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Correlations in interacting electron liquids: Many-body statistics and hyperuniformity
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Disordered hyperuniform many-body systems are exotic states of matter with novel optical, transport, and
mechanical properties. These systems are characterized by an anomalous suppression of large-scale density
fluctuations compared to ordinary liquids. The structure factor of disordered hyperuniform systems often obeys
the scaling relation S(k) ∼ Bkα with B, α > 0 in the limit k → 0. Ground states of d-dimensional free fermionic
gases, which are fundamental models for many metals and semiconductors, are key examples of quantum
disordered hyperuniform states with important connections to random matrix theory. However, the effects of
electron-electron interactions as well as the polarization of the electron liquid on hyperuniformity have not been
explored thus far. In this paper, we systematically address these questions by deriving the analytical small-k
behaviors (and, associated, α and B) of the total and spin-resolved structure factors of quasi-one-dimensional,
two-dimensional, and three-dimensional electron liquids for varying polarizations and interaction parameters.
We validate that these equilibrium disordered ground states are hyperuniform, as dictated by the fluctuation-
compressibility relation. Interestingly, free fermions, partially polarized interacting fermions, and fully polarized
interacting fermions are characterized by different values of the small-k scaling exponent α and coefficient B. In
particular, partially polarized fermionic liquids exhibit a unique form of multihyperuniformity, in which the net
configuration exhibits a stronger form of hyperuniformity (i.e., larger α) than each individual spin component.
The detailed theoretical analysis of such small-k behaviors enables the construction of corresponding equilibrium
classical systems under effective one- and two-body interactions that mimic the pair statistics of quantum
electron liquids. Our paper thus reveals that highly unusual hyperuniform and multihyperuniform states can be
achieved in simple fermionic systems and paves the way for harnessing unique hyperuniform scaling relations
for applications, such as the construction of accurate density functionals.
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I. INTRODUCTION

Large-scale density fluctuations in quantum and classical
many-particle systems contain crucial structural and ther-
modynamic information and are of both fundamental and
practical interest [1–4]. In recent decades, much attention has
been focused on the emerging field of disordered hyperuni-
form systems, which are exotic states of matter characterized
by an anomalous suppression of large-scale density fluc-
tuations compared to typical disordered systems, such as
classical liquids [5,6]. Since disordered hyperuniform states
combine the advantages of statistical isotropy and the suppres-
sion of density fluctuations on large scales as found in crystals,
they are often endowed with novel optical [7–9], transport
[10], and mechanical [8,11] properties.

A statistically homogeneous point configuration in d-
dimensional Euclidean space Rd is hyperuniform if its
structure factor [5,6] S(k) vanishes as the wave number k =
|k| → 0. In particular, disordered hyperuniform structure fac-
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tors often obey a power-law scaling relation, i.e.,

S(k) ∼ B kα, B, α > 0. (1)

The exponent α determines different large-R scaling behaviors
of the local number variance that characterizes three classes of
hyperuniformity [5,6,12]:

Var(R) ∼

⎧⎪⎨
⎪⎩

Rd−1, α > 1 (class I)
Rd−1 ln R, α = 1 (class II)
Rd−α, 0 < α < 1 (class III)

. (2)

Classes I and III are the strongest and weakest forms of hype-
runiformity, respectively.

While disordered hyperuniformity is observed in a large
variety of classical systems, including one-component plas-
mas [13], perfect glasses [14], random organization models
[15,16], maximally random jammed states [17], and bi-
ological congregates [18,19], relatively less is known for
hyperuniformity in quantum states. Key among examples of
quantum disordered hyperuniform states are ground states of
d-dimensional free fermionic gases [20]. Despite its simple
nature, the Fermi gas model provides an excellent theoretical
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framework to describe electrons in metals and semiconductors
[21–23]. The structure factor for a three-dimensional (3D)
polarized free Fermi gas obeys the small-k scaling behavior
S(k) ∼ 3k/(4kF ), where kF is the radius of the Fermi sphere
[20,24], implying that the system is class-II hyperuniform.
Other notable hyperuniform quantum states include superfluid
helium-4 (class II) [25], the two-dimensional (2D) Laughlin
states (class I), which are intimately connected to random
matrices via the Ginibre ensemble [26,27], and electrons in
higher Landau levels (class I), the correlations of which are
described by Weyl-Heisenberg ensembles [28].

The many-body statistics of Fermi gases are closely related
to the eigenvalues of random Hermitian matrices and zeros
of the Riemann zeta function [29–33]. In one dimension, the
suitably normalized pair correlation function g2(r) for the
ground state of a polarized free Fermi gas with density ρ is
given by [34]

g2(r) = 1 −
(

sin(kF r)

kF r

)2

, (3)

which is the analog of the well-known 3D result derived by
Feynman [24], where kF is related to ρ by [35]

kF ≡ 2
√

π

[
ρ �
(

d
2 + 1

)
2

]1/d

. (4)

The structure factor corresponding to Eq. (3) is

S(k) =
{

k/(2kF ), k < 2kF

1, k � 2kF
. (5)

Going beyond d = 1, Torquato et al. [33] showed that the
d-dimensional Fermi gas can be mapped to a determinantal
point process, and for d � 2, this Fermi-sphere point process
cannot be written as a Boltzmann factor of N classical parti-
cles interacting through only one- and two-body potentials at
a finite temperature, implying that intrinsic n-particle interac-
tions with n � 3 are generally necessary for describing such
quantum systems [34].

The pair statistics g2(r) and S(k) for fermionic systems
are related to important thermodynamic properties, includ-
ing the magnetic susceptibility, the ground state energy, and
the isothermal compressibility [24,36]. To model realistic
metals and semiconductors, it is crucial to accurately ascer-
tain pair statistics of fermionic systems as a function of the
Wigner-Seitz radius rs and the polarization ζ . In practice,
there exist numerous models that approximate interacting
fermionic systems (thereby predicting pair statistics for differ-
ent rs and ζ ), such as the random-phase approximation (RPA)
[36,37], the Hubbard approximation [38], and the Singwi-
Tosi-Land-Sjölander (STLS) model [39,40]. However, the
small-k behaviors of the structure factor have not been sys-
tematically and analytically explored across different values
of d, rs, and ζ , nor has any work studied interacting fermions
through the lens of hyperuniformity. Therefore, it is highly
desirable to theoretically analyze the small-k scaling behav-
iors (1) for d-dimensional free and interacting fermionic
systems. To our knowledge, explicit closed-form expressions
for the small-k behaviors of spin-resolved structure factors
have only been derived for 3D fermionic systems within the
RPA scheme [41,42].

In this paper, we use both the RPA and the Hubbard ap-
proximation to derive analytical small-k scaling behaviors of
the total and spin-resolved structure factors for statistically
homogeneous ground states of quasi-one-dimensional (1D)
[43,44], 2D, and 3D electron liquids with varying interac-
tion parameters and polarizations. Such small-k expressions
obtained via the Hubbard approximation are found to accu-
rately match the numerical structure factors obtained from
the STLS model [39,45], which is known to achieve excel-
lent agreement with quantum Monte Carlo results for certain
interaction parameters [40]. The fact that these equilibrium
disordered ground states are hyperuniform is dictated by
the fluctuation-compressibility (FC) relation applied at zero
temperature [6].

Importantly, for the individual spin components, we find
that free fermions, partially polarized interacting fermions,
and fully polarized interacting fermions are characterized by
different hyperuniform scaling exponents α and coefficients
B. The free Fermi gases in one, two, and three dimensions
are class-II hyperuniform (α = 1) for both the total config-
uration and the individual spin components. On the other
hand, fully polarized interacting fermions form class-I hype-
runiform states with α = (d + 1)/2 for d = 2, 3 and S(k) ∼
k/

√− ln(ka) for d = 1, where a is a microscopic length scale.
Finally, we find that partially polarized interacting fermionic
liquids exhibit multihyperuniformity, in which each spin com-
ponent as well as the net configuration is hyperuniform [18].
Remarkably, in these systems, the individual spin components
are class-II hyperuniform, whereas the whole configuration
exhibits a stronger class-I hyperuniformity. These states pro-
vide the first example of multihyperuniform systems in which
the total configuration is of a higher hyperuniformity class
than its components.

Additionally, our detailed theoretical analyses of small-k
behaviors for fermionic systems enable us to construct equi-
librium positive-temperature classical systems that precisely
mimic the pair statistics of quantum electron liquids. This
is achieved by employing a variant of a recently developed
inverse algorithm [46,47], which accurately determines spin-
specific effective one- and two-body potentials corresponding
to the targeted fermionic pair statistics. We show that the
aforementioned unusual multihyperuniformity of partially po-
larized interacting fermions can be classically realized by
classical many-particle systems at positive temperatures in
which the particles interact with certain long-ranged pair
potentials. This quantum-classical mapping via inverse sta-
tistical mechanics also allows us to study the structural
degeneracy problem [48] for the pair statistics of free Fermi
gases. In contrast to the 1D free Fermi gas, which is exactly
mappable to a classical equilibrium state under logarithmic
interactions [29], we find that the classical states correspond-
ing to 2D and 3D free fermions possess distinct higher-order
statistics compared to their quantum counterparts, confirming
the predictions in Ref. [49] that higher-order intrinsic interac-
tions are required to describe fermionic structural correlations
in two and higher dimensions. Our paper thus reveals that
interesting hyperuniform and multihyperuniform states can
be achieved in simple quantum and classical systems and
paves the way for harnessing unique hyperuniform small-k
scaling relations for applications, such as the development of
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accurate density functionals, materials engineering, and com-
puter vision.

This paper is organized as follows. Section II outlines
some basic definitions and background, including those for
pair statistics and models of fermionic systems. Section III
then provides results for hyperuniform behaviors in free and
interacting fermionic systems. In Sec. IV, we study classi-
cal equilibrium systems corresponding to free Fermi gases.
Lastly, we present our concluding remarks in Sec. V.

II. DEFINITIONS AND PRELIMINARIES

In this section, we introduce some fundamental relations
for ground states of fermionic systems, as well as definitions
of pair statistics. We then describe some well-known models
used in this paper to determine the pair statistics of electron
liquids, namely, the RPA [36,37], Hubbard [38], and STLS
models [39,45].

A. Fundamental relations for fermionic liquids

We consider a d-dimensional fermionic system with
number density ρ, embedded in a uniform neutralizing back-
ground; each particle has a mass m, charge e, and spin
σ = ±1. Let ρ↑ and ρ↓ be the number densities of up and
down spins, respectively. The degree of spin polarization is
defined as ζ ≡ |ρ↑ − ρ↓|/ρ. Note that ζ = 1 for fully polar-
ized fermions and ζ = 0 for unpolarized fermions. The Fermi
wave number kF is given by Eq. (4), and the spin-specific
Fermi wave number kFσ is given by

kFσ ≡ kF (1 + σζ )1/d . (6)

For a system of fermions interacting pairwise via a repul-
sive long-ranged potential V (r), a natural length scale is the
radius of the d-dimensional sphere that encloses, on aver-
age, exactly one particle. This typical distance between two
fermions can be written as

rsaB = [v1(1)ρ]−1/d , (7)

where rs is a dimensionless number, aB ≡ h̄2/(me2) is the
Bohr radius, and

v1(r) ≡ πd/2rd

�(1 + d/2)
(8)

is the volume of a d-dimensional sphere of radius r. The
parameter rs represents the ratio of the average potential en-
ergy to the average kinetic energy of the system, and for free
fermions, rs = 0. As a function of rs, the fermionic liquid
exhibits two distinct regimes: the weak-coupling regime (for
low rs values), where the kinetic energy dictates the system’s
behavior and the system resembles a noninteracting gas, and
the strong-coupling (large rs) regime, where the potential en-
ergy prevails, resulting in collective behavior akin to that of a
crystal.

In this paper, we consider electrons in Rd interacting via a
Coulomb potential

V (r) = e2

r
, (9)

whose Fourier transforms, in the first three spatial dimensions,
are given by

Ṽ (k) = e2 ×

⎧⎪⎪⎨
⎪⎪⎩

−2(γ + ln ka), d = 1

2π
k , d = 2

4π
k2 , d = 3

, (10)

where γ is the Euler-Mascheroni constant and a is some
microscopic length scale set by the diameter of the one-
dimensional channel.

The case of d = 1 is rather special: the ground state, for
any strength of the interaction, is a Tomonaga-Luttinger liq-
uid [50,51] characterized by collective bosonic low-energy
excitations (unlike the Fermi-liquid ground states in two and
three spatial dimensions) [52–56]. Moreover, it has been noted
[43] that the unboundedness of the bare 1D potential (which
corresponds to the case of an infinitely thin wire) Ṽ (k)/e2 ∼
−2(ln ka) as k → ∞ causes the structure factors to diverge
at large k in the models considered in Sec. II C. Thus, it
is more practical to consider a quasi-1D system, in which
electrons are allowed to move in a wire with a small but
positive cross section, such that the 1/r repulsive interaction
between electrons is cut off at short distances by the transverse
width of the lowest subband wave function [57–60]. This
approximation retains the long-ranged nature of the Coulomb
interaction but Ṽ (k) is now bounded at large k. Theoretically,
several confinement models have been employed to describe
the quasi-1D system, including hard wall [61,62], Coulom-
bic [63], and harmonic [64,65] potentials. In this paper, we
consider a commonly used quasi-1D approximation in which
the electrons are laterally confined by a harmonic transversal
potential. If the confinement is sufficiently strong, so that
the electrons occupy only the lowest energy subband in the
transverse direction, the corresponding potential is given by
[43,65]

Ṽ (k)

e2
= exp

(
k2	2

4

)
K0

(
k2	2

4

)
, (11)

where 	 > 0 is a parameter indicating the lateral width of
the quantum wire, and K0(x) is the zeroth-order Bessel-K
function. We note that while other forms of the confining
harmonic potential have also been suggested [59,66], at small
k, all the models behave as Ṽ (k) ∼ −2 ln(k	) independent of
the microscopic details [67].

In what follows, we will work in units where h̄ = e = 1.
For notational convenience, we also introduce a dimensionless
wave vector as q = k/kF .

B. Pair statistics

A many-particle system in Rd is completely statistically
characterized by the n-particle probability density functions
ρn(r1, . . . , rn) for all n � 1 [68]. We define the pair correla-
tion function as

g2(r1, r2) = 1

ρ1(r1)ρ1(r2)

〈∑
i 	= j

δ(r1 − ri )δ(r2 − r j )

〉
. (12)

In the case of statistically homogeneous systems, ρ1(r) = ρ,
and ρ2(r1, r2) = ρ2g2(r), where g2(r1, r2) = g2(r1 − r2, 0) ≡
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g2(r). If the system is also statistically isotropic, then g2(r)
is simply a radial function g2(r), with r ≡ |r|. The ensemble-
averaged structure factor S(k) is defined as

S(k) = 1 + ρh̃(k), (13)

where h(r) = g2(r) − 1 is the total correlation function, and
h̃(k) is the Fourier transform of h(r). For statistically isotropic
systems, the structure factor is radially symmetric and can be
written as S(k) with k ≡ |k|. If S(k) is analytic at the origin
[i.e., the Taylor expansion of S(k) = ∑∞

i=0 siki at k = 0 con-
tains only even powers in k], then the total correlation function
h(r) = g2(r) − 1 decays exponentially or superexponentially
fast at large r. On the other hand, if S(k) is nonanalytic at
the origin, then h(r) decays as a power law dictated by the
leading-order term in the expansion about k = 0 with an odd
integer or real noninteger power [6,46].

For a single periodic configuration containing N point par-
ticles at positions r1, r2, . . . , rN within a fundamental cell F
of a lattice �, the scattering intensity I (k) is defined as

I (k) = 1

N

∣∣∣∣∣
N∑

i=1

e−ik·ri

∣∣∣∣∣
2

. (14)

Now, for an ensemble of periodic configurations of N particles
within the fundamental cell F , the ensemble average of the
scattering intensity in the thermodynamic limit is directly
related to the structure factor S(k) (13) by

lim
N,VF →+∞,

constant ρ

〈I (k)〉 = (2π )dρδ(k) + S(k), (15)

where VF is the volume of the fundamental cell [6]. In sim-
ulations of many-body systems with finite N and periodic
boundary conditions, Eq. (14) is used to compute S(k) directly
by averaging over configurations.

Since the electron liquid is, in general, a two-component
system consisting of both up and down spins, it is crucial to
study the spin-resolved pair correlation function g2,σσ ′ (r), de-
fined such that s1(r)ρσ ′g2,σσ ′ (r)dr gives the average number
of particles with spin σ ′ within a spherical shell of volume
s1(r)dr centered at a particle with spin σ , where

s1(r) = 2πd/2rd−1

�(d/2)
(16)

is the surface area of a d-dimensional sphere of radius r. The
corresponding spin-resolved structure factors are given by

Sσσ ′ (k) = δσσ ′ + √
ρσρσ ′ h̃σσ ′ (k), (17)

where h̃σσ ′ (k) is the Fourier transform of the spin-resolved to-
tal correlation function hσσ ′ (r) = g2,σσ ′ (r) − 1. The total (i.e.,

spin-unresolved) pair statistics are related to the spin-resolved
ones via [42,69,70]

g2(r) =
∑
σ,σ ′

ρσρσ ′

ρ2
g2,σσ ′ (r) =

(
1 + ζ

2

)2

g2,↑↑(r)

+
(

1 − ζ

2

)2

g2,↓↓(r) + 1 − ζ 2

2
g2,↑↓(r), (18)

S(k) =
∑
σ,σ ′

√
ρσρσ ′

ρ
Sσσ ′ (k) = 1 + ζ

2
S↑↑(k)

+ 1 − ζ

2
S↓↓(k) +

√
1 − ζ 2S↑↓(k). (19)

It is also useful to define the magnetic structure factor corre-
sponding to fluctuations of the spin density:

S̃(k) =
∣∣∑N

j σi exp(−ik · ri )
∣∣2

N

= 1 + ζ

2
S↑↑(k) + 1 − ζ

2
S↓↓(k) −

√
1 − ζ 2S↑↓(k),

(20)

where σi is the spin of fermion i along the quantization axis,
and we have assumed a statistically isotropic system in the
second line above. It is clear from Eqs. (19) and (20) that
for an unpolarized electron liquid (ζ = 0), the spin-specific
structure factors are given by [45]

S↑↑(k) = S↓↓(k) = S(k) + S̃(k)

2
, (21)

S↑↓(k) = S(k) − S̃(k)

2
. (22)

Evidently, for a free Fermi gas (rs = 0), the oppositely
aligned spins are uncorrelated, and the corresponding pair
statistics are simply g0

2,↑↓(r) = 1 and S0
↑↓(k) = 0. Owing to

the correspondence between free Fermi gases and a determi-
nantal point process identified in Ref. [49], the pair correlation
function for parallel-spin free fermions in any dimension is
given by [20,33,71]

g0
2,σσ (r) = 1 − 2d�(1 + d/2)2

J2
d/2(kFσ r)

(kFσ r)d
, (23)

where Jν (x) is the Bessel function of the first kind of order ν

[note that in one dimension Eq. (23) reduces to Eq. (3) above].
The corresponding parallel-spin structure factor is

S0
σσ (k) = 1 − α(k; kFσ ), (24)

where α(k; kFσ ) is the volume common to two spherical win-
dows of radius kFσ whose centers are separated by a distance
k divided by v1(kFσ ). In the first three spatial dimensions, one
therefore has

S0
σσ (k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k
2kFσ

k < 2kFσ (d = 1)

2
π

(
arcsin k

2kFσ
+ k

2kFσ

√
1 − k2

4k2
Fσ

)
, k < 2kFσ (d = 2)

3k
4kFσ

− k3

16k3
Fσ

, k < 2kFσ (d = 3)

1, k � 2kFσ

. (25)
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C. Models of interacting electron liquids

Having established the requisite definitions, we now out-
line, in increasing order of complexity, the three models that
we employ to study the structure factors of interacting unpo-
larized fermionic systems, i.e., ζ = 0. The generalization to
arbitrary polarizations for the small-k behaviors of S(k) will
be discussed in Sec. III A 2.

For an accurate description of an interacting electron liq-
uid, there are two effects that have to be taken into account
[71]. First, due to the antisymmetric nature of the N-particle
wave function, if an electron occupies a particular position,
it prevents another with the same spin from occupying the
same site. This exclusion constraint generally decreases the
likelihood of finding a second electron with the same spin in
proximity to the first one. This phenomenon, known as the
“exchange hole,” persists even in an electron gas where inter-
actions between electrons are absent. Secondly, the likelihood
of discovering another electron within a certain distance from
an electron being observed is additionally influenced by the
Coulomb repulsion between electrons. This redistribution of
the electron density is commonly referred to as a “correlation
hole.”

Mathematically, our starting point is the fluctuation-
dissipation theorem, which, in equilibrium, relates S(q) and
S̃(q) to the density and spin-density susceptibilities, χd (q, ω)
and χ s(q, ω), respectively [36]:

S(q) = − 1

ρπ

∫ ∞

0
Im[χd (q, ω)]dω, (26)

S̃(q) = 1

ρπg2μ2
B

∫ ∞

0
Im[χ s(q, ω)]dω, (27)

where g is the Landé factor and μB is the Bohr magneton. The
response functions appearing in the equations above are given
by [39,45]

χd (q, ω) = χ0(q, ω)

1 − Ṽ (q)χ0(q, ω)[1 − G(q)]
, (28)

χ s(q, ω) = −g2μ2
B

χ0(q, ω)

1 − Ṽ (q)χ0(q, ω)I (q)
, (29)

where χ0(q, ω) is the d-dimensional Lindhard function
[72,73], and G(q) and I (q) are the so-called many-body
local field corrections (LFCs) arising from the short-range
Coulomb correlations and the exchange-correlation effects
for the density and spin-density responses, respectively
[39,43,45]. The differences between the various models used
to describe the electron liquid lie precisely in their expressions
for G(q) and I (q).

The simplest description of an interacting electron gas is
the RPA, in which electrons respond to a time-dependent
Hartree potential: this is the effective field perceived by a clas-
sical test charge embedded in the electron gas [71]. Since RPA
ignores the correlations between an electron and its surround-
ing medium, there is no LFC, and G(q) = I (q) = 0. RPA is
known to be exact in the limit of a dense gas, rs → 0; however,
for finite rs, it overestimates the exchange correlation energy
to the point of producing negative (unphysical) values for the
positive-definite pair correlation function. This serious short-
coming is remedied by the introduction of nonzero local field
factors. The most straightforward of such corrections is the

Hubbard approximation, in which one accounts for the Pauli
hole around electrons; this gives [39,43]

GHubbard(q) = −IHubbard(q) = 1

2

Ṽ (
√

q2 + 1)

Ṽ (q)
. (30)

While this modification improves upon the RPA scheme, the
Hubbard approximation still does not take into account the
correlation hole.

The next advance beyond the RPA and Hubbard approx-
imations is the scheme developed by STLS [39]. The key
observation here is that the local field factors introduced above
allow us to calculate the response functions of an electron
liquid. However, once we know the linear response functions,
we can employ them to determine the exchange-correlation
hole, which, in turn, influences the local field factors and
closes the loop [71]. Hence, in the STLS approximation, G(q)
and I (q) are solved iteratively via the self-consistent field
relations [39,45]:

GSTLS(q) = − 1

ρ(2π )d

∫
Rd

q · q′

|q||q′| [S(q′ − q) − 1] dq′, (31)

ISTLS(q) = 1

ρ(2π )d

∫
Rd

q · q′

|q||q′| [S̃(q′ − q) − 1] dq′, (32)

where q is any wave vector with norm q. Equations (31) and
(32) are then inserted back into Eqs. (26) and (27), respec-
tively, to obtain S(q) and S̃(q) in the subsequent iteration. This
process is repeated until convergence is reached. Note that in
the STLS model, limq→0 G(q) = limq→0 I (q) = 0, as is also
the case for the RPA and Hubbard approximations.

III. HYPERUNIFORMITY OF INTERACTING ELECTRONS

A. Total and magnetic structure factors

1. Unpolarized fermions: RPA and Hubbard approximations

In this section, we present the leading-order small-k
asymptotics of S(k) and S̃(k) for statistically homogeneous
ground states of quasi-1D, 2D, and 3D unpolarized inter-
acting fermions (rs > 0, ζ = 0) in the RPA and Hubbard
approximations. The detailed derivations are documented in
Appendix A, and the results are summarized in Table I in
terms of the dimensionless wave number q = k/kF , where
kF = kF↑ = kF↓ for ζ = 0. It is evident that regardless of the
model used, the total structure factor is hyperuniform, i.e.,
S(k) → 0 as k → 0.

This observation can easily be understood in terms of
the FC theorem applied at zero temperature [6]. For single-
component homogeneous equilibrium systems of pointlike
particles, the FC relation states that fluctuations in particle
number are proportional to the isothermal compressibility
[68,74]:

ρkBT κT = S(0). (33)

Thus, in thermal equilibrium, any ground state (T = 0), or-
dered or disordered, for which the isothermal compressibility
κT is bounded and positive must be hyperuniform [6]. More
generally, the ground state of a single-component system is
hyperuniform if the limit limT →0 κT T vanishes [49,75]. For
quantum many-body systems, both ordered and disordered
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TABLE I. Leading-order small-k expressions of the total structure factor S(k) and the magnetic structure factors S̃(k) for unpolarized
interacting electron liquids (rs > 0, ζ = 0). As before, we define q = k/kF here.

System SRPA(q), SHubbard(q) S̃RPA(q) S̃Hubbard(q)

Quasi-1D πq
8
√−rs ln q

q/2 [ 1
2 + e 	2/4K0 (	2/4)rs

π2 ]q

2D 1
23/4√

rs
q3/2 [40] 2q/π [ 2

π
+ (4

√
2−√

2π )rs
2π

]q

3D 35/6π2/3q2

4 3√2
√

rs
[40,41] 3q/4 [41] [ 3

4 + 2( 2
3 )2/3(1−ln 2)

π4/3 rs]q

ground states are common occurrences, so it is not espe-
cially unusual to find disordered hyperuniform ground states
of generic Hamiltonians, such as, e.g., superfluid helium-4
[25,76]. In contrast, classical ground states almost invariably
have high crystallographic symmetries [77–79], except for
some special interactions that result in disordered ground
states [6]. Note that while the FC relation holds for quantum
electron liquids at all densities [75,80], for certain quantum
systems, its underlying assumptions may not be satisfied.
Such violations of the FC relation occur, for instance, in sys-
tems with inhomogeneous external potentials [81], strongly
degenerate Bose gases such as liquid helium [82] (due to
nonextensive parts of thermodynamic potentials), and photon
gases [83] (the compressibility of which does not exist). Im-
portantly, we recall that hyperuniformity is only defined for
statistically homogeneous systems [5,6].

For an equilibrium multicomponent system (as is the case
for spin-1/2 particles), the FC relation generalizes to [8,84]

kBT κT = |B|∑M
α,β=1

√
ραρβ |Bαβ | , (34)

where M is the number of components, the elements of the
matrix B are Bαβ = limk→0 Sαβ (k), and Bαβ is the αβ cofactor
of B. For the case of an unpolarized electron liquid, |B| =
S2

↑↑(0) − S2
↑↓(0) and

∑M
α,β=1 |Bαβ | = ρ[S↑↑(0) − S↑↓(0)].

We then have kBT κT = |B|/∑M
α,β=1 |Bαβ | = S(0)/ρ, i.e.,

Eq. (33) is recovered. Therefore, the FC relation implies
that when summed over spin species, the ground state
configurations of unpolarized electron liquids are indeed
hyperuniform.

We remark that hyperuniformity implies the direct-space
sum rule [6]

ρ

∫
Rd

h(r)dr = −1. (35)

Importantly, while the analog of Eq. (35) holds for any finite
system with a fixed number of particles, number conservation
does not imply hyperuniformity. This is because hyperunifor-
mity is a statistical structural property that concerns number
density fluctuations in infinitely large systems rather than
finite systems; in other words, the Hubbard approximation
N → ∞ must be taken before the limit k → 0 or r → ∞.

Table I demonstrates that, across dimensions, the total
structure factors have leading-order terms that increase su-
perlinearly [in contrast to the noninteracting electron gas, for
which S(k) ∼ k for small k/kF ]. In the language of hyper-
uniformity, for d � 2, S(k) is class-I hyperuniform with α =

(d + 1)/2. For d = 1, the increase of S(k) at small k, given by
S(k) ∝ k/

√− ln(k/kF ), is faster than any linear function in k
but slower than any power-law function with exponent α >

1, i.e., limk→0 S(k)/k = 0 but limk→0 S(k)/kα = ∞ for any
α > 1. Therefore, one can regard the 1D S(k) as being charac-
terized by an exponent α = 1 + ε with infinitesimal ε, which
still belongs to class I. This peculiar behavior is a consequence
of the nature of the 1D potential, which scales as Ṽ (k) ∼
−2 ln(k	) as k → 0 and is reflected in the dispersion of the
collective charge-density excitations (the Tomonaga-Luttinger
bosons) [53,85]. We note, however, that a full description of
realistic 1D quantum fluids—in either solid-state materials
or cold-atom systems—may require corrections beyond the
Luttinger paradigm [86].

The small-k expressions for the total structure factors
in d dimensions are consistent with the well-known Bijl-
Feynman formula [39,40], i.e., the density excitation spectrum
at long wavelengths—and consequently, the small-k behavior
of S(k)—is dominated by the plasmon contribution Sp(k):

S(q) ∼ Sp(q) =
√

q2

4mρṼ (q)
, q → 0. (36)

The plasmon is a basic density excitation of the electron liquid
and can be regarded as the analog of longitudinal phonons
in a solid. Importantly, while S(k) possesses the analytic
leading-order term ∼k2 in three dimensions, our derivation
(see Appendix A) finds that it also contains a nonanalytic
subleading k5 term, implying that h(r) decays as a power law
given by h(r) ∼ r−(d+5) = r−8 at large r [6]. This k5 term
arises from the contribution of electron-hole pairs [22], which
are the other fundamental excitations of the electron liquid.

Interestingly, the magnetic structure factors for unpolarized
fermions are class-II hyperuniform with linear small-k behav-
iors. In the RPA approximation, the coefficient of the leading
linear term in S̃(k) is identical to that of S0

σσ (k) (24) for unpo-
larized free fermions, i.e., S̃(q) ∼ cd q, where c1 = 1/2, c2 =
2/π , and c3 = 3/4. This is due to the fact that the RPA
condition I (q) = 0 implies that χ s(q, ω) = g2μ2

Bχ0(q, ω); see
Eq. (29). Thus, Eq. (27)—which amounts to an integration
over the imaginary part of χ0(q, ω)—yields the free-fermion
structure factor in the respective dimensions [72].

On the other hand, in the Hubbard approximation, our
analysis reveals that the magnetic structure factor increases
with rs as S̃(q) ∼ (cd + λd rs)q, where λd > 0 depends on
the dimensionality. Note that for quasi-1D systems, λd also
depends on the specific potential used. We attribute this in-
crease of S̃(k) to the correlation hole effect discussed above
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FIG. 1. Regimes of free and interacting fermionic liquids—as characterized by the small-k behaviors of parallel-spin structure factors
Sσσ (k) in the Hubbard approximation—as a function of the interaction strength rs and the polarization ζ . While regimes A (free fermions) and
C (fully polarized interacting fermions) are technically lines on this diagram, they have been drawn as expanded regions for clarity. Regime B
corresponds to a partially polarized liquid of interacting fermions.

[41,87]. In the interacting electron liquid, the fermions are
subject to an additional Coulomb repulsion compared to the
noninteracting free Fermi gas. The effect of this additional
repulsion on the electron-electron correlations is experienced
more strongly by oppositely aligned spins than by like spins,
as the latter are already well separated due to Pauli exclusion.
Thus, S↑↓(k) at small k decreases significantly as rs increases,
resulting in a magnetic structure factor (20) that increases
with rs. To the best of our knowledge, this increase of the

linear term in S̃(k) as a function of rs has not been identified
previously.

2. Generalization to arbitrary polarizations

For interacting fermions (rs > 0) with arbitrary partial po-
larization, 0 � ζ < 1, we generalize the expressions obtained
by Davoudi et al. [42] for the spin-resolved 3D structure
factors to all dimensions, yielding

Sσσ (q; ζ ) ∼
√

2(1 − σζ )/(1 + σζ )

(1 + ζ )−1/d + (1 − ζ )−1/d
Sσσ (q; ζ = 0) + Sp(q)

2
, q → 0, (37)

S↑↓(q; ζ ) ∼ −
√

2

(1 + ζ )−1/d + (1 − ζ )−1/d
S↑↓(q; ζ = 0) + Sp(q)

2
, q → 0, (38)

where Sσσ ′ (q; ζ = 0) is the spin-resolved structure factor
for unpolarized fermions, the small-k behaviors of which are
easily obtained from Table I and Eqs. (21), (22). Thus, Sσσ (k)
for a liquid of partially polarized interacting fermions is
class-II hyperuniform with a linear leading-order small-k be-
havior. On the other hand, fully polarized interacting fermions
(rs > 0, ζ = 1) constitute a single-component system. As-
suming, without loss of generality, that the system consists
of only up spins, we have S↑↑(k) = S(k; ζ = 1) ∼ Sp(k) =√

q2
↑/[4mρṼ (q↑)], where q↑ = k/kF↑ = (k/kF )/21/d . To wit,

the parallel-spin structure factor is now class-I hyperuniform
in all dimensions.

Figure 1 schematically summarizes the analysis of hype-
runiformity in the Hubbard approximation, illustrating that
the ground states of the electron liquid can be characterized

into three regimes based on the parallel-spin structure factors
Sσσ (k) at small k. Free fermions (regime A) form class-II
hyperuniform states for both the individual spins and the total
configuration. Partially polarized interacting fermions (regime
B) form class-II hyperuniform states for the individual spins,
but the total configuration as a whole is class-I hyperuniform.
This unusual form of multihyperuniformity will be further
discussed in Sec. III B. Finally, fully polarized interacting
fermions (regime C) are class-I hyperuniform.

3. Comparison to the STLS scheme

To verify whether the analytical small-k expressions de-
rived for the RPA and Hubbard approximations provide
accurate representations of the electron liquid, we compare
these expressions to the numerical structure factors obtained

104201-7



WANG, SAMAJDAR, AND TORQUATO PHYSICAL REVIEW B 110, 104201 (2024)

FIG. 2. (a) The structure factor numerically computed using the STLS model shows unusual multihyperuniformity for a 2D unpolarized
electron liquid with rs = 1. The small-k scaling exponent α is 3/2 for the total configuration and unity for the individual spin components.
(b), (c) Comparison of the analytical small-k behaviors of (b) the total structure factor and (c) the magnetic structure factor in Table I with the
numerical STLS results, for 2D electron liquids with rs = 0.5 and 1.

via the self-consistent STLS model described in Sec. II C,
which is known to achieve excellent agreement with quantum
Monte Carlo simulations for rs � 1 [40,88] but can only be
solved numerically [89]. Figure 2 presents such a comparison
for unpolarized electrons in two dimensions with rs = 0.5
and 1, which are in the partially polarized interacting regime
(regime B). One can clearly observe from the STLS structure
factors for the rs = 1 state [Fig. 2(a)] that the system exhibits
unusual multihyperuniform behavior. The total structure fac-
tor S(k) grows as k3/2 at small k, whereas the parallel-spin
structure factor Sσσ (k) is linear in k. Figure 2(b) underscores
that the leading-order term of the small-k asymptotics for
S(k), given by the plasmon contribution (36), agrees well with
the STLS structure factors. Interestingly, this agreement is
better for larger rs because the plasmon contribution to the
longitudinal spectrum (which the RPA does describe accu-
rately for long wavelengths) becomes significant over a larger
range of k for stronger Coulomb interactions. Figure 2(c)
shows that the small-k behaviors of the magnetic structure
factor derived from the Hubbard approximation match the
STLS results closely at different values of rs. Contrarily,
the RPA model does not capture the increase of S̃(k) as rs

increases.
Taken together, the results in Fig. 2 convey that the Hub-

bard approximation provides a realistic description of the
structure factors of ground state electron liquids at small k,
and thus our corresponding expressions in Table I can be used
to analytically describe their behaviors. Note that while the
Hubbard approximation is often used as an initial guess for
the STLS algorithm, and is therefore less accurate than the
latter, our results show that their differences arise mainly at
intermediate to large k rather than at small k.

B. Multihyperuniformity of partially polarized
interacting fermions

A multihyperuniform state is a multicomponent system
that is simultaneously hyperuniform for both the individual
components and the total configuration [18]. They were first
identified in avian cone photoreceptors consisting of five dif-

ferent cell types as an evolutionary strategy to sample light of
different wavelengths [18]. A minimal statistical-mechanical
model has been developed to describe such patterns in avian
retina via long-range repulsive pair interactions between like
cell types [90]. More recently, the concept of multihyperuni-
formity has been applied in digital cameras to create bionic
birdlike imaging using LED arrays, achieving less chromatic
moiré patterns and color misregistration artifacts [91]. Mul-
tihyperuniformity has also been observed in the electron
density distribution in a quasiperiodic potential [92].

In all of the aforementioned cases, both the components
and the total configurations are class-II hyperuniform. Thus,
partially polarized interacting electron liquids (regime B in
Fig. 1) constitute examples of a highly unusual form of mul-
tihyperuniformity that has never been seen in any previous
work on quantum and classical many-body systems. Here,
each spin component is class-II hyperuniform, whereas the
total configuration is of the strongest hyperuniformity class,
namely, class I. The higher hyperuniformity class for the to-
tal configuration suggests that the cross-correlations between
opposite spin components must be nontrivial, i.e., S↑↓(k) 	= 0,
as theoretically expected. If the opposite spins were uncorre-
lated, S(k) would have been of the same hyperuniformity class
as the individual spins per Eq. (19).

To more closely examine the effects of such cross-
correlations, we plot the spin-resolved structure factors and
pair correlation functions for the 2D unpolarized electron
liquid with rs = 1, obtained from the STLS approximation
[Figs. 3(a) and 3(b), solid curves]. Figure 3(a) shows that
S↑↓(k) decreases linearly with k at small k. This decreasing
linear term exactly cancels out the linear terms in the parallel-
spin structure factors, yielding a total structure factor without
a linear term via Eq. (19); the resulting leading-order term is
given by k(d+1)/2 = k3/2. The fact that S↑↓(k) displays a broad
well with a minimum at k ∼ kF indicates that, in real space,
the oppositely aligned spins experience significant repulsion.
Indeed, the pair correlation functions in Fig. 3(b) highlight
that while the same-spin g2(r) closely resembles that for the
free fermions [see Fig. 4(b)], the opposite-spin g2(r) exhibits
strong negative correlation at small to intermediate r, which
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FIG. 3. Unusual multihyperuniformity of the 2D unpolarized interacting electron liquid (for rs = 1) and its equivalent classical system
with effective one- and two-body interactions. (a) Spin-resolved structure factors and (b) spin-resolved pair correlation functions as computed
for both the STLS model and the equivalent classical system mimicking the electron liquid. (c) Scaled local number variance Var(R)/R2 for the
total configuration and the sum of Var(R)/R2 for the individual spin components. (d), (e) Snapshots of the equivalent classical system with a
total number of 1000 particles for (d) an individual spin component (α = 1) and (e) the total configuration (α = 3/2). The red and blue points
denote the up and down spins. (f) Spin-specific effective potentials for the classical system obtained.

is sharply different from the free-fermion opposite-spin cor-
relation function, g2,↑↓(r) = 1. This high sensitivity of the
opposite-spin correlation functions to rs is a result of the
correlation hole effect discussed in Sec. III A 1.

In order to study the implications of this unusual multi-
hyperuniformity for the number density variance, we numeri-
cally compute Var(R) given by [6]

Var(R) = ρv1(R)

[
s1(1)

(2π )d

∫ ∞

0
kd−1S(k)α̃2(k, R)dk

]
, (39)

where

α̃2(k, R) ≡ 2dπd/2�(1 + d/2)
[Jd/2(kR)]2

kd
. (40)

We evaluate Eq. (39) for the total and spin-resolved structure
factors for 2D unpolarized fermions (with rs = 1) obtained
from the STLS approximation. Figure 3(c) plots the scaled
local number variance Var(R)/R2 for both the total configura-
tion of such a system and the individual spins. The fact that
the scaled variance decreases at large R clearly demonstrates
hyperuniformity, as Var(R) grows more slowly than the area
of the observation window v1(R) = πR2 [6]. At large R, the
total configuration has a significantly smaller local number
variance than the sum of the number variances of individual

spins, since the former grows as R whereas the latter grows as
R ln R according to Eq. (2). One therefore has

Vartotal(R) ≡ Var↑↑(R) + Var↓↓(R) + 2Cov↑↓(R)

< Var↑↑(R) + Var↓↓(R), (41)

which indicates that the covariance between the number den-
sities of the opposite spins Cov↑↓(R) is negative due to their
repulsive interaction, as noted above.

IV. CLASSICAL SYSTEMS WITH PAIR STATISTICS
OF ELECTRON LIQUIDS

Recently, there has been considerable interest in the in-
vestigation of classical systems that mimic pair statistics
of quantum states [93–98]. These classical mappings en-
able one to efficiently predict thermodynamic properties such
as the exchange-correlation free energy [98] and to simu-
late quantum systems via density functional theory (DFT)
[99,100] or path-integral molecular dynamics approaches
[93,95,96]. Unfortunately, such mappings are usually lim-
ited to the hypernetted chain (HNC) approximation, which is
known to be inaccurate for high-density systems [101]. How-
ever, to reliably simulate quantum states, one requires highly

104201-9



WANG, SAMAJDAR, AND TORQUATO PHYSICAL REVIEW B 110, 104201 (2024)

FIG. 4. (a)–(c) Target and optimized pair correlation functions and (d)–(f) target and optimized static structure factors for polarized free
fermions in one, two, and three dimensions. (g)–(i) The short-ranged parts of the optimized potentials in one, two, and three dimensions,
respectively, as well as the corresponding HNC approximations used as the initial guess for the potentials.

accurate formulations of the equivalent classical interac-
tions [42]. In this section, we describe how our analytical
small-k expressions for fermionic systems in conjunction
with efficient inverse algorithms [46,47] enable us to con-
struct corresponding classical systems, equilibrated at positive
temperatures, that precisely mimic the zero-temperature
fermionic pair statistics.

A. Inverse algorithm

To determine equilibrium classical many-body systems
with pair statistics that match those of interacting electron

liquids, we use a recently devised precise inverse algorithm
[46,47] that extracts effective one- and two-body interactions
from targeted g2(r) and S(k). While the algorithm presented in
Refs. [46,47] is for single-component particle systems, it can
be easily generalized to multicomponent variants, including
spin systems. Here, we sketch this algorithm for a partially
polarized electron liquid with both up and down spin con-
stituents.

Our methodology uses parametrized spin-specific pair po-
tentials Vσσ ′ (r; aσσ ′ ), the initial functional forms of which
are informed by the small- and large-distance behaviors of

104201-10



CORRELATIONS IN INTERACTING ELECTRON LIQUIDS: … PHYSICAL REVIEW B 110, 104201 (2024)

the target pair statistics [6]. The scalar components a j of the
potential parameter vector aσσ ′ are of three types: dimension-
less energy scales ε j , dimensionless distance scales ς j , and
dimensionless phases θ j [46]. To obtain an initial form of the
small- and intermediate-r behavior of Vσσ ′ (r; a), we numeri-
cally fit the HNC approximation for the target spin-resolved
pair statistics, given by

βVσσ ′ (r) = hσσ ′ (r) − ln[g2,σσ ′ (r)] − cσσ ′ (r), (42)

where cσσ ′ (r) is the spin-resolved direct correlation function.
The large-r behavior of Vσσ ′ (r; aσσ ′ ) is given by the tar-
get direct correlation function cσσ ′ (r) under mild conditions
[46,68]. The direct correlation functions are related to the tar-
geted pair statistics via the multicomponent Ornstein-Zernike
equation [2,8,102]

h̃νμ(k) = c̃νμ(k) +
n∑

λ=1

ρλc̃νλ(k)h̃λμ(k), (43)

where n is the number of components, ν, μ, and λ are indices
of the components, and h̃(k) and c̃(k) are the Fourier trans-
forms of h(r) and c(r), respectively.

In the specific case of single-component hyperuniform
targets (i.e., fully polarized fermionic liquids), the large-r
asymptotic form of βV (r) ∼ −c(r) is given by [6]

V (r) ∼
{

r−(d−α), d 	= α

− ln(r), d = α
. (44)

That is, the potential is long ranged in the sense that its volume
integral is unbounded. Thus, one requires a neutralizing back-
ground one-body potential to maintain stability [2,6,29,103],
and the Ewald summation technique [104] is used to compute
the total potential energy. For nonhyperuniform targets, the
volume integral of c(r) is bounded and one only requires
two-body interactions to maintain stability.

Once the initial form of Vσσ ′ (r; aσσ ′ ) is chosen, the
low-storage Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm [105] is used to minimize an objective function �(a),
where a = [a↑↑, a↓↓, a↑↓], based on the distance between tar-
get and trial pair statistics in both direct and Fourier spaces:

�(a) =
∫
Rd

wg2
(r)
∑
σ,σ ′

ρσρσ ′

ρ

[
gT

2,σσ ′ (r) − g2,σσ ′ (r; a)
]2

dr

+ 1

(2π )d

∫
Rd

wS (k)
∑
σ,σ ′

√
ρσ ρσ ′

ρ2

× [
ST

σσ ′ (k) − Sσσ ′ (k; a)
]2

dk, (45)

where gT
2,σσ ′ (r) and ST

σσ ′ (k) are the targeted spin-resolved
pair statistics, wg2 (r) and wS (k) are weight functions, and
g2,σσ ′ (r; a) and Sσσ ′ (k; a) are the equilibrated spin-resolved
pair statistics under Vσσ ′ (r; aσσ ′ ) obtained from Monte Carlo
simulations. As in our previous works [46,47,106,107],
here, we use Gaussian weight functions wg2 (r) =
exp[−(rρ1/d/4)2] and wS (k) = exp{−[k/(2ρ1/d )]2}.

The BFGS algorithm requires the gradient of the objective
function �(a). Akin to Ref. [47], we estimate the gradient
of �(ai ) in iteration i by performing automatic differen-
tiation (AD) on an approximant function ψ of �. For a
simulated canonical ensemble Ci in iteration i, ψ is defined

by reweighing the pair statistics of each configuration in
Ci by a Boltzmann factor involving the difference in total
configurational energies �(rN ) = ∑N

j<k vσ jσk (|r j − rk|) under
Vσσ ′ (r; ai) and Vσσ ′ (r; a′) [108], i.e.,

ϕ(x; a′)=
∑

rN ∈Ci
ϕ(x; rN ) exp{−[�(rN ; a′) − �(rN ; ai )]/T }∑

rN ∈Ci
exp{−[�(rN ; a′) − �(rN ; ai )]/T } ,

(46)

where ϕ(x; rN ) is either g2,σσ ′ (r) or Sσσ ′ (k) computed from
each configuration rN in Ci, and T denotes the absolute tem-
perature. The approximate objective function ψ (a′) at the
perturbed parameters a′ in the vicinity of ai can be computed
by inserting Eq. (46) into Eq. (45). One can then apply BFGS
optimization with AD-generated gradients to find the optimal
parameters ai+1 that minimize ψ (a′). In the next iteration,
simulations are performed with the potential V (r; ai+1) to
obtain a new set of configurations Ci+1. The iterations repeat
until �(ai ) computed from Ci is smaller than some given
convergence threshold ε, set to be 10−3 in this paper. If con-
vergence is not achieved, a different set of basis functions is
chosen and the optimization process is repeated. Note that this
inverse methodology is highly efficient as it requires just one
simulation per iteration, regardless of the number of potential
parameters |a|.

B. Results for classical equilibrium systems

Our analytical small-k expressions for the spin-resolved
structure factors enable us to precisely determine the spin-
specific effective pair potentials that yield classical equilib-
rium states with pair statistics identical to interacting electron
liquids. Here, we first carry out such an analysis for the 2D
unpolarized interacting electron liquid with rs = 1 as an il-
lustrative example. We then study the structural degeneracy
problems for 2D and 3D fully polarized free Fermi gases, in
light of their important connections to random matrix theory.

The leading terms of the spin-specific structure factors at
small k for 2D unpolarized interacting fermions are given
by Eqs. (A30) and (A31) in Appendix A. To derive the
large-r behaviors of the effective potentials, we note that the
multicomponent Ornstein-Zernike equation (43) for this two-
component system is given by

h̃↑↑(k) = c̃↑↑(k) + ρ↑c̃↑↑(k)h̃↑↑(k) + ρ↓c̃↑↓(k)h̃↑↓(k),

h̃↑↓(k) = c̃↑↓(k) + ρ↑c̃↑↑(k)h̃↑↓(k) + ρ↓c̃↑↓(k)h̃↓↓(k), (47)

where ρ↑ = ρ↓ = k2
F /(4π ). Using Eqs. (17), (A30), and

(A31) and solving Eq. (47), one arrives at the large-r behavior
of the effective potentials βVσσ ′ (r) ∼ −cσσ ′ (r). For rs = 1,
we find that as r → ∞,

Vσσ (r) ∼ 1

2
(

4
√

2−√
2π

4π
+ 1

π

)
rkF

+
4
√

2�
(

1
4

)
√

rkF �
(

3
4

) ,

V↑↓(r) ∼ − 1

2
(

4
√

2−√
2π

4π
+ 1

π

)
rkF

+
4
√

2�
(

1
4

)
√

rkF �
(

3
4

) . (48)

Equation (48) now provides important insights into the
emergence of multihyperuniformity in the classical system.
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FIG. 5. Three-body correlation function g3 for polarized free fermions and their corresponding classical two-component system with
effective one- and two-body potentials. (a) For 1D free fermions, the quantum and classical systems are exactly mappable to each other, and
thus, their g3 functions agree. The surface corresponds to the g3 function for the quantum state, and the points plot the classical g3 data. (b),
(c) Three-body correlation function g3 for 2D and 3D free fermions, respectively, for points on small isosceles triangles with side lengths of
0.6ρ1/d . The quantum state displays stronger g3 correlations for acute triangles compared to the classical state.

Between any pair of particles—irrespective of whether they
are of the same or the opposite spin species—there is al-
ways a long-ranged repulsive interaction term proportional
to r−1/2 = r−(d−1)/2 = r−(d−3/2), which gives rise to the k3/2

behavior at small k in the total structure factor. Interestingly,
for two electrons with the same spin, there is also a weaker
repulsive term proportional to r−1 = r−(d−1), corresponding
to the linear rise in S↑↑(k) with k. Between opposite spins,
however, this r−1 term has the same magnitude but is attrac-
tive, corresponding to the linear decrease in S↑↓(k). Thus,
we infer that the spin-independent repulsive term r−(d−1)/2

describes correlation-hole effects due to the Coulomb inter-
actions, whereas the spin-dependent term r−(d−1) accounts for
the exchange hole.

Using our inverse algorithm described in Sec. IV A, we de-
termine a classical two-component system with pair statistics
that match those for the 2D unpolarized electron liquid with
rs = 1. The corresponding classical pair statistics are shown
as dashed curves in Figs. 3(a) and 3(b). Figure 3(f) plots the
spin-specific effective potentials for the equivalent classical
system, illustrating that antiparallel spins experience a weaker
effective classical repulsion than parallel ones (the functional
forms of the potentials are given in Appendix B). Figures 3(d)
and 3(e) show snapshots of this equivalent classical system
for one of the spin components and for the total configuration,
respectively.

Such a quantum-classical correspondence between
systems with matching pair statistics also allows one
to probe the so-called structural degeneracy problem
[48,109–112]. It is known that for a homogeneous many-body
system, one- and two-body correlations are insufficient to
uniquely determine the higher-body correlation functions
g3, g4, . . . [112]. Thus, we expect that the differences in the
higher-order correlation functions reflect crucial quantum
effects.

To facilitate the investigation of this degeneracy prob-
lem, we consider fully polarized free fermions, because their
n-body statistics are exactly known via the corresponding
determinantal point process [33]. For ground states of free
fermions, each of the n-body correlation functions can be

expressed completely in terms of g2(r) [33]:

gn(r12, r13, . . . ) = det[
√

1 − g2(ri j )]i, j=1,...,n. (49)

Figure 4 demonstrates that our inverse algorithm can suc-
cessfully determine classical 1D, 2D, and 3D many-body
systems interacting with one- and two-body potentials that
closely match the pair correlation functions [Figs. 4(a)–4(c)]
and structure factors [Figs. 4(d)–4(f)] of spin-polarized free
fermions. The short-ranged parts of the final optimized pair
potentials, as well as the HNC potentials used as initial
guesses, are shown in Figs. 4(g)–4(i). In the 1D case, it
is known [29] that the pair potential corresponding to the
fermionic pair statistics (3) and (5) is given by V (r) =
−2 ln(r). This potential is unique up to an additive constant
due to Henderson’s theorem [113]. Indeed, starting from the
HNC initial guess that has a nonzero short-ranged part, i.e.,
VHNC(r) + 2 ln(r) 	= 0, our inverse algorithm yields a final
potential whose short-ranged part vanishes, recovering the
pure logarithmic potential. This highlights the accuracy of the
algorithm in finding the unique pair potential corresponding to
target pair statistics, as noted in our previous works [46,47].
As d increases, the differences between the HNC potential
and the final optimized potential are reduced. This reflects the
decorrelation principle in higher dimensions, which asserts
that a particular functional form for a hypothetical correlation
function corresponding to a disordered system becomes easier
to be realized by many-body systems with increasing spatial
dimensionality [112].

Seeking to study the structural degeneracy of the polar-
ized free fermionic quantum system and its effective classical
equivalent, we compute their respective three-body correla-
tion functions, as shown in Fig. 5. The classical and quantum
1D systems are exactly mappable to each other, as shown
by Dyson [29]. Thus, all their n-body correlation functions
must agree. Accordingly, Fig. 5(a) shows that g3(r1, r2) for the
free Fermi gas and that for the corresponding classical system
match each other very well at all values of r1 and r2.

On the other hand, for d � 2, we observe distinct three-
body statistics between the classical and quantum states. For
example, Figs. 5(b) and 5(c) display g3 for points positioned
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on small isosceles triangles with side lengths 0.6ρ1/d , as a
function of the vertex angle θ for d = 2 and 3, respectively.
In both the 2D and 3D cases, the quantum states exhibit
the strongest three-body correlations for nearly equilateral
triangles with θ ≈ 60◦, whereas the classical states do so for
triplets of particles that are chainlike, with θ ≈ 180◦. The
prevalence of nearly equilateral triangles is associated with
the clustering of particles [107]. In contrast, particles in the
classical systems favor the formation of linear chains and
fewer clusters. These differences in classical and quantum
higher-body correlations confirm the prediction by Torquato
et al. [33] that ground states of free Fermi gases in two and
higher dimensions cannot be described as classical particles
interacting through one- and two-body potentials at a finite
temperature, i.e., intrinsic n-body interactions with n � 3 are
generally needed.

V. DISCUSSION AND CONCLUSIONS

In this paper, we systematically studied the many-body
statistics of ground states of interacting electron liquids
through the lens of disordered hyperuniformity, which is
characterized by the simultaneous statistical isotropy typical
of liquids and suppression of density fluctuations on large
scales in the manner of crystals. Classical ground states almost
invariably have high crystallographic symmetries [77–79],
and one requires highly unusual “stealthy” potentials to
create disordered hyperuniform ground states [114,115]. In
contrast, disordered hyperuniformity is widely prevalent in
statistically homogeneous fermionic quantum ground states.
Studying quantum ground states with diverse parent Hamil-
tonians, boundary conditions, and degrees of freedom (spins,
fermions, bosons, etc.) can provide an important and largely
unexplored arena to study the formation and design of hy-
peruniform states of matter with tunable long-wavelength
behaviors of their associated structure factors. Moreover, the
bipartite fluctuations of particle number and spin densities—
as probed by the structure factors studied here—can often
be directly related to the entanglement entropy [116], thus
providing an experimentally accessible route for its measure-
ment.

Furthermore, we obtained in this work several analytical
small-k results for statistically homogeneous ground states
of interacting fermions and probed the equivalent “designer”
classical systems that achieve such fermionic pair correla-
tions. We showed that all such states are hyperuniform, as
must be the case due to the fluctuation-compressibility rela-
tion. Moreover, we find that the small-k scaling exponent α

and the coefficient B in the hyperuniform scaling relation (1)
exhibit rich behaviors as functions of the dimensionality, the
interaction parameter, and the polarization. Specifically, the
total structure factor in two and three dimensions is charac-
terized by an exponent α = (d + 1)/2 as long as rs > 0—as
opposed to the case of the free Fermi gas with α = 1—and
the origin of this relation can be traced back to the plasmon
excitations of the electron liquid. On the other hand, the indi-
vidual spin components are always class-II hyperuniform with
α = 1. Consequently, partially polarized interacting electron
liquids exhibit a highly unusual form of multihyperuniformity,
in which the net configuration belongs to a stronger hyperuni-

formity class than each spin component individually due to the
negative density correlations between oppositely aligned spins
up to large length scales. This novel type of multihyperuni-
form pattern presents abundant opportunities for applications,
such as the design of optical arrays [91] for computer vision,
or in other contexts where accurate sampling of disordered
signals on large length scales is desired. The fact that one
can achieve these structures in both quantum and classical
systems suggests that the fabrication of such multihyperuni-
form materials is highly promising. For example, it has been
shown that various functional forms of effective interparticle
interactions can be achieved in classical polymer systems
[117,118], the interaction parameters of which are tunable via
the chemical composition of the polymer particles, thereby
realizing a plethora of prescribed pair statistics [47]. Thus,
to achieve the aforementioned unusual multihyperuniform
states, one can design two types of polymers interacting via
some component-specific pair potentials, the large-r asymp-
totic forms of which are given by Eq. (48).

Our paper also has important implications for the de-
velopment of DFTs for fermionic states. Previous DFT
formulations have often introduced functionals using the HNC
approximation for pair functions within the RPA framework
[42], which is exact in the limit rs → 0 but does not capture
the increase of S̃(k) at fixed small k as rs increases, as identi-
fied in this paper and shown in Fig. 2(c). Proceeding beyond
the RPA scheme, here, we have derived small-k expressions
for the structure factor and pair correlations via the Hubbard
approximation that precisely capture this increase. These ex-
pressions, together with our inverse algorithm that determines
effective one- and two-body potentials beyond the HNC ap-
proximation (Sec. IV A), can thus be used as constraints for
the development of more accurate DFT functionals.

Moreover, our study of the structural degeneracy of pair
statistics for free Fermi gases confirms the existence of intrin-
sic three- and higher-body interactions in fermionic systems
in two and higher dimensions, as predicted in Ref. [33].
Determining classical systems with pair statistics that match
those of target quantum states provides an efficient tool to
investigate intrinsically quantum effects, such as the inher-
ent wave-function antisymmetry for fermions, or the “full
counting statistics” of particle correlations beyond the two-
body level. A natural extension of our paper would be to
determine classical 2, . . . , n-body interactions that generate
equilibrium systems matching the corresponding g2, . . . , gn

correlations for quantum systems. One could then directly
compare the (n + 1)-body correlations between the classical
and the quantum states to find the intrinsically quantum effects
on the (n + 1)-body level. This analytical framework can of
course be applied to many other quantum systems, including
fermionic gases subject to non-Coulombic interactions as well
as bosonic systems.
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APPENDIX A: SMALL-k BEHAVIORS
OF STRUCTURE FACTORS

Here, we present a detailed derivation of the analyti-
cal long-wavelength behaviors of the total and spin-resolved
structure factors of electron liquids described with the RPA
and Hubbard approximations. We focus here on unpolarized
electron liquids, and results for arbitrary polarizations are
documented in Sec. III A in the main text. Note that for un-
polarized fermions, the spin-resolved structure factors Sσσ ′ (k)

can be expressed by the total and the magnetic structure fac-
tors via Eqs. (21) and (22).

1. Quasi-1D systems

Here, we show the derivation of the small-q behaviors of
S(q) and S̃(q) for the quasi-1D case, for which the potential
is given by Eq. (11). The real and imaginary parts of the 1D
Lindhard function χ0(q, ω; rs) are [73]

Re[χ0(q, ω; rs)] = 4rs

π2q

[
ln

(∣∣∣∣2q − q2 + ν

2q + q2 − ν

∣∣∣∣
)

− ln

(∣∣∣∣2q + q2 + ν

2q − q2 − ν

∣∣∣∣
)]

, (A1)

Im[χ0(q, ω; rs)] =
{

0, ν < 2q − q2 or ν � 2q + q2

− 4rs
πq , 2q − q2 � ν < 2q + q2 , (A2)

where ν = 2mω = 8ωrs/π .
Singwi et al. [39] showed that Eq. (26) can be written as

S(q) = − 1

ρπ

ω

ν

∫ 2q+q2

0
Im[χd (q, ω; rs)]dν + 1

ρ

(
∂Re 1

χd (q,ω;rs )

∂ω

)−1

ω=ωp(q)

, (A3)

where the second term comes from the singularity of the integrand χd (q, ω; rs) at the so-called plasmon frequency ωp(q). The
integral along the imaginary axis in Eq. (26) must pass around this singularity by a semicircular path.

We now proceed to evaluate both terms of Eq. (A3). In the RPA scheme, we set G(q) = 0 and use Eqs. (28) and (A2) to obtain

Im[χd (q, ω; rs)] = −4π3qrs

{[
π2q − 4rse

	2q2

4 K0

(
	2q2

4

)
ln

(
(q2 − 2q + ν)|2q − q2 + ν|
(q2 + 2q − ν)|2q + q2 + ν|

)]2

+ 16π2r2
s e

	2q2

2 K0

(
	2q2

4

)2
}−1

if 2q − q2 � ν � 2q + q2, (A4)

and zero otherwise. For fixed q, this is a symmetric function about ν = 2q, at which its magnitude achieves a maximum:

max
ω

|Im[χd (q, ω; rs)]| = 4π3qrs[
π2q − 4rse

	2q2

4 ln
( |4q−q2|

|4q+q2|
)
K0
(

	2q2

4

)]2 + 16π2r2
s e

	2q2

2 K0
(

	2q2

4

)2

∼ π

16rs

q

(ln q)2
, q → 0. (A5)

Thus, we obtain an upper bound for the first term of Eq. (A3):

− 1

ρπ

ω

ν

∫ 2q+q2

0
Im[χd (q, ω; rs)]dν = − 1

ρπ

ω

ν

∫ 2q+q2

2q−q2
Im[χd (q, ω; rs)]dν � 2q2 π

16rs

q

(ln q)2
∝ q3

ln(q)2
, q → 0. (A6)

To evaluate the second term in Eq. (A3), we again set G(q) = 0 and use Eqs. (28) and (A2) to find

Re

[
1

χd (q, ω; rs)

]
= 8rs ln

(
	2q2

8

)+ 8γ rs − π2

8rs
+ 2rsω

2

q2
+ O(q). (A7)

The plasmon frequency ωp(q) is defined by the relation Re[1/χd (q, ωp; rs)] = 0. Solving this with Eq. (A7) gives

ωp(q) =
q
√

−8rs ln
(

	2q2

8

)− 8γ rs + π2

4rs
, (A8)

which exhibits a characteristic |q2 ln q|1/2 form [52–54,61,119]. Inserting ωp(q) into the second term of Eq. (A3) results in an
expression proportional to q/

√− ln q at small q (see below), dominating the q3/(ln q)2 behavior from the first term. Thus, one
has

SRPA(q) ∼ 1

ρ

q√
−8rs ln

(
	2q2

8

)− 8γ rs + π2
∼ πq

8
√−rs ln q

, q → 0. (A9)
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For the magnetic structure factor, we set I (q) = 0 in
Eq. (29). Equations (27) and (A2) yield

S̃RPA(q) = − 1

ρπ

∫ ∞

0
Im[χ0(q, ω; rs)]

∼ − 1

ρπ

ω

ν

∫ 2q+q2

2q−q2

−4πrs

q
dν∼ q

2
, q → 0.

(A10)

Thus, the spin-resolved structure factors have the small-k be-
haviors

Sσσ,RPA(q) ∼ q

4
+ πq

16
√−rs ln q

, q → 0, (A11)

S↑↓,RPA(q) ∼ −q

4
+ πq

16
√−rs ln q

, q → 0. (A12)

For the Hubbard approximation, one can again show that
the second term of Eq. (A3) dominates the first at small q.
Using Eqs. (11), (28), (30), and (A3), the small-q behavior of
S(q) in the Hubbard approximation is given by

q√
−8rs ln

(
	2q2

8

)− 4e
	2
4 rsK0

(
	2

4

)− 8γ rs + π2

, (A13)

and consequently,

SHubbard(q) ∼ πq

8
√−rs ln q

, q → 0. (A14)

For the magnetic structure factor, one can first obtain the
small-q behavior of χ s(q, ω; rs) from Eqs. (29) and (11), i.e.,

χ s(q, ω; rs) = χ0(q, ω; rs)

1 + 1
2Ṽ (

√
q + 1)χ0(q, ω; rs)

∼ χ0(q, ω; rs)

1 + 1
2 e

	2
4 K0

(
	2

4

)
χ0(q, ω; rs)

, q → 0.

(A15)

Plotting χ s(q, ω; rs) against ω at fixed q shows that this func-
tion contains a singularity on the interval 0 � ν � 2q − q2 for
small q. Thus, we have an expression for S̃(q) analogous to

Eq. (A3):

S̃(q) = 1

ρπ

ω

ν

∫ 2q+q2

0
Im[χ s(q, ω; rs)]dν

+ 1

ρ

(
∂Re 1

χ s (q,ω;rs )

∂ω

)−1

ω=ωs (q)

, (A16)

where ωs(q) is the frequency of the singularity of χ s(q, ω; rs).
Solving 1/χ s(q, ω; rs) = 0 at small k gives

ωs(q) ∼
√

q2
[
π2 − 4e

	2
4 rsK0

(
	2

4

)]
4rs

, q → 0. (A17)

Equations (A16) and (A17) then result in

S̃Hubbard(q) ∼ q√
π2 − 4e

	2
4 rsK0

(
	2

4

)

∼
⎡
⎣1

2
+ e

	2

4 K0
(

	2

4

)
rs

π2

⎤
⎦q, q → 0. (A18)

To validate Eq. (A18), we first set rs = 1, 	 = 2/m =
(2π )/(4rs) = π/2, as done by Tanatar [43], and find that
S̃Hubbard(q) ∼ 0.642q. This is consistent with the numeri-
cal calculations for the STLS model in Ref. [43], which
show that S(q) is linear in q up to q = 1.5 and that
S̃(q = 1) ≈ 0.64.

Equations (A14) and (A18) yield the small-k behaviors of
the spin-resolved structure factors as q → 0:

Sσσ,Hubbard(q) ∼
⎡
⎣1

4
+ e

	2

4 K0
(

	2

4

)
rs

2π2

⎤
⎦q + πq

16
√−rs ln q

,

(A19)

S↑↓,Hubbard(q) ∼ −
⎡
⎣1

4
+ e

	2

4 K0
(

	2

4

)
rs

2π2

⎤
⎦q + πq

16
√−rs ln q

.

(A20)

2. Two dimensions

To find S(k) and S̃(k) for 2D interacting unpolarized fermions with the RPA and Hubbard approximations, we follow the
procedure outlined in Ref. [120], which simplifies Eqs. (26)–(29) to

S(q) = 2q2

π

∫ α(q)

0

⎛
⎜⎝
√

1 − q2 sin2(β )

4
+ cot2(β )√

1 − q2 sin2(β )
4

⎞
⎟⎠ 1 − cos(β )

q + √
2rs[1 − cos(β )][1 − G(q)]

dβ, (A21)

S̃(q) = 2q2

π

∫ α(q)

0

⎛
⎜⎝
√

1 − q2 sin2(β )

4
+ cot2(β )√

1 − q2 sin2(β )
4

⎞
⎟⎠ 1 − cos(β )

q + √
2rs[1 − cos(β )]I (q)

dβ, (A22)

where

α(q) =
{
π/2, q < 2
arcsin(2/q), q � 2.

(A23)
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To derive the small-q behavior of S(q) and S̃(q) for rs > 0 within the RPA model, we set the corresponding LFCs G(q) = I (q) =
0 in Eqs. (A21) and (A22). The integrals now have closed-form solutions in the limit of small q:

SRPA(q) ∼ 2q2

π

∫ π/2

0

[
csc2(β ) + 1

8 q2 cos(2β ) + O(q4)
]
(1 − cos(β ))

q + √
2rs[1 − cos(β )]

dβ

= 2q2

π

∫ π/2

0

1

q[1 + cos(β )] + √
2rs sin2(β )

dβ + O(q9/2)

= 2q2

π

⎛
⎜⎝ 1

q + 2
√

2rs

+
2rs(

√
2q + 4rs) tan−1

(√q+2
√

2rs√
q

)
√

q(q + 2
√

2rs)5/2

⎞
⎟⎠+ O(q9/2) = 1

23/4√rs
q3/2 + O(q5/2), q → 0, (A24)

S̃RPA(q) ∼ 2q2

π

∫ π/2

0

[
(1 + cot2(β ))(1 − cos(β ))

q
+ O(q)

]
dβ = 2q2

π

∫ π/2

0

1

q[1 + cos(β )]
dβ + O(q3)

= 2q

π
+ O(q3), q → 0. (A25)

Using Eqs. (21) and (22), we find that the same- and opposite-spin small-q expressions for RPA are given by

Sσσ,RPA(q) ∼ q

π
+ 1

27/4√rs
q3/2, q → 0, (A26)

S↑↓,RPA(q) = − q

π
+ 1

27/4√rs
q3/2, q → 0. (A27)

In the Hubbard approximation, the LFC (30) for 2D electron liquids is given by GHubbard(q) = −IHubbard(q) = 1
2

√
q2/(q2 + 1).

Thus, at small q, we have GHubbard(q) = −IHubbard(q) ∼ q/2. Inserting these expressions into Eqs. (A21) and (A22) yields the
small-q behaviors of the total and the magnetic structure factors:

SHubbard(q) =2q2

π

∫ π
2

0

[
csc2(β ) + 1

8 q2 cos(2β ) + O(q4)
]
(1 − cos(β ))

q + √
2rs[1 − cos(β )]

(
1 − q

2

) dβ

=2q2

π

∫ π
2

0

1

q[1 + cos(β )] + √
2rs sin2(β )

(
1 − q

2

)dβ + O(q9/2)

=2q2

π

⎛
⎜⎝ 1

−√
2qrs + q + 2

√
2rs

+
√

2(q − 2)rs tanh−1
(√√

2qrs−q−2
√

2rs√
q

)
√

q(q(
√

2rs − 1) − 2
√

2rs)3/2

⎞
⎟⎠+ O(q9/2)

= 1

23/4√rs
q3/2 + O(q5/2), q → 0, (A28)

S̃Hubbard(q) = 2q2

π

∫ π
2

0

[
sec2

(
β

2

)
q[

√
2rs cos(β ) − √

2rs + 2]
+ O(q)

]
dβ =

2q
(

1
1−√

2rs
+

√
2rs tanh−1(

√√
2rs−1)

(
√

2rs−1)3/2

)
π

+ O(q3)

=
[

2

π
+ (4

√
2 − √

2π )rs

2π
+ O

(
r2

s

)]
q + O(q3), q → 0. (A29)

Using Eqs. (21) and (22), we find that the same- and opposite-spin small-q structure factors for the Hubbard approximation are
given by

Sσσ,Hubbard(q) ∼
[

1

π
+ (4

√
2 − √

2π )rs

4π

]
q + 1

27/4√rs
q3/2, q → 0, (A30)

S↑↓,Hubbard(q) ∼ −
[

1

π
+ (4

√
2 − √

2π )rs

4π

]
q + 1

27/4√rs
q3/2, q → 0. (A31)
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3. Three dimensions

The small-k behaviors of the spin-resolved structure factors for 3D unpolarized interacting Fermi gases within the RPA model
have been derived by Wang and Perdew [41]. However, we include the derivation here for completeness. The real and imaginary
parts of the 3D Lindhard function are given by [73]

Re[χ0(q, ω; rs)] = rs

(18π7)1/3

⎛
⎝ [4q2 − (ν − q2)2] ln

∣∣ 2q−q2+ν

2q+q2−ν

∣∣− [4q2 − (ν + q2)2] ln
∣∣ 2q+q2+ν

2q−q2−ν

∣∣
8q3

− 1

⎞
⎠, (A32a)

Im[χ0(q, ω; rs)] =

⎧⎪⎪⎨
⎪⎪⎩

− νrs
24/332/3π4/3q , ν < 2q − q2

[ν2+q4−2(ν+2)q2]rs

210/3 32/3 π4/3 q3 , |2q − q2| � ν < 2q + q2

0, ν � 2q + q2

, (A32b)

where ν = 2mω = [2(2/3)2/3ωrs]/( 3
√

π ) is a scaled frequency.
We proceed to evaluate both terms of Eq. (A3) in the RPA framework. Setting G(q) = 0 in Eq. (28), Im[χd (q, ω; rs)] can be

derived from Eqs. (28) and (A32b). As is the case for Eq. (A32), Im[χd (q, ω; rs)] is also continuous and piecewise smooth. At
small q, the portion of Im[χd (q, ω; rs)] on the interval 0 � ν < 2q − q2 has the largest contribution to the integral in the first
term of Eq. (A3). It is given by

Im[χd (q, ω; rs)] = rs
Im[χ0(q, ω; rs)] q4

{q2 − 4πRe[χ0(q, ω; rs)]}2 + {4π Im[χ0(q, ω; rs)]}2

= O(q3)ν + O(q)ν3 + O(q−1)ν5 + · · · + O(q4)ν2 + O(q2)ν4 + O(1)ν6 + . . . , ν < 2q − q2. (A33)

The first term of Eq. (A3) is approximated as

− 1

ρπ

ω

ν

∫ 2q+q2

0
Im[χd (q, ω; rs)] dν ∼ − 1

ρπ

ω

ν

∫ 2q−q2

0
Im[χd (q, ω; rs)] dν ∝ q5, q → 0. (A34)

Numerical integration confirms the q5 behavior of the first term of Eq. (A3).
To evaluate the second term in Eq. (A3), we note that the small-q RPA behavior of Re[χd (q, ω; rs)] can be derived from

Eqs. (28) and (A32a), setting G(q) = 0:

Re[χd (q, ω; rs)] ∼
(

3
2

)2/3
q2

π (3π2/3ω2rs − 24/332/3)
+ O(q3), q → 0. (A35)

The singularity of χd (q, ω; rs) occurs where the denominator in Eq. (A35) vanishes, i.e.,

ωp(q) = 22/3

31/6π1/3√rs
, q → 0. (A36)

Inserting Eqs. (A35) and (A36) into the second term of Eq. (A3) yields an expression quadratic in q, which dominates the q5

behavior due to the first term. Thus, we have

SRPA(q) ∼ 35/6π2/3q2

4 3
√

2
√

rs

, q → 0, (A37)

which has exactly the same form as the known plasmon contribution (36), with ρ = 1/(3π2), m = rs[4πρ/3]1/3 =
(2/3)2/3rs/π

1/3, and Ṽ (q) = 4π/q2.
For the magnetic structure factor S̃(q), one can show from Eqs. (27) and (29) with I (q) = 0 that

S̃RPA(q) = − 1

ρπ

∫ ∞

0
Im[χ0(q, ω; rs)]dω

= − 1

ρπ

ω

ν

(∫ 2q−q2

0
− νrs

24/332/3π4/3q
dν +

∫ 2q+q2

2q−q2

[ν2 + q4 − 2(ν + 2)q2]rs

210/332/3π4/3q3
dν

)
∼ 3q

4
− q3

16
, q → 0, (A38)

where we have used the fact that in the small-q limit, only the interval 0 < ν < 2q − q2 in Eq. (A32b) contributes to the linear
term in S̃(k). Combining Eqs. (A37) and (A38) yields the spin-resolved structure factors

Sσσ,RPA(q) ∼ 3q

8
+ 35/6π2/3q2

8 3
√

2
√

rs

, q → 0, (A39a)

S↑↓,RPA(q) ∼ −3q

8
+ 35/6π2/3q2

8 3
√

2
√

rs

, q → 0. (A39b)
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For the 3D Hubbard approximation, one has GHubbard(q) = −IHubbard(q) = (q2 + 1)/(2q2). Inserting GHubbard(k) into Eq. (28)
and using Eq. (A32a) leads to the same form of Re[χd (q, ω; rs)] as Eq. (A35). Thus, S(q) in the Hubbard approximation has the
same leading quadratic term as in the RPA:

SHubbard(q) ∼ 35/6π2/3q2

4 3
√

2
√

rs

, q → 0. (A40)

To study the magnetic structure factor in the Hubbard approximation, we use the fact that IHubbard(q) ∼ q2/2 at small q, and
rewrite Eq. (29) as

χ s(q, ω; rs)

−g2μ2
B

∼ χ0(q, ω; rs)

1 − 4π
q2 χ0(q, ω; rs) q2

2

= χ0(q, ω; rs)

1 − 2πχ0(q, ω; rs)
, q → 0. (A41)

Equation (A32) indicates that χ0(q, ω; rs)/rs only depends on q and ν. We set α0(q, ν) and β0(q, ν) to be the real and imaginary
parts of χ0(q, ω; rs)/rs, respectively. This gives a small-rs expansion of χ s(q, ω; rs):

Im[χ s(q, ω; rs)]

−g2μ2
B

= β0rs

1 + 4πrsα0 + 4π2r2
s

(
α2

0 + β2
0

) ∼ rs
[
β0 − 4πrsα0β0 + O

(
r2

s

)]
, q → 0, rs → 0, (A42)

where we have omitted the arguments of α0(q, ν) and β0(q, ν) for clarity. From Eq. (27), we then find

S̃Hubbard(q) ∼ 1

ρπ

ω

ν
rs

∫ 2q−q2

0
β0(q, ν)dν −

(
4

ρ

ω

ν
rs

)
rs

∫ 2q−q2

0
α0(q, ν)β0(q, ν)dν ∼ 3q

4
+
(

3

1024π4

) 1
3

rs

×
∫ 2q−q2

0

⎛
⎝−

[ν2 + q4 − 2(ν + 2)q2] tanh−1
(

ν−q2

2q

)
q3

+
[ν2 + q4 + 2(ν − 2)q2] tanh−1

(
ν+q2

2q

)
q3

− 4

⎞
⎠ν

q
dν

∼
[

3

4
+ 2

(
2
3

)2/3
(1 − ln 2)

π4/3
rs

]
q, q → 0. (A43)

Thus, the leading-order terms of the spin-resolved structure factors are given by

Sσσ,Hubbard(q) ∼
(

3

8
+
(

2
3

)2/3
(1 − ln 2)

π4/3
rs

)
q + 35/6π2/3q2

8 3
√

2
√

rs

, q → 0, (A44a)

S↑↓,Hubbard(q) ∼ −
(

3

8
+
(

2
3

)2/3
(1 − ln 2)

π4/3
rs

)
q + 35/6π2/3q2

8 3
√

2
√

rs

, q → 0. (A44b)

APPENDIX B: EFFECTIVE CLASSICAL POTENTIALS

Here, we list the explicit forms of the effective classical potentials for the fermionic systems considered in Sec. IV. Note that
the pair distances r are measured in units of k−1

F .
For 1D free fermions,

V (r) = −2 ln(r). (B1)

For 2D free fermions,

V (r) = −ε1 exp

(
− r∗2

σ 2
1

)
ln(r∗) +

√
π

2r∗

[
1 − exp

(
− r∗2

σ 2
2

)]
, (B2)

where r∗ = r/
√

2π , ε1 = 2.099, σ1 = 0.6666, and σ2 = 0.4739.
For 3D free fermions,

V (r) = −ε1 exp

(
− r∗2

σ 2
1

)
ln(r∗) + 2 3

√
2

32/3π4/3r∗2

[
1 − exp

(
− r∗2

σ 2
2

)]
, (B3)

where r∗ = r/(3π2)1/3, ε1 = 1.303, σ1 = 0.7198, and σ2 = 0.5175.
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For a 2D unpolarized electron liquid with rs = 1,

Vσσ (r) = ε
(1)
1 exp

(
− r2

σ 2
1

)(− ln(r) + ε
(2)
1

)+
[

1 − exp

(
− r2

σ 2
2

)][
1

2
(

4
√

2−√
2π

4π
+ 1

π

)
r

+
4
√

2�
(

1
4

)
√

r�
(

3
4

)
]
, (B4)

V↑↓(r) = ε3 exp

(
− r

σ3

)
+ ε4 exp

(
− r2

σ 2
4

)
+
[

1 − exp

(
− r2

σ 2
5

)][
− 1

2
(

4
√

2−√
2π

4π
+ 1

π

)
r

+
4
√

2�
(

1
4

)
√

r�
(

3
4

)
]
, (B5)

where ε
(1)
1 = 3.192, σ1 = 2.172, ε

(2)
1 = 1.309, σ2 = 1.537, ε3 = 1.486, σ3 = 0.7748, ε4 = 2.180, σ4 = 1.141, and σ5 = 1.238.
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