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Real-space thermalization of locally driven quantum magnets
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The study of thermalization and its breakdown in isolated systems has led to a deeper understanding of
nonequilibrium quantum states and their dependence on initial conditions. The role of initial conditions is promi-
nently highlighted by the existence of quantum many-body scars, special athermal states with an underlying
effective superspin structure, embedded in an otherwise chaotic many-body spectrum. Spin Heisenberg and XXZ
models and their variants in one and higher dimension have been shown to host exact quantum many-body scars,
exhibiting perfect revivals of spin helix states that are realizable in synthetic and condensed matter systems.
Motivated by these advances, we propose experimentally accessible, local, time-dependent protocols to explore
the spatial thermalization profile and highlight how different parts of the system thermalize and affect the fate
of the superspin. We identify distinct parametric regimes for the ferromagnetic (X -polarized) initial state based
on the interplay between the driven spin and the rest, including local athermal behavior where the driven spin
effectively decouples, acting like a “cold” spot while being instrumental in heating up the other spins. We also
identify parameter regimes where the superspin remains resilient to local driving for long timescales. We develop
a real- and Floquet-space picture that explains our numerical observations, and make predictions that can be
tested in various experimental setups.
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I. INTRODUCTION

In a set of pioneering papers [1–4] the question of thermal-
ization of isolated quantum systems was posed sharply and
addressed. It is now understood that generic isolated quantum
systems satisfy the eigenstate thermalization hypothesis [5].
Broadly said, local observables are insensitive to the choice
of eigenstate at a given energy density and the system is
“self-thermal,” i.e., it acts as its own heat bath. However, there
are important exceptions, these include emergent integrable
systems, for example, many-body localized systems [6–10],
and partially integrable systems or those with “quantum scars”
[11–14]. The search for quantum many-body scars (QMBS),
athermal states embedded in the spectra of otherwise chaotic
systems, has seen recent activity [13–36] because of fun-
damental interest and due to proposals for using them for
quantum sensing [35,37]. Though not expected for generic
interacting systems [38], QMBS states do occur in realistic sit-
uations, especially when the Hilbert space is fragmented due
to kinetic constraints [24,39–42]. In a time-dependent setting,
the presence of a global periodic drive can either desta-
bilize or stabilize prethermal/athermal behavior associated
with QMBS [43–45], for example, under certain conditions
the system can exhibit slow thermalization and dynamical
freezing [46,47].

In previous work, some of us identified the XXZ model
as a simple platform for realizing QMBS and Hilbert-space
fragmentation (HSF) [23,24]. The model shares a common
unifying theme with other models of scars, including the
widely studied PXP one [14]; there is a “superspin” whose
precession is responsible for revivals in various numerically
computed and experimentally measured physical observables.

Such a superspin can be realized as a ferromagnetic state
embedded in the middle of the many-body energy spectrum
[the exact SU(2) degeneracy being split by a magnetic field]
by “staggering” the XXZ model, i.e., by alternating the sign
of interactions on different geometric motifs [23]. In one
dimension this translates to a Hamiltonian with alternating
nearest-neighbor ferromagnetic and antiferromagnetic inter-
actions. When the spins are prepared in a collective coherent
state, for example in the |X 〉 ≡ �i

⊗ |→〉i state, and al-
lowed to time evolve, their dynamics corresponds to that of
a superspin. The interactions between the spins are rendered
completely ineffective by the choice of initial conditions and
there is no thermalization [23]. However, this is a fine-tuned
situation and one should generically expect thermalization
when the system is perturbed.

The question we ask here is as follows: How do QMBS
thermalize when subjected to time-dependent fields? Our
motivation stems from the aim of expanding the existing
dichotomy of classifying a system as either thermal or ather-
mal. After all, could it be that there are parts of the system
that are athermal (or prethermal on long timescales) while
the rest have thermalized? We explore this question in the
context of a periodic, local drive [48–50], and demonstrate
the crossover between regimes of weak HSF and quantum
scarring where the system locally remains athermal (on the
timescale of the observation) due to the interplay between the
dynamics of the driven spin and the rest of the system. We
investigate two time-dependent potentials, schematically de-
picted in Figs. 1(a) and 1(b) whose similarities and differences
we will highlight, especially in the context of the effective
Floquet Hamiltonian they realize. In both cases the Hamilto-
nian for a N site spin-1/2 chain is given by H = H0 + HD(t ),
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FIG. 1. Schematic of (a) local kick protocols and (b) the system
studied in this work. The alternating (staggered) interactions place
the ferromagnetic state in the middle of the spectrum. For the local
delta kick, we show two characteristic behaviors for a N = 51 site
system with open boundary conditions with the kick at the central
site (labelled by K). Panels (c) and (d) show 〈Sx

i 〉 and (e) and (f) the
von Neumann entanglement entropy of representative sites. Results
are for J = 1, h = 0.1, τ/2π = 0.13 and [(c) and (e)] φk/2π = 0.1
and [(d) and (f)] φk/2π = 0.5. The driven site thermalizes for weak
kicks, for stronger kicks, it remains athermal on the timescale of
observation. The numerical simulations were performed with TEBD,
as discussed in the text. Labels L and R refer to the leftmost and
rightmost edges of the chain respectively.

where

H0 ≡ J
N∑

i=1

(−1)iSi · Si+1 − h
N∑

i=1

Sz
i (1)

and HD(t ) is a time-dependent drive term. Si ≡ (Sx
i , Sy

i , Sz
i )

refer to the usual spin-1/2 operators on site i, J (set to 1
throughout) is the alternating (staggered) ferro- and antifer-
romagnetic interaction strength and h is the strength of the
magnetic (Zeeman) field. i + 1 is taken modulo N for peri-
odic boundary conditions. For open boundary conditions the
index i on the first sum runs from 1 to N − 1. Unlike the
(Bethe ansatz) integrable uniform Heisenberg chain [51], H0

is known to be nonintegrable [52]. Its study, primarily in the
context of its ground-state properties, has a long history due
to its relevance to Haldane spin chains [53–55].

For the first “delta kick” protocol, the drive term is

HD(t ) ≡ −
∑
n>0

∑
i

φiS
x
i δ(t − nτ ), (2)

where φi denotes the strength of the applied transverse (di-
rection taken to be x) magnetic field strength on site i. The

delta kick can be thought of as a reasonable approximation to
the situation where the duration of the transverse field pulse
is much shorter than τ and other timescales associated with
H0 (e.g., 1/J and 1/h). While there is a considerable body of
work on models where a single large spin is kicked [56–58],
we emphasize that H0 here has only local interactions and
the system behaves as a collective spin (superspin) degree of
freedom only for certain initial conditions. We consider the
case where only a single spin at site k is driven with strength
φk , while the rest of the spins are undriven.

The second drive protocol is that of a symmetric square
pulse,

HD(t ) ≡
∑

i

γiSgn

(
sin

(
2πt

τ

))
Sx

i , (3)

where γi is the strength of the transverse field on site i. Like
the delta kick protocol, we will consider here only the case of
a single driven spin. We note that a similar pulse protocol, but
with different H0, was studied in the context of global drives
(all spins driven) to demonstrate the existence of resonant
scars [47].

For both drive protocols, we have used the time-dependent
〈Sx

i 〉 and onsite von Neumann entanglement entropy to
identify regimes where the driven spin either collectively ther-
malizes with the rest of the spins, as in Figs. 1(c) and 1(e), or
essentially disentangles itself from the remainder of the spins
as in Figs. 1(d) and 1(f). The latter case serves as an example
of a system that is locally kept athermal (or “cold”) by driving,
whereas the rest of the system “heats up” and thermalizes.
In the rest of the paper we will explore these phenomena
further.

II. FLOQUET AND REAL-SPACE PICTURE
OF THERMALIZATION

In this section we discuss both the Floquet-
(“quasienergy”) space and local (real-space) picture of the
phenomena shown in Fig. 1 by placing their behavior in the
context of the familiar picture of QMBS. We make the notion
of the Floquet quasienergy spectrum precise and clarify how
it assumes the role of eigenenergies of the time-independent
Hamiltonian, where identification of an isolated manifold
with large overlap on the initial state revealed the existence of
QMBS [14,15].

A. Floquet Hamiltonian and Floquet overlap profile

For stroboscopic times, defined to be any time which is an
integer multiple of the drive periodicity, the unitary Floquet
operator completely encodes all information about the time
evolution. For a single period, the Floquet operator is given
by

F (τ ) ≡ e−iHF τ =
∑

j

e−iε jτ | f j〉〈 f j |, (4)

where HF is defined to be the effective Hermitian Floquet
Hamiltonian, | f j〉 is its jth eigenvector and ε j is the corre-
sponding quasienergy. For the two drive protocols introduced
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FIG. 2. Floquet overlap profile and (inset) survival probability/Loschmidt echo starting from the fully polarized X state, for representative
cases of the local delta kick protocol for N = 12 sites with periodic boundary conditions with J = 1, h = 0.1 and (a) φk/τ = 5, (b) φk/τ = 1,
and (c) φk/τ = 0.1. For ease of visualization (and to account for situations with near or exact degeneracies), quasienergies are binned with a
spacing of 10−2, and the total overlap on the (nearly) degenerate manifold is reported.

in Eqs. (2) and (3) we have

F (τ ) = e+i
∑

i φiSx
i e−iH0τ delta, (5)

F (τ ) = e−i
(

H0−
∑

i γiSx
i

)
τ
2 e−i

(
H0+

∑
i γiSx

i

)
τ
2 square. (6)

Knowing | f j〉 and ε j and hence c j ≡ 〈 f j |ψ (0)〉, enables in-
ference of many properties of the dynamics, for example, the
survival probability (Loschmidt echo) is

|〈ψ (0)|ψ (nτ )〉|2 =
∑

j,k

|c j |2|ck|2e−in(ε j−εk )τ , (7)

where n � 0 is an integer. Since the quasienergies typically
have spacings that statistically resemble those that arise from
a random matrix, this quantity generally goes to zero in the
long-time limit by virtue of the superposition of the (almost)
random phases. However, this is not always the case—a regu-
larity of the quasienergy spacings for states with dominant |ci|
leads to robust revivals of the survival probability and other
observables.

The quasienergies (eigenenergies of HF ) of the driven sys-
tem play the role analogous to energies of the corresponding
undriven system. The overlap of the initial state on to the
eigenvectors of the Floquet operator illuminates which states
participate in the time evolution of the system. We thus use
the plot of |c j |2 as a function of ε j as a diagnostic tool and
refer to it as the “Floquet overlap profile,” as in Figs. 2 and 3.
To smoothen the appearance of certain features in the plots,
especially in situations with exactly (or nearly) degenerate
quasienergies, we divide the quasienergy space into small bins
and report the total overlap of all states in the bin.

B. Delta kick

Consider first the case of the local delta kick. On perform-
ing a Baker-Campbell-Hausdorff (BCH) expansion of Eq. (5),
the Floquet Hamiltonian, to lowest order in the kick strength
is

H (0)
F = H0 − φk

τ
Sx

k , (8)

FIG. 3. Panels (a) and (b) show the Floquet overlap profile and (inset) survival probability/Loschmidt echo starting from the |X 〉 state, for
representative parameters of the local square pulse protocol for N = 12 sites with periodic boundary conditions and J = 1, h = 0.1. γkτ/2π

was fixed to the value of (a) 0.50 and (b) 2, while individually varying γk and τ . The value in (b) satisfies the resonant condition, see text.
Quasienergies are binned with a spacing of 10−2, and the total overlap on the (nearly) degenerate manifold is reported. Panels (c) and (d) show
〈Sx

i (t )〉 and panels (e) and (f) show the von Neumann entanglement entropy Svn
i (t ) for all sites (i) for the cases of J = 1, h = 1 and [(c) and (e)]

γk = 10, τ/2π = 0.05 and [(d) and (f)] γk = 10, τ/2π = 0.20. Panels (c) and (e) show that a single site drive is sufficient to thermalize all the
sites. Panels (d) and (f) show slow relaxation of local properties at the driven site due to the resonant condition. Label K is used to indicate the
driven site.
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as shown in Appendix A. Physically, one can think of the
second term as a local magnetic field of strength φk/τ in the
x direction, a viewpoint that will be useful for interpreting the
numerical results in the next section.

The mathematical form of Eq. (8) suggests that the Floquet
overlap profile and survival probability must be approximately
a function of φk/τ . In Fig. 2 we explore the validity of this
assertion by plotting the Floquet overlap profile (main panels)
and the Loschmidt echo (inset) for three representative values
of φk/τ showing multiple φk for each. We find that, for the
range of φk/τ plotted here, our data collapse nicely on top
of each other, especially for lower values of φk . Expectedly,
this data collapse begins to break down for large φk due to the
presence of higher-order terms in the Floquet Hamiltonian.
(Also note that φk = 2π× integer is special and corresponds
to the situation where there is no kick.)

We now explain the trends seen in Fig. 2. If there were no
H0, then the Floquet quasienergies are −φk/2τ and +φk/2τ ,
which correspond to Floquet eigenvectors that have Sx

k =
+1/2 and Sx

k = −1/2 respectively. (The |X 〉 state has overlap
only onto the manifold of states with Sx

k = +1/2.) When H0

is present, but φk/τ is large, Sx
k is not an exact integral of

motion, just an approximate one. This situation can be viewed
as the realization of weak HSF, two weakly coupled fragments
(with Sx

k ≈ ±1/2) appear in Hilbert space. The |X 〉 state now
has overlap with both fragments, the larger overlaps come
from states with Sx

k ≈ +1/2. Importantly, the Floquet over-
lap profile now has “bands” centered at ±φk/2τ which have
spread out. When these bands do not overlap, as in Fig. 2(a)
which corresponds to the case of φk/τ = 5, the kicked spin is
athermal. This local physics is not apparent in the Loschmidt
echo, plotted in the inset of Fig. 2(a); this quantity does not
show any prominent oscillations and instead decays rapidly.
This is not unexpected; the Loschmidt echo is a global prop-
erty of the state which decays with time because majority of
the spins lose coherence. This thermalization of the undriven
spins arises due to the absence of any regular structure in the
Floquet overlap profile; there is no manifold of states with
large overlaps and regular spacing of quasienergies.

On making φk/τ smaller, the previously separated Floquet
bands broaden further and eventually begin to merge with
one another, as is seen in Fig. 2(b). When this happens,
the driven spin does not act significantly differently from
the rest of the spins. This collective thermalization is also
corroborated by the results in Fig. 1. When the local delta
kick is weakened even further, a long thermalization scale
emerges due to the vicinity to a “perfect scar” since the |X 〉
state is in the null space of the staggered Heisenberg term—it
has a decomposition onto the tower of 2(N/2) + 1 = N + 1
states. The Floquet overlap profile for φk/τ = 0.1 in Fig. 2(c)
demonstrates this very clearly, the quasienergy spacing be-
tween states with nonzero overlap is h and it arises from the
Zeeman splitting of the embedded ferromagnet.

C. Symmetric square pulse

The Floquet framework, coupled with either the BCH ex-
pansion of the participating operators or the Floquet-Magnus
(F-M) expansion, offers a way to understand, and hence en-
gineer, the lifetime of QMBS states. For example, consider a

driven spin with a kick that alternates in sign during one time
period. In the limit of extremely rapid driving (high frequency
driving), the kicks of opposite sign “effectively cancel out”
and the system is essentially undriven. Hence, the frequency
and strength of the drive can be used as knobs for control-
ling decoherence times—higher frequency and weaker drive
strengths favor longer decoherence times.

The symmetric square pulse that we consider here also
alternates in sign in one time period. As shown in Appendix B,
the Floquet Hamiltonian for the local square pulse to lowest
order is

H (0)
F = (−1)k

[
Sx

k Sx
k+1 + 2 sin

(
γkτ

2

)
γkτ

(
Sy

kSy
k+1 + Sz

kSz
k+1

)

− 2
(
1 − cos

(
γkτ

2

))
γkτ

(
Sz

kSy
k+1 − Sy

kSz
k+1

)]

− (−1)k

[
Sx

k−1Sx
k + 2 sin

(
γkτ

2

)
γkτ

(
Sy

k−1Sy
k + Sz

k−1Sz
k

)

− 2
(
1 − cos

(
γkτ

2

))
γkτ

(
Sz

k−1Sy
k − Sy

k−1Sz
k

)]

− 2h

γkτ

(
sin

(
γkτ

2

)
Sz

k +
(

1 − cos

(
γkτ

2

))
Sy

k

)

+
N∑

i=1
i �=(k−1,k)

(−1)iSi · Si+1 − h
N∑

i=1
i �=k

Sz
i . (9)

Two important takeaways from Eq. (9) are (1) H (0)
F just de-

pends on γkτ , a finding confirmed by the (approximate) data
collapse seen in the Floquet overlap profile in Figs. 3(a)
and 3(b) and (2) there are special values of drive fre-
quency and strength—the “resonant condition” [47] (γkτ =
4π× integer)—where the system is locally athermal, a phe-
nomenon referred to as dynamic freezing. Since the F-M
expansion is most accurate at high drive frequency (γkτ � 1),
we expect the Floquet Hamiltonian to be well approximated
by H (0)

F only in that regime.
At high frequencies (γkτ � 1), the drive is effectively ren-

dered ineffective and H (0)
F ≈ H0. In this regime, the |X 〉 state

is an almost perfect QMBS—it shows coherent oscillations in
the survival probability and other observables (not shown). At
intermediate frequencies γkτ ∼ 1, the Floquet overlap profile,
as in Fig. 3(a), continues to show the characteristic manifold
associated with QMBS and the associated superspin. How-
ever, there are are now subdominant modes that are important
for thermalization at long times. (The data collapse for fixed
γkτ is most accurate for large γk and small τ .) Figures 3(c)
and 3(e) shows the time-dependent value of the onsite 〈Sx

i 〉
and the von Neumann entanglement entropy; there are col-
lective coherent oscillations in both quantities at short times
but eventual relaxation at long times. Thus, single site driving
is sufficient to thermalize all the sites including the driven
site, which is reminiscent of the behavior of the delta-kicked
system for intermediate φk/τ .

Figures 3(b), 3(d), and 3(f) correspond to the case of a
resonant frequency. The Floquet overlap profile shows that the
characteristic QMBS manifold is lost; instead, the situation
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resembles that of the delta-kick for large φk/τ . Unlike the
case of a global drive at resonance [47], the locally driven
spin is not entirely frozen out but it does relax significantly
slowly compared to the other undriven spins. This ruining of
dynamic freezing is caused by higher-order terms in the F-M
expansion of HF , which some of us have pursued in detail
elsewhere [52].

III. REAL-SPACE, REAL-TIME PROFILE
OF THERMALIZATION

In this section we take a more refined look at the real-
space, real-time picture of thermalization for a chain with
open boundaries, where the central site is subject to a periodic
delta kick. We simulate the short-time dynamics of a N = 51
site system with the matrix product state– (MPS) based time-
evolving block decimation (TEBD) algorithm [59] employing
a maximum bond dimension of 400. To address (extremely)
long-time behavior, we simulate a much smaller system size
of N = 13 with exact diagonalization.

More generally we find that for a given set of drive param-
eters, the Floquet dynamics can be sensitive to N , an issue that
we address in Appendix C. (That said, we have observed that
the N = 31 open chain exhibits similar qualitative behavior as
N = 51 for the same drive parameters.)

A. Short-time dynamics with TEBD

To visualize dynamics of N = 51 spins in both space and
time we construct a “space-time” plot, as in Fig. 4, space
is shown horizontally and time is shown vertically and the
color represents the value of the quantity being investigated.
Since the system is initially prepared in the |X 〉 state, the von
Neumann entanglement entropy of each spin is exactly zero
to begin with. As time progresses, the entanglement spreads
out in a “cone” and distant regions begin to feel the effects
of the periodic kicking. This can be seen prominently in
Fig. 4 for τ/2π = 0.13 for both φk/2π = 0.1 [Fig. 4(a)] and
φk/2π = 0.5 [Fig. 4(b)] at short times. (A time step of τ/20
was used for the TEBD simulations, smaller time steps gave
similar results.) After this initial phase, the regions around the
central spin show a prominent dip in their entanglement—they
get cold after an initial phase of heating up—which appears
as two blue lobes around the kicked spin. These regions
eventually heat up at longer times, more generally, the plots
show oscillatory behavior both in space and time [60] We
also note that similar observations, albeit for a different model
and observables, have been reported recently in Ref. [61].
(Note that the system is not inversion symmetric because of
the alternating J’s, but the plot of the entanglement entropy
appears to be approximately symmetric about the central site.)
As pointed out earlier in Fig. 1, the driven site acts as a cold
spot for φk/2π = 0.5—visually it appears as a blue vertical
line in the space-time plot in Fig. 4(b).

To further probe how the driven spin behaves relative to
the other (undriven) ones, we plot 〈Sy

i 〉 for the two parameter
sets in Figs. 4(c) and 4(d). On the timescale plotted, 〈Sy

i 〉
shows collective revivals but they decay with time. Many of its
features, at short times, can be understood without worrying
about the interactions (J terms). For example, for small φk ,

FIG. 4. Space-time thermalization profile for a N = 51 site delta
kicked staggered Heisenberg chain with open boundary conditions,
showing the von Neumann entanglement entropy [(a) and (b)] Svn

i (t )
of each site and [(c) and (d)] 〈Sy

i (t )〉. Space and time correspond
to the horizontal and vertical axes respectively and the color rep-
resents the value of the physical quantity. Results are for J = 1, h =
0.1, τ/2π = 0.13 and [(a) and (c)] φk/2π = 0.1 and [(b) and (d)]
φk/2π = 0.5.

following Eq. (8) the additional local effective magnetic field
contribution along the x direction is small. Thus the driven
spin, like the other spins, precesses predominantly in the x − y
plane, i.e., the axis about which it precesses is close to the
direction of the applied field (z direction). Since the superspin
picture is intact, the driven spin is (largely) in phase with
the others; this can be seen for the case of φk/2π = 0.1 in
Fig. 4(c). This picture changes when the drive strength is
large—the axis about which the driven spin precesses is now
much closer to the x axis; however, the axis for the other spins
is unaffected. Since the starting state is the |X 〉 state, with
only a small component of the spin orthogonal to the axis of
precession, the strength of the oscillations in 〈Sy

k (t )〉 are weak.
These oscillations are also out of phase with respect to those
of the other spins, as can be seen in Fig. 4(d).

For the N = 51 site chain, we also study the case of effec-
tively weaker kicks by fixing the kick frequency to a value 10
times smaller, i.e., τ

2π
= 1.30. A time step of τ/200 was used

for the TEBD calculations, i.e., the same overall time step as
that for the previously discussed cases. Figure 5(a) shows the
time dependence of the von Neumann entanglement entropy
for the driven spin for a few representative values of φk for
this value of τ . After an initial stage of entanglement growth,
the entanglement entropy of the kicked spin [and other spins
as seen in the space-time plot in Figs. 5(b) and 5(c)] fluctuates
about a nonzero value; the value of this short-time “plateau”
and the strength of the oscillations both grow with φk . The
fact that this value is far from the thermal expectation of ln 2,
and that it is similar for all spins, reflects the resilience of the
superspin to local driving, at least at short times.

Figures 5(d) and 5(e) show 〈Sy
i (t )〉 for the two values of φk .

We observe robust revivals in both cases on the timescale of
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FIG. 5. Panel (a) shows TEBD results for the time-dependent
von Neumann entanglement entropy of the central kicked site for the
N = 51 open chain and τ/2π = 1.30 and a few representative values
of φk/2π . The red dashed line corresponds to the maximal entropy
of ln 2. For the same system and drive frequency as in (a), the lower
panels show space-time plots of the von Neumann entanglement
entropy [(b) and (c)] and the expectation value of 〈Sy

i (t )〉 [(d) and
(e)] for two values of drive strength φk/2π = 0.1 [(b) and (d)] and
φk/2π = 0.5 [(c) and (e)].

the simulation, and the in-phase versus out-of-phase behavior
of the driven spin closely parallels that seen for the case of
lower τ in Fig. 4. However, for φk = π , the driven spin is
not decoupled or “cold,” on the contrary it is slightly more
entangled compared to rest of the spins.

B. Long-time dynamics with exact diagonalization

Unfortunately, the TEBD simulations reveal information
only about the short-time dynamics. Thus it is unclear whether
our observations correspond to truly athermal or just transient
prethermal behavior. To address this issue, we have explored
the possibility of similar trends for smaller systems where full
diagonalization of the Floquet operator is possible which, in
turn, allows arbitrary stroboscopic times to be accessed.

Figures 6(a) and 6(b) show our results for the von Neu-
mann entanglement entropy of the kicked site on a logarithmic
time grid at short and long times (spanning many orders

FIG. 6. Exact diagonalization results for the time-dependent von
Neumann entanglement entropy of the central kicked site [(a) and
(b)] and the leftmost boundary spin [site 1; (c) and (d)] for the
N = 13 open chain for τ/2π = 5.10 and a few representative values
of φk/2π . The parameters used were J = 1, h = 0.1. The red dashed
line corresponds to the maximal entropy of ln 2. Panels (a) and
(c) correspond to short timescales and are plotted on a linear axis
and panels (b) and (d) correspond to long timescales plotted on a log
axis. Markers correspond to stroboscopic times at which the quantity
was evaluated, the connecting lines are guides to the eye.

of magnitude) respectively for the N = 13 open chain and
τ/2π = 5.10. Note that the value of τ was chosen to be differ-
ent in comparison to the N = 51 case. (The sensitivity of the
Floquet dynamics on system size is discussed in Appendix C.)
Figures 6(c) and 6(d) show that the leftmost boundary spin
closely follows the central/kicked spin at both short and long
times like the other spins in the system (not shown).

At short times, the dynamics of the small chain quali-
tatively resembles that of the larger chain. There are some
differences however, for example, the entropy curves for
φk/2π = 0.2 and φk/2π = 0.5 cross. At much longer times,
well beyond those accessible to TEBD, the entropy crosses
over to significantly higher values, but not always the max-
imal value of ln 2 ≈ 0.693. This is most prominently seen
for the case of φk = π where the value is relatively constant
(at approximately 0.4) over multiple decades of time. As ex-
pected, the timescale at which the rapid crossover from low
to high entanglement occurs is inversely proportionate to φk .
Additionally, for small values of φk , we observe visibly large
fluctuations even at very long times indicating some remnant
coherence, a feature that we intend to explore more system-
atically elsewhere. The deviation from the maximal entropy
suggests the possible existence of truly athermal behavior or
alternatively, a very long prethermal timescale [62], for some
of the parameter sets studied here.

We emphasize that the existence of finite entanglement
plateaus, for example those seen in Figs. 5 and 6, is con-
siderably different from the case where the system is not
driven. In the latter case, the system always remains in a (zero
entanglement) product state at all times during the evolution.
As noted earlier, when there is no drive, the interactions are
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rendered ineffective due to the choice of initial condition [24].
However, in the weakly driven case, interactions facilitate the
initial period of entanglement growth and the system reaches a
quasi-steady state where it collectively remains as a superspin
for a timescale that is φk dependent. In the extremely long-
time limit, this superspin typically, but not always, loses its
coherence completely leading to thermalization.

The possible explanation of this effect is rooted in a con-
sideration of the Floquet Hamiltonian. In the limit that φk/τ

is small, the zeroth order term may be inadequate for even
a qualitatively accurate description [52]. Instead, one must
consider higher-order terms which may either compete or
collaborate to renormalize the effective magnetic field that the
kicked site experiences, as seen in Eqs. (A2a) and (A2b). If
the effective field is driven to a small value, then thermal-
ization is slow. Consequently, the system may also exhibit
a thermalization rate that sensitively depends on the size of
the system N . On the one hand, the periodic kick has the
effect of disturbing the coherently precessing spins, so larger
N leads to longer times for the entire system to feel the
disturbance. On the other hand, larger N also means there are
more channels to exchange energy which could lead to faster
thermalization. These competing effects manifest themselves
in nontrivial ways and we have addressed this issue numeri-
cally in Appendix C. In particular, we have provided evidence
of nonmonotonic (with N) effects with the help of Figs. 7
and 8.

IV. CONCLUSION

In summary, we have explored the different dynami-
cal regimes of a locally driven staggered (alternating sign)
Heisenberg spin chain for local drive protocols that should
be experimentally accessible. For the X -polarized initial state,
the driven spin crosses over from full thermalization to ather-
mal dynamics, effectively decoupling from the rest of the
spins, as the rest of the system thermalizes. Both drive proto-
cols showed this effect, and the numerical observations were
explained within the framework of the lowest-order Floquet
Hamiltonian. We also discovered parametric regimes where
a quasi-steady state is reached after a period of initial entan-
glement growth, with collective oscillations, suggesting the
resilience of the superspin picture for effectively weak drives.
An important conceptual outcome is that both the local and
Floquet-space pictures are complementary for understanding
the mechanism by which the system thermalizes or fails to do
so. More generally, our analyses also potentially carry over to
the case of periodic drives with spatial deformed Hamiltonians
[63].

Given the simplicity of the model and drive protocols in-
vestigated here, we believe these predictions can be tested.
There are now many synthetic realizations of spin and
Bose Hubbard systems [64]: in addition to Rydberg atoms,
ytterbium-171 has been recently used to realize an effec-
tive transverse Ising model [65] and hyperfine states of
lithium realize XXZ models with tunable anisotropy [66].
Our observation of the local breakdown of thermalization in
an otherwise thermal system for a certain initial state pro-
vides a nontrivial mechanism for protecting information in a

periodically driven system and sheds light on the novel behav-
ior of dynamics of many-body entanglement.
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APPENDIX A: HF FOR THE PERIODIC
DELTA KICK PROTOCOL

In this Appendix we derive an approximation for HF for
the periodic delta kick protocol with the help of the truncated
BCH expansion applied to Eq. (5).

Set X ≡ iφkSx
k , Y ≡ −iH0τ and Z ≡ −iHF τ , then HF is

given by

HF = iZ

τ
= i

τ
ln(eX eY ). (A1)

Defining HF ≡ ∑
n H (n)

F , we determine H (n)
F using the BCH

formula and get

H (0)
F = i

τ
(X + Y ) = H0 − φk

τ
Sx

k , (A2a)

H (1)
F = i

τ

[X,Y ]

2

= φk

2

(
(−1)k

(
Sy

k−1Sz
k + Sy

kSz
k+1 − Sz

k−1Sy
k − Sz

kSy
k+1

)
− hSy

k

)
. (A2b)

APPENDIX B: HF FOR THE SQUARE PULSE PROTOCOL

In this Appendix we provide a detailed calculation of the
stroboscopic HF for the square pulse protocol using the F-M
expansion in a rotating frame. The F-M method yields HF

as a perturbative expansion in inverse drive frequency (τ ).
However, transition to a rotating frame automatically ensures
an infinite-order resummation in τ . Thus, we obtain a series
expansion of HF in inverse drive amplitude (1/γk) where all
the terms are resummed in τ [68–71]. This extends the validity
of HF to the low-drive-frequency regime but limits it to the
high-drive-amplitude regime.

As mentioned in the text, the local drive at the kth site
is given by HD(t ) = γkSgn(sin(ωt ))Sx

k with ω = 2π/τ . It
is convenient to transform the time-dependent Hamiltonian
H (t ) = H0 + HD(t ) to a rotating frame as follows:

Hrot (t ) = W †H (t )W − iW †∂tW, (B1)
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where

W (t ) = e−i
∫ t

0 dt ′HD (t ′ ) = e−iθ (t )Sx
k (B2)

and

θ (t ) = γkt(τ/2 − t ) + γk (τ − t )(t − τ/2). (B3)

This transformation removes the driving term [HD(t )] from
the Hamiltonian in rotating frame [Hrot (t )] and we get

Hrot (t ) = W †H0W = H(k − 1, k) + H(k, k + 1)

− h
(

cos(θ )Sz
k + sin(θ )Sy

k

)

+
N∑

i=1
i �=(k−1,k)

(−1)iSi · Si+1 − h
N∑

i=1
i �=k

Sz
i , (B4)

where

H(k, k + 1) = (−1)k
[
Sx

k Sx
k+1 + cos(θ )

(
Sy

kSy
k+1 + Sz

kSz
k+1

)
− sin(θ )

(
Sz

kSy
k+1 − Sy

kSz
k+1

)]
(B5)

and we have used

W †Sz
kW = cos(θ )Sz

k + sin(θ )Sy
k, (B6a)

W †Sy
kW = − sin(θ )Sz

k + cos(θ )Sy
k . (B6b)

The zeroth-order Floquet Hamiltonian is just the time-
averaged Hrot (t ) over one time period,

H (0)
F = 1

τ

∫ τ

0
Hrot (t )dt = H(0)

F (k − 1, k)

+H(0)
F (k, k + 1) + h(0)

F (k)

+
N∑

i=1
i �=(k−1,k)

(−1)iSi · Si+1 − h
N∑

i=1
i �=k

Sz
i , (B7)

where

H(0)
F (k, k + 1) = (−1)k

[
Sx

k Sx
k+1 + 2 sin

(
γkτ

2

)
γkτ

× (
Sy

kSy
k+1 + Sz

kSz
k+1

) − 2
(
1 − cos

(
γkτ

2

))
γkτ

× (
Sz

kSy
k+1 − Sy

kSz
k+1

)]
(B8a)

h(0)
F (k) = − 2h

γkτ

[
sin

(
γkτ

2

)
Sz

k

+
(

1 − cos

(
γkτ

2

))
Sy

k

]
. (B8b)

APPENDIX C: NONMONOTONIC SYSTEM SIZE
DEPENDENCE OF FLOQUET DYNAMICS

In this Appendix we provide numerical evidence for the
sensitivity of Floquet dynamics to the system size N . We
consider chains with odd N and open boundaries, with the
central site being driven/kicked periodically. The spins are
initialized, at t = 0, to the |X 〉 state.

In Fig. 7 we plot the von Neumann entanglement entropy
for the driven (central) site at stroboscopic times for φk/2π =

FIG. 7. Time-dependent von Neumann entanglement entropy of
the driven (kicked) site, denoted by Svn

k , for chains of length N with
open boundary conditions, whose central site is subject to a peri-
odic delta kick. The parameters are J = 1, h = 0.1,

φk
2π

= 0.05, and
τ

2π
= 1.30.

0.05 and τ/2π = 1.30 and J = 1, h = 0.1. The results were
obtained with TEBD with a maximum bond dimension of
512, and thus there is no truncation error for N � 19. The
time step was chosen to be small (δt = τ/200), such that the
TEBD results matched the exact diagonalization results (for
N = 9, 11, 13) to a high accuracy, throughout the entire time
window shown in the plot.

We observe nonmonotonic (with N) trends. The N = 11
chain shows almost no change in the entanglement entropy
from its initial value of zero, in sharp contrast to the N = 9

FIG. 8. Entanglement entropy of the kicked site, averaged over
first 1000 drive cycles (S̄vn

k ) vs τ/2π for three different system
sizes. Horizontal red dashed line in each panel denotes the thermal
value of entropy (ln 2). Vertical dashed lines in the middle panel are
guide to the eye for the cases when the relaxation becomes faster
(blue) and slower (magenta) with system size. The parameters are
J = 1, h = 0.1.
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case. The time profile then changes again for larger N , the
rate of increase of entanglement entropy increases for N = 13
and N = 15 but then slows down again for N = 17 and (more
prominently) for N = 19.

To further explore this effect, in Fig. 8 we plot the average
entanglement entropy of the kicked spin over the first 1000
drive cycles (kicks), for N = 9, 11, 13, computed with exact
diagonalization. We consider a range of τ/2π , in the vicinity
of 5.10, in steps of 0.01, and representative values of φk/2π =
0.01, 0.05, and 0.5 with J = 1, h = 0.1. This plotted quantity
captures the average (initial) rate of relaxation towards ther-
mal equilibrium—larger values indicate fast approach towards
the thermal state and low values indicate slow or no relaxation
in the time window of the first 1000 kicks. Note that the case
of τ/2π = 5 is special given that h = 0.1—it corresponds to
half the time period of the precession. This means that the

delta kick is given to a spin when it is in an eigenstate of
Sx

k , which has the effect of only contributing a global phase
to the time-dependent wave function, which does not disturb
the coherent precession of the spins. Thus the state remains a
product state for this τ .

For φk/2π = 0.01 the relaxation is, in general, slow for
most τ . However, there are some τ for which the relaxation
rate is faster, importantly they occur at different τ for different
N . This is confirmed in the middle panel, for φk/2π = 0.05,
the vertical dashed lines indicate situations where the relax-
ation becomes prominently faster or slower with increasing
system size. The bottom panel shows our results for φk/2π =
0.5. Once again there is generically a strong dependence on
N ; however, there are regimes (for example, τ/2π ≈ 5.1)
where the relaxation rates for the three sizes shown here are
coincidentally similar.
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