3 (no. 117.302, 4′m2′)

and m�+
2 ⊕ m�−

4 (no. 100.174, 4′mm′) are shown to fail with
regard to the required chiral signature.

It is likely useful to review the PT-symmetric magnetic
structure cited by Misawa et al. and rejected by us [5]. The
magnetic symmetry depicted in their Fig. 1(a) for the higher
temperature structure that brackets temperatures 24 and 44
K is a single symmetry adapted mode that transforms by
the single irrep m�−

1 . The respective magnetic symmetry is
no. 127.395 (4/m′m′m′). The magnetic symmetry depicted in
their Fig. 1(b) for the low temperature symmetry (temperature
< 24 K) is a linear combination of two symmetry adapted
modes. One of the two modes is the same as that cited for
the above phase observed at a higher temperature. The sec-
ond mode if appearing by itself presents magnetic symmetry
no. 127.392 (4′/m′m′m). The linear combination drawn in
Fig. 1(b) in Ref. [5] lowers symmetry to orthorhombic no.
55.359 (m′m′m′).
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FIG. 2. Primary (σ , π ) and secondary (σ ′, π ′) states of x-ray
polarization. Corresponding photon wave vectors q and q′ subtend an
angle 2θ . Crystal vectors and the depicted Cartesian (x, y, z) coincide
in the nominal setting of the crystal. An azimuthal angle ψ used in
the main text measures rotation of the crystal about the reflection
vector κ = q − q′. We adopt an origin ψ = 0 chosen by Misawa
et al. [5]. The sense of rotation is counterclockwise when viewed
down the reflection vector, i.e., the vector x = z = 0, y = 1 becomes
(0, 0, −1) for ψ = 90◦.

III. RESONANT X-RAY DIFFRACTION

Tuning the energy of x rays to an atomic resonance has
two obvious benefits in diffraction experiments [16,24]. In
the first place, there is a welcome enhancement of Bragg
spot intensities and, secondly, spots are element specific.
States of x-ray polarization, Bragg angle θ , and the plane of
scattering are shown in Fig. 2. A conventional labeling of lin-
ear photon polarization states places σ = (0, 0, 1) and π =
(cos(θ ), sin(θ ), 0) perpendicular and parallel to the plane
of scattering, respectively [6]. Secondary states σ ′ = σ and
π ′ = (cos(θ ),− sin(θ ), 0). The x-ray scattering length in the
unrotated channel of polarization σ → σ ′, say, is modeled
by (σ ′σ )/D(E ). In this instance, the resonant denominator
is replaced by a sharp oscillator D(E ) = {[E−� + i�/2]/�}
with the x-ray energy E in the near vicinity of an atomic
resonance � of total width �, namely, E ≈ � and � <<

�. The cited energy-integrated scattering amplitude (σ ′σ ),
one of four amplitudes, is studied using standard tools and
methods from atomic physics and crystallography. In the first
place, a vast spectrum of virtual intermediate states makes
the x-ray scattering length extremely complicated [13]. It
can be truncated following closely steps in celebrated studies
by Judd and Ofelt of optical absorption intensities of rare-
earth ions [13,25–28]. An intermediate level of truncation
used here reproduces sum rules for axial dichroic signals
created by electric dipole–electric dipole (E1-E1) or electric
quadrupole–electric quadrupole (E2-E2) absorption events
[6,13]. The attendant calculation presented in Ref. [28] and
Sec. 5.2 in Ref. [6] is lengthy and demanding. Here, we
implement universal expressions for scattering amplitudes and
abbreviate notation using (σ ′σ ) ≡ Fσ ′σ , etc., for amplitudes
listed by Scagnoli and Lovesey, Appendix C in Ref. [10].
A similar analysis exists for polar absorption events such as
E1-E2 (Appendix D in Ref. [10]), and E1-M1 where M1 is
the magnetic moment [29,30]. Here, we interpret Bragg spots
observed by Misawa et al. [5] with the x-ray energy tuned

to the terbium L3 edge (E ≈ 7.5175 keV) that accesses E1
(2p → 5d) and E2 (2p → 4 f ) absorption events.

In our adopted description of electronic degrees of free-
dom, Tb ions are assigned spherical multipoles 〈OK

Q〉 of
integer rank K with projections Q. Angular brackets denote the
time average, or expectation value, of the enclosed spherical
tensor operator. A unit-cell electronic structure factor 	K

Q is
constructed from all symmetry operations in the chosen space
group [22]. Cartesian and spherical components Q = 0, ±1
of a vector n = (ξ, η, ζ ) are related by ξ = (n−1 − n+1)/

√
2,

η = i(n−1 + n+1)/
√

2, ζ = n0. A complex conjugate of a
multipole is defined as 〈OK

Q〉∗ = (−1)Q〈OK
−Q〉, meaning the

diagonal multipole 〈OK
0〉 is purely real. The phase convention

for real and imaginary parts labeled by single and double
primes is 〈OK

Q〉 = [〈OK
Q〉′ + i〈OK

Q〉′′]. Whereupon Cartesian

dipoles are 〈O1
ξ 〉 = −√

2〈O1
+1〉′ and 〈O1

η〉 = −√
2〈O1

+1〉′′.
Axial (parity even) multipoles denoted 〈TK〉 possess a time

signature (−1)K. They can contribute to diffraction enhanced
by E1-E1 or E2-E2 absorption events. Bragg spots enhanced
by an E1-E1 event are often dominant contributions to a
diffraction pattern [15,16,24]. All multipoles are functions of
the quantum numbers that define the core state of photoejected
electrons. The dependence on quantum numbers manifests
itself in so-called sum rules that relate 〈OK〉 measured at L2

and L3 edges, for example [6,11–13]. Sum rules Eqs. (A5)
and (A6) for the axial dipole 〈T1〉 present the orbital angular
momentum 〈L〉 in the valence state. Dirac atomic multipoles
〈GK〉 are polar (parity odd) and magnetic (time odd) [6,13].
They are permitted in a magnetic material when the resonant
ion occupies an acentric site. Detection of Dirac multipoles
requires a probe with matching attributes, of course, which
are found in x-ray diffraction enhanced by E1-E2 or E1-M1
parity-odd absorption events.

IV. CHIRAL SIGNATURES

Our chiral signature ϒ is the change in intensity of a Bragg
spot caused by circular polarization in the primary beam of x
rays [13,31]:

ϒ = {(σ ′π )∗(σ ′σ ) + (π ′π )∗(π ′σ )}′′. (1)

The four x-ray diffraction amplitudes in Eq. (1) are derived
from an electronic structure factor Eq. (A1). Multipoles are
presented in a lattice basis that is usually specified relative to
the chemical parent lattice of the magnetic symmetry, no. 127
in our case. The basis provides the relation between Miller
indices (Ho, Ko, Lo) for the parent lattice and (h, k, l) for the
magnetic symmetry.

For future convenience, we attach the label (i) to the tetrag-
onal template no. 113.270. The basis relative to no. 127 is {(1,
0, 0), (0, 1, 0), (0, 0, 1)}. Terbium ions use Wyckoff positions
4e with symmetry m′−xy that imposes the constraint

σπσθ (−1)K
〈
OK−Q

〉 = σπσθ (−1)K+Q
〈
OK

Q
〉∗

= exp(iπQ/2)
〈
OK

Q
〉
, (2)

where σπ and σθ are parity and time signatures, respec-
tively. For parity-even absorption events (E1-E1 and E2-E2)
σπ = +1 and σθ = (−1)K, while σπ = −1 and σθ = −1 for
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Dirac multipoles [5,13]. Axial magnetic dipole magnitudes
along the a and b crystal axes in (i) are identical, i.e.,
〈T 1

a〉 = 〈T 1
b〉, and the magnetic symmetry is depicted in

Fig. 1(b).
For the space-group forbidden reflection (h, 0, 0) with

odd h studied by Misawa et al. [5], the electronic structure
factor Eq. (A2) satisfies 	K

Q(i) = 0 using multipoles with
even K, Q = 0 and σπ = +1. In the case of an E1-E1 event,
amplitudes for unrotated polarizations read

(σ ′σ )i = 0, (π ′π )i ∝ sin(2θ )
[
iα′cos(ψ )

〈
T 1

c
〉

+ α′′sin(ψ )
〈
T 1

a
〉]
, (3)

and intensity in the rotated channel of polarization reads
|(π ′σ )i|2 ∝ cos2(θ )

[{
α′′ cos(ψ )

〈
T 1

a
〉−√

2α′ sin(ψ )
〈
T 2

+2

〉′′}2

+{
α′ sin(ψ )

〈
T 1

c
〉 + √

2α′′ cos(ψ )
〈
T 2+1

〉′}2]
.

(4)

Subscripts a and c on axial dipoles denote cell edges depicted
in Fig. 1. A spatial phase factor α = exp(i2πhx) = (α′ + iα′′)
with x ≈ 0.3172, and α′/α′′ ≈ −3.25 for (3, 0, 0) [3,5].
Unimportant numerical prefactors omitted in the foregoing re-
sults, and those that follow, explain the use of a proportionality
sign. The corresponding chiral signature is

ϒ (i) ∝ cos(θ ) sin(2θ )
[√

2α′α′′〈T 1
a
〉〈

T 1
c
〉

+ sin(2ψ )
{
α′′2〈T 1

a
〉〈

T 2+1
〉′ − α′2〈T 1

c
〉〈

T 2+2
〉′′}]

.

(5)

Crystal axes (a, b, c) and photon axes (x, y, z) in Fig. 2 are
correctly aligned for an azimuthal origin ψ = 0. The chiral
signature ϒ(i) is proportional to [〈T 1

a 〉〈T 1
c 〉] at ψ = −90◦, and

a nonzero signature at this azimuth accords with the measured
diffraction pattern [5]. Likewise for intensity in the rotated
channel of polarization as a function of ψ reproduced in
Fig. 3. The chiral signature ϒ(90.97) is the same as Eq. (5)
apart from a change in the sign that accompanies α′2. Fur-
thermore, intensity in the rotated channel for no. 90.97 is
the same as Eq. (4) after a change in the sign with 〈T 2

+2〉′′.
Hence, template no. 90.97 may also account for experimental
diffraction intensities [5].

Equations (4) and (5) for intensity in the rotated channel of
polarization and the chiral signature, respectively, are faithful
representations of magnetic symmetries no. 90.97 and no.
113.270. Whereas, Eqs. (9) and (12) presented by Mikawa
et al. are not faithful representations of magnetic symmetry
[5]. More specifically, they do not represent the single ir-
rep m�−

1 (magnetic crystal class 4/m′m′m′) of the magnetic
structure depicted in their Fig. 1(a). Instead, the equations
presented by Mikawa et al. are products of an abbreviated
theory of resonant x-ray diffraction [14] written in terms of
some arbitrary parameters. Hence, there is no merit to the
chiral signature Eq. (12) in Ref. [5] that appears to be propor-
tional to a product of an axial magnetic dipole and a chargelike
quadrupole.

Estimates of the four multipoles in |(π ′σ )i|2 in the mag-
netically ordered phase (30 K) of TbB4 are inferred from
a fit to experimental data [5]. To this end, we parametrize
Eq. (4),

[ucos(ψ )]2 + [v2 + w2]sin2(ψ ) − uwsin(2ψ ),

FIG. 3. Integrated intensity as a function of azimuthal angle ψ

for template (i) with magnetic symmetry no. 113.270. Solid curves
are generated using Eq. (4) for intensity in the rotated channel of
polarization |(π ′σ )i|2 and the space-group forbidden reflection (3, 0,
0). Sample temperatures 30 K (magnetically ordered phase) and 60 K
(paramagnetic) are labeled blue and red, respectively. Experimental
data for TbB4 are extracted from Misawa et al. (solid points 30 K,
open points 60 K) [5].

and deduce u ≈ 0.52, v ≈ 1.04, and w ≈ 0.11 that generate
the blue curve in Fig. 3. Table I contains the relative mag-
nitudes of corresponding multipoles as a function of 〈T 1

a〉
(arbitrary units). Notable features include similar magnitudes
for 〈T 1

a〉 and 〈T 1
c〉, and an inverse relation between the

magnitudes of dipoles and quadrupoles. In so far as Eq. (4)
is relevant for the paramagnetic phase (60 K), the red curve in
Fig. 3 is generated with 〈T 2

+2〉′′ ≈ 0.63, and 〈T 1
a〉 = 〈T 1

c〉 =
〈T 2

+1〉′ = 0. While null values for dipoles are required in the
paramagnetic phase, an implied large change in quadrupoles
at the magnetic phase transition suggests significant alter-
ations to material properties.

Returning to Sohncke-type magnetic symmetry no. 90.97
[enantiomorphous (chiral) crystal class 4′22′], Tb ions
use Wyckoff positions 4e and electronic structure fac-
tors 	K

Q(i) = 	K
Q(113.270) in Eq. (A2) and 	K

Q(90.97)
are formally identical. However, site symmetries are not
the same with 2′

xy for no. 90.97 and the constraint by
exp(−iπQ/2)〈OK

Q〉 = σθ (−1)K〈OK
−Q〉. Inversion, mirror, im-

proper rotations, and glide symmetries are absent in Sohncke
lattices [23]. A neutral screw axis 21 in P4212 is achiral
while the atomic structure around the axis is chiral. Of the 65
Sohncke lattices primitive ones are chiral and centred ones are
not. Orthorhombic and lower symmetry lattices do not contain
one of 11 enantiomorphous pairs and the related space groups
are achiral.

Moving on, the tetragonal polar template m�+
2 ⊕ m�−

4 (no.
100.174), hereafter labeled (ii), possesses a basis {(1, 0, 0),
(0, 1, 0), (0, 0, 1)} relative to the parent no. 127, i.e., the
same basis as for template (i). Terbium ions occupy Wyckoff
positions 4c, the constraint Eq. (2) applies, 〈T 1

a〉 = 〈T 1
b〉,

and the magnetic symmetry is depicted in Fig. 1(b). For an
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E1-E1 event and a reflection vector (h, 0, 0) with odd h,

(σ ′σ )ii ∝ iα′′ sin(2ψ )
〈
T 2+1

〉′
,

(π ′π )ii ∝ i
[

sin(2θ )α′ cos(ψ )
〈
T 1

c
〉

+ √
2sin2(θ )α′′ sin(2ψ )

〈
T 2+1

〉′]
,

|(π ′σ )ii|2 ∝ [{√
2sin(θ )α′′ cos(2ψ )

〈
T 2+1

〉′

− cos(θ )α′ sin(ψ )
〈
T 1

c
〉}2

+ {√
2cos(θ )α′ sin(ψ )

〈
T 2+2

〉′′

− α′′ sin(θ )
〈
T 1

a
〉}2]

. (6)

In contrast to (i), diffraction is allowed in the unrotated chan-
nel (σ ′σ )ii. Our result for the chiral signature is

ϒ (ii) ∝ cos(θ ) cos(ψ )
[

sin(2θ ) sin(ψ )
{
α′2〈T 1

c
〉〈

T 2+2
〉′′

− α′′2〈T 1
a
〉〈

T 2+1
〉′}

+ √
2α′α′′{2(cos (θ ) sin(ψ ))2

〈
T 2+1

〉′〈
T 2+2

〉′′

− sin2(θ )
〈
T 1

a
〉〈

T 1
c
〉}]

. (7)

The c axis is normal to the plane of scattering in Fig. 3 at the
start of an azimuthal angle scan, the setting used by Misawa
et al. [5]. Notably, ϒ(ii) is proportional to cos(ψ) and zero
for ψ = −90◦. The result conflicts with supplied diffraction
patterns, while chiral signatures for templates no. 113.270 and
no. 90.97 do not [5].

Use of magnetic symmetry no. 117.302 as a template for
magnetic TbB4 is not supported by diffraction patterns. Its
basis is {(0, 1, 0), (−1, 0, 0), (0, 0, 1)} relative to no. 127.
Terbium ions are in Wyckoff positions 4g with symmetry
2′

xy. The electronic structure factor is formally identical to
Eq. (A2) with an explicit dependence on the parity of elec-
tronic multipoles, but the Tb site symmetry is not the same
as that for (ii). However, ϒ(117.302) is zero for ψ = −90◦
like ϒ(ii). In consequence, chiral signatures ϒ(100.174) and
ϒ(117.302) fail to represent available diffraction patterns [5].

V. DIRAC MULTIPOLES

An anapole (Dirac dipole, σπσθ = +1) depicted in Fig. 4
diffracts x rays in resonant scattering enhanced by a parity-
odd electric dipole-electric quadrupole (E1-E2) event, for
example. [A vector product (R × S) where R and S are
electronic space (time-even and polar) and spin (time-odd
and axial) variables, respectively, represents the discrete sym-
metry of a spin anapole.] Experimental results for Dirac
multipoles in V2O3 and CuO have been published together
with successful interpretations [13,32,33]. In the case of TbB4

available Tb resonance events include L3-2p → 5d and 2p →
4 f for E1 and E2—and M5—2d → 4 f and 2d → 5d for E1
and E2. Diffraction illuminates Dirac multipoles with ranks
K = 1, 2, 3. Energies of E1-E1 and E1 − E2 resonances are
expected to be different.

We examine the information available for the polar tem-
plate (ii) using an E1-E2 absorption event. Terbium ions in
(ii) support polar multipoles (σπσθ = −1) at all temperatures,
of course. Dirac multipoles (〈GK〉 with σπσθ = +1) are also
a manifestation of the polar structure and epitomize the low

FIG. 4. Depiction of a Dirac dipole (an anapole) created by
Scagnoli [33].

temperature magnetic phase. Anapoles in template (ii) satisfy
〈G1

a〉 = −〈G1
b〉 according to Eq. (2). Diffraction amplitudes

are derived from Eq. (A3) using expressions in Appendix D
of Ref. [10]. Intensity in the rotated channel for (h, 0, 0) with
odd h is predicted to be

|(π ′σ )|2 ∝ [{
α′〈G2

0
〉
[(cos (θ ) cos(ψ ))2 − sin2(θ )]

}2

+ (2/15)
{

sin(2θ )α′′ sin(ψ )
[
3
〈
G1+1

〉′+2
√

5
〈
G2+1

〉′

+ (4 − 15 cos2(ψ ))
〈
G3+1

〉′

+ √
15 cos2(ψ )

〈
G3+3

〉′]}2]
. (8)

As with an E1-E1 absorption event, the chiral signature is
zero for ψ = −90◦. This finding follows from the E1 − E2
result:

ϒ (ii) ∝ α′α′′〈G2
0
〉
cos (θ ) cos(ψ )

× [
(cos (θ ) cos(ψ ))2 − sin2(θ )

]

× [ − sin2(θ )
〈
G1+1

〉′ + (2/3)
√

5cos(2θ )
〈
G2+1

〉′

+ (1/12){(4 + cos2(θ ))(11 − 15cos2(ψ ))−1}〈G3+1
〉′

− (1/4)
√

(5/3){(cos (θ ) sin(ψ ))2 + 1}〈G3+3
〉′]

.

(9)

Bragg spots (h, 0, 0) with odd h reveal an anapole along the
crystal a axis, a quadrupole (K = 2), and an octupole (K = 3).

VI. CONCLUSIONS AND DISCUSSION

In summary, we confront four templates of magnetic sym-
metry designed for terbium tetraboride with limited Bragg
diffraction data [5]. Designs descend from the parent struc-
ture of TbB4 and exclude a ferromagnetic component on
the grounds of published susceptibility data [2]. Two of the
templates match published resonant x-ray diffraction patterns
on two counts [5]. First, we have a chiral signature that
measures the change to the intensity of a space-group for-
bidden magnetic Bragg spot brought about by reversing the
chirality of the primary x rays, from right-handed to left-
handed circular polarization, say. Second, we have a change
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in intensity with rotation of the crystal about the reflection
vector, usually called an azimuthal angle scan. Notably, a
nonzero chiral signature relies on the product of two axial
dipoles. Conventional thinking about the signature is in terms
of products of a magnetic dipole and a chargelike quadrupole
from Templeton-Templeton scattering. Indeed, such a result is
exploited by Misawa et al. without due regard for symmetry
constraints; see Eq. (12) in Ref. [5]. To reiterate, the mea-
sured chiral signature—the (3, 0, 0) Bragg spot supplied in
Fig. 4(e) in Misawa et al. [5]—rules against a PT-symmetric
magnetic structure. The two successful templates have mag-
netic symmetry P4′21m′ (i, no. 113.270, magnetic crystal
class 4̄′2m′) and P4′212′ (no. 90.97, 422′), respectively, with
the former symmetry encompassing the previously reported
in-plane magnetic structure augmented by an antiferromag-
netic mode polarized parallel to the c axis. A polar template
P4′bm′ (ii, no. 100.174) does not present a chiral signature
at the observed azimuthal angle, although it meets success
with intensity in the rotated channel of polarization Eq. (6).
Diffraction patterns for Dirac multipoles in Sec. V tell us
more about template (ii) with a view to future experiments.
Continuing in this vein, the prediction is that the unrotated
diffraction amplitude for template (i) is zero whereas it can be
different from zero for (ii).

An investigation of a ferromagnetic component in the
magnetic symmetry with interesting results has used mon-
oclinic P21/c (no. 14.75, magnetic crystal class 2/m). It is
centrosymmetric unlike (i) and (ii). The Landau free en-
ergy includes [H + HEE], with nonlinear magnetoelectric
and piezomagnetic effects allowed. The P21/c magnetic
symmetry is reached through a linear combination of three
symmetry-adapted modes defined with respect to the P4/mbm
(no. 127) parent. Two of these modes define orthogonal anti-
ferromagnetic (AFM) and ferromagnetic configurations with
magnetic dipoles pointing along a and b (or b and a) axes,
respectively. They correspond to magnetic symmetry Pb′am′
(orthorhombic no. 55.358, m′mm′). The addition of an AFM
mode with moment components along the crystal c axis (mag-
netic symmetry P4′/mbm′, no. 127.391, 4′/mmm′) lowers the
symmetry to P21/c and noncollinear AFM order. Terbium
ions occupy general Wyckoff positions 4e that are devoid
of symmetry including spatial inversion. The chiral signature
ϒ(P21/c) in Eq. (B1) for reflections (0, k, 0) with odd Miller
index k matches ϒ(i) in reproducing the limited diffraction
patterns on offer [5].
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APPENDIX A: ELECTRONIC STRUCTURE FACTORS

Our electronic structure factor [6,13],

	K
Q = [

exp(iκ · d)
〈
OK

Q
〉
d

]
, (A1)

delineates a Bragg diffraction pattern for a reflection vector κ

defined by integer Miller indices (h, k, l). The 	K
Q respects

all symmetries of the specified magnetic space group [22].

In more detail, Eq. (A1) possesses information about
the relevant Wyckoff positions available in the Bilbao
table MWYCKPOS for the magnetic symmetry of interest
[22]. Site symmetry that might constrain projections Q in
the range −K � Q � Q of a multipole 〈OK

Q〉 is given in
the same table. The basis relative to the parent no. 127
for templates (i) and (ii) is the same with cell dimensions
a ≈ 7.120 Å, b ≈ 7.120 Å, c ≈ 4.042 Å, and alpha = beta =
gamma = 90◦ [3]. Wyckoff positions in a unit cell are re-
lated by operations listed in the table MGENPOS [22]. Taken
together, the two tables provide all information required to
evaluate Eq. (A1) and, thereafter, diffraction amplitudes [10].

For Wyckoff positions 4e in tetragonal P4′21m′ (no.
113.270), the magnetic symmetry labeled (i) in the main text
reads

	K
Q(i) = (−1)k

〈
OK

Q
〉[
αβ + (αβ )∗(−1)Q

]

+ (−1)h
〈
OK−Q

〉
(−1)K[αβ∗ + α∗β(−1)Q]. (A2)

Spatial phase factors are α = exp(i2πhx) and β =
exp(i2πkx) with a general coordinate x ≈ 0.3172 [3].
Turning to Wyckoff positions 4c in the polar template P4′bm′
(no. 100.174), the corresponding electronic structure factor
	K

Q (ii) is similar to Eq. (2). We find

	K
Q(ii) = (−1)k

〈
OK

Q
〉
[αβ + (αβ )∗(−1)Q]

+ σπ (−1)h
〈
OK−Q

〉
(−1)K+Q[αβ∗ + α∗β(−1)Q].

(A3)

The general coordinate is again x ≈ 0.3172, and multipoles
〈OK

Q〉 in 	K
Q (i) and 	K

Q (ii) must satisfy Eq. (1).
The identity 	1

Q(i) = 0 obtained with κ = (0, 0, l ) is ex-

pected, because symmetry in the magnetic crystal class 4′2m′
forbids (bulk) ferromagnetism. Notably, 	K

Q (ii) depends on
parity via its signature σπ . The identity for ferromagnetism
prevails with σπ = +1. The Landau free energy of nonpo-
lar templates P4′b2′, P4′21m′, and P4′212′ takes the form
[EH + EHH + HEE ], where E and H represent electric and
magnetic fields, respectively. Magnetoelectric and piezomag-
netic effects are allowed. The Landau free energy for polar
P4′bm′ (no. 100.174) possesses a contribution linear in E.

Lastly, for Wyckoff positions 4e in monoclinic P21/c (no.
14.75) mentioned in Sec. VI and the subject of Appendix B,
we have

	K
Q(P21/c)

= 〈
OK

Q

〉[
βγ + σπ (βγ )∗] + (−1)k+l (−1)K+Q

〈
OK−Q

〉

× [β∗γ + σπ (β∗γ )∗]. (A4)

The basis relative to the parent no. 127 is {(0, 0, 1), (1, 0,
0), (0, 1, 0)} with cell dimensions a ≈ 4.042 Å, b ≈ 7.120 Å,
c ≈ 7.120 Å, and alpha = beta = gamma = 90◦. The spa-
tial phase factors are β = exp(i2πky) and γ = exp(i2π lz)
with general coordinates y ≈ 0.3175 and z ≈ 0.8175. The
result 	1+1(P21/c) ∝ 〈T 1+1〉′′ obtained with κ = (h, 0, 0)
confirms that a ferromagnetic component along the tetragonal
crystal a axis is permitted.

The axial dipole 〈T1〉 in our elected theory of Bragg
diffraction obeys a sum rule announced in the first place for
dichroic signals [11,12]. The E1-E1 sum rule presents the
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orbital angular momentum 〈L〉l in the valence state. Specif-
ically [6],

[〈T1〉− + 〈T1〉+]11

= 〈L〉l [lc(lc + 1)−2−l (l + 1)] × [2
√

2l (l + 1)(2l+1)]−1
.

(A5)

Here, l and lc are the valence and core angular momenta,
and subscripts ± denote total core angular momenta (lc ±
1/2). In consequence, a sum of dipoles at L2 and L3 edges
satisfies [〈T1〉− + 〈T1〉+]11 = −〈L〉d/(10

√
2) on using states

p → d [17]. The dipole sum rule for an E2-E2 event is
[〈T1〉− + 〈T1〉+]22 = −〈L〉f (1/21)

√
(2/5) on using p → f in

[〈T1〉− + 〈T1〉+]22 =
〈L〉l [lc(lc + 1) − 6 − l (l + 1)] × [2

√
10l (l+1)(2l+1)]−1

.

(A6)

APPENDIX B: MONOCLINIC TEMPLATE

The descent in lattice symmetry from tetragonal to mon-
oclinic P21/c (no. 14.75) is allowed without a change of
origin or unit cell volume. The magnetic crystal class 2/m
is a subgroup of 4/mmm. From the electronic structure fac-
tor Eq. (A4), an antiferromagnetic motif of Tb axial dipole
moments with zero propagation vector k = (0, 0, 0) can pos-
sess components in the tetragonal (bc) plane together with
a ferromagnetic component along the a axis. Miller indices
for the parent structure (Ho, Ko, Lo) and monoclinic magnetic
structure (h, k, l) are related by h = Lo, k = Ho, l = Ko. The
P21/c chiral signature for reflections (0, k, 0) with odd k is

ϒ (P21/c) ∝ (β ′)2 cos (θ ) sin(2θ )
[

sin(ψ )
〈
T 1

b
〉

+ cos(ψ )
〈
T 1

c
〉][

cos(ψ )
〈
T 2+2

〉′′

− sin(ψ )
〈
T 2+1

〉′′]
, (B1)

with β ′ = cos(2πkx) [3]. The origin of the azimuthal angle
ψ = 0 posts the tetragonal c axis normal to the plane of
scattering in Fig. 3. Evidently, ϒ(P21/c) can be different
from zero for an azimuthal angle ψ = −90◦, which matches
ϒ(113.270) and ϒ(90.97) and available diffraction patterns
Fig. 4(e) [5]. The result Eq. (B1) is derived from diffraction
amplitudes:

(σ ′σ ) = 0,

(π ′π ) ∝ −iβ ′ sin (2θ )
[

sin(ψ )
〈
T 1

b
〉 + cos(ψ )

〈
T 1

c
〉]
,

(π ′σ ) ∝ β ′ cos(θ )
[
i
{

sin(ψ )
〈
T 1

c
〉 − cos(ψ )

〈
T 1

b
〉}

+√
2
{

cos(ψ )
〈
T 2+2

〉′′ − sin(ψ )
〈
T 2+1

〉′′}]
. (B2)

Setting 〈T 2
+2〉′′ ≈ 0 in the intensity |(π ′σ )|2 brings satis-

factory agreement with the experimental results. Template (i)
and P21/c (no. 14.75) do not allow diffraction in the unrotated
channel since (σ ′σ ) = 0 for both magnetic symmetries.

By way of a contrast in magnetic properties based
on monoclinic P21/c, PT-symmetry in P2′

1/c used by
Cu2(MoO4)(SeO3) (no. 14.77, 2′/m) forbids a chiral sig-
nature [8]. A piezomagnetic effect and ferromagnetism are
forbidden, and the Landau free energy [EH] is compatible
with a linear magnetoelectric effect. Orthogonal Cartesian
axes (ξ , η, ζ ) with unique axis η may frame an electronic
structure factor. Regarding diffraction enhanced by an E1-E1
absorption event, all (0, 0, 2n + 1) amplitudes can be dif-
ferent from zero for example. Active axial multipoles are
dipoles 〈T 1

ξ 〉 and 〈T 1
ζ 〉 in the plane normal to the η axis,

and quadrupoles 〈T 2+1〉′′ and 〈T 2+2〉′′. The latter appears in
the unrotated channel with a diffraction amplitude (σ ′σ ) ∝
[sin(2ψ )〈T 2

+2〉′′], while [cos(ψ )〈T 1
ξ 〉] and [sin(2ψ )〈T 2+2〉′′]

feature in (π ′π ).
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