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We employ a classical limit grounded in SU(4) coherent states to investigate the temperature-dependent
dynamical spin structure factor of the S = 1/2 ladder consisting of weakly coupled dimers. By comparing the
outcomes of this classical approximation with density matrix renormalization group and exact diagonalization
calculations in finite-size ladders, we demonstrate that the classical dynamics offers an accurate approximation
across the entire temperature range when the interdimer coupling is weak and a good approximation in the high-
temperature regime even when the interdimer coupling is strong. This agreement is achieved after appropriately
rescaling the temperature axis and renormalizing expectation values to satisfy a quantum sum rule, following
D. Dahlbom et al. [Phys. Rev. B 109, 014427 (2024)]. We anticipate the method will be particularly effective
when applied to 2D and 3D lattices composed of weakly coupled dimers, situations that remain challenging for
alternative numerical methods.
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I. INTRODUCTION

Calculating the dynamical correlation functions of inter-
acting quantum spin systems across arbitrary temperatures
represents a pivotal, yet unresolved, challenge in quantum
many-body theory. Such calculations are essential for extract-
ing the underlying model Hamiltonian of a material because
dynamical susceptibilities, linked to two-point correlation
functions, can be measured via a range of spectroscopic and
resonance experiments. Moreover, dynamical susceptibilities
serve as a window into the nature of collective modes that are
the “fingerprints” of each state of matter.

In general, the computational cost of calculating dynam-
ical spin-spin correlation functions in thermal equilibrium
increases exponentially in the number of spins. This expo-
nential complexity has spurred the development of various
approximation schemes and numerically exact approaches.
However, state of the art numerical techniques for simulating
quantum many-body problems still have severe limitations.
Exact diagonalization (ED) techniques [1] are confined to
small clusters. The density matrix renormalization group
(DMRG) [2–4] is applicable to one-dimensional systems or
narrow ribbons, but it has severe limitations for studying
two- and three-dimensional magnets. Tensor networks are
capable of handling certain 2D systems, but efforts to com-
pute dynamical spin structure factors with this technique are
recent and based on single-mode approximations at T = 0
[5–10]. Quantum Monte Carlo (QMC) techniques are most
effective at low-temperatures for the subset of models with-
out a sign problem. Even within this subset, calculating
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dynamical correlation functions from noisy data is challeng-
ing because of the fundamentally ill-posed task of analytical
continuation from the Matsubara domain to real frequencies
[11–19]. Given these limitations, efficient numerical tech-
niques capable of providing a good approximation to exact
temperature-dependent dynamical correlation functions are of
general interest to the quantum many-body community.

In this study, we employ a generalization of the classical
limit applied to quantum spin systems [20–23] to investigate
the approximate spin dynamics of an antiferromagnetic S =
1/2 quantum ladder featuring a nonmagnetic ground state.
Conventional classical approximations obtained by taking the
large-S limit encounter challenges when dealing with coupled
dimer systems exhibiting predominant intradimer antiferro-
magnetic interactions. This limitation arises from the inability
to represent the singlet ground state of an isolated dimer (non-
magnetic solution) as a product of two SU(2) coherent states
(magnetic solution). More broadly, nonmagnetic ground states
of quantum paramagnets that are composed of interconnected
entangled units similarly defy approximations based on direct
products of SU(2) coherent states, which assign a classical
dipole of fixed magnitude (S) to each spin within the unit. As
our discussion will reveal, a classical limit based on SU(N)
coherent states, with N denoting the number of levels within
each entangled unit, offers a suitable approximation for these
systems by effectively capturing their intraunit entanglement.

The classical theory based on SU(N) states corresponds in
a precise sense to certain “multiflavor” spin wave methods in
the same way that the Landau-Lifshitz equations correspond
to traditional linear spin wave theory. To make this connec-
tion clear, we review the well-known multiflavor bosonization
procedure for the spin ladder in the language of SU(N) co-
herent states, emphasizing how the control parameter used in
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FIG. 1. Illustration of the S = 1/2 spin ladder. We assume
J ′/J < 0.5, leading to a singlet ground state on each rung. While
a singlet state cannot be represented as the product of two SU(2)
coherent states, it may be represented as a single SU(4) coherent
state. We develop a classical theory based on assigning one such
coherent state to each rung (dashed red boxes), each containing two
S = 1/2 spins (black circles).

the development of the spin wave expansion is precisely the
same one that is sent to infinity when deriving the generalized
classical limit. Just as the Landau-Lifshitz dynamics captures
important nonlinearities and facilitates finite-temperature sim-
ulation of spin systems that are well described with a dipolar
approximation, the classical limit described here offers the
same benefits for systems with nonmagnetic ground states.

The insights gained from this study extend beyond quan-
tum ladders and can be applied to larger “entangled units,”
such as trimers or tetrahedra, whenever these units con-
tain spins with prevailing antiferromagnetic interactions. The
rationale for selecting a one-dimensional (1D) ladder for
this investigation is multifaceted. First, 1D systems provide
a stringent test for classical approximations. Their low-
coordination number amplifies the extent of the ground-state
entanglement. The S = 1/2 dimers constituting the entan-
gled units of the ladder exhibit a robust singlet character
when the intrarung exchange parameter (J) dominates over
the interrung exchange parameter (J ′) (see Fig. 1). How-
ever, the interdimer entanglement experiences rapid growth
with the ratio J ′/J because of the increased weight of sin-
glet configurations along the legs. These length-wise dimers
resonate with each other, making classical approximations
increasingly inaccurate. Secondly, the advantageous low-
coordination number of 1D systems enables us to accurately
compute the exact spin dynamics at arbitrary temperatures for
ladder sizes that surpass their entanglement-length scale and
encompass a substantial number of distinct momenta along
the leg direction, facilitating the extrapolation of dynamics to
the thermodynamic limit.

It is generally accepted that most quantum-mechanical sys-
tems exhibit a quantum-to-classical crossover upon increasing
temperature. It is not always clear, however, what classical
limit to take. An important outcome of this paper is that,
above a certain crossover temperature T ∗, the generalized
classical dynamics offer a remarkably accurate approximation
to the dynamical spin structure factor (DSSF). Leveraging
this classical approximation, we can effectively determine the
Hamiltonian parameters by fitting the exact DSSF with the ap-
proximated outcome in the infinite-temperature regime. This
finding holds significant practical implications, particularly

in extracting models from high-temperature inelastic neutron
scattering data.

Beyond parameter estimation, expanding the set of clas-
sical theories available to describe spin systems serves a
more fundamental purpose in evaluating the essential “quan-
tumness” of an observed phenomenon [24–26]. A broad
scattering response, for example, could be a consequence
of weakly confined fractionalized excitations or nonlinear
magnon-magnon interactions. Given that nonlinear effects
are fully incorporated within classical dynamics, examining
the finite-temperature dynamics of a classical model offers a
straightforward way to assess the contribution of nonlinear-
ities [27,28]. As we observe in this study, the failure of the
traditional classical limit to capture the essential nonlinearities
of a spin system does not preclude the possibility that a more
appropriate classical limit would succeed.

This paper is organized as follows. Section II introduces
the S = 1/2 Heisenberg ladder and a classical limit based
on the representation of dimers as SU(4) coherent states.
Section III explains how this formalism can be used to
calculate the DSSF classically and introduces the classical-
to-quantum correspondence factor for obtaining an approx-
imation to the quantum mechanical DSSF. In Sec. IV, a
generalized spin wave calculation corresponding to the classi-
cal theory is developed, expanding around a product of SU(4)
coherent states. The results are compared against those ob-
tained with the DMRG method. In Sec. V, we return to the
purely classical dynamics to calculate the finite-temperature
DSSF and compare against the results of ED. Our conclusions
are presented in Sec. VI.

II. THE CLASSICAL LIMIT OF THE S = 1/2 SPIN
LADDER IN COHERENT STATES OF SU(4)

We will consider the S = 1/2 Heisenberg spin ladder
Hamiltonian

Ĥ = J
∑

j

Ŝβ

j,l Ŝ
β
j,r + J ′ ∑

j

(
Ŝβ

j,l Ŝ
β

j+1,l + Ŝβ
j,r Ŝβ

j+1,r

)
, (1)

where j is the rung index, l indicates the left leg of the
ladder, and r the right, as illustrated in Fig. 1. Summation over
repeated Greek indices is assumed. Throughout this study, we
will take J as our unit of energy.

A classical limit of a quantum system can be viewed as a
systematic approach to neglecting entanglement. In the con-
text of a spin system, this traditionally takes the form of
neglecting entanglement between individual spins. Formally,
this is achieved by restricting consideration to product states

|�〉 =
⊗

j,σ

|� j,σ 〉, (2)

where σ = l, r and each factor |� j,σ 〉 is an SU(2) coherent
state, which will be described below. Using this decompo-
sition, one derives an approximate Hamiltonian that evolves
products of SU(2) coherent states into other products of
SU(2) coherent states, i.e., a Hamiltonian that generates group
actions formed by the tensor product of SU(2) group trans-
formations acting on each site ( j, σ ). The corresponding Lie
algebra, in terms of which the approximate Hamiltonian must
be expressed, is the direct sum of local su(2) Lie algebras.
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The procedure for deriving this approximate Hamiltonian is
described below.

For intuition’s sake, we note that an SU(2) coherent state
may always be identified with a pure state of a two-level
system. Furthermore, the space of possible observables on a
two-level system is spanned by the identity and the dipole
operators Ŝx

j , Ŝy
j , and Ŝz

j that generate the local su(2) Lie
algebra, [

Ŝμ
j , Ŝν

j

] = iεμνηŜη
j . (3)

A consequence of this is that any SU(2) coherent state may
be put into one-to-one correspondence with the expectation
values of these observables through the mapping

sα
j,σ = 〈

� j,σ

∣∣Ŝα
j,σ

∣∣� j,σ
〉

(4)

[29]. This correspondence is simply the familiar Bloch sphere
construction and is the underlying reason that the traditional
classical limit yields a theory of dipoles. We emphasize that an
approach based on SU(2) coherent states is able to represent
classically the state of a two-level system on each site, such as
an S = 1/2 spin, and it is appropriate whenever entanglement
between different two-level sites may be disregarded.

The traditional classical Hamiltonian is derived by replac-
ing each operator with its expectation value in such a product
state. The expectation is evaluated in the large-S limit [where
S labels irreducible representations (irreps) of SU(2)]. In this
limit, spin operators may be replaced with their expectation
values, yielding

HSU(2) = lim
S→∞

〈�|Ĥ|�〉

= J
∑

j

sβ

j,l s
β
j,r + J ′ ∑

j

(
sβ

j,l s
β

j+1,l + sβ
j,rsβ

j+1,r

)
. (5)

The dynamics may be derived by considering the Heisenberg
equations of motion

ih̄
dŜα

j,σ

dt
= [

Ŝα
j,σ , Ĥ

] = iεαβγ

∂Ĥ
∂ Ŝβ

j,σ

Ŝγ
j,σ . (6)

We use the operator derivative as a shorthand for an expression
that becomes exact in the large-S limit. See [20,21] and the
Appendix of [23] for details. Evaluating the expectation value
in coherent states in the large-S limit, we find

dsα
j,σ

dt
= εαβγ

h̄

∂HSU(2)

∂sβ
j,σ

sγ
j,σ . (7)

The result is the familiar Landau-Lifshitz (LL) equation [30].
An alternative classical limit can be derived by retaining

the entanglement between the two sites bonded on a rung
while still neglecting entanglement between rungs. Instead of
restricting to products of SU(2) coherent states, as in Eq. (2),
we will restrict to products of SU(4) coherent states

|�〉 =
⊗

j

|� j〉, (8)

where j indexes rungs. Just as an SU(2) coherent state may
be identified with a pure state in a two-dimensional Hilbert
space, an SU(4) coherent state may be identified with a pure
state in a four-dimensional Hilbert space like those that exist

on a bond joining two S = 1/2 spins. Importantly, the set of all
such pure states is capable of representing any entangled state
between two S = 1/2 spins. Furthermore, just as an SU(2)
coherent state may be identified with the expectation values of
the spin operators [the Lie algebra su(2)], an SU(4) coherent
state may be put into one-to-one correspondence with the
expectations of a complete set of observables acting on a
four-dimensional Hilbert space [the Lie algebra su(4)]. We
will call these observables T̂ α , where α runs from 1 to 15 [the
dimension of su(4)].

A convenient choice of generators is given by

T̂ 1 = Ŝx
l , T̂ 2 = Ŝy

l , T̂ 3 = Ŝz
l ,

T̂ 4 = Ŝx
r , T̂ 5 = Ŝy

r , T̂ 6 = Ŝz
r ,

T̂ 7 = 2Ŝx
l Ŝx

r , T̂ 8 = 2Ŝy
l Ŝy

r , T̂ 9 = 2Ŝz
l Ŝz

r ,

T̂ 10 = 2Ŝy
l Ŝz

r , T̂ 11 = 2Ŝz
l Ŝy

r , T̂ 12 = 2Ŝz
l Ŝx

r ,

T̂ 13 = 2Ŝx
l Ŝz

r , T̂ 14 = 2Ŝx
l Ŝy

r , T̂ 15 = 2Ŝy
l Ŝx

r , (9)

where each Ŝα
σ is given in the S = 1/2 representation. These

generators are orthonormal in the sense that Tr T̂ αT̂ β = δαβ

and complete in that any observable on a four-dimensional
Hilbert space may be written as c01̂ + cαT̂ α for real coeffi-
cients c0 and cα . We emphasize that the specific choice of
generators is somewhat arbitrary; they need only constitute a
faithful representation of the Lie algebra su(4). In particular,
the familiar decomposition of the observables of a single
SU(4) spin into irreps of SO(3) (multipolar moments) does not
apply, as we are here describing two S = 1/2 spins rather than
a single S = (N − 1)/2 = 3/2 spin. The generators of Eq. (9)
are well adapted to the form of the ladder Hamiltonian, mak-
ing later calculations simpler. They also yield a particularly
sparse set of structure constants, and, consequently, relatively
simple classical equations of motion. Relevant observables
may be constructed by symmetrizing or antisymmetrizing the
bilinear forms (T α/2 with α = 7, . . . , 15). The symmetric
form Sl · Sr , which is a scalar under global spin rotations,
measures the singlet (eigenvalue −3/4) versus triplet charac-
ter (eigenvalue 1/4) of the dimer. The symmetric form Qαβ =
Ŝα

l Ŝβ
r + Ŝβ

l Ŝα
r − 2

3 Ŝl · Ŝr corresponds to a bond quadrupolar
moment, and the antisymmetric form Ŝl × Ŝr is proportional
to the spin current density on the bond.

With this choice of generators, we introduce the classical
“color field”

nα
j = 〈�|T̂ α|�〉, (10)

which is a 15-element real vector. Its first six elements cor-
respond to the expected dipoles on each of the two sites
comprising rung j. Its remaining elements can be interpreted
physically in terms of the bilinear forms just described. For-
mally, the expectation values are evaluated in the M → ∞
limit, where the integer M labels completely symmetric irreps
of SU(4) [31]. Since operators commute to leading order
in M, this involves replacing operators with their expecta-
tion values. In particular, this leads to a factorization rule,
〈T̂ αT̂ β〉 = 〈T̂ α〉〈T̂ β〉. Application of this factorization rule to
the quadratic Casimir satisfied by the generators [Eq. (9)]
leads to the conclusion that the norm of the color field is
constant, just as a dipole has a fixed magnitude S in the
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classical limit based on SU(2) coherent states. This will be
discussed further in Sec. V.

Since our Hamiltonian (5) is linear in terms of the gen-
erators of Eq. (9) on each site, it is not necessary to apply
the factorization rule to derive the classical Hamiltonian. One
simply replaces each operator with the corresponding element
of the color field

HSU(4) = lim
M→∞

〈�|H|�〉

= J

2

∑
j

(
n7

j + n8
j + n9

j

)

+ J ′ ∑
j

(
n1

j n
1
j+1 + n2

j n
2
j+1 + n3

j n
3
j+1

)

+ J ′ ∑
j

(
n4

j n
4
j+1 + n5

j n
5
j+1 + n6

j n
6
j+1

)
. (11)

The classical dynamics is again derived by examining Heisen-
berg’s equations of motion

ih̄
dT̂ α

j

dt
= [

T̂ α
j , Ĥ

] = i fαβγ

∂Ĥ
∂T̂ β

j

T̂ γ
j , (12)

where the operator derivative is used as a shorthand (see
the derivation of the LL equations above) and fαβγ are
the antisymmetric structure constants defined by the relation
[T̂ α, T̂ β] = i fαβγ T̂ γ . In terms of our basis Eq. (9), these are

f1,2,3 = f1,8,11 = f2,9,13 = f2,11,14 = f3,7,15 = 1,

f1,9,10 = f1,12,15 = f2,7,12 = f3,8,14 = f3,10,13 = −1,

f4,5,6 = f4,8,10 = f5,9,12 = f5,10,15 = f6,7,14 = 1,

f4,9,11 = f4,13,14 = f5,7,13 = f6,8,15 = f6,11,12 = −1. (13)

Finally, we evaluate the expectation value of Eq. (12) to arrive
at the classical equations of motion

dnα
j

dt
= fαβγ

h̄

∂HSU(4)

∂nβ
j

nγ

j . (14)

Equations (11), (13), and (14) together represent a gen-
eralization of the LL equations for SU(4) coherent states,
following the program of Ref. [20]. We will refer to them
as the generalized Landau-Lifshitz (GLL) equations. We em-
phasize that these equations are completely general and do
not depend on the choice of generators, which in turn de-
termine the structure constants. This dynamics may in fact
be cast in a more manifestly basis-independent fashion as a
nonlinear Schrödinger equation, a formulation that yields a
number of conceptual and numerical advantages, as described
in Appendix C and [21]. The expanded set of observables
used in this theory enables the representation of nonmagnetic
states as well as singlet-triplet excitations. Moreover, these
equations may be simulated numerically at a cost that is linear
in the number of dimers. To demonstrate these features, and to
determine the applicability of the approximation as a whole,
we will use the formalism of SU(4) coherent states to generate
DSSF intensities S (q, ω) and compare to zero-temperature
(T = 0) DMRG simulations and finite-T ED results.

III. ESTIMATION OF S(q, ω, T )

The classical DSSF can be calculated from dipole trajec-
tories sα

j (t ) by Fourier transforming the associated spin-spin
correlation function both in time and on the lattice

Sαβ

cl (q, ω, T ) =
∫ ∞

−∞
dωe−iωt

〈
sα
−q(t )sβ

q (0)
〉
, (15)

where 〈...〉 indicates thermal average, α and β take values of
x, y, or z, and

sα
q = 1√

Ns

∑
j,σ

eiq·r jσ sα
jσ . (16)

Here j indexes rungs, σ = l, r indicates the site on each rung,
and Ns is the total number of sites.

To calculate the DSSF of Eq. (15) with the dynamics
presented in the previous section, one begins by sampling an
initial condition, nα

j (0) from thermal equilibrium. This initial
condition is then evolved into a trajectory nα

j (t ) using the
dynamics of Eq. (14). The spin-spin correlations may then be
constructed by noting the correspondence between the first six
observables given in Eq. (9) and the familiar spin observables
on each site. While we clearly have the correspondence be-
tween sα

j,l = nα
j and sα

j,r = nα+3
j , where α = 1, 2, 3, the fact

that nα
j corresponds to the l row of the lattice for α = 1, 2, 3

and to the r row for α = 4, 5, 6 requires special treatment in
calculation of the lattice Fourier transform. Consider an arbi-
trary wave vector q = (qx, qy). If L is the number of bonds and
we assume that the lattice constant along both axes is unity,
then qx may take values of 2πn/L, with n = 0, . . . , L − 1, and
qy may take values of 0 and π . Thus,

sα
q = 1√

2L

L−1∑
j=0

1∑
ν=0

eiqx jeiqyνsα
j,ν . (17)

We shall be particularly interested in the qy = π channel,
i.e., the antisymmetric channel that carries information about
single-triplon excitations on bonds. For this we have

sα
q = 1√

L

L−1∑
j=0

eiqx j 1√
2

(
sα

j,r − sα
j,l

)
. (18)

In terms of the variables of our generalized dynamics, the π

or antisymmetric channel of the dipolar dynamical structure
factor can therefore be recovered from a generalized trajectory
nα

j (t ) by calculating the correlations of (nα+3
j − nα

j )/
√

2 and
performing the spatial Fourier transform only along the length
of the ladder.

In the T → 0 limit, the dynamics of the classical equa-
tions of motion will produce trajectories that are small
oscillations about the classical ground state, which may
be entirely characterized by a normal mode analysis. The
quantization of the resulting normal modes gives a path to
recovering the traditional linear spin wave theory (LSWT),
more typically arrived at by directly bosonizing the quantum
Hamiltonian. It follows that the “quantum” DSSF predicted by
LSWT, Sαβ

Q (q, ω), may be recovered from the classical calcu-
lation by observing that the respective correlation functions of
the classical and quantum harmonic oscillators are related by
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a proportionality factor of

h̄ω

kBT
[1 + nB(h̄ω/T )], (19)

where nB(h̄ω/T ) ≡ (eh̄ω/kBT − 1)−1 is the Bose function. This
leads to the conclusion that, in the T → 0 limit,

Sαβ

Q (q, ω, T ) = h̄ω

kBT
[1 + nB(h̄ω/T )]Sαβ

cl (q, ω, T ), (20)

as described in greater detail in [32].
In the following section, we rely on the correspondence

between the quantization of the normal modes of the classical
theory and LSWT to study the applicability of our approach
in the low-temperature regime. Specifically, we examine a
generalization of LSWT that corresponds to our generalized
classical dynamics. We will return to the purely classical
dynamics in Sec. V.

IV. ZERO-TEMPERATURE COMPARISONS
WITH DENSITY MATRIX NORMALIZATION GROUP

At low temperatures, the classical approach can be ex-
pected to break down for large enough J ′/J , in which case
a proper description the ground state and excitations must
take into account long range entanglement. To be more pre-
cise about this range of parameters, here we determine the
J ′/J values over which our methodology can approximately
reproduce the results of DMRG in the T → 0 limit. As noted
above, the classical dynamics of Eq. (11) reproduce those of
LSWT in this limit after rescaling the intensities following
Eq. (19). We therefore begin by calculating the quadratic spin
wave Hamiltonian corresponding to the SU(4) classical theory
outlined above. This amounts to application of a multiflavor
bond-operator formalism, as is well established in the litera-
ture [33–37]. We will refer to it as a generalized linear spin
wave theory (GLSWT) calculation. The novelty here consists
solely in making a connection to the corresponding classical
theory and identifying the appropriate control parameter for
semiclassical expansions, M, which labels irreps of SU(4).

We have already identified a set of SU(4) generators,
Eq. (9), for the purposes of deriving a classical theory. These
also provide a natural language for rewriting our quantum
Hamiltonian (5),

Ĥ = J

2

∑
j;α=7,9

T̂ α
j + J ′ ∑

j;β=1,6

T̂ β
j T̂ β

j+1 (21)

We will recast this Hamiltonian in a bosonic language by
introducing bosons, b j,n, where n = 0, 1, 2, 3 labels flavor
[38]. We also introduce an explicit matrix representations of
the generators T β in the standard, four-dimensional product
basis: |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉. With b†

j ≡ (b†
j,0, b†

j,1, b†
j,2, b†

j,3),
we then define a bosonic representation of the generators as

T β
j = b†

jT
βb j . (22)

One may verify that the T β
j satisfy identical commutation

relations as our original generators[
T α

j , T β
j

] = i fαβγT γ
j , (23)

with fαβγ defined as in Eq. (13). The specific representation
given by this construction is fixed by imposing the constraint

3∑
n=0

b†
j,nb j,n = M, (24)

where M labels the completely symmetric irreps of SU(4)
[just as S labels irreps of SU(2)]. Setting M = 1 corresponds
to choosing the four-dimensional fundamental representation
of interest. Note that this is precisely the same M that is sent
to infinity to derive the classical limit.

We may now make the substitution T̂ β
j → T β

j = b†
jT

βb j

in Eq. (21) to arrive at an entirely equivalent Hamiltonian
expressed in terms of the bosons b j,m,

Ĥ = J

2

∑
j;α=7,9

b†
jT

αb j + J ′ ∑
j;β=1,6

b†
jT

βb jb
†
j+1T

βb j+1.

(25)

We wish to approximate this Hamiltonian by expanding it
in powers of M and retaining only terms that are bilinear in
the bosons. Prior to performing this expansion, however, we
will set the local SU(4) quantization axis on each site along
the direction of the local coherent state |� j〉 of the classical
ground state |�〉 = ⊗ j |� j〉. The classical ground state can
be found by minimizing Eq. (11). In the parameter region
of interest (J ′/J < 0.5), the result, expressed in terms of the
color field, is nα

j = − 1
2 for α = 7, 8, 9 and nα

j = 0 for all other
α. Expressed as a complex vector in the product basis, we
have the familiar singlet state |� j〉 = (0, 1/

√
2,−1/

√
2, 0)T ,

as can be determined by finding the highest-weight eigenstate
of nα

j T̂ α
j (with summation over α).

Since the matrices T β were defined in the product basis,
it follows that the m = 0 bosons creates the fully polarized
state from the vacuum state: bj,0|∅〉 = |↑↑〉. We wish to find a
transformed set of bosons containing a distinguished element
b†

j,s that will instead create the singlet (ground) state from the
vacuum state,

b̃†
j,s|∅〉 = |� j〉. (26)

This can be achieved with a transformation U †, the first col-
umn of which is the singlet state. The remaining columns
may be chosen freely. For convenience we select the standard
triplet basis elements for the S = 1/2 dimer: |↑↑〉, (|↑↓〉 +
|↓↑〉)/

√
2, and |↓↓〉. With this transformation, we define a set

of rotated bosons

b̃ j = Ujb j, b̃†
j = b†

jU
†
j , (27)

where b̃
†
j ≡ (b̃†

j,s, b̃†
j,−1, b̃†

j,0, b̃†
j,1). Note that we have changed

the boson flavors from {0, 1, 2, 3} to {s,−1, 0, 1} since Uj was
chosen such that b̃†

j,s creates the singlet state of the dimer j

and the other three bosons b̃†
j,m create the triplet states with

projections m = −1, 0, 1. Using the same transformation to
define T̃α

j = Uj T
α
j U †

j , Eq. (25) may be rewritten equivalently
as

Ĥ = J

2

∑
j;α=7,9

b̃†
jT̃

α
j b̃ j + J ′ ∑

j;β=1,6

b̃†
jT̃

β
j b̃ j b̃

†
j+1T̃

β

j+1b̃ j+1.

(28)
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As a starting point for obtaining the spin wave Hamil-
tonian, we introduce the SU(4) generalization [38] of the
Holstein-Primakoff transformation

b̃†
j,s = b̃ j,s =

√
M

√√√√1 − 1

M

1∑
m=−1

b̃†
j,mb̃ j,m. (29)

This transformation still provides a faithful representation of
the SU(4) generators, but it gives us a route to an approxi-
mation via an expansion of the square root in powers of M.
Performing this expansion and collecting terms of order M
yields

Ĥ(2) = J
∑

j;m=−1,1

b̃†
j,mb̃ j,m

+ J ′ ∑
j;m=−1,1

[b̃†
j,mb̃ j+1,m + H.c.]

+ J ′ ∑
j;m=−1,1

[(−1)mb̃ j,mb̃ j+1,m̄ + H.c.], (30)

where m̄ ≡ −m. Ĥ(2) may be brought into block diagonal
form by introducing a Fourier transform on the bosons. Since
our local SU(4) coherent states encompass entire dimers, the
irreps of the translation group are labeled by a single number
q, which corresponds to qx in our previous discussion. The
Fourier transform is thus

b̃†
q,m = 1√

L

∑
j

eiq j b̃†
j,m, (31)

which yields

Ĥ(2) =
∑

q,m=−1,1

[
Aqb̃†

q,mb̃q,m + (−1)mBq

2

× (
b̃q,mb̃q̄,m̄ + b̃†

q̄,m̄b̃†
q,m

)]
(32)

where q̄ ≡ −q and

Aq = J + J ′ cos (q), Bq = J ′ cos (q). (33)

After eliminating anomalous terms using a Bogoliubov trans-
formation, we arrive at the diagonal form of Ĥ(2), which, up
to an irrelevant constant, is given by

Ĥ(2) =
∑

q

1∑
m=−1

ω(q)β†
q,mβq,m, (34)

where the operators

β
†
q,1̄

= cosh θqb†
q,1̄

− sinh θqbq,1,

β
†
q,0 = cosh θqb†

q,0 + sinh θqbq,0,

β
†
q,1 = cosh θqb†

q,1 − sinh θqbq,1̄, (35)

with

tanh 2θq = Bq

Aq
, (36)

create a collective triplon modes with momentum q and
eigenvalue m of Ŝz

tot = ∑L
j=1(Ŝ j,l + Ŝ j,r ). The corresponding

triplon dispersion relation

ω(q) = J

√
1 + 2J ′

J
cos (q), (37)

does not depend on m because the paramagnetic ground state
does not break the SU(2) symmetry of the spin Hamiltonian.
We note that the spin gap � is set by the minimum energy
excitation,

� = ω(π ) = J

√
1 − 2J ′

J
. (38)

In contrast with the known behavior of the ladder system,
it is clear from Eq. (38) that the dispersion becomes gapless
when J ′/J = 0.5 (see Fig. 6). To better determine the region
of applicability of the semiclassical approach, we compare
the predictions of both GLSWT and DMRG for values of
J ′/J = 0.1, 0.2, 0.3 and 0.4 on a system with L = 50 bonds.
The results are presented in Fig. 2. Details on the numerical
calculations may be found in Appendix A.

Unlike traditional LSWT, which depends on an expansion
in terms of S [irreps of SU(2)] (M = 2S), the LSWT based on
an expansion in terms of M [integer label of symmetric irreps
of SU(4)] clearly captures the gapped triplon modes. More-
over, the qualitative features of the dispersion are apparent
for all J ′/J < 0.5. Significant quantitative departures began
to manifest at J ′/J = 0.3. In particular, the gap narrows too
quickly in the semiclassical approach with a corresponding
increase in intensity at bottom of the band. When intradimer
exchange is substantially larger than the interdimer exchange,
however, the efficacy of the approach is quite striking, particu-
larly since this is a quasi-1D antiferromagnet being considered
in the T → 0 limit. This suggests that suitably generalized
classical and semiclassical approaches can be an effective
and computationally tractable approach to modeling quantum
magnets when the entanglement between sites is restricted to
individual bonds or localized clusters of bonds.

V. FINITE-TEMPERATURE COMPARISONS WITH EXACT
DIAGONALIZATION

The GLSWT approach described in Sec. IV is tech-
nique for treating magnets that exhibit only short-range
entanglement in the T → 0 limit. The full classical theory
corresponding to GLSWT, presented in Sec. II, opens the
possibility of computationally inexpensive finite-T calcula-
tions. To facilitate this, Sec. V A introduces a number of
finite-temperature corrections that must be applied to the GLL
calculations. In Sec. V B, we benchmark the results of the
corrected GLL calculations to those of finite-temperature ED.
This is done for J ′/J = 0.1 and 0.3, parameter values for
which we have shown the generalized theory works well at
T = 0.

Materials typically exhibit a crossover into a classical
regime as the temperature exceeds some characteristic energy
scale T ∗. One may then ask whether a classical approach can
reproduce the correct high-temperature behavior even when
it fails at T = 0. In Sec. V C we address this question by
studying the ladder model with J ′/J = 0.5 and 0.7, values
which cause both the traditional and generalized classical
theories to fail at T = 0. To test whether either of these
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FIG. 2. Structure factor intensities Szz(q, ω) calculated using both the density-matrix renormalization group method [DMRG, panels (a)–
(d)] and generalized linear spin wave theory [GLSWT, panels (e)–(h)]. The two top rows show the intensities along the reciprocal space path
q = (qx, π ), with qx ranging from 0 to 2π . The bottom row [panels (i)–(l)] shows single-q cuts generated with each method at q = (0, π ) and
(π, π ). Columns correspond to different values of J ′/J .

classical theories—LL or GLL—exhibits the appropriate be-
havior in the high-temperature regime, we again benchmark
against ED.

A. Finite-temperature corrections to S(q, ω, T )

Section III presented a general approach to estimating
Sαβ

cl (q, ω, T ) in the T → 0 limit, relying on the classical-
to-quantum correspondence factor Eq. (19). At elevated
temperatures, we introduce an additional correction by enforc-
ing the quantum sum rule through a systematic rescaling of
expectation values. To motivate this idea, explained in more
detail in [32], we begin by reviewing various sum rules that
apply to quantum and classical structure factors.

At T = 0, the quantum mechanical DSSF is given by

Sαβ

Q (q, ω) =
∑
ν,μ

〈ν|Ŝα
−q|μ〉〈μ|Ŝβ

q |ν〉δ(εμ − εν − ω). (39)

The trace of this expression satisfies a sum rule when inte-
grated over all ω and all q in a single Brillouin zone,

∫ ∞

−∞

∫
BZ

dωdq
3∑

α=1

Sαα
Q (q, ω) = NSS(S + 1). (40)

This follows from Parseval’s relation and the quadratic
Casimir of the Lie algebra su(2),

∑
α Ŝα Ŝα = S(S + 1), which

we call C(2)
SU(2).

The corresponding classical DSSF as defined in Eq. (15),
Sαβ

cl (q, ω, T ), also satisfies a sum rule,

∫ ∞

−∞

∫
BZ

dωdq
3∑

α=1

Sαα
cl (q, ω, T ) = NSS2, (41)

which holds at all temperatures T . This follows from the
fixed magnitude of classical dipoles in the SU(2) formalism,
where the relevant invariant is not the sum of square of the
spin operators but the sum of the squares of the expectation
values of the spin operators in any SU(2) coherent state:∑

α〈�|Ŝα|�〉2 = S2. Note that the quantum sum rule Eq. (40)
leads to the classical sum rule via the factorization rule upon
taking the classical (S → ∞) limit and keeping the leading
order contribution S2 in powers of S.

Because of the correspondence given in Eq. (20), applying
the classical-to-quantum correction factor of Eq. (19) to Sαβ

cl
prior to integration will result in approximate satisfaction
of the quantum sum rule when T is close to zero. As T
approaches infinity, however, the correspondence factor ap-
proaches 1 for all ω, resulting in a reversion to the classical
sum. Additionally, the justification for applying this factor
breaks down at elevated temperatures, where the spin dynam-
ics is not well described by a linear approximation (i.e., by
harmonic oscillators). Motivated by these observations, we
adopt another approach to enforcing the quantum sum rule
in the high-temperature regime.

In the T → ∞ limit, the quantum sum may be recov-
ered by rescaling all expectation values—here those of the
spin operators—by the square root of the ratio of the quan-
tum quadratic invariant, S(S + 1), to the classical one, S2:√

1 + 1/S. This renormalization was proposed in [39] and has
the effect of stiffening the system, maintaining an intensity
distribution closer to quantum calculations at high tempera-
tures. In between the low- and high-temperature limits, the
quantum sum rule can be maintained by rescaling the expec-
tation values by a factor, κ , that takes values between 1 and√

1 + 1/S. The exact value required is model dependent and
may be determined empirically by simulation, as explored in
[32,40].
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The approach just outlined may be extended to the classical
dynamics of SU(4) coherent states in a natural way. The
generalization of the T = 0 quantum DSSF is given by

T αβ

Q (q, ω) =
∑
ν,μ

〈ν|T̂ α
−q|μ〉〈μ|T̂ β

q |ν〉δ(εμ − εν − ω), (42)

where T̂ α are generators of the group SU(4), with α =
1, . . . , 15. We will employ the generators given in Eq. (9),
which satisfy the quadratic Casimir C(2)

SU(4) = ∑
α T̂ αT̂ α =

15/4. Consequently,

∫ ∞

−∞

∫
BZ

dωdq
15∑

α=1

T αα
Q (q, ω) = 15

4
L, (43)

where L is the number of rungs.
The classical DSSF is generalized by replacing the spin

expectation values sα = 〈�|Ŝα|�〉 with elements of the color
field introduced in Eq. (10),

T αβ

cl (q, ω, T ) =
∫ ∞

−∞
dωe−iωt

〈
nα

−q(t )nβ
q (0)

〉
, (44)

where nα
j (t ) is a classical trajectory generated by the dynamics

of Eq. (14) and

nα
q (t ) = 1√

L

∑
j

eiq·r j nα
j (t ). (45)

The brackets, 〈. . .〉, again indicate thermal averaging. The
norm of the color field is

∑
α〈�|T̂ α|�〉2 = 3/4, which holds

for any SU(4) coherent state |�〉 and is five times smaller than
the quantum sum rule (43). Thus we have a classical sum rule
corresponding to Eq. (41)

∫ ∞

−∞

∫
BZ

dωdq
15∑

α=1

T αα
cl (q, ω, T ) = 3

4
L. (46)

It follows that enforcing the quantum sum rule between the
zero- and infinite-temperature limits demands application of a
temperature-dependent moment renormalization factor, κ (T ),
the values of which are bounded by 1 and

√
5, respectively.

For this study, κ (T ) was determined for J ′ = 0.1, 0.3, and
0.5 over a range of temperatures using an iterative procedure.
The results are presented in Fig. 3. A full account of the
calculation is given in [32] and the implementation details are
summarized in Appendix D.

These renormalizations were applied to the dynamics of
Eq. (14) by substituting

nα
j (t ) → κ (T )nα

j (t ). (47)

The resulting trajectories were then used to estimate
Sαβ

cl (q, ω, T ) with the procedure described in Sec. III [41]. As
a reference, we also calculated the structure factor using ED
and the Hamiltonian given in Eq. (5). To maintain a manage-
able computational cost for ED, we restricted the number of
rungs to L = 8 (corresponding to 16 spins). Finally, since the
temperatures of the classical and quantum calculations cannot
be expected to correspond, a linear rescaling was applied to

FIG. 3. Renormalization of expectation values κ (T ) applied to
generalized spins nα

j to ensure satisfaction of the quantum sum rule
at each simulated temperature. At low temperatures, the standard
classical-to-quantum correction factor is sufficient to recover the
sum rule, so κ (0) = 1. At high temperatures, the moment must be
renormalized by the square root of the ratio of quantum to classical
quadratic invariants of the Lie algebra su(4), which in this case gives
κ (∞) = √

5.

the classical simulation temperatures. As there is no order
parameter, and hence no ordering temperature to cross ref-
erence, the temperature rescaling was based on an analysis
of the roll-off of intensity with increasing temperature. This
rescaling factor is the only free parameter of our model that
was empirically fit to ED data. The details are summarized in
Appendix E.

B. Results for J′ � 0.3J

In Sec. IV we demonstrated that GLSWT provides an ex-
cellent approximation to DMRG results when J ′ � 0.3. Here,
we examine whether the corresponding classical theory, the
GLL dynamics described in Sec. II, provides a good approxi-
mation at finite T . To this end, we estimated Scl(q, ω, T ) at a
range temperatures between T = 0.015J and 25J and applied
all the corrections described above: the classical-to-quantum
correction factor Eq. (19), moment renormalization Eq. (47),
and temperature rescaling. These results were then compared
to finite-temperature ED. (Complete details of the ED calcu-
lations are provided in Appendix B.) Figures 4 and 5 show
the respective results for J ′/J = 0.1 and 0.3 in three different
temperature regimes: low (T  J), intermediate (T ≈ J), and
high (T � J).

We find that there is outstanding agreement between ED
and the classical results with respect to the overall magnitude
of the peak intensities and their distribution in momentum
space. The broadening is also quantitatively similar for q
values close to 0. The chief discrepancies concern the shape of
the peaks for q values close to π . In particular, the ED results
exhibit a more defined shoulder structure and a stronger skew
toward lower energies, a phenomenon that becomes more
pronounced for J ′/J = 0.3. At very low temperatures, the
J ′/J = 0.3 results also exhibit a somewhat smaller gap than
seen in the reference data, consistent with the GLSWT results
reported in Fig. 2. We note, however, that the agreement
becomes excellent again at high temperatures.
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FIG. 4. Structure factor intensities Szz(q, ω, T ) of the J ′/J = 0.1 model calculated using both the exact diagonalization [ED, top rows,
panels (a)–(c)] and the classical dynamics of Eq. (14) [GLL, middle row, panels (d)–(f)]. The contour plots show intensities along the reciprocal
space path q = (qx, π ), with qx ranging from 0 to 2π . Each panel is individually normalized. The line plots [bottom row, panels (g)–(i)] show
single-q cuts generated with each method at q = (0, π ) and (π, π ). Columns correspond to different temperatures.

C. Results for J′ � 0.5 in the high-temperature regime

As noted in Sec. IV, the classical ground state is no longer a
pure singlet for values of J ′/J � 0.5. A finite dipole emerges

on each site and antiferromagnetic order develops. A GLSWT
expansion about this ground state yields a Goldstone mode
at q = [π, π ], as illustrated in Fig. 6. Thus the semiclassical

FIG. 5. Structure factor intensities Szz(q, ω, T ) of the J ′/J = 0.3 model calculated using both the exact diagonalization [ED, top rows,
panels (a)–(c)] and the classical dynamics of Eq. (14) [GLL, middle row, panels (d)–(f)]. The contour plots show intensities along the reciprocal
space path q = (qx, π ), with qx ranging from 0 to 2π . Each panel is individually normalized. The line plots [bottom row, panels (g)–(i)] show
single-q cuts generated with each method at q = (0, π ) and (π, π ). Columns correspond to different temperatures.
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FIG. 6. Zero-temperature behavior of the J ′ = 0.5J spin ladder
as modeled with three different methodologies. The background
contour plot depicts the structure factor intensities as calculated
with the density matrix renormalization group method (DMRG).
The dispersions of both traditional linear spin wave theory (LSWT,
pink circles) and generalized LSWT (GLSWT, white crosses) are
overlaid. For values of J ′ = 0.5J and larger, both semiclassical ap-
proaches become gapless and fail to even qualitatively reproduce the
correct dispersion.

approach we have described fails both quantitatively and qual-
itatively at T = 0, as does traditional LSWT. Nonetheless,
we can still ask whether the classical dynamics of Eq. (14)
provides an effective description of the spin ladder in the high-
temperature regime, where the length scale of entanglement
effects is reduced and the system is expected to exhibit “more
classical” behavior.

To explore this possibility, we calculated the structure
factor intensities of the J ′/J = 0.5 model at a range of
temperatures using both ED and GLL, where the GLL simu-
lations were again subjected to all the corrections described

above. Additionally, we calculated the structure factor in-
tensities using the traditional classical limit given by the
LL equations. The LL simulations were also subjected to
classical-to-quantum intensity rescaling and moment renor-
malization, but the temperature scale was left untouched—the
qualitative behavior of the LL results are so different from the
other two that it is difficult to determine a clear correspon-
dence. All results are given in Fig. 7.

As expected, the low-temperature results of both the GLL
and LL approaches do not agree well with the ED ref-
erence because the exact ground state is still a quantum
paramagnet and the spectrum remains gapped. Notably, as
shown in Fig. 7(e), a pseudogap emerges in the GLL sim-
ulations, characterized by a depletion of spectral weight
of Szz[q = (π, π ), ω] below a temperature-dependent en-
ergy scale, whereas the LL approach maintains spectral
weight extending down to zero energy [see Fig. 7(i)]. As T
approaches J , the results of both ED and GLL become qual-
itatively more similar, with both exhibiting an increasingly
flat dispersion and similar broadening characteristics. This
suggests that the crossover into the classical regime occurs
at a temperature scale of T ∗ ≈ J . In the high-temperature
regime, the agreement between ED and GLL becomes very
good, similar to what was seen for J ′/J = 0.1 and 0.3.
This is in contrast with the LL simulations, which are
fundamentally incorrect throughout the entire temperature
range.

The agreement between the quantum mechanical results
and the generalized classical theory suggests an approach to
extracting Hamiltonian parameters from inelastic scattering
data collected at higher temperatures. As a simple illustration
of this point, we calculate the second moment along the en-
ergy axis at the wave vector q = (π, π ) of the ED data for

FIG. 7. Panels (a)–(l) show the evolution of structure factor intensities, Szz(q, ω), with increasing temperature for J ′ = 0.5J , as modeled
with exact diagonalization [ED, panels (a)–(d)], generalized Landau-Lifshitz dynamics [GLL, panels (e)–(h)], and traditional Landau-Lifshitz
dynamics [LL, panels (i)–(l)]. ED and GLL converge in the high-temperature limit [panels (d) and (h)] while LL fails to capture the features
of the ED calculation at all temperatures. Panels (m) and (n) illustrate parameter extraction from the reference ED results using the GLL
dynamics. The second moment of the ED result at T = 25J was calculated for J ′ = 0.5J (panel (m)) and J ′ = 0.7J (panel (n)) as μ2,ED =∫ 3

0 ω2S̃zz((π, π ), ω)dω, where S̃zz represents the normalized structure factor intensities. The second moments of the GLL results, μ2,GLL, were
calculated similarly for a range J ′ values. The figure shows the squared differences between the ED and GLL moments. By fitting a quadratic
polynomial to these errors and finding the minimum, one obtains an excellent estimate of J ′ in the high-temperature regime.
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J ′/J = 0.5 and 0.7,

μ2,ED =
∫ 3

0
ω2S̃zz((π, π ), ω)dω, (48)

where S̃zz is the normalized structure factor. We then compare
these to the second moment values estimated from the GLL
results μ2,GLL for a range of J ′/J values. An excellent estimate
of the true J ′/J is achieved by fitting a quadratic polynomial to
the squared differences between the ED moment and the GLL
moments and then determining the minimum, as illustrated in
Figs. 7(m) and 7(n). We note that it is unnecessary to calculate
κ (T ) to generate such an estimate, as the correct moment
renormalization is known analytically in the high-temperature
limit. Finally, we observe that this agreement persists beyond
the critical point of J ′/J = 0.5. The results for J ′/J = 0.7, for
example, are equally good.

Altogether, these results suggest that spin systems that
exhibit high degrees of localized entanglement can still be
studied classically in the high-temperature regime. This de-
mands application of the most appropriate classical theory,
however, which we suggest is one based on entangled units,
such as the dimer illustrated in this study. A significant benefit
of the classical approach is the ability to extend to larger
systems sizes at a costs that scales linearly with size, mini-
mizing the finite-size effects that may substantially affect ED
calculations and yielding a better estimate of system behavior
in the thermodynamic limit.

VI. DISCUSSION

Deriving classical approaches that provide accurate ap-
proximations to the quantum dynamics of a spin system
is crucial because of the significant difference in the com-
putational costs between solving classical and quantum
equations of motion. The numerical cost of solving classical
equations scales linearly with the number of spins Ns, making
it computationally feasible even for large systems. In contrast,
the cost of solving quantum equations of motion increases
exponentially with Ns, making it prohibitively expensive for
systems with many spins.

It is important to emphasize, however, that quantum spin
systems admit multiple classical limits. While the standard
S → ∞ limit based on SU(2) coherent states is commonly
used, it is fundamentally based on a decomposition of many-
body state space into a product of two-dimensional local
Hilbert spaces. This restricts the possible classical ground
states to dipoles. As a consequence, this approach is incapable
of representing the nonmagnetic ground states of quantum
paramagnets, for example. Semiclassical [38] and classical
techniques [20–22] based on SU(N) coherent states incor-
porate any arbitrary local quantum state of an N-level unit
and have proven effective at overcoming this limitation for
spin systems with S > 1/2 by taking N = 2S + 1 [32,42–45].
Note that we use the word “unit” because the content of each
local Hilbert space need not be a single spin. Instead, each
local space can represent a collection of entangled spins or
both spin and orbit degrees of freedom. In this way the SU(N)
approach can also serve as a framework for analyzing systems
composed of weakly coupled N-level units.

In this study, we chose the quasi-1D system of a strong-
rung S = 1/2 spin ladder as a particularly stringent test case
for this approach. We found that when the coupling within
units is significantly greater than the coupling between units,
classical and semiclassical methods provide a highly effective
and computationally inexpensive approach to estimating a
spin system’s correlation functions. The ground state closely
resembles a direct product of singlets on each rung, deviat-
ing from the typical behavior under the traditional S → ∞
limit. In such scenarios, resorting to coherent states from
a different Lie group becomes necessary to derive classical
(Lie-Poisson) equations of motion that can effectively model
the low-temperature spin dynamics. A crucial question that we
addressed in this paper is if such classical description also pro-
vides a good approximation away from the low-temperature
regime.

While systems demonstrating long-range entanglement ne-
cessitate sophisticated approaches like ED, DMRG, or QMC,
the methods outlined in this study are tailored to model many
realistic materials where entanglement effects are mostly re-
stricted to units compatible with lattice symmetries. Given
that most materials exhibit a crossover to classical behavior
at sufficiently high temperatures, our approach becomes par-
ticularly useful for estimating Hamiltonian parameters from
high-temperature inelastic scattering data of materials show-
casing exotic behavior at very low temperatures.

As demonstrated in the latter part of our study, Hamiltonian
parameters can be estimated accurately by fitting the exact
dynamical spin structure factor obtained via GLL dynamics
in the infinite-temperature limit. Once the model Hamilto-
nian is extracted using this classical approximation, it can be
employed to investigate low-temperature dynamics using the
more computationally intensive techniques mentioned earlier.

Accurate estimates of the dynamical spin susceptibility not
only guide the search for new phases resulting from changes in
Hamiltonian parameters but also serve as a tool to detect ma-
terials exhibiting strong interunit entanglement. This rational
approach to the search for highly entangled quantum states,
such a quantum spin liquids, is proving to be effective for
frustrated 2D magnets, such as triangular J1 − J2 Heisenberg
antiferromagnets [46–52].

One clear limitation of classical approaches at low temper-
atures is their failure to reproduce the Bose-Einstein statistics
of the collective modes. Recent studies, as demonstrated in
[53–55], have shown that this limitation can be overcome
by substituting the typical white noise of Langevin dynamics
with colored noise, which we leave for future investigation.

Finally, the generalized classical dynamics that we de-
scribed here can be efficiently implemented via the Sunny
package [56], which greatly facilitates its application to real
materials and the computation of measurable quantities, such
as the temperature dependence of the inelastic neutron scat-
tering cross section.
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APPENDIX A: DENSITY MATRIX RENORMALIZATION
GROUP CALCULATIONS

Our DMRG calculations for the DSSF are performed in
real space using the DMRG + + [57] code and employing a
center site approximation. Specifically, we compute the real-
space correlation function

Szz
( j,σ ),( j′,σ ′ )(ω + iη) = − 1

π
Im 〈�GS| Ŝz

j,σ

× 1

ω − H + EGS + iη
Ŝz

j′,σ ′ |�GS〉 ,

(A1)

where j and σ specify any site and j′ = L/2 − 1 and σ ′ =
r together represent the reference site at the center of the
cluster. |GS〉 is the ground state of the Hamiltonian with en-
ergy EGS, and η = 0.05 is an artificial broadening parameter.
Szz

( j,σ ),( j′,σ ′ )(ω) is then Fourier transformed into momentum
space using periodic boundary conditions [58]

Szz
Q (q, ω) =

L−1∑
j=0

cos (qx( j − L/2 + 1))

×
[
Szz

( j,r),( j′,σ ′ )(ω + iη) − Szz
( j,l ),( j′,σ ′ )(ω + iη)

]
.

(A2)

All DMRG calculations were performed on 50 × 2 clus-
ters. For the ground-state calculation, we keep between m =
200 and 2000 states to maintain a maximum truncation error
of 10−10. For the DSSF calculations, we employ the root-N
correction vector (CV) algorithm [59] based on the Krylov
space method [58] and compute Eq. (A1) for each value
of ω. We set N = 8 and η = J/20 with an energy step of
�ω = J/10, and keep between m = 200 and 2000 states to
maintain a maximum truncation error of 10−8.

APPENDIX B: EXACT DIAGONALIZATION
CALCULATIONS

We performed finite-temperature ED calculations on 8 × 2
clusters. Since the z-component of the total spin operator is
a good quantum number for the many-body eigenstates, we
fully diagonalize the Hamiltonian in magnetization sectors
Mz = −7 to Mz = 7. The DSSF is then computed for each
value of T and J using

Szz
Q (q, ω) = 1

Z
∑
ν,μ

e−ενβ |Mμ,ν (q)|2δ(εμ − εν − ω), (B1)

where

|Mμ,ν (q)|2 = 〈ν|Ŝz
q|μ〉〈μ|Ŝz

−q|ν〉. (B2)

Here, Z = ∑
ν e−ενβ is the partition function, β = 1/T is the

inverse temperature, and |ν〉 are the many-body eigenstates of
the Hamiltonian with energy εν .

APPENDIX C: SCHRÖDINGER FORMULATION
OF CLASSICAL DYNAMICS

All calculations in this and the following appendices were
performed using the Sunny package [56], which provides
an implementation of the generalized dynamics derived in
Sec. II in the Schrödinger picture [21]. In this formulation,
one introduces complex N-vectors, Z j , to represent the SU(N)
coherent states on each site j. For the ladder problem, we take
N = 4, consider each rung as a “site”, and use the standard
product basis |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉. It can then be shown
that the dynamics of Eq. (14) is entirely equivalent to the
canonical Hamiltonian dynamics

d

dt
Z j = −i

∂HSU(N )

∂Z∗
j

. (C1)

This can equivalently be written as

d

dt
Z j = −i H jZ j, (C2)

where

H j = ∂HSU(N )

∂nα
j

Tα (C3)

is a local, time-varying Hamiltonian and the Tα are the gener-
ators of Eq. (9) expressed in the product basis. The expectation
values

nα
j = Z†

jT
αZ j (C4)

are now explicitly dependent on the coherent states. An advan-
tage of this approach is that the SU(N) Casimirs are exactly
conserved, and resulting dynamics in Z j have a canonical
Hamiltonian structure. The latter makes possible numerical
integration schemes that are exactly symplectic (no energy
drift). See [21] for details.

APPENDIX D: CLASSICAL STRUCTURE FACTOR
CALCULATIONS

For each temperature T , we sampled 10 000 equilibrium
spin configurations nα

j,n, where j is the rung index, α the
generalized spin component, and n is the sample index. The
samples were generated by numerically solving a Langevin
equation for the generalized spin dynamics of Sec. II. This
method provides a convenient way to sample thermal spin
states from a classical Boltzmann distribution. The numeri-
cal calculations were performed using a second-order Heun
integration scheme using the Schrödinger formulation of the
dynamics, as described in [22]. The Langevin dynamics
requires setting an empirical damping parameter λ, which
governs coupling to the thermal bath. For the results reported
here, λ = 0.4 was chosen for the purposes of balancing a rapid
decorrelation time with a reasonable step size. A time step of
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FIG. 8. Integrated intensities,
∫ ∞

0 Szz(q, ω)dω, at the wave vectors q = (0, π ) and q = (π, π ) as calculated with the generalized Landau-
Lifsthiz dynamics (GLL, red) and exact diagonalization (ED, dark blue). For each value of J ′, the top figure shows the results without
temperature rescaling and the bottom shows the results with temperature rescaling. The dashed lines indicate the region over which the
error was evaluated. Tsc refers to the temperature rescaling factor, and ε(Tsc ) is the corresponding error.

�t = 0.01 J−1 was determined to be numerically stable for
this choice of coupling coefficient and the range of temper-
atures examined. The system was initialized into a product
of pure singlets and then thermalized for 30 J−1, a duration
sufficient to achieve ergodicity of the energy time-series at all
the tested temperatures.

The resulting spin configurations were then rescaled by
κ (T ) and used as an initial condition for a trajectory nα

j,n(0) =
κ (T )nα

j,n. The full trajectories nα
j,n(t ) were then evolved ac-

cording to the dynamics of Eq. (14). These equations were
solved using the symplectic (dissipationaless) numerical
scheme described in [21]. A time step of �t = 0.08 J−1 was
selected for numerical stability. Samples of the numerical
trajectory were taken every 13 steps, resulting in an effective
time step of �t = 1.04 J−1. 601 such samples were collected.
Each trajectory was then Fourier transformed on the lattice
and in time using the FFTW package to yield nα

q,n(ω). Here
q takes values nπ/4 with n = −3, . . . , 4 and ω takes values
nπ/�t with n = −300, . . . , 300, or 601 evenly spaced bins
lying approximately between −3 and 3 J . The convolution
theorem then enables estimation of the generalized structure
factor of Eq. (44) as

T αβ = 1

Nsamples

∑
n

nα
−q,n(−ω)nβ

q,n(ω). (D1)

After applying the harmonic classical-to-quantum correction
factor Eq. (19) to this result, the total spectral weight was
estimated as

Itotal =
∫ ∞

∞

∫
BZ

dωdq
ω

kBT
[1 + nB(ω/T )]

15∑
α=1

T αα (q, ω),

(D2)
where h̄ = 1. Since we were working with discrete-time tra-
jectories, this last expression reduces to a simple sum.

By construction, Itotal will lie between values of 3
4 Ns (clas-

sical sum rule) and 15
4 Ns (quantum sum rule), where Ns is the

number of sites (see Sec. V). The goal is to find a κ (T ) that
ensures satisfaction of the quantum sum rule to an acceptable
tolerance. To achieve this, an initial guess of κ (T ) was chosen
and the procedure outlined above was performed. If the result-
ing Itotal was too small (too large), a larger (smaller) kappa was
selected and the process repeated. To accelerate this process,
a standard binary search algorithm was implemented. The
process was stopped when the sum rule was satisfied to within
an absolute tolerance of 0.001. The results are presented in
Fig. 3.

Both the DMRG and ED calculations included an intrin-
sic broadening parameter η (A1). When making comparisons
to these results, all classical structure factors Scl(q, ω) were
convolved with a Lorentzian kernel along the energy axis

Scl,broad(q, ω) =
∫ ∞

−∞
dω̃L(ω̃)Scl(q, ω − ω̃), (D3)

where

L(ω) = η2

ω2 − η2
. (D4)

APPENDIX E: TEMPERATURE RESCALING

The temperature scale of a classical calculation is ex-
pected to deviate from the corresponding quantum calculation
because of the fundamentally different thermodynamic prop-
erties of each model. It is often possible to propose an ad hoc
rescaling of the classical temperature to put it into correspon-
dence with the quantum system by examining the behavior of
the order parameter in each case. For example, the classical
temperature may be rescaled so that the Néel temperatures
of both approaches correspond. We have no order parameter

104403-13



DAVID A. DAHLBOM et al. PHYSICAL REVIEW B 110, 104403 (2024)

for the dimer ladder, however, as we are primarily concerned
with values of J ′/J for which the ground state is paramagnetic
(product of singlets).

The different low-temperature thermodynamic properties
of the quantum and classical systems arise from the quali-
tative difference between the Bose-Einstein and Boltzmann
statistics. For example, examining the temperature depen-
dence of the integrated intensity at a given wave vector, the
quantum mechanical result for IQ(T, q) − IQ(0, q) exhibits
an activated behavior (∝ e−�/kBT ) because of the gapped
nature of the spectrum. In contrast, the classical result for
Icl(T, q) − Icl(0, q) exhibits a power-law behavior. This qual-
itative discrepancy can potentially be remedied with a more
sophisticated treatment of the thermal bath used in the classi-
cal simulations, as described in the references [28,53–55], but
we do not pursue that approach here.

Given the characteristic differences between classical and
quantum systems at low temperatures and given the lack of a
distinguished ordering wave vector, we chose to determine the
temperature rescaling by fitting the integrated intensity versus
temperature curves at two wave vectors, q = 0 and q = π , and

do this in the transition and high-temperature regions only.
Specifically, we calculated the integrated intensity at these two
wave vectors and at 41 logarithmically spaced temperatures
between T = 0.015J and 25J . We calculated these intensities
with both the classical dynamics of Sec. II and with ED. We
fit the result of each approach with with cubic splines and
refer to the resulting interpolants as Icl(T, q) and IED(T, q)
respectively, where q is either q1 = (0, π ) or q2 = (π, π ).
The error was defined as

ε(Tsc) =
∫ 10.0

0.3
dT (|Icl(T/Tsc, q1) − IQ(T, q1)|

− |Icl(T/Tsc, q2) − IQ(T, q2)|)2, (E1)

where the bounds T = 0.3J and T = 10.0J were chosen
to capture the transition region and portions of the high-
temperature tail, and Tsc is the rescaling factor applied to the
classical temperature. ε(Tsc) was then minimized numerically.
The resulting Tsc was taken as the rescaling temperature for
all calculations in this paper. This process was performed for
J ′/J = 0.1, 0.3, and 0.5. The results are summarized in Fig. 8.
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