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Manipulating the relaxation time of boundary-dissipative systems through bond dissipation
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Relaxation time plays a crucial role in describing the relaxation processes of quantum systems. We study the
effect of a type of bond dissipation on the relaxation time of boundary dissipative systems and find that it can
change the scaling of the relaxation time Tc ∼ Lz from z = 3 to a value significantly less than 3. We further reveal
that the reason such bond dissipation can significantly reduce the relaxation time is that it can selectively target
specific states. For Anderson-localized systems, the scaling behavior of the relaxation time changes from an
exponential form to a power-law form as the system size varies. This is because the bond dissipation we consider
can not only select specific states but can also disrupt the localization properties. Our work reveals that in open
systems one type of dissipation can be used to regulate the effects produced by another type of dissipation.

DOI: 10.1103/PhysRevB.110.104305

I. INTRODUCTION

Relaxation processes of quantum systems interacting with
their environments are among the most foundational nonequi-
librium phenomena. A piece of material in contact with baths
at its two boundaries can reach a nonequilibrium steady
state, corresponding to the simplest scenario of nonequilib-
rium systems [1]. In recent years, with the development of
experimental techniques providing us with various highly
controllable platforms to study the dynamics of open quantum
systems [2–13], significant advances have also been made
in the study of quantum systems coupled to different baths
at their edges [1,14–25]. A pivotal inquiry here pertains to
determining the timescale for a boundary-dissipative system
to attain a steady state. The Liouvillian gap remains an im-
portant quantity for characterizing the relaxation time. Except
in some special cases [25–31], the relaxation timescale can
usually be estimated by the inverse of the Liouvillian gap
[25,31–35]. Previous results have shown that, for various
boundary-dissipated systems, the Liouvillian gap �g scales
with the system length L as �g ∼ L−3 for integrable systems
[15,25,36–39] and �g ∼ e−L/l for Anderson localization (AL)
systems [32,40], with l being the localization length. Conse-
quently, the corresponding scalings of the relaxation time are
Tc ∼ L3 and Tc ∼ eL/l , respectively.

In this work, we investigate how to manipulate the relax-
ation time of a quantum system with boundary dissipation.
This issue holds significant relevance in applications, as regu-
lating the relaxation time is essential for transport properties,
quantum control, and information processing. Apart from the
particle number decay at the boundaries, we introduce a type
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of bond dissipation that can be realized experimentally. We
find that it can change the scaling of the relaxation time
Tc ∼ Lz from z = 3 to a value of z significantly less than 3.
In other words, it can significantly reduce the relaxation time,
allowing the system to reach equilibrium more quickly. When
this type of dissipation is applied to a localized system with
boundary dissipation, the scaling behavior of the relaxation
time changes from an exponential form to a power-law form as
the system size varies. We further elucidate the mechanism by
which this bond dissipation reduces the relaxation time. Since
this type of dissipation can be experimentally realized, it can
be used to regulate the relaxation time of boundary-dissipative
systems.

II. MODEL AND RESULTS

We consider the simplest one-dimensional model with only
nearest-neighbor hopping, whose Hamiltonian is

H0 = −J
L−1∑
m=1

(c†
m+1cm + c†

mcm+1), (1)

where cm (c†
m) is the annihilation (creation) operator for a

particle at site m, and J is the hopping amplitude between
neighboring sites, which is set to 1 as the unit energy. We
consider a boundary-dissipative system where the particle-
loss operator acts only on the first and last sites of the lattice.
This can be described by a purely imaginary on-site potential,

Vnh = −iγ (c†
1c1 + c†

LcL ). (2)

We then introduce bond dissipation acting on a pair of sites
m and m + �, described by [3,41–48]

Dm = (c†
m + ac†

m+�)(cm − acm+�), (3)
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where a = 1 or −1, � = 1 or 2, and m = 1, . . . , L − �. This
type of dissipation can be realized through cold atoms in opti-
cal superlattices [3,41–44] or through arrays of superconduct-
ing microwave resonators [45,46]. This operator obviously
does not change the particle number, but it does alter the
relative phase between this pair of sites separated by a distance
�. They are synchronized from an out-of-phase mode to an in-
phase mode (or vice versa) by this operator when a is set to 1
(or −1).

The dissipative dynamics of the density matrix ρ(t ) is
described by the Lindblad master equation [49,50]

dρ(t )

dt
= L[ρ(t )] = −i[Htotρ(t ) − ρ(t )H†

tot] + D[ρ(t )], (4)

where the Hamiltonian Htot = H0 + Vnh is non-Hermitian, L is
called the Lindbladian superoperator, and D is the dissipation
superoperator

D[ρ(t )] = �
∑

m

[
DmρD†

m − 1

2
{D†

mDm, ρ}
]
, (5)

which contains a set of jump operators Dm as shown in
Eq. (3), all with the same strength �. Strictly speaking, Eq. (4)
neglects the terms c1ρc†

1 and cLρc†
L, which affect the oc-

cupation of the vacuum state and the correlation between
the single-particle state and the vacuum state. However, this
does not alter the results in the dynamics of the particle,
which is the only aspect we are interested in here (see details
in Appendix A). We set � = 1 and the boundary dissipa-
tion strength γ = 0.5 without loss of generality. Since L is
time-independent, one can express ρ(t ) = eLtρ(0). In our
numerical simulation, we adopt the fourth-order Runge-Kutta
method to integrate the master equation and thereby calculate
the time-evolution superoperator eLt .

To visually observe the impact of the bond dissipation Dm

on the relaxation time of the boundary-dissipative system,
we first examine the change in particle occupancy over time.
A particle is initially placed at the center of the system,
i.e., ρ(0) = | L+1

2 〉〈 L+1
2 | (let L be odd). For any time t , we

can record the occupation probability ρmm(t ) = 〈m|ρ(t )|m〉
of every site m, as shown in Figs. 1(a1)–1(c1), and cal-
culate the total number of particles N (t ) = ∑

m ρmm(t ), as
shown in Figs. 1(a2)–1(c2). The particle will eventually es-
cape the lattice, and all ρmm as well as N will approach 0 as
time passes, regardless of whether there is bond dissipation
[Figs. 1(b1), 1(b2), 1(c1), and 1(c2)] or not [Figs. 1(a1) and
1(a2)]. However, bond dissipation does accelerate the particle-
loss process. To quantitatively characterize this acceleration
effect, we use a cutoff of total particle number N = 10−7;
that is, we evaluate the system’s relaxation time Tc when
N = 10−7. From Figs. 1(a2), 1(b2), and 1(c2), it can be seen
that, compared with the case without bond dissipation, when
the dissipation with � = 1 and a = 1 (� = 2 and a = −1) is
added, the relaxation time Tc is reduced to approximately 1/20
(1/800) of its original value.

Next, we study the relationship between the relaxation time
Tc and the system size. Figure 2 shows that regardless of
the presence of bond dissipation, the relationship between the
relaxation time and the system size for the boundary dissipa-
tive system can be expressed as Tc ∼ Lz. When there is no
bond dissipation, z is approximately 2.86, which is consistent

FIG. 1. The occupation probability ρmm of each lattice site [pan-
els (a1)–(c1)] and the total number of particles N [panels (a2)–(c2)]
change over time for � = 0 [panels (a1) and (a2)]; � = 1, � = 1, and
a = 1 [panels (b1) and (b2)]; and � = 1, � = 2, and a = −1 [panels
(c1) and (c2)]. The initial state is set at the center of the system, with
a fixed size of L = 101. Tc corresponds to the time when N decreases
to 10−7.

with the result z ≈ 3 within the error range [51]. However,
when bond dissipation is present, z is significantly less than
2.86, and the magnitude of z also clearly depends on the
specific form of bond dissipation, i.e., on � and a. We observe

FIG. 2. The relaxation time Tc varies with size L. Numerical
fitting results: Tc ∼ L2.86 if � = 0; Tc ∼ L1.9 if � = 1 and a = ±1;
Tc ∼ L0.94 if � = 2 and a = −1; and Tc ∼ L1.55 if � = 2 and a = 1.
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FIG. 3. (a) The absolute value of the imaginary part of the eigen-
values with the smallest real part (ε = 0) and the middle real part
(ε = 0.5) of Htot varies with the system size L. (b) Inverse scaling
coefficient α of � ∝ 1/Lα for all ε. (c) Without and with bond
dissipation, the change of the occupation rate P over time t . (d) A
schematic diagram of the physical effects generated by bond dissipa-
tion with � = 2.

that, when � = 1, the value of z is approximately the same for
a = 1 and a = −1, around 1.9. When � = 2 and a = −1, z
is minimized, indicating that in this case the reduction effect
of bond dissipation on the relaxation time is most significant,
which is consistent with the results in Fig. 1.

We now analyze the reason why the particle number con-
serving the bond dissipation Dm can significantly reduce the
relaxation time of the boundary-dissipative system. The relax-
ation time Tc here is inversely proportional to the Liouvillian
spectral gap �g, which is defined as the minimum absolute
value of the real part of the nonzero eigenvalues of the Li-
ouvillian superoperator. Without bond dissipation, i.e., when
� = 0, �g is twice the smallest modulus of the imaginary
part of the nonzero eigenvalues of the total Hamiltonian Htot.
We can sort the eigenlevels of Htot in ascending order of
their real parts, which are mainly determined by the eigen-
levels of H0 since Vnh can be considered a perturbative term
when L is sufficiently large. The index of the energy mode
is denoted as nE , and then we introduce a size-independent
quantity, ε = (nE − 1)/(L − 1). Clearly, the smallest, middle,
and largest real parts of the eigenvalues of Htot correspond to
ε = 0, ε = 0.5, and ε = 1, respectively.

We examine the absolute value of the imaginary part of
each eigenvalue, denoted as �, as the system size changes.
Figure 3(a) shows � ∝ 1/L3 when the corresponding real
part is the smallest and � ∝ 1/L when the corresponding
real part is in the middle of the spectrum. It is easy to verify
numerically that the relationship between the absolute value
of the imaginary part � of all eigenvalues and the system
size satisfies � ∝ 1/Lα . We show the variation of α with ε

in Fig. 3(b). It can be seen that α has its highest value of 3
at the smallest and largest real parts (ε = 0 and ε = 1) and
its lowest value of 1 for most ε within (0, 1), except for a

few levels close to the bottom (top) of the eigenlevels of Htot .
This creates a cup shape with a wide, flat bottom, as shown in
Fig. 3(b). It can be conjectured that the previously discovered
Tc ∼ L3 scaling behavior mainly originates from the states at
ε = 0 and ε = 1. This is also consistent with Fig. 3(a), where
� at ε = 0 is significantly smaller than the value at ε = 0.5,
and the relaxation time is determined by the smallest �. To
further confirm this point, we introduce

P(t ) = (〈ψ1|ρ(t )|ψ1〉 + 〈ψL|ρ(t )|ψL〉)/Trρ(t ). (6)

It describes the ratio of the sum of the particle numbers in the
state ψ1 at ε = 0 and the state ψL at ε = 1 to the total particle
number at any time t [52]. As seen in Fig. 3(c), when there is
no bond dissipation (i.e., � = 0), after a certain period of time,
all states except ψ1 and ψL dissipate, and P is approximately
equal to 1. This proves that the relaxation time is determined
by the states at ε = 0 and ε = 1, hence Tc ∼ L3. When bond
dissipation with � = 2 and a = −1 is added, P quickly be-
comes 0. Therefore, the states at ε = 0 and ε = 1 do not
determine its boundary dissipation, which explains its scaling
behavior Tc ∼ Lz with z ≈ 1. When the bond dissipation with
other parameters is added, P eventually stabilizes at a value
between 0 and 1. Therefore, the relaxation time is influenced
by the states at ε = 0 and ε = 1, but not solely determined
by them. Consequently, the scaling behavior of the relaxation
time with size is given by Tc ∼ Lz, where z lies between
1 and 3.

The behavior of P over time shown in Fig. 3(c) can
be understood through the influence of bond dissipation
on the eigenstates of H0. Its eigenvalue is given by
E = −2J cos(k) and the wave function is eikm, with k =
2πn/L(n ∈ (−L/2, L/2]), and the phase difference between
the next-nearest-neighbor (NNN) lattice sites is �φ = 2k. For
the states at the bottom (k = 0) and top (k = π ) of the energy
band, the NNN sites are in phase. For the states in the middle
of the energy band (k = π/2), the NNN sites are out of phase.
Therefore, when a = −1, this bond dissipation annihilates the
in-phase states and produces out-of-phase states, as shown
by the red line in Fig. 3(d). This results in only the states
near the middle of the spectrum participating in the boundary
dissipation behavior, as indicated by P = 0 in Fig. 3(c). When
a = 1, this bond dissipation annihilates the out-of-phase states
and produces in-phase states, as shown by the green line in
Fig. 3(d). Therefore, P is a nonzero value, but it is also never
equal to 1. To clearly illustrate this, we set the boundary
dissipation strength γ = 0 and examine the regulatory effect
of bond dissipation in the eigenbasis of H0. We can calculate
the eigenstates and their corresponding eigenvalues of the
Liouvillian superoperator L. The steady state ρs, defined as
ρs = limt→∞ ρ(t ), corresponds to the zero eigenvalue, i.e.,
L[ρs] = 0. We express ρs in the eigenbasis of H0, as shown
in Fig. 4. The manipulation effects of the bond dissipation
with different parameters � and a are obvious here. From
Fig. 4(a), we observe that the bond dissipation with � = 2
and a = −1 indeed drives the steady state to primarily occupy
the middle of the energy spectrum, consistent with the results
shown in Figs. 3(c) and 3(d). When � = 2 and a = 1, the
steady state predominantly occupies the states at the edges
of the energy spectrum, which is also consistent with the
discussion in Figs. 3(c) and 3(d). We note that the steady state
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FIG. 4. In the eigenbasis of the Hamiltonian H0, the absolute
values of the density matrix elements ρs

mn for steady states with
the bond dissipation (a) � = 2 and a = −1, (b) � = 2 and a = 1,
(c) � = 1 and a = −1, and (d) � = 1 and a = 1. Here L = 101,
γ = 0, � = 1, and m and n are the indices of the eigenstates of H0.

occupies many states, not just the highest and lowest ones,
and therefore, for the case of � = 2 and a = 1, P in Fig. 3(c)
is not equal to 1. Similarly, for � = 1 and a = ±1, although
bond dissipation drives the steady state to occupy the edges
of the energy spectrum, it still includes many states, as shown
in Figs. 4(c) and 4(d). Thus, the sum of the proportions of the
lowest and highest states is not equal to 1 [Fig. 3(c)]. Since the
relaxation time of boundary dissipation is much longer than
the time for the system to reach a steady state due to bond dis-
sipation, it can be assumed that bond dissipation has already
distributed the states before the boundary dissipation process
begins. The distribution of states is such that the proportion of
each state is the same as the steady-state distribution caused by
bond dissipation when γ = 0. Although boundary dissipation
reduces the total number of particles, this proportion remains
constant. Overall, the particles in the states with α = 1 are
more easily dissipated, but this bond dissipation forces the
proportions of each state to remain constant. This leads to par-
ticles from the α = 3 states transitioning into the α = 1 states
to maintain the constant proportions, as shown in Fig. 3(c).
This, in turn, results in the shortening of the relaxation time.

III. IN THE PRESENCE OF AL

Finally, we consider the impact of bond dissipation on
the relaxation time of boundary-dissipative systems in the
presence of AL. AL can be induced by either a random on-site
potential,

Vr =
L∑

m=1

Vmc†
mcm, (7)

FIG. 5. (a) The change of relaxation time with system size both
with and without bond dissipation. When � = 0, to smooth the data,
we averaged over 1000 samples for both disordered and quasiperi-
odic systems. For the quasiperiodic system, each sample corresponds
to an initial phase θ . When � 
= 0, taking multiple samples has
little effect on the results. When � = 1, the relationship between Tc

and L takes a power-law form, with Tc ∼ Lz, where z ≈ 1.78 when
W = 6 and z ≈ 1.93 when V = 6. (b) The evolution of σ over time.
κ ≈ 0.48 for V = 6 and � = 1, and κ ≈ 0.52 for W = 6 and � = 1.
Here we take β = (

√
5 − 1)/2 and the bond dissipation with � = 1

and a = 1. The result is similar when β, �, and a take other values.

where Vm is uniformly distributed in [−W/2,W/2] with W
being the disorder strength, or a quasiperiodic potential,

Vqp = V
L∑

m=1

cos(2πβm + θ )c†
mcm, (8)

where β is an irrational number, and V and θ are the strength
and initial phase of the quasiperiodic potential, respectively.
H = H0 + Vqp is the Aubry-André model [53], which exhibits
an Anderson transition at V/J = 2. When V/J > 2 (V/J < 2),
all eigenstates are localized (extended). When the added po-
tential is random disorder, i.e., Vqp is replaced with Vr, any
weak disorder strength W can cause the system to become lo-
calized. In the absence of bond dissipation, the relaxation time
undergoes an exponential scaling relation with the change in
system size Tc ∝ eηL in the AL phase [32,40], as shown in
Fig. 4(a). This is because an electron localized within the bulk
of the lattice has an exponentially small chance, relative to L,
of reaching the particle-loss channel at the lattice boundaries.
When the bond dissipation Dm is introduced, we observe that
the scaling behavior of the relaxation time changes to a power-
law form as the system size varies [Fig. 5(a)]. This cannot be
explained by the previous property of Dm selectively targeting
specific states, because now all states are localized in the
absence of Dm. This indicates that this bond dissipation may
disrupt the localized nature of the states. To verify this, we set
the strength of the boundary dissipation γ = 0 and study the
impact of bond dissipation on the wave-packet dynamics of
this localized system. A common quantity used to describe
the dynamics of wave-packet evolution is the mean square
displacement [54–57]

σ (t ) =
√∑

m

[m − (L + 1)/2]2ρmm(t ), (9)

which measures the width of the wave packet initially located
at the center of the system, with L taken as an odd number.
After a period of time, the change of σ over time can be
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expressed as σ ∼ tκ , where the dynamical index κ corre-
sponds to different types of diffusion: κ = 0, κ < 1/2, κ ≈
1/2, κ > 1/2, and κ = 1 for localized, subdiffusive, normal
diffusive, superdiffusive, and ballistic diffusion, respectively.
From Fig. 5(b), when there is no bond dissipation, the sys-
tem is localized, but with the addition of bond dissipation,
the wave-packet evolution approaches normal diffusion. This
explains why the scaling relation of the relaxation time with
system size changes from an exponential form to a power-
law form. Additionally, for the quasiperiodic system and the
random disorder system, κ is approximately 0.48 and 0.52,
respectively. This means that diffusion in the disordered sys-
tem is slightly faster, leading to a shorter time to reach a
steady state. As a result, the value of z in the relationship
Tc ∼ Lz for the quasiperiodic system [z ≈ 1.93 in Fig. 5(a)]
is slightly larger than that for the disordered system [z ≈ 1.87
in Fig. 5(c)].

IV. CONCLUSION AND DISCUSSION

We have investigated the impact of bond dissipation shown
in Eq. (3) on the relaxation time of boundary-dissipative sys-
tems and found that bond dissipation can significantly reduce
the relaxation time. The scaling of the relaxation time Tc ∼
Lz changes from z = 3 to a value significantly less than 3.
This is because bond dissipation can selectively target spe-
cific states, thereby eliminating or reducing the influence of
the states with the longest relaxation times. For Anderson-
localized systems, bond dissipation can change the scaling
behavior of the relaxation time from an exponential form to
a power-law form as the system size varies. This is because
bond dissipation disrupts the localization properties of the
system, making it more akin to normal diffusive behavior.
Our results highlight the significant role of bond dissipa-
tion in manipulating the relaxation processes of quantum
systems.

For simplicity, we mainly discussed the case where both
boundaries are particle-loss channels. If one side is gain and
the other is loss, the results we presented regarding the impact
of bond dissipation on the relaxation time still apply. Addi-
tionally, we primarily discussed the case where the boundary
dissipation strength γ < 1. In Appendix B, we present the
results for γ = 1 and γ > 1. We can observe that states at the
center of the energy spectrum seem to exhibit a phase transi-
tionlike behavior when γ = 1. This change can be measured
through the bond dissipation with � = 2 and a = −1. Our
results also introduce some interesting questions worthy of
further investigation. For instance, how does bond dissipation
affect the relaxation time of boundary-dissipative systems in
the presence of interactions? How does this impact change
in the presence of many-body localization? Can this bond
dissipation also regulate the relaxation time in systems with
other types of dissipation?
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APPENDIX A: DISCUSSIONS ON EQ. (4)

The evolution of a quantum state in a Markovian reservoir
is described by the Lindblad equation

dρ

dt
= −i[H, ρ] +

∑
μ∈(bulk,boundary)

(2LμρL†
μ − {L†

μLμ, ρ}).

(A1)
In this system, there are two types of reservoirs: the bulk
(bond) dissipation, as in Eq. (3) in the main text, and the
boundary dissipation:

L1 = √
γ c1, L2 = √

γ cL. (A2)

Here, the bulk dissipation does not break particle number con-
servation, while the boundary dissipation describes particle
loss. In the long-time limit, all particles are absorbed into the
boundary reservoir.

In this work, we focus on the single-particle relaxation
dynamics. The Hilbert space is composed of single-particle
states | j〉 = c†

j |0〉, with j = 1, 2, . . . , L, and the vacuum state

|0〉. By incorporating the terms −c†
1c1ρ − c†

LcLρ − ρc†
1c1 −

ρc†
LcL into the effective Hamiltonian Htot = H0 − iγ c†

1c1 −
iγ c†

LcL, the Lindblad equation becomes

dρ

dt
= − i(Htotρ − ρH†

tot ) +
∑

μ∈bulk

(2LμρL†
μ

− {L†
μLμ, ρ}) + D̃(ρ), (A3)

where D̃(ρ) = 2γ c1ρc†
1 + 2γ cLρc†

L. In our work, we neglect
the term D̃(ρ). The single-particle Hilbert space {| j〉} is not
fixed with the vacuum state |0〉, and the total particle number
is the trace of the density matrix, N = Tr(ρ). The term D̃(ρ)
will bring the single-particle states |1〉 and |L〉 to the vacuum
state, generating the occupation of the vacuum state and the
correlation between the single-particle state and the vacuum
state. Since we are only interested in the dynamics of the
particle, the occupation of the vacuum state and the corre-
lation between the single-particle and vacuum states are not
important. Therefore, we assume that the boundary particle
loss is described by a non-Hermitian Hamiltonian. Of course,
directly using Eqs. (A2) and (A3) for the calculations would
also yield the results in our paper, but some discussions would
become less convenient. In our main text, when the strength
of the bond dissipation � = 0, the Liouvillian spectral gap is
twice the smallest absolute value of the imaginary part of the
nonzero eigenvalues of the total Hamiltonian Htot. Therefore,
in the discussions related to Fig. 3, we primarily base our anal-
ysis on Htot. Because the non-Hermitian term Vnh in Htot only
acts on the two edge sites, it can be considered a perturbation,
and the real part of Htot is determined by H0. Based on this, we
sort the real parts of the eigenvalues of Htot in ascending order
and then analyze the relationship between the absolute values
of the imaginary parts of each eigenvalue and the system
size. This allows us to understand the influence of different
states on the relaxation time in the spectrum and, in turn, the
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FIG. 6. Scaling of the absolute � of the imaginary part of eigen-
levels at ε = 0 and ε = 0.5 of the total Hamitonian Htot for (a1)
γ = 1 and (b1) γ = 2; and inverse scaling coefficient α of � ∝ 1/Lα

versus ε for (a2) γ = 1 and (b2) γ = 2.

dissipation process, as well as why bond dissipation accel-
erates this process. If we were to consider D̃, this analysis
would become much more complicated. Therefore, given that

D̃ does not alter our results, we do not include this term in the
main text.

APPENDIX B: BOUNDARY DISSIPATION
STRENGTH γ � 1

In the main text, we choose the particle-loss strength γ =
0.5 to avoid the case where γ � 1. When γ = 1, the depen-
dence of the absolute value of the imaginary part at ε = 0.5 on
the system size follows � ∼ 1/Lα , with α being less than 1,
approximately 0.87 [see Fig. 6(a1)]. By comparing Fig. 6(a2)
with Fig. 3(b) in the main text, it can be seen that only α

at ε = 0.5 decreases, while the rest remains the same as for
γ < 1. When γ > 1, the dependence of the absolute value of
the imaginary part at ε = 0.5 on the system size no longer
follows � ∼ 1/Lα , but instead exhibits large oscillations [see
Fig. 6(b1)]. These oscillations occur only at ε = 0.5 [see
Fig. 6(b2)]. We emphasize that, when γ � 1, the change in the
absolute value of the imaginary part at ε = 0.5 is difficult to
detect without bond dissipation because the relaxation time is
mainly determined by the eigenvalues near ε = 0 and ε = 1.
Therefore, the change caused by γ does not affect the scaling
relationship Tc ∼ L3. However, when bond dissipation with
� = 2 and a = −1 is introduced, the system’s relaxation time
is primarily determined by the eigenvalues near ε = 0.5. At
this point, the changes brought by γ � 1 can be detected.
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[25] M. Žnidarič, Relaxation times of dissipative many-body quan-
tum systems, Phys. Rev. E 92, 042143 (2015).

[26] T. Mori, Metastability associated with many-body explosion of
eigenmode expansion coefficients, Phys. Rev. Res. 3, 043137
(2021).
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