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Exact staggered dimer ground state and its stability in a two-dimensional magnet
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Finding an exact solution for a realistic interacting quantum many-body problem is often challenging. There
are only a few problems where an exact solution can be found, usually in a narrow parameter space. Here,
we propose a spin- 1

2 Heisenberg model on a square lattice with spatial anisotropy and bond depletion for the
nearest-neighbor antiferromagnetic interactions but not for the next-nearest-neighbor interactions. This model
has an exact and unique dimer ground state at J2/J1 = 1

2 ; a dimer state is a product state of spin singlets on dimers
(here, staggered nearest-neighbor bonds). We examine this model by employing the bond-operator mean-field
theory and exact diagonalization. These analytical and numerical methods precisely affirm the correctness of the
dimer ground state at the exact point (J2/J1 = 1

2 ). As one moves away from the exact point, the dimer order melts
and vanishes when the spin gap becomes zero. The mean-field theory with harmonic approximation indicates
that the dimer order persists for −0.35 � J2/J1 � 1.35. However, in nonharmonic approximation, the upper
critical point lowers by 0.28 to 1.07, but the lower critical point remains intact. The exact diagonalization results
suggest that the latter approximation fares better. The model reveals Néel order below the lower critical point
and stripe magnetic order above the upper critical point. It has a topologically equivalent model on a honeycomb
lattice where the nearest-neighbor interactions are still spatial anisotropic, but the bond depletion shifts into the
isotropic next-neighbor interactions. Moreover, these models can also be generalized in the three dimensions.

DOI: 10.1103/PhysRevB.110.104402

I. INTRODUCTION

Frustrated magnetism is a fascinating and vigorous field
of research that attracts theoreticians, experimentalists, and
material scientists equally due to emerging new understand-
ings and challenges in matters with competing interactions
[1–9]. Interacting spin systems with the valence-bond ordered
ground states is one subclass of this field, which has been
in focus for many years due to their novel physics about
phases and their transitions. A straightforward prototype spin
system with competing interactions is the Majumdar-Ghosh
(MG) model [10]. It is a spin- 1

2 Heisenberg model on a
one-dimensional chain lattice with nearest- and next-nearest-
neighbor antiferromagnetic exchange interactions J1 and J2,
respectively. Its ground-state energy at J2/J1 = 1

2 (MG point)
is doubly degenerate, and the two nearly orthogonal dimer
states span the ground-state manifold. As one increases the
interaction ratio J2/J1, this model undergoes a quantum phase
transition from a gapless quasi-long-range ordered state to
a gapped dimer state at a quantum critical point, J2/J1 ∼
0.24 [11,12]. Many quasi-one-dimensional materials show
the signature of having the characteristic features of the MG
model. The multiferroic compound CuCrO4 finds its place
close to the MG point [13], and the zigzag antiferromagnet
(N2H5)CuCl3 seems to be at the critical point [14].

The existence of a true long-range order in two-
dimensional spin systems at absolute zero temperature makes
these systems more attractive than the one-dimensional

*Contact author: rkumar@curaj.ac.in

systems. The spin- 1
2 Heisenberg antiferromagnet with nearest-

neighbor interaction (J1) on a square lattice demonstrates
the Néel magnetic order in its ground state. When it also
contains an antiferromagnetic interaction (J2) on the next-
nearest-neighbor orthogonal bonds (or dimers) as specified in
Ref. [15], then the resulting system, which is known as the
Shastry-Sutherland (SS) model, yields an exact and unique
dimer ground state for J1/J2 � 1

2 [15,16]. Moreover, rigorous
analyses confirm that the SS dimer state remains an ener-
getically favorable state up to J1/J2 ∼ 0.68 [17,18]. As this
exchange ratio increases beyond 0.76, the antiferromagnetic
Néel state emerges as the ground state. In the intermediate
region, most studies confirm a plaquette spin-singlet state
[17–23]. The phase transition between the SS dimer and the
plaquette states is of the first order. In contrast, a second-
order transition with a deconfined quantum critical point is
potentially possible between the plaquette and Néel phases
[21]. Recently, a tensor network method-based probe found
a spin supersolid phase in a narrow region just above the
plaquette phase [24]. The structural and physical properties
of SrCu2(BO3)2 compound make it an excellent experimental
realization of the SS model [25–30].

There is another class of Hamiltonians in which frustration
(as in MG and SS models) and spatial anisotropy play essen-
tial roles. One such example is the Nersesyan-Tsvelik (NT)
model [31], which transforms to an isotropic J1-J2 Heisen-
berg antiferromagnet [32] in the absence of anisotropy. The
NT model consists of a set of identical spin chains that are
arranged horizontally one after the other in two-dimensional
space. Each spin chain carries exchange coupling J‖

1 for any
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FIG. 1. This picture represents a schematic representation of the model Hamiltonian (1) on two topologically equivalent lattices. Here, the
nearest-neighbor interactions have spatial anisotropy, but the second nearest-neighbor interactions are isotropic with the exchange coupling J2.
The horizontal nearest-neighbor bonds represented by thick lines are termed dimers. Each such dimer has interaction JD = 2J1 > 0, where J1

is the interaction strength on each of the remaining nearest-neighbor bonds. Filled circles with numbers denote the lattice sites where spin- 1
2

degrees of freedom reside. Crossed shaded stripes can be visualized as the interpenetrating MG chains.

pair of neighboring spins of the chain and interacts with its
nearest-neighboring spin chains through transverse and diag-
onal exchange couplings, denoted by J⊥

1 and J2, respectively.
In this model, all couplings are antiferromagnetic and satisfy
the condition J⊥

1 , J2 � J‖
1 . The line J⊥

1 = 2J2 classically rep-
resents a first-order phase transition between the Néel and
stripe magnetic orderings. However, the analytical and nu-
merical studies encapsulating the quantum nature of spins
reveal a dimer phase between the Néel and stripe orderings,
and the dimer phase undergoes first-order transitions with
both magnetically ordered phases [33,34]. The compound
(NO)[Cu(NO3)3] appears a potential candidate for an experi-
mental realization of the NT model [35].

Frustration and anisotropy are the primary sources for the
emergence of dimer ground states in spin systems [36–47].
These states can also arise from dimerization [48,49] and
unfrustrated but competing interactions [50,51]. Dimer states
are also in central focus in the evolving subject of deconfined
quantum criticality driven by non-Landau phase transition
[21,50,52–54]. Motivated by all these works, we propose
a spin- 1

2 Heisenberg antiferromagnet with an exact dimer
ground state and investigate it using bond-operator mean-field
theory and numerical exact diagonalization.

We organize the remaining sections of this research paper
as follows. The model and its ground state with supporting
exact diagonalization data are placed in Sec. II. After that,
the bond-operator mean-field calculations are presented in
Sec. III. Subsequently, the mean-field and exact diagonaliza-
tion results with analyses are provided in Sec. IV. Finally, we
conclude this work in Sec. V.

II. MODEL

We consider the following spin- 1
2 Hamiltonian, with

periodic boundary conditions, for a SU(2) Heisenberg anti-
ferromagnet on the two-dimensional lattice shown in Fig. 1:

H =
∑
〈i, j〉

Ji jSi · S j + J2

∑
〈〈i, j〉〉

Si · S j, (1)

where Ji j > 0 are on the nearest-neighbor bonds and have spa-
tial anisotropy. A selected number of nearest-neighbor bonds,
which we call dimers, has the coupling strength JD = 2J1 (see
thick blue bonds in Fig. 1). The remaining nearest-neighbor
bonds have exchange interaction J1. Furthermore, an isotropic
spin-spin interaction exists between the spins connected by
the next-nearest-neighbor bonds. This latter interaction can
be ferromagnetic (J2 < 0) or antiferromagnetic (J2 > 0). We
define a dimensionless parameter g = J2/J1 and vary J2 by
setting J1 = 1.

At the exact point (g = 1
2 ) where an exact dimer ground

state exists, the Hamiltonian (1) can be expressed as

H = 3

4
J1

∑
{(i, j,k)}

P3/2(i, j, k) − 3

2
J1N, (2)

where the summation runs over all possible triangles with
vertices (or sites) i, j, and k such that each triangle contains
one dimer, one nondimer nearest-neighbor bond, and one
next-nearest-neighbor bond. If there are N total dimers in the
lattice with periodic boundary conditions, the total triangles
will be 4N . Equivalently, it means that each dimer contributes
four triangles (see Fig. 1). The spin operators Si, S j , and
Sk present at the vertices of a triangle define the projection
operator P3/2(i, j, k) as follows:

P3/2(i, j, k) ≡ 1
3 (Si + S j + Sk )2 − 1

4 . (3)

This operator projects a state of three spins localized at
sites i, j, and k onto the S = |Si + S j + Sk| = 3

2 subspace.
Three spin- 1

2 degrees of freedom form two spin doublets
and one spin quartet, which are the eigenstates of P3/2 with
eigenvalues 0 and 1, respectively. This implies that the pro-
jection operator can be rewritten as P3/2 = ∑

Mz
|S = 3

2 , Mz〉
〈S = 3

2 , Mz|, and it annihilates a spin-doublet state. When
each triangle has a spin-doublet state, the Hamiltonian (2)
gives the ground-state energy EGS = − 3

2 J1N .
In general, there will be four spin-doublet states for a single

triangle. This leads to ambiguity about the degeneracy and
the type of doublet states for the ground-state energy. To re-
solve these subtle issues, we first understand how the doublets
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form in a spin triad. Coupling two spin- 1
2 degrees of freedom

generates a spin-singlet and three spin-triplet states. When
these states are coupled with the states of the third spin, one
gets four spin-doublet states and four spin-quartet states. The
doublet states arising from the singlet state are “separable”
in the sense that these can be expressed as a direct product
of the spin singlet and a state of the third spin. However, the
remaining doublet states form entangled states between the
spin-triplet states and two polarizations of the third spin.

If we start with an entangled spin-doublet state on a
triangle, the remaining all (4N − 1) triangles will not be si-
multaneously in the doublet states. On the other hand, if a
dimer is in the spin-singlet state, all four triangles that share
this dimer edge will be in the separable spin-doublet states.
This results in the separable free one-spin states at the end
sites of the other four neighboring dimers. Now, again, we
can form spin-singlet states on the latter dimers. This leads to
doublet states on the triangles containing these dimers and free
one-spin states. We continue this process until all triangles are
exhausted. The twofold degeneracy of the separable doublet
on a triangle reduces to one as the free spins are constrained
to form spin-singlet states on the dimers. Thus, at the exact
point, the Hamiltonian (1) has a unique ground state, a product
of spin-singlet states on the dimers. This state can be mathe-
matically written as

|�〉 = ⊗(i j)∈{Dimers}[i, j], (4)

where the direct product is over all dimers, (i j) denotes a
dimer with sites i and j, and [i, j] ≡ (|↑i↓ j〉 − |↓i↑ j〉)/

√
2

is a spin-singlet state. A more formal and mathematical proof
of the uniqueness of the ground state is rather rigorous and
difficult, and a similar proof of our problem may be designed
as found for the MG chain [55]. We will not attempt it in this
paper. Rather, we present exact-diagonalization data for the
Hamiltonian (1) on finite clusters below.

We perform Lanczos-based diagonalization on square and
rectangular lattices with even linear sizes in horizontal and
vertical directions. An odd linear size along the vertical di-
rection will break the periodic boundary conditions, and the
staggered dimer state (4) is impossible with an odd linear size
along the horizontal direction. The smallest 2×2 cluster has a
self-overlapping problem, so we excluded it. We present the
two lowest energies and the gap between them in Fig. 2 for
4×4 and 6×4 clusters. These data agree perfectly with the
theoretical prediction of a unique and exact dimer ground (4)
at the exact point. Moreover, it also reflects that the ground
energy remains nondegenerate as the system moves away
from J2/J1 = 0.5. The energy gap data reveal asymmetry
about the exact point. We also calculate the averaged spin-spin
correlations on three types of bonds (see Fig. 3), which are
horizontal bonds (or dimers), vertical bonds (or nondimer
nearest-neighbor bonds), and diagonal bonds (or next-nearest-
neighbor bonds). Spin-singlet formation (i.e., 〈Si · S j〉 = − 3

4 )
on all dimers and vanishing spin-spin correlation on other
remaining bonds at J2/J1 = 0.5 leads to a product ground
state. The magnitude of spin-spin correlation on dimers de-
creases on either side of the exact point. This behavior implies
that a product ground state exists only at the exact point.
The spin-spin correlation on diagonal bonds saturates to its
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FIG. 2. This picture displays energy per site for the ground and
first excited states obtained from the exact diagonalization. The inset
figure shows the gap between these two energies. The solid lines
represent data for the 6×4 cluster, whereas dashed lines are for the
4×4 cluster.

maximum positive value as one moves sufficiently left from
J2/J1 = 0.5, which indicates ferromagnetic alignments along
the diagonal bonds. On the other hand, as one increases J2, all
the correlations asymptotically saturate to values between the
bounds − 3

4 and 1
4 . Negligible error bars on the correlations

reflect that all bonds of a type are equivalent and get the same
spin-spin correlation value for all J2/J1.

The periodic boundary conditions along the vertical direc-
tion are not essential to get the product dimer ground state
at the exact point. Furthermore, the linear size along this
direction can be taken even as well as odd if one chooses
open boundary conditions. However, even linear size and pe-
riodic boundary conditions along the horizontal direction are
necessary for the staggered dimer ground state. In Fig. 4, we
present two low-lying energies of the model (1) for the 4×7
cluster with cylindrical boundary conditions. At J2/J1 = 0.5,
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FIG. 3. The averaged spin-spin correlations 〈Si · S j〉a on dimers
(or horizontal bonds), nondimer nearest-neighbor bonds (or vertical
bonds), and the next-nearest-neighbor bonds (or diagonal bonds)
with error bars are shown here. Again, the solid lines belong to the
6×4 cluster, while the dashed lines belong to the 4×4 cluster.
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FIG. 4. Two low-lying energies and the gap between them are
given here from the exact diagonalization for the 4×7 cluster with
open boundary conditions along the vertical direction.

the ground state energy per dimer is − 3
4 (in units of JD), same

as for the staggered dimer ground state (4). The averaged spin-
spin correlation data presented in Fig. 5 confirm the dimer
ground state at the exact point. All bonds of a type make the
same contribution at the exact point in cylindrical boundary
conditions, too. However, as one moves away from J2/J1,
distinct contributions from the dimers become prominent, and
noticeable changes emerge in vertical and diagonal bonds.

It would be interesting to compare the model (1) with the
MG and SS models. All these models involve only nearest-
neighbor and next-nearest-neighbor exchange interactions and
have dimer ground states at specific points or in a range in
the coupling space. Except for the MG model, the dimer
ground states are unique. Our and SS models have a spatial
anisotropy in the nearest-neighbor and next-nearest-neighbor
interactions, respectively. However, the MG model is isotropic
in both interactions. Structurally, the SS and our models cor-
respond to the bond-depleted J1-J2 Heisenberg models on a
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FIG. 5. The averaged spin-spin correlation on the three types of
bonds for the 4×7 cluster with open boundaries along the vertical
direction is shown here. The error bar is negligible at the exact point
but significantly increases on dimers as one goes farther away from
J2/J1 = 0.5.
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FIG. 6. This figure displays the ground-state energy per dimer (in
units of JD) calculated from the exact diagonalization and analytical
calculations; here, we keep the exchange constant J1 to unity. The
diagonalization data are produced for the 6×4 lattice with fully
periodic and semiperiodic boundary conditions; here, semiperiodic
means boundaries along the vertical direction are open.

square lattice. One wipes out 3
4 th of the next-nearest-neighbor

bonds in the SS case, while we eradicate 1
4 th of the nearest-

neighbor bonds in our spatially anisotropic (or dimerized)
model. Moreover, our model also shows the staggered dimer
ground state for any JD � 2J1 if one sets the ratio J2/J1 equal
to 1

2 , as the SS ground state in the SS model exists in a broad
range. This can be understood as follows. At J2/J1 = 1

2 , using
Eq. (3), the Hamiltonian (1) can be written as

H = Ec + J1

2

∑
{(i, j,k)}

[
κ Si · S j + 3

2
P3/2(i, j, k)

]
, (5)

where Ec = −(3/2)J1N , κ = (JD/2J1 − 1), and the indices
i, j are end points of a dimer. The product state (4) is an eigen-
state of the Hamiltonian (5) with the eigenenergy −( 3

4 )JDN ,
independent of the coupling J1. As we know the slack in-
equalities − 3

4 � 〈Si · S j〉 � 1
4 and 0 � 〈P3/2(i, j, k)〉 � 1 of

expectation values hold for any arbitrary state that is a linear
combination of the energy eigenstates, the staggered dimer
state will be the ground state for any κ � 0 (see Fig. 6).
It turns out that the dimer ground state also persists for a
range with κ < 0, similar to the SS model [16]. We arrive at
the same conclusions of the Hamiltonian with fully periodic
boundary conditions even if the boundaries along the verti-
cal directions are kept open, except that the range of κ for
the dimer state being a ground state is slightly wider in the
semiperiodic case.

III. BOND-OPERATOR MEAN-FIELD THEORY

This theory and its various variants are appropriate for the
investigation of quantum spin systems in which the ground
state is a product of spin singlets [56–60]. For spin- 1

2 systems,
a spin singlet forms when an even number of spins couple
together. This work considers only dimer spin singlets as our
Hamiltonian has an exact staggered dimer ground state, and
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our objective is to examine the stability of this state in the
coupling space.

Using the bond-operator formalism [56], we transform a
spin Hamiltonian from spin to bosonic Fock space represen-
tation. In the bosonic description, the creation operators s†,
t†
x , t†

y , and t†
z create boson particles of type s, tx, ty, and tz,

respectively, when applied on the vacuum |0〉 (a no particle
state). To write Hamiltonian in terms of bosonic creation
and annihilation operators, we define a one-to-one mapping
between the bosonic particle states and the spin states of a
dimer as follows:

s†|0〉 := |s〉 ≡ 1√
2

(|↑↓〉 − |↓↑〉), (6a)

t†
x |0〉 := |tx〉 ≡ −1√

2
(|↑↑〉 − |↓↓〉), (6b)

t†
y |0〉 := |ty〉 ≡ i√

2
(|↑↑〉 + |↓↓〉), (6c)

t†
z |0〉 := |tz〉 ≡ 1√

2
(|↑↓〉 + |↓↑〉), (6d)

where the states before the mapping symbol := are of different
types of bosonic particles, and the remaining states are of
coupled dimer spins.

The singlet and triplet states listed above in Eq. (6) form
an orthonormal set of simultaneous eigenstates of S1 · S2 and
spin-inversion operator (πs), but the states (6b) and (6c) are
not the eigenstates of the z component of total spin operator
(Sz = S1z + S2z). Here, the subscripts 1 and 2 label the ends of
a dimer. Other orthonormal sets are also possible, as the de-
generacy in triplet states gives rise to arbitrariness in choosing
the dimer spin eigenstates. Therefore, the mapping (6) is not
unique (for example, Ref. [60] defines a different mapping).

Using second quantization, the one-body operator O =
Smα (m = 1, 2; α = x, y, z) in the Fock space reduces to the
following form:

O =
∑
μν

〈μ|O|ν〉μ†ν, (7)

where μ, ν ∈ {s, tx, ty, tz}. After finding out the matrix ele-
ments 〈μ|O|ν〉, the spin operators S1α and S2α in the Fock
space can be written as

Smα = −
[

(−1)m

2
(s†tα + t†

αs) + i

2
εαβγ t†

βtγ

]
, (8)

where α, β, γ ∈ {x, y, z}, and εαβγ is a totally antisymmetric
(Levi-Civita) tensor. Here, we do summations over the re-
peated greek indices. The dimensionality of the Fock space
of bosonic operators s, tα is, in principle, infinite. However,
the Hilbert space of a spin dimer is four dimensional and can
be spanned by |s〉, |tx〉, |ty〉, and |tz〉. Therefore, the four Fock
states μ†|0〉 only span the physical subspace. To wipe out the
remaining unphysical subspace, one imposes the following
hard-core constraint on each dimer:

s†s + t†
αtα = 1. (9)

Using Eqs. (8) and (9), the intradimer and interdimer spin-spin
interactions of the form Si · S j can be written as

(i) for intradimer interactions (r = r′):

S1α (r)S2α (r′) = − 3
4 s†(r)s(r) + 1

4 t†
α (r)tα (r), (10)

(ii) for interdimer interactions (r �= r′; m, m′ = 1, 2):

Smα (r)Sm′α (r′) = 1

4

4∑
p=2

T (p)
mm′ (r, r′), (11)

where r and r′ are the position vectors of dimers, and

T (2)
mm′ (r, r′) = (−1)m+m′

[s(r)s†(r′)t†
α (r)tα (r′)

+ s(r)s(r′)t†
α (r)t†

α (r′) + H.c.], (12)

T (3)
mm′ (r, r′) = εαβγ [(−1)m + (−1)m′

Prr′ ]

× [is(r)t†
α (r)t†

β (r′)tγ (r′) + H.c.], (13)

T (4)
mm′ (r, r′) = t†

α (r)tβ (r)(1 − Pαβ )t†
β (r′)tα (r′). (14)

We used an exchange operator Pi j in the above two expres-
sions, which interchanges the indices i and j. One notices here
that the operators T (2)

mm′ (r, r′) and T (3)
mm′ (r, r′) are symmetric and

antisymmetric, respectively, under the exchange of m and m′
indices. Moreover, the operator T (4)

mm′ (r, r′) does not depend
on m and m′, i.e., T (4)

mm′ (r, r′) = T (4)(r, r′). Additionally, from
Eqs. (12) and (13), we get the following useful properties:

T (2)
11 (r, r′) = T (2)

22 (r, r′) = −T (2)
12 (r, r′), (15)

T (3)
11 (r, r′) = −T (3)

22 (r, r′). (16)

A. In the staggered dimer phase

Recasting the model Hamiltonian (1) for the staggered
dimer state (4), on the bond-depleted square lattice (Fig. 1),
as

H = JD

∑
r∈D

S1(r) · S2(r) + H1 + H2, (17)

where D is a set of position vectors of the Bravais lattice
(two-dimensional oblique lattice) corresponding to the lattice
shown in Fig. 1. In the “lattice with a basis” language, the two
dimer sites can be imagined as a basis such that the left end of
the dimer coincides with the Bravais lattice vector r. The H1

and H2 in Eq. (17) have the following forms:

H1 = J1

2

∑
r∈D

∑
d1=±aŷ

∑
m=1,2

Sm(r) · Sm(rm + d1), (18)

H2 = J2

2

∑
r∈D

∑
d2=±ax̂±aŷ

∑
m=1,2

Sm(r) · Sm(r + d2), (19)

where m ≡ 3 − m, and rm ≡ r + (−1)max̂ with the lattice
constant a of the square lattice (Fig. 1). Using Eqs. (10) and
(11), and the properties of T (p) operators, the Hamiltonian
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(17) can be written as

H = JD

∑
r

[
−3

4
s†(r)s(r) + 1

4
t†
α (r)tα (r)

]

+ 1

4

∑
r,d2

[
J−T (2)

11 (r, r + d2) + J+T (4)(r, r + d2)
]

+ J1

8

∑
r,d1

∑
m=1,2

T (3)
mm (r, rm + d1)

−
∑

r

μr[s†(r)s(r) + t†
α (r)tα (r) − 1], (20)

where J± = J2 ± J1/2. In the above equation, constraint (9) is
incorporated as in Lagrange’s multiplier method to ensure that
dimer states are always from the physical subspace.

We have dimer translation symmetry in H with translations
r = n+τ+ + n−τ−, where n± ∈ Z and the primitive vectors
τ± = ax̂ ± aŷ. So, we can replace local chemical potential μr
by a global μ. Moreover, at the exact point, we get a set of
perfectly spin-singlet dimers that form the ground state (4).
The terms − 3

4 JDs†(r)s(r) in Eq. (20) clearly confirm this.
Therefore, we assume that a single singlet boson condenses
on each dimer, that is, 〈s〉 = 〈s†〉 = s̄. As one moves away
from the exact point, the condensate amplitude decreases. In
harmonic approximation, we ignore the triplet-triplet interac-
tions (equivalently, neglecting the T (3) and T (4) terms). We
include these higher-order terms using quadratic mean-field
decoupling for calculation beyond the harmonic approxima-
tion. In this case, the term T (3) vanishes after decoupling due
to the presence of the antisymmetric Levi-Civita tensor, while
the Hartree-Fock decoupling of a T (4) term gives

T (4)(r, r + d2) ≈ (Q2 − P2) + P[t†
α (r)tα (r + d2) + H.c.]

− Q[t†
α (r)t†

α (r + d2) + H.c.], (21)

where P ≡ 〈t†
α (r)tα (r + d2)〉 and Q ≡ 〈t†

α (r)t†
α (r + d2)〉. In-

corporating these approximations, we obtain the following
mean-field Hamiltonian:

Hmf = C + μr

∑
r

t†
α (r)tα (r)

+ 1

4

∑
r,d2

{A[t†
α (r)tα (r + d2) + H.c.]

+ B[t†
α (r)t†

α (r + d2) + H.c.]}, (22)

where μr = JD
4 − μ, A = J−s̄2 + J+P, B = J−s̄2 − J+Q, and

C/N = − 3
4 JDs̄2 + μ(1 − s̄2) + J+(Q2 − P2), with the total

number of dimers N .
Utilizing the dimer translation symmetry, we define the

Fourier transform tα (r) = 1√
N

∑
k eik·rtkα , where the summa-

tion goes over all allowed N Bloch wave vectors k inside
the first Brillouin zone (here, it is a magnetic zone). The
mean-field Hamiltonian in k space takes the form:

Hmf = E0 + 1

2

∑
k

[
k(t†
kαtkα + t−kαt†

−kα )

+ �k(t†
kαt†

−kα + H.c.)], (23)

where 
k = μr + 2Aγk, �k = 2Bγk, and E0 = C − 3
2∑

k 
k, with a geometric structure factor γk = cos(kxa)
cos(kya).

For diagonalizing the Hmf, we define the Bogoliubov
transformation tkα = ukγkα + vkγ

†
−kα . This transformation is

canonical if uk and vk satisfy u2
k − v2

k = 1. One also observes
that the uk = u−k and vk = v−k hold as we have dimer transla-
tion symmetry. After transforming the Hamiltonian (23) from
t bosons to γ bosons using the Bogoliubov transformation,
we get

Hdiag = E0 + 3

2

∑
k

ωk +
∑

k

ωkγ
†
kαγkα (24)

provided the condition 2ukvk/(u2
k + v2

k ) = −�k/
k holds
for all k points. The quasi γ bosons (often called as “triplons”)
disperse in the singlet background with the energy ωk =√


2
k − �2

k.
We extract the ground-state properties from (24) by finding

the self-consistent equations that come after taking the partial
derivatives of the ground-state energy Eg = E0 + 3

2

∑
k ωk

with respect to mean-field parameters μ, s̄, P, and Q. After
simplification, we get the following self-consistent equations:

s̄2 = 5

2
− 3

2N

∑
k


k

ωk
, (25)

μ = −3

4
JD + 3

N
J−

∑
k

γk(
k − �k )

ωk
, (26)

P = 3

2N

∑
k

γk
k

ωk
, (27)

Q = − 3

2N

∑
k

γk�k

ωk
. (28)

We find the solution of these equations in the dimer phase at
all suitable J2/J1 ratios by an iterative method as in Ref. [61]
or by optimization methods like the Levenberg-Marquardt
algorithm [62,63].

B. In the ordered phases

In the bond-operator mean-field theory, an ordered state
emerges when single tα bosons condense on dimers at some
k = k∗. Equivalently, this means that the existence of gapless
excitation for triplons, i.e., ωk∗ = 0. This vanishing spin gap
gives a condition 
k∗ = ±�k∗ , which fixes the renormal-
ized chemical potential as μr = −2(A ∓ B)γk∗ . An obvious
order parameter in an ordered phase would be the average
number of condensed triplet bosons per dimer (or simply
the triplon density), which we define as nt ≡ 1

N 〈t†
k∗αtk∗α〉 as

in [61].
Taking summation over the position of dimers (i.e., r)

on both sides in the constraint equation (9), and then per-
forming Fourier transform, we get 1

N

∑
k t†

kαtkα = 1 − s̄2.
Further, we split the summation over k into two parts:

∑
k =∑

k=k∗ +∑
k �=k∗ . After taking the expectation value with
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0.0 0.5 1.0 1.5 2.0

0.00

without quartic interaction
with quartic interaction
exact diagonalization (6x4)

S
1
(r

)
·S

2
(r

)

J2/J1

0.0 5.0
0.4
0.6
0.8
1.0

J2 /J1

s
2

FIG. 7. Intradimer spin-spin correlation, 〈S1(r) · S2(r)〉 = 1
4 −

s̄2, from bond-operator mean-field theory. One gets this expression
by taking ground-state expectation on both sides of Eq. (10) and
then using the constraint (9). This figure also contains exact diag-
onalization data of averaged spin-spin correlations on dimers. The
inset picture displays the mean-field data for the s̄2 parameter.

respect to the ground state, the triplon density reduces to

nt = 1 − s̄2 − 3

2N

∑
k �=k∗

(

k

ωk
− 1

)
(29)

≈ 5

2
− s̄2 − 3

2N

∑
k �=k∗


k

ωk
. (30)

In Eq. (29), we used the result 〈t†
kα

tkα〉 = 3v2
k = 3(
k/ωk −

1)/2, which one can get using canonical Bogoliubov trans-
formation defined earlier. Performing the same splitting in
the summation over k in the self-consistent equation (25), we
obtain

5

2
− s̄2 − 3

2N

∑
k �=k∗


k

ωk
= 3

2N


k∗

ωk∗
. (31)

Using Eqs. (30) and (31), we write the triplon density as

nt ≡ 1

N
〈t†

k∗αtk∗α〉 ≈ 3

2N


k∗

ωk∗
. (32)

It turns out that the gapless condition 
k∗ = �k∗ does not
produce a self-consistent equation for nt when one tries to
derive it from Eq. (26) using (32). Therefore, we have not
searched for a solution to this condition. The self-consistent
equations with the condition 
k∗ = −�k∗ [or, equivalently,
μr = −2(A + B)γk∗ ] can thus be written as

ntξ = JD − μr − 3

N
J−

∑
k �=k∗

γk(
k − �k )

ωk
, (33)

s̄2 = 5

2
− nt − 3

2N

∑
k �=k∗


k

ωk
, (34)

P = ntγk∗ + 3

2N

∑
k �=k∗

γk
k

ωk
, (35)

Q = ntγk∗ − 3

2N

∑
k �=k∗

γk�k

ωk
, (36)

where ξ = 4J−γk∗ .

IV. RESULTS AND DISCUSSION

This section presents the results of various physical quan-
tities of interest in the dimer (paramagnetic) and ordered
phases. We get these quantities by finding the numerical
solutions of self-consistent equations in each phase in two
categories: (i) in one case, we keep terms up to quadratic in
triplet operators and ignore the higher-order terms, and (ii)
in the other case, we also include higher-order terms (that
is, quartic terms) using quadratic decouplings. In the latter
case, the cubic terms do not contribute to the mean-field
Hamiltonian due to the presence of the Levi-Civita tensor. Our
primary interest is determining the boundaries of the ground-
state phases that emerge due to phase transitions as one varies
the coupling ratio J2/J1. The vanishing singlet-triplet spin-gap
or triplon number density determines the boundary between a
dimer phase and an ordered phase, with a continuous phase
transition across the boundary. In our analyses, the lowest but
nonzero value of energy dispersion ωk∗ (finite singlet-triplet
spin gap) of the quasiparticles characterizes a dimer phase.
In contrast, the staggered magnetization or triplon density
specifies an antiferromagnetic ordered phase.

At the exact point, the square of the amplitude of singlet
condensation on dimers acquires its maximum value of unity,

0.0 0.5 1.0 1.5 2.0

J2 /J1

en
er

gy
 p

er
 d

im
er

 / 
J D

without quartic interaction
with quartic interaction
exact diagonalization (6x4)

0.0 0.5 1.0

0.1

0.3

0.5

J2 /J1

P
Q

FIG. 8. On the left, ground-state energy per dimer, in units of JD, from the bond-operator mean-field theory and exact diagonalization is
shown in this picture, while on the right, the mean-field parameters P and Q. In the shaded region of the right picture, the value of P is almost
zero.
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FIG. 9. This picture exhibits the energy dispersion curves ωk (in units of J1) with and without quartic interaction along the closed path
connected by the highest-symmetry points � = (0, 0), X = (π, 0), and M = (π/2, π/2) of the magnetic Brillouin zone shown in the middle.

or, equivalently, the intradimer spin-spin correlation gets the
value − 3

4 (Fig. 7) that corresponds to the eigenvalue of dimer
operator S1(r) · S2(r) corresponding to the spin-singlet state.
Moreover, at the same coupling ratio, the ground-state en-
ergy per dimer in units of JD yields the value − 3

4 (Fig. 8).
These mean-field results agree precisely with the numerical
diagonalization results. This excellent agreement confirms the
exactness of the dimer ground state |�〉 at J2/J1 = 1

2 . Further-
more, at this exchange ratio, the mean-field parameters P and
Q vanish (see on the right in Fig. 8), and the chemical potential
obtains the constant value −3JD/4 [from Eq. (26)].

The triplet excitations at the exact point are gapped and
localized, and these can be understood as follows. We get
an immediate excited state |�〉 when a single dimer of the
product state |�〉 excites from the spin-singlet state to a
spin-triplet state. This process results in the creation of a
single triplon quasiparticle. The energy cost to create a triplon,
〈�|H |�〉 − 〈�|H |�〉, is just JD as the spin triads associated
with the excited dimer are only affected. There are only four
affected triads, each of which contributes JD/4 to triplon ex-
citation energy. At the exact point, a triplon stays localized
on the excited dimer (see the flat curve in Fig. 9) as all
the spin triads except the four associated with the excited
dimer remain in the lowest spin state (Stot = 1

2 , of a triad).
The exact diagonalization results also exhibit that the first
excitation state is a spin-1 state. However, the values of the
singlet-triplet excitation gap differ quantitatively. In the diag-
onalization method, the gap comes close to 1.41 for a 6×4
cluster with periodic boundary conditions. Generically, the
bond-operator mean-field theory overestimates the spin-gap

value in frustrated systems, as other works also found similar
disagreements [64–67].

As we move away from the exact point, the singlet con-
densation amplitude on dimers falls off but always is nonzero
at all coupling ratios (see the inset picture in Fig. 7). In
harmonic approximation, the mean-field parameter s̄2 forms a
bell-shaped symmetric curve about the exact point whose tails
remain substantially off from zero even if we go far away from
the exact point. We can understand this from the structural
principles of the bond-operator mean-field theory, where we
assume that there is always a background of singlet dimers
and an ordered state emerges out of it when some dimers
go into triplet states. In nonharmonic approximation, below
the exact point, the square of singlet condensation amplitude
remains close to the respective curve of the harmonic approx-
imation. However, it sharply falls as one increases the ratio
J2/J1 beyond the exact point. This unusual behavior originates
because the mean-field parameter of particle-particle or hole-
hole type (that is, Q) decays much faster than the particle-hole
type parameter P (see the right subfigure in Fig. 8). As a
result, we get an asymmetric curve of s̄2 in the nonharmonic
approximation. We also observe that the particle-hole type
contribution stays almost negligible in a small vicinity about
the exact point, highlighted by the shaded region shown on the
right in Fig. 8.

In the dimer phase, the spin gap is nonzero and de-
creases almost linearly as we move away from the exact point
(Fig. 10). We can comprehend this linear drop by recasting the
dispersion expression as ωk = JDη

√
(1 + d1γk )(1 + d2γk ),

0.0 0.4 0.8 1.2
0.0

0.5

1.0

1.5

2.0

J2 /J1

sp
in

 g
ap

 (
k*

)

without quartic interaction
with quartic interaction
exact diagonalization (6x4)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

η

J2/J1

1 + d2

1 + d1

s̄2/η
|d2|

FIG. 10. The left figure displays the singlet-triplet excitation gap calculated from bond-operator mean-field theory and exact diagonaliza-
tion, while the right one shows plots for the variables involved in ωk = JDη

√
(1 + d1γk )(1 + d2γk ). The solid and dashed lines in the right

figure represent curves for harmonic and nonharmonic approximations, respectively.
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0.0 1.0 2.0 3.0 4.0
0
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0.2
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0.4

0.5
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0.8

J2 /J1

without quartic interaction
with quartic interaction

0.0 1.0 2.0
0

0.1

0.2

n t

J2 /J1

0.0 1.0 2.0 3.0 4.0
0.0
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0.3

M2( ,0)
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FIG. 11. Left: the staggered magnetization and triplon number density found from bond-operator mean-field theory are shown. Right: the
order parameters M2(k) and m2 from exact diagonalization are displayed; here, the solid and dashed lines, respectively, represent systems 6×4
and 4×4 with periodic boundary conditions.

where η = 1
4 − μ/JD, d1η = ρ+(P + Q), and d2η = 2ρ−s̄2 +

ρ+(P − Q) with ρ± = J2/J1 ± 1
2 . The k∗ vectors that define

the spin gap (or minimum energy dispersion) are � = (0, 0)
and X = (π, 0) for the dimer regions below and above the
exact point, respectively (see energy dispersion curves in the
Fig. 9). With these minimizing k vectors, the spin gap takes
the form �± = JDη

√
(1 ± d1)(1 ± d2), where plus and minus

signs, respectively, correspond to � and X . In the harmonic
approximation, d1 vanishes and d2 = 2ρ−s̄2/η, and, close to
the exact point, the leading correction term in the expansion
of

√
1 ± d2 is linear in J2/J1 as s̄2 ∼ 1 and also η ∼ 1 [see

Eq. (26)]. As one goes away from the exact point, the |d2|
initially increases linearly with J2/J1 and then saturates to
unity. The decrement in s̄2 is more rapid than the increment in
the chemical potential. As a result, the ratio s̄2/η falls off on
either side of the exact point (see Fig. 10). This quadratic fall
compensates for the linear gain in |ρ−|, so the |d2| remains less
than unity in the dimer region. The higher-order correction
terms in the series of

√
1 ± d2, therefore, do not contribute

significantly in the entire dimer phase, and so the
√

1 ± d2

decays linearly with J2/J1 in the gapped phase. Moreover, the
expansion of η has leading correction term quadratic in J2/J1,
that is, η = 1 + O(J2/J1)2 (see Fig. 10). Thus, the product of
the series of η and

√
1 ± d2 gives nearly a linear decline in the

spin gap. Using Eq. (26), one may find an analytical expansion
of η in terms of J2/J1, and we expect a rigor calculation here
that involves the complete elliptic integrals as done in the
case of spin ladders [68]. Moreover, we can also understand
linearity in the spin gap for the nonharmonic case, although
more intricacies are involved here due to the mean-field pa-
rameters P and Q. One notices that the spin-gap curve is
symmetric about the exact point in harmonic approximation
as in singlet condensation amplitude and ground-state energy.
In contrast, the spin-gap curve is asymmetric in nonharmonic
approximation due to a steep fall in Q above the exact point
(see Fig. 8).

In the ordered phases, we calculate and analyze differ-
ent order parameters designed to detect the robustness of
an antiferromagnetic state. The spin-gap data and dispersion
curves calculated from the bond-operator mean-field theory
indicate two antiferromagnetic orders with � and X wave
vectors. These vectors are associated with the staggered dimer

lattice (Fig. 1) and the sublattice labeling. We use triplon
number density and staggered magnetization (ms = s̄

√
nt , see

Ref. [61] for derivation) to measure the strength of antiferro-
magnetic orders. These order parameters are shown on the left
in Fig. 11. The wave vectors � and X correspond to the (π, π )
and (π, 0) ordering wave vectors for a square lattice. The
Néel and stripe phases shown in Fig. 12 are associated with
the ordering vectors. In the harmonic approximation, the Néel
phase emerges as J2/J1 goes below −0.35, and the stripe (or
collinear) phase starts developing from J2/J1 = 1.35. How-
ever, the nonharmonic approximation extends the domain of
the stripe phase in the phase diagram. Recently, a large-scale
quantum Monte Carlo study of a spatially anisotropic Heisen-
berg antiferromagnet on the honeycomb lattice has been done
[47]. This research suggests that our model should be in the
staggered dimer phase if one turns off the next-neighbor cou-
pling J2. Our bond-operator mean-field results indeed agree
with this prediction.

We also employ numerical exact diagonalization on fi-
nite clusters to inspect the legitimacy of the mean-field
outcomes. There are two types of antiferromagnetic order
parameters available. In one construction, one defines m2 =

1
N 2

∑
i, j |〈Si · S j〉|, where N is the total number of lattice sites

(see Ref. [69]). It measures the firmness or weakness of an an-
tiferromagnetic order but does not identify the ordering wave
vector. In other design, we define k-dependent magnetic sus-
ceptibility as M2(k) = 1

N (N+2)

∑
i, j〈Si · S j〉eik·(xi−x j ), where

xi is the position of ith spin (see Ref. [70]). We show these
order parameters for Néel and stripe phases on the right in

(Néel Phase) (Dimer Phase) (Stripe Phase)
g

gc1 gc2g∗c2

FIG. 12. Quantum phase diagram. Filled and empty small circles
denote the sublattices of a square lattice. In our mean-field calcula-
tion, we label 1 to filled circles and 2 to empty ones. The values of
critical points are gc1 ≈ −0.35, gc2 ≈ 1.35, and g∗

c2
≈ 1.07.
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x̂

ŷ

ẑ
(z = 0 plane) (y = 0 plane)

JD J1 J2

FIG. 13. Second picture from the left represents a three-dimensional extension of the model (1), where the next neighbor J2 bonds are not
drawn for clarity. The last two pictures represent lattice layers in xy and zx planes. The yz plane is not shown explicitly, as it is without dimers.
The first picture fixes the coordinate axes.

Fig. 11. The M2(π, π ) and M2(π, 0) are robust in Néel and
stripe phases, respectively. At the same time, m2 gets high
values in both the phases. We also calculate these order pa-
rameters with open boundary conditions along the vertical
direction for the 4×7 system. Again, Néel and stripe phases
prevail as one goes far away from the exact point. Moreover,
the exact diagonalization data suggest that the exact point is
paramagnetic in the thermodynamic limit.

V. CONCLUSIONS

In this work, we introduced a spatially anisotropic Heisen-
berg magnet with bilinear nearest- and next-nearest-neighbor
interactions, which has an exact staggered dimer ground state
at J2/J1 = 1

2 . Here, the nearest exchange interactions are
antiferromagnetic, while the next-nearest exchange interac-
tions may be either ferromagnetic or antiferromagnetic. We
performed the bond-operator mean-field formulation and nu-
merical diagonalization of the dimerized magnet. At the exact
point, these analyses agree with the exact results. According
to the mean-field theory, the magnet goes into magnetically
ordered phases (Néel and stripe) through continuous phase
transitions as one moves away on either side of the exact point.
Mean-field theory, including the higher-order triplet terms,
slightly modifies the phase boundary for the stripe phase.
Exact diagonalization results also agree with the nature of
dimer and ordered phases.

The above model can also be extended in three dimensions
but with a different solvable point for an exact staggered dimer
ground state. We show such a possibility in Fig. 13. Here, the
two-dimensional staggered dimer lattices of the type shown

in Fig. 1 are stacked directly above one another along the z
axis such that all even layers (imagine infinite in extent) are
translated by the same aŷ amount. The lattice planes normal
to the y and z axes have dimers. However, the lattice planes
perpendicular to the x axis are without dimers and form an
isotropic Heisenberg model with only nearest-neighbor inter-
actions on square lattices. We expect that this proposed model
on the three-dimensional lattice with exchange interactions
JD, J1, J2 will have a staggered dimer ground state when
one sets JD = 4J1 and J2/J1 = 1

2 . It is because the number
of triangles that share the same dimer becomes double the
corresponding value in the two-dimensional model 1, while
nothing changes for nondimer bonds.

In the last many years, the exact dimer models have
renewed interest for researchers due to theoretical and tech-
nological advancements. In that regard, the proposed bilinear
models can be helpful in many ways. One immediate inves-
tigation, through more accurate and reliable tools, could be
to examine the nature of phase transition. Whether the tran-
sitions fall in the Landau-Ginzburg-Wilson paradigm or are
of the deconfined quantum criticality class, future probes can
thoroughly address such fundamental questions. Lastly, we
emphasize that several similar models can also be designed on
the bigger unit cells. We will address a few in separate papers.
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