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The systems without symmetries, e.g., the spatial and chiral symmetries, are generally thought to be improper
for topological study and no conventional integral topological invariant can be well defined. In this work, with
multiband asymmetric Rice-Mele–type systems as examples, we show that the topology of all gaps can be
reconstructed by two general methods and the topological origin of many phenomena are revealed. An integral
topological invariant, i.e., the renormalized real-space winding number, can properly characterize the topology
and bulk-edge correspondence of such systems. For the first method, a homomorphic mapping relationship
between a Rice-Mele–type system and its chiral counterpart is set up, which accounts for the topology re-
construction in the half-filling gaps. For the second method, the Hilbert space of asymmetric systems could be
reduced into degenerate subspaces by perturbation approximation, so that the topology in subspaces accounts for
the topology reconstruction in the fractional-filling gaps. Surprisingly, the topology reconstructed by perturbation
approximation exhibits extraordinary robustness since the topological edge states even exist far beyond the weak
perturbation limit. We also show that both methods can be widely used for other asymmetric systems, e.g.,
the two-dimensional Rice-Mele systems and the superconductor systems. At last, for the asymmetric photonic
systems, we predict different topological edge states by our topology-reconstruction theory and experimentally
observe them in the laboratory, which agrees with each other very well. Our findings show the possibility that for
some types of asymmetric systems the topology can be reconstructed by two methods and the related phenomena
can be observed. Various reconstruction methods might be found for other types of asymmetric systems and the
category of topology study could be expanded.

DOI: 10.1103/PhysRevB.110.104106

I. INTRODUCTION

Topological band theory has attracted much attention in
both quantum and classical systems [1–6]. One of the most
fascinating properties of topological phases is the robust-
ness of topological edge states which shed light on the
development of novel highly integrated devices [7,8]. The
topological invariant defined in the bulk can predict the topo-
logical phases and the number of topological edge states
through the bulk-edge correspondence. Since the discovery
of tenfold classification in topological insulators and super-
conductors [9,10] and the topological crystalline insulators
[11], it is widely believed that the nontrivial topology and
the unique characteristics of topological edge states are re-
lated to certain symmetries. For example, in one-dimensional
(1D) systems, the topology is generally protected by chi-
ral symmetry [12–15] which can be described by winding
number [12,15–18], or by spatial-inversion symmetry [19,20]
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which can be described by quantized Zak phase [19,21–23].
Similarly, for higher-order topology in two-dimensional (2D)
systems, the topological quadrupole insulators are protected
by spatial symmetry [19,24] while the novel Z-classified
higher-order topological insulators require chiral symmetry
[25,26].

A fundamental drawback of the symmetry-based topologi-
cal theory is obvious and very deep, i.e., the periodic systems
without certain symmetries are generally not considered in
the category for topology study. That is to say, for systems
without certain symmetries, it is rather tricky to analyze
the topological origin of some phenomena, not to mention
a well-defined topological invariant. On the other hand, re-
cent studies in asymmetric systems [27–31] do exhibit clear
signs of band topology as well as some novel phenomena
such as nonzero edge states and topological phase transitions
without gap closing and reopening. Obviously, the traditional
symmetry-based topological theories are not suitable for these
cases. However, to the best of our knowledge, little effort has
been made to extend the symmetry-based topological theory
into periodic systems without symmetries. Even more, some
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basic concepts, such as the perturbation approximation which
is generally thought to be irrelevant to the topological studies,
can take important roles in these cases.

In this work, we introduce a perspective for the topology
study of asymmetric systems, in which two general meth-
ods can be introduced to reconstruct the topology for such
systems. The first method is by a strict mathematical trans-
formation, which is a homomorphic mapping for the wave
functions and eigenvalues from the Rice-Mele–type system
to its chiral counterpart. Based on homomorphic mapping,
we show that the nontrivial topology for the half-filling gap
and the bulk-edge correspondence can be precisely described
by a new topological invariant, i.e., the renormalized real-
space winding number, which can be well defined. The second
method is by a physical transformation based on perturbation
approximation. This is very surprising since the perturbation
approximation is generally thought to be irrelevant to the
topology. With perturbation approximation, we show that the
original system can be divided into degenerate subspaces
where new topological characteristics can emerge. Mean-
while, some interesting phenomena, e.g., the edge states in the
fractional-filling gaps of asymmetric systems, are dominated
by the nontrivial topology from the degenerate subspace. Even
more, such approximation-based topology and edge states ex-
hibit extraordinary robustness since they can go far beyond the
weak perturbation limit. The perturbation-based topology can
also be characterized by the renormalized real-space wind-
ing number with redefined sublattice. The Rice-Mele–type
systems are chosen as 1D multiband asymmetric examples
to show the effectiveness of our methods and new related
topological phenomena are investigated. Aside from the Rice-
Mele–type systems, we show that our methods can also be
utilized in other systems, such as 2D Rice-Mele model and 1D
dimerized superconducting model. At last, we introduce these
methods to the classical systems, e.g., the asymmetric pho-
tonic crystals (PhCs) whose effective Hamiltonian is similar
as that of Rice-Mele ladder. The topological phases and edge
states of PhCs are also identified by our methods based on the
photonic tight-binding model theory. Experiments are done
for the asymmetric PhCs and the topological edge states at
the boundary between PhCs with different topological phases
are observed in the laboratory, which agrees very well with
our theoretical prediction. This work opens a door for the
study of topology in asymmetric systems and unique topo-
logical phenomena can be expected. We demonstrate that the
topological characteristics of asymmetric systems can still
be described rather precisely as long as the topology can be
reconstructed, which could be a new paradigm for topology
study.

II. MODEL AND TOPOLOGICAL INVARIANTS

A. Model

In this work, we would mainly focus on the topological
properties of the asymmetric systems. To be precise, we note
that here “the asymmetric systems” refer to the simultaneous
breaking of chiral symmetry and spatial symmetries including
the spatial-inversion symmetry and the rotational symmetries,
while the temporal symmetries and the translational sym-
metries are not referred. The breaking of chiral symmetry

(b)
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(c)

FIG. 1. (a) Schematic of Rice-Mele ladder. The unit cell is
marked by dashed box. (b) Band structure versus � with t = 3,
δ = 1, μ1 = 6, μ2 = 7, v = 1. (c) Band structure versus μ1 = μ2 =
μ with t = 3, δ = 2, � = 1, v = 1. Both (b) and (c) are calculated
by the system with 50 unit cells with OBC.

indicates that the system belongs to AI class according to
the tenfold classification [9,10], which does not have any
nontrivial phases in 1D systems. Meanwhile, the breaking of
spatial-inversion symmetry in 1D systems also makes Zak
phase [19,32] unquantized, which prevents the system from
becoming the topological electric multipole insulator. There-
fore, according to the traditional symmetry-based topological
theory, the asymmetric systems discussed in this work are
thought to be topologically trivial generally.

To be specific, here we would like to take the Rice-Mele
ladder as the first example to illustrate our topology recon-
struction methods in asymmetric systems. Shown in Fig. 1(a),
our Rice-Mele ladder is a natural extension from the 1D Rice-
Mele model [33] to a ladder structure. The model could also
be realized by introducing staggered nonzero onsite energies
to Su-Schrieffer-Heeger (SSH) ladder [12,34]. The Hamilto-
nian could be written as

H =
∑

j

[(t + δ)b†
ja j + (t − δ)a†

j+1b j + (t − �)d†
j c j

+ (t + �)c†
j+1d j + μ1a†

j c j + μ2b†
jd j + H.c.]

+ va†
j a j − vb†

jb j − vc†
j c j + vd†

j d j, (1)

where α and α† are the annihilation and creation operators at
site α, α = a, b, c, d . When we set the onsite energy v = 0,
the model degenerates to the SSH ladder whose topology at
half-filling is protected by chiral symmetry [12,16,35–37].

The Bloch Hamiltonian is given by

H(k) =
[

vI2 M(k)
M(k)† −vI2

]
, (2)
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here M(k) = [ μ1 (t + δ) + (t − δ)eik

(t − �) + (t + �)e−ik μ2
] and In stands

for the n × n identity matrix. The Hamiltonian of Eq. (2)
can be thought of as the generalization of the Hamiltonian
of common Rice-Mele model [33] since both M and vI2 are
matrices.

The band structures of the Rice-Mele ladder versus the
parameters � and μ with the open boundary condition (OBC)
are exhibited in Figs. 1(b) and 1(c), respectively. Two inter-
esting phenomena can be observed. First, in-gap edge states
appear when the parameters pass certain critical values. Sec-
ond, at the critical value, the gap width also reaches its
minimum. We will show that these phenomena are actually
the typical signs of topological phase transition for 1D asym-
metric systems. As a four-band system, the Rice-Mele ladder
possesses three gaps and all of them are candidates for our
topology study. To avoid any possible misunderstanding, the
edge states in the second gap, corresponding to the half-filling
gap, are marked by red lines, while the edge states in the first
and third gaps, corresponding to the other fractional-filling
gaps, are marked by blue lines. We will see that the topolog-
ical origins of these phenomena signified by different colors
are different and they need different topology reconstruction
methods.

B. Topological invariants

In the study of topological band theory, the importance
of topological invariant is self-evident. As mentioned above,
the definition of most conventional topological invariants for
1D systems, e.g., the Zak phase and the winding number,
relies heavily on system symmetries which makes them more
difficult for our asymmetric systems. Also, the quantization
of these conventional topological invariants is another severe
problem for asymmetric systems. Very recently, real-space
winding number [25,38] shows its power in the topology
study. Although it is initially developed for describing topo-
logical properties of random systems without translational
symmetry [38–40], it also offers a potential method to study
the topology of periodic systems without spatial-inversion and
chiral symmetries.

The real-space winding number with periodic boundary
condition (PBC) is given by [38]

w = 1

2π i
Tr

[
log

(
χAχ−1

B

)]
, (3)

where

χσ = U −1
σ �σχ�σUσ (4)

for σ = A, B. The ith column in Uσ is the σ sector of
the ith eigenstate below the gap under consideration. �σ =∑

l,α∈σ |l, a〉〈l, a| is the projector operator of sublattice σ . The
position operator χ reads as

χ =
∑

l

ei 2π
N l (|l, A〉〈l, A| + |l, B〉〈l, B|). (5)

Unless otherwise specified, in this work we calculate the
real-space winding number w for the 50-unit-cell system with
PBC. We prove that the necessary condition for a system
to be described by quantized real-space winding number is

(Appendix A)

UAU †
A = U †

AUA = UBU †
B = U †

BUB = 0.5. (6)

Just like the conventional winding number which is defined
by the structure of Bloch Hamiltonian, the real-space winding
number also requires chiral symmetry (Appendix A) and can-
not be directly used for our theory. However, as the real-space
winding number is calculated directly based on eigenstates, it
shows more flexibility considering the fact that the eigenstates
can be redefined or renormalized. This property enables us to
define a topological invariant with some improvements which
will be presented in the following sections. It is worth noticing
that the real-space winding number also has a momentum-
space form which is defined as the difference of polarization
between A and B sublattices [38]. Equivalent as they are,
we find that calculating in the momentum space numeri-
cally requires extra care since the winding number is a Z
invariant. Therefore, in this work we stick to the real-space
representation.

III. TOPOLOGY RECONSTRUCTION
VIA HOMOMORPHIC MAPPING

In this section, we would like to introduce a general method
of topology reconstruction for the asymmetric systems whose
Hamiltonian has a similar form of Eq. (2), which is referred to
as the Rice-Mele–type Hamiltonian in this paper. The method
is based on homomorphic mapping, by which a mapping
between the wave functions of Rice-Mele–type Hamiltonian
and those of a new Hamiltonian with chiral symmetry can be
found, so that the topology of Rice-Mele–type Hamiltonian
can be reconstructed for the gap around zero energy, corre-
sponding to the half-filling gaps generally. By this method,
we can also define a topological invariant for such systems,
namely, the renormalized real-space winding number, which
can clearly show the topological phase transition at critical
point by quantized jumping and the topological edge states
appearing. The method can be easily extended to higher-
dimensional systems, such as the 2D Rice-Mele systems.

A. General method of topology reconstruction
by homomorphic mapping

Similar as Eq. (2), the real-space Hamiltonian of Rice-
Mele–type models takes the general form as

HRM =
[
vIN h
h† −vIN

]
. (7)

Its eigenequation

HRM

[
ϕAn

ϕBn

]
= En

[
ϕAn

ϕBn

]
(8)

can be decomposed into two equations:

vϕAn + hϕBn = EnϕAn, (9)

h†ϕAn − vϕBn = EnϕBn. (10)

Premultiply Eq. (9) by h† and Eq. (10) by h, after some simple
calculation, we can obtain two decoupled equations for ϕAn
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and ϕBn:

hh†ϕAn = (
E2

n − v2
)
ϕAn,

h†hϕBn = (
E2

n − v2
)
ϕBn. (11)

Equation (11) ensures the orthogonality of eigenstates ϕσn,
σ = A, B. However, since chiral symmetry is broken in Rice-
Mele–type system, the normalization condition 〈ψAn|ψBn〉 =
〈ψBn|ψBn〉 = 0.5 is broken. That is to say, Eq. (6) is not satis-
fied for Uσ and the real-space winding number is unavailable.

On the other hand, the following eigenequation can also
obtain the form of Eq. (11):

Hchiral

[
ϕ̄An

ϕ̄Bn

]
=

√
E2

n − v2

[
ϕ̄An

ϕ̄Bn

]
, (12)

where

Hchiral =
[

0 h
h† 0

]
(13)

exhibits the characteristics of chiral symmetry, i.e., the chiral
operator � anticommutes with Hchiral:

�Hchiral�
† = −Hchiral with � =

[
IN 0
0 −IN

]
. (14)

That is to say, ϕ̄σn is normalized to 0.5. Physically, the system
of Eq. (8) with Hamiltonian HRM and the system of Eq. (12)
with Hamiltonian Hchiral are quite different. However, from
the view of wave functions and eigenvalues, one can set up a
strict mapping rule:[

ϕAn

ϕBn

]
−→

[
ϕ̄An

ϕ̄Bn

]

±En −→ ±
√

E2
n − v2. (15)

Also, comparing Eqs. (11) and (12), we can see that the
difference between ϕ̄σn and ϕσn is up to a normalization factor[

ϕ̄An

ϕ̄Bn

]
=

[
CAnϕAn

CBnϕBn

]
, (16)

where Cσn can be calculated simply based on the normaliza-
tion condition of ϕ̄σn:

Cσn = 1√
2〈ϕσn|ϕσn〉

. (17)

At here, we emphasize three points. The first point is that
CAn and CBn are obtained independently and they could be
quite different. This is quite counterintuitive if we keep in
mind that the original normalization condition is 〈ϕAn|ϕAn〉 +
〈ϕBn|ϕBn〉 = 1. The second point is that the mapping rule is
not an isomorphic (i.e., one-to-one) relationship. Instead, as
shown in Eq. (15), a pair of eigenstates with E = ±En of
HRM are mapped into ±√

E2
n − v2 of Hchiral together. Here

we refer to it as the homomorphic mapping. The third point is
that the derivation above is valid for both PBC and OBC since
the difference between PBC and OBC is just on the detail of
h. Apparently, the normalization coefficients Cσn would not
change the exponential property of edge states with OBC.
Therefore, we conclude that the properties of edge states for
the system with HRM and the system with Hchiral are quite
similar except for a factor difference for every sublattice.

Next, we would like to consider the corresponding topo-
logical invariant. As the real-space winding number is well
defined for the renormalized eigenstates ϕ̄σn, we can construct
a renormalized Ūσ matrix via ϕ̄σn:

Ūσ (i, j) = ϕ̄
(i)
σ j = 1√

2〈ϕσ j |ϕσ j〉
ϕ

(i)
σ j, (18)

where j is the index of state, i is the index of site. One can
expect that Eq. (6) is satisfied again for Ūσ which can be
thought of as the matrices from Uσ after renormalization, so
that a new topological invariant can be calculated based on
it. Here, we refer to the new topological invariant calculated
by Ūσ matrices, instead of Uσ , as the renormalized real-space
winding number. From the new topological invariant, we can
further conclude that the Rice-Mele–type system shares the
same topology as its chiral counterpart. In Appendix B, we
also find that the edge states are quite robust against certain
types of disorder, which serves as extra evidence of the topo-
logical properties in Rice-Mele–type systems.

Obviously, our Rice-Mele ladder with Hamiltonian of
Eq. (2) serves as a typical example of Rice-Mele–type systems
with N = 2. For the four intracell sites marked by a, b, c, d
in Fig. 1(a), we define site a, d as sublattice A and b, c as
sublattice B. As we expect, a pair of topological edge states
can be found in the second gap around zero energy. The
spatial distribution of the edge state shown in Fig. 2(a) exhibits
the zigzag feature, which can be regarded as typical chiral
characteristics in a way that only one of the sublattices is
occupied.

Meanwhile, for Rice-Mele ladder, the original Uσ matrix
calculated by ϕσn and the renormalized Ūσ matrix calcu-
lated by ϕ̄σn are shown in Figs. 2(b) and 2(c), respectively.
One can see that while U †

AUA and U †
BUB are still diagonal

matrices, their diagonal elements are no longer 0.5. As a
result, the off-diagonal elements are introduced into UAU †

A ,
UBU †

B . On the other hand, all of the four product matrices
ŪAŪ †

A , Ū †
AŪA, ŪBŪ †

B , Ū †
BŪB are diagonal to 0.5, which satisfies

Eq. (6). Therefore, we can calculate the renormalized real-
space winding number, which is shown in Fig. 2(d). Clearly,
our topological invariant can precisely predict the topological
phase of the Rice-Mele ladder in the half-filling gap. By
comparison, the conventional symmetry-based Zak phase fails
to establish the bulk-edge correspondence.

Moreover, from Eqs. (15) and (16), two general proper-
ties can be found at the topological phase transition point of
Rice-Mele–trype systems. First, as shown in Fig. 2(d), the gap
around zero energy will not close at the topological phase
transition point and achieve its minimum width, which is 2v

according to Eq. (15). Second, a pair of gap-edge eigenstates
at the minimum gap width, which are signified by red triangle
and circle in Fig. 2(e), are the chiral eigenstates, i.e., the
eigenstates of the chiral operator �. The derivation of the
second property can be seen in Appendix C. Both properties
can be widely used to identify the topological phase transition
of Rice-Mele–type systems, especially for photonic systems
which will be discussed later in Sec. V.
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(a)

(b)

(d)

(c)

Before renormalization

After renormalization

max

min

max

min

(e)

FIG. 2. (a) The spatial distribution of edge state in the half-
filling gap with t = 3, δ = 1, � = 2, μ1 = 5, μ2 = 4, v = 1. (b),
(c) The distributions of the four product matrices UAU †

A , U †
AUA,

UBU †
B , U †

BUB calculated with or without renormalization, respec-
tively. (d) The renormalized real-space winding number precisely
predicts the topology of Rice-Mele ladder in the half-filling gap
while the conventional topological invariant Zak phase fails. (e) The
spatial distribution of the second and third Bloch eigenstates with
k = 0 at the topological phase transition point. Both of them are
chiral eigenstates.

B. Topology reconstruction in higher-dimensional
Rice-Mele–type systems

Since our method does not rely on any fine detail of matrix
h in Eq. (7), it also shows potential in various systems beyond
1D. To demonstrate the power of our methods, in this sec-
tion we would like to generalize the topology reconstruction
into a higher dimension.

In recent seminal works [25,26], it is shown that typical
2D chiral systems, such as the well-known Benalcazar-
Bernevig-Hughes (BBH) model [19,24], support higher-order
corner states protected by chiral symmetry at zero energy
and the higher-order topological phase can be described by
quadrupole chiral number Nxy. Just like the case in 1D, it is
calculated by Uσ matrices, whose unitarity makes sure that
Nxy only takes integer values.

Before renormalization

After renormalization

(a)

(c)

(d)

(e)

min

max

(b)

(f)

FIG. 3. (a) Schematic of 2D Rice-Mele model. The unit cell is
marked by dashed box. (b) Band structure versus t1 with t2 = 2,
v = 1. (c) The spatial distribution of the four corner states of 2D
Rice-Mele model with t1 = 1, t2 = 2, v = 1, exhibiting character-
istics of chiral corner states. (d), (e) The distributions of the four
product matrices UAU †

A , U †
AUA, UBU †

B , U †
BUB calculated with or with-

out renormalization, respectively. (f) The renormalized quadrupole
chiral number calculated based on the renormalized ŪA, ŪB, exhibit-
ing precise bulk-edge correspondence.

Based on our homomorphic mapping method, we will
show that the nontrivial topology in the half-filling gap for the
asymmetric 2D Rice-Mele model can also be reconstructed.
As shown in Fig. 3(a), the 2D Rice-Mele model can be real-
ized by assigning staggered onsite energy to the BBH model.
Its Bloch Hamiltonian can be written as

H2D-RM(k) =
[

vI2 M(k)
M(k)† −vI2

]
, (19)

where

M(k) =
[

t1 + t2eikx t1 + t2eiky

−t1 − t2e−iky t1 + t2e−ikx

]
. (20)

H2D-RM(k) possesses a typical Rice-Mele–type form, which
indicates that the 2D Rice-Mele model can be strictly mapped
into the BBH model with a mapping relationship similar to
Eq. (15). As a result, in the topologically nontrivial region,
namely t2 > t1, two pairs of corner states with the energy of
±v are expected to appear, which agree with the numerical
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results shown in Fig. 3(b). The spatial distributions of the
four corner states, shown in Fig. 3(c), also exhibit typical
characteristics of corner states with chiral symmetry, where
each corner state occupies only one of the four sublattices.

As to the higher-order topological invariant, if we follow
the method in the original work [25], the calculated Nxy is
not quantized since the original Uσ matrices are not unitary,
which is shown in Fig. 3(d). With homomorphic mapping, the
Uσ can be replaced by unitary matrices Ūσ , whose column
is the renormalized eigenstates of occupied bands on the σ

sublattice. The unitary properties of Ūσ are shown in Fig. 3(e).
Therefore, we can redefine the renormalized quadrupole chiral
number N̄xy by Ūσ :

N̄xy = 1

2π i
Tr

[
log

(
Q̄A

xyQ̄B†
xy

)]
, (21)

where we have

Q̄σ
xy = Ū †

σ Qσ
xyŪσ (22)

for σ = A, B. Qσ
xy = ∑

R,α∈σ |R, α〉e−i 2πxy
Lx Ly 〈R, α| is the sublat-

tice quadrupole moment operator. As shown in Fig. 3(f), the
renormalized quadrupole chiral number is quantized and an
accurate bulk-edge correspondence can be established.

IV. TOPOLOGY RECONSTRUCTION
VIA PERTURBATION APPROXIMATION

In this section, we would like to introduce another general
method of topology reconstruction in asymmetric systems,
i.e., the topology reconstruction based on the subspace from
the perturbation approximation. Unlike previous research on
multiband systems whose subspaces rely on extra symmetry
[36,41,42], here the subspace is obtained through degener-
ate perturbation approximation which does not require any
symmetry. As an example, the topological property of the
Rice-Mele ladder in the first and third gaps (fractional-filling
gaps) can be reconstructed in the subspace obtained by per-
turbation theory and further described by the renormalized
real-space winding number with new effective sublattices.
Therefore, the topology of such systems could be clearly
shown with the condition of perturbation approximation. To
our surprise, the topological edge states and the topologi-
cal properties of such asymmetric systems exhibit extreme
robustness which can go far beyond the weak perturbation
condition. This reveals the possibility that many phenomena
in asymmetric systems, which are generally ignored by the
topological study community, might still be dominated by
deeper nontrivial topology.

Next we will show the topology reconstruction process for
the Rice-Mele ladder in the first and third gaps (fractional-
filling gaps) step by step. First, we need to observe the
band-gap structure to choose a proper range for the pertur-
bation approximation. The band structure of Rice-Mele ladder
versus μ is shown in Fig. 4(a) with μ1 = μ, μ2 = μ + 1. Four
nonzero edge states marked by blue lines can be observed with
OBC. As the coupling terms μ1, μ2 increase, the energies of
four edge states approach the asymptotes E = ±

√
μ2

1 + v2

and E = ±
√

μ2
2 + v2 which are marked by red dashed lines

in Figs. 4(a) and 4(b), respectively. Furthermore, as shown in

(c)

(d)

(e)

1st  Gap edge state

3rd  Gap edge state

(a)

(b)

max

max
min

min

FIG. 4. (a) Band structure versus μ with t = 3, δ = 1, � =
2, v = 0.5, μ1 = μ, μ2 = μ + 1. (b) Band structure versus �

with t = 3, δ = 1, μ1 = 10, μ2 = 11, v = 0.5. In both (a) and
(b), ±√

μ2
1 + v2, ±√

μ2
2 + v2 are marked by red dashed lines.

(c) Schematic of Rice-Mele ladder after homomorphic mapping in
the strong-coupling limit. The dimers in y direction are marked by
dashed boxes. (d), (e) The renormalized spatial distribution of the
edge state in (d) the first gap; (e) the third gap with t = 3, δ = 1,
� = 2, μ1 = 10, μ2 = 11, v = 0.5.

Fig. 4(a), in the weak-coupling limit (i.e., μ1, μ2 → 0) both
the first and third gaps vanish and the edge states merge into
the bulk band. The band-gap structure versus � is shown
in Fig. 4(b), which exhibits a typical Rice-Mele–type topo-
logical phase transition without gap closing and reopening.
The critical point can be found at δ = �, which means that
the intercell (intracell) hopping of the upper chain is exactly
the same as the intracell (intercell) hopping of the lower chain
at the critical point.

With these observed properties of edge states in mind, it is
easy to see that the strong-coupling limit, i.e. μ1, μ2 � t , δ,
�, serves as a good example for our perturbation approxima-
tion to reconstruct the topology in the fractional-filling gaps.
So, we will focus on the cases with strong-coupling limit.

Before performing any further analysis, we would like to
map the Hamiltonian of Rice-Mele ladder HRM with the form
of Eq. (7) into Eq. (13) and also map the wave functions and
the eigenenergy based on Eq. (15), which are referred to as ho-
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momorphic mapping in the last section. Here, we emphasize
that the method of topology reconstruction by perturbation
approximation does not rely on the homomorphic mapping.
Actually we can go directly to the perturbation approximation
without the step of homomorphic mapping. The reason for
this step is that it can provide more accurate results since it
ensures that the band structure is symmetric to E = 0, which
is an obvious feature of the Rice-Mele ladder. In Appendix D,
we would like to exhibit another example of the 1D ladder
model whose topological properties in the fractional-filling
gaps can be directly reconstructed by perturbation approxi-
mation, without homomorphic mapping at all.

In the strong-coupling limit μ1, μ2 � t , δ, �, we can
suppose that two atoms in y direction form a dimer and all
other hopping terms in x direction are perturbations. After
dimerization, the schematic model is exhibited in Fig. 4(c), in
which two dimerized atoms are enclosed by the dashed lines.
Two kinds of dimers can be found with the Hamiltonian as

HA
dimer =

[
0 μ1

μ1 0

]
, HB

dimer =
[

0 μ2

μ2 0

]
. (23)

The eigenenergies and eigenstates of dimers can be
expressed as

EA
1i = −μ1, ψA

1i = 1√
2

(|i, a〉 − |i, c〉),

EA
2i = μ1, ψA

2i = 1√
2

(|i, a〉 + |i, c〉),

EB
1i = −μ2, ψB

1i = 1√
2

(|i, b〉 − |i, d〉),

EB
2i = μ2, ψB

2i = 1√
2

(|i, b〉 + |i, d〉). (24)

Taking the eigenstates {ψA
11, . . . , ψ

A
1N , ψB

11, . . . , ψ
B
1N , ψA

21, . . .,

ψA
2N , ψB

21, . . . , ψ
B
2N } as a set of new basis functions, then the

Hamiltonian can be rewritten as

H̃ =
[
H11 H12

H21 H22

]
, (25)

where each Hi j stands for a (2N ) × (2N ) matrix:

H11 =
[−μ1IN hchain

h†
chain −μ2IN

]
, (26)

H22 =
[
μ1IN hchain

h†
chain μ2IN

]
, (27)

H12 = H21† =
[

0 hcouple

h†
couple 0

]
, (28)

with

hchain =

⎡
⎢⎢⎢⎢⎣

t1
t2 t1

t2 t1
. . .

. . .

t2 t1

⎤
⎥⎥⎥⎥⎦

N×N

, (29)

hcouple =

⎡
⎢⎢⎢⎢⎣

t ′
−t ′ t ′

−t ′ t ′
. . .

. . .

−t ′ t ′

⎤
⎥⎥⎥⎥⎦

N×N

. (30)

Here t1 = t + 1
2 (δ − �), t2 = t − 1

2 (δ − �), t ′ = δ + �.
When μ1, μ2 are relatively close, i.e., μ1, μ2 � |μ1 − μ2|, H̃
can be brought into two parts, i.e., H̃ = H0 + H′, where H0

stands for the unperturbed Hamiltonian while H′ is treated as
the perturbation. Here H0 is defined as

H0 =
[− 1

2 (μ1 + μ2)I2N 0
0 1

2 (μ1 + μ2)I2N

]
. (31)

As H0 is already a diagonal matrix, it generates two sets
of 2N-fold degenerate states {ψσ

1i}, {ψσ
2i}, i = 1, . . . , N, σ =

A, B with the corresponding zero-order energies E (0) =
± 1

2 (μ1 + μ2). Then H′ can be written as

H′ =
[
H11′ H12

H21 H22′

]
, (32)

with

H11′ =
[ 1

2 (μ2 − μ1)IN hchain

h†
chain

1
2 (μ1 − μ2)IN

]
, (33)

H22′ =
[ 1

2 (μ1 − μ2)IN hchain

h†
chain

1
2 (μ2 − μ1)IN

]
, (34)

where hchain is defined in Eq. (29). Obviously, H′ satisfies the
perturbation condition since E (0) � H′

mn is valid. Therefore,
the solutions of H̃ can be approached through perturbation
approximation.

Here, we would focus on the degenerate perturbation to
obtain the zero-order wave function ϕ(0) and the first-order
energy correction E (1). The principle of degenerate perturba-
tion theory is to diagonalize the perturbation Hamiltonian in
the degenerate subspace, i.e., to diagonalize H11′

and H22′

defined in Eqs. (33) and (34), respectively. One may no-
tice that these two subspace perturbation Hamiltonians are
exactly the Hamiltonians of the Rice-Mele model with the
effective onsite energy veff = ± 1

2 (μ1 − μ2), the intracell hop-
ping t1, and the intercell hopping t2. Therefore, ϕ(0) and E (1)

are just the eigenstate and eigenenergy of the Rice-Mele
model. In other words, the topological properties around
± 1

2 (μ1 + μ2), i.e., the first and third gaps, are dominated
by Rice-Mele–type topology, which is well studied in the last
section. For example, when t2 > t1, i.e., � > δ, two pairs
of edge states are expected to emerge with E (1) = ± 1

2 (μ1 −
μ2), respectively. To be precise, the eigenenergies of these
four edge states up to the first-order correction are given as
E (0) + E (1) = ±μ1,±μ2. Taking mapping relation (15) into
consideration, E (0) + E (1) can be mapped back to the phys-
ical values as ±

√
μ2

1 + v2,±
√

μ2
2 + v2 for HRM, which are

exactly the same as the asymptotes marked by red dashed
lines in Figs. 4(a) and 4(b). The perturbation theory is further
confirmed by the renormalized spatial distribution of the edge
states shown in Figs. 4(d) and 4(e), which exhibit typical
characteristics of Rice-Mele–type edge states defined on the
degenerate subspaces {ψσ

1i}, {ψσ
2i}, respectively.
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Before renormalization

After renormalization

(a)

(c)

(b)

FIG. 5. (a), (b) Four product matrices calculated based on a
redefined sublattice with or without renormalization, respectively.
The parameters are set to t = 3, δ = 1, � = 2, v = 0.5, μ1 = 10,
μ2 = 11. (c) The renormalized real-space winding number exhibits
precise bulk-edge correspondence with the edge states at 1

4 filling.
The case at 3

4 filling should be the same since the band structure is
symmetric to E = 0.

We note that the coupling between two subspaces caused
by H12 and H21 is negligible to the first-order correction of
eigenenergy since the nondegenerate perturbation can only
generate higher-order corrections which are rather minor com-
pared with the dominating ϕ(0) and E (1) discussed in this
section.

Next, we would introduce the topological invariant to
describe the subspace topology reconstructed above by pertur-
bation approximation. As both subspace Hamiltonians H11′

,
H22′

possess a Rice-Mele–type form, it is straightforward to
take renormalized real-space winding number as the candi-
date. Different from the case in the last section where the
whole Hilbert space is under consideration, here the subspace
constructed by {ψA

ji}, {ψB
ji} for perturbation approximation is

of interest. In this sense, sublattices A and B should be rede-
fined as {ψA

1i} and {ψB
1i} at 1

4 filling and {ψA
2i}, {ψB

2i} at 3
4 filling,

respectively. With these considerations, for the topology in the
first gap, the Uσ matrix can be obtained as

UA(nm) = 〈
ϕ̄m

∣∣ψA
1n

〉
,

UB(nm) = 〈
ϕ̄m

∣∣ψB
1n

〉
, (35)

where n = 1, . . . , N , ϕ̄m stands for the mth renormalized
eigenstate below the first gap, m = 1, . . . , N . When param-
eters are set to μ1 = 10, μ2 = 11, t = 3, δ = 1, � = 2, v =
0.5, UAU †

A , U †
AUA, UBU †

B , U †
BUB calculated based on Eq. (35)

are shown in Fig. 5(a). In Fig. 5(a), the four product matri-
ces exhibit typical characteristics of Rice-Mele–type system,
confirming the validity of our method. The unitarity of UA and
UB can be restored through the renormalization of Eq. (18),
which are shown in Fig. 5(b). The calculated renormalized
real-space winding number shown in Fig. 5(c) exhibits a unit
jump at the critical point � = δ, indicating the bulk-edge cor-
respondence has been established. It is worth noting that the
renormalization needs to be done twice here, where the first
one maps HRM into its off-diagonal counterpart and the

3rd Gap edge state(d)

(a)

(c)

(b)

1st Gap edge state max

max
min

min

FIG. 6. The subspace topology of Rice-Mele ladder beyond the
perturbation region with μ1 = 5, μ2 = 6, t = 3. (a) The band struc-
ture versus � with δ = 1, v = 0.5 around the third gap. The first gap
shares the same structure. (b) Four product matrices calculated based
on a redefined sublattice without renormalization, also maintaining
its Rice-Mele–type feature. (c), (d) The spatial distribution of the
edge states in (c) the first gap; (d) the third gap, still exhibiting char-
acteristics of Rice-Mele–type edge states defined on the subspaces
despite a stronger coupling from the other subspace.

second one maps the subspace H11′
into its off-diagonal coun-

terpart.
Similarly, for the topology in the third gap, the Uσ matrix

is given by

UA(nm) = 〈
ϕ̄m

∣∣ψA
2n

〉
,

UB(nm) = 〈
ϕ̄m

∣∣ψB
2n

〉
. (36)

Here n = 1, . . . , N . However, if we directly take all the eigen-
states below the third gap, i.e., m = 1, . . . , 3N , Eq. (6) would
never be satisfied since both UA and UB are no longer square
matrices. An alternative way is to consider the general fact
that a fully occupied system is topologically trivial. That is
to say, the occupied band(s) share the same topology as the
unoccupied one(s). Therefore, the Uσ matrix for the third
gap can be constructed with the states from 3N + 1 to 4N
and the topology of the third gap can also be described by
renormalized real-space winding number.

Interestingly, the subspace topology can go far beyond the
proper range of the perturbation approximation. Figure 6 ex-
hibits the case when μ1, μ2 are comparable with t , δ, �. From
the band structure shown in Fig. 6(a), the edge states marked
by blue lines still appear in the first and third gaps despite an
obvious shift from the asymptotes ±

√
μ2

1 + v2, ±
√

μ2
2 + v2

marked by red dashed lines. As shown in Figs. 6(b)–6(d), the
four product matrices calculated based on Eq. (35) and the
renormalized spatial distribution also maintain their subspace
Rice-Mele–type characteristics. This phenomenon can be un-
derstood as the interplay between perturbation and topology.
On one hand, we have clearly shown that the subspace topol-
ogy is reconstructed based on perturbation approximation.
On the other hand, the topology itself, which is the global
geometric property of the bands, should be robust against the
continuous change of the system parameters. That is to say, in
the topologically nontrivial region, namely � > δ, the edge
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states in the fractional-filling gaps are rather robust as long
as μ1, μ2 are strong enough to keep the first and third gaps
open, even if the perturbation condition is no longer satisfied.
The robustness of these edge states against different kinds of
disorder is further investigated in Appendix B.

The idea introduced in this section is one of the main con-
clusions in this work. First, we find that perturbation theory
can greatly extend the category of topology study. Taking the
merit of degenerate perturbation, the whole Hilbert space can
be divided into degenerate subspaces where the topological
properties might be revealed, even in asymmetric systems
that were previously thought to be topologically irrelevant.
Second, some new topics can immediately be raised when
the perturbation approximation is introduced, such as follows:
“Where is the boundary of the perturbation-based topological
nontriviality?” “Is there any topological structure from the
higher-order perturbation?”, etc.

Furthermore, as shown in the excellent works [12,17,43],
the Hamiltonian of Kitaev chain in the Majorana represen-
tation mimics the one of SSH ladder (i.e., Rice-Mele ladder
with v = 0), indicating the topological phases of SSH ladder
can be introduced into superconducting systems. However,
constrained by chiral symmetry, previous works have always
focused on the topological properties of zero edge states in
the half-filling gap. Taking advantage of the topology recon-
struction method introduced in this section, we unveil the new
Rice-Mele–type fermionic topology in the dimerized Kitaev
chain whose properties are totally different from the tradi-
tional symmetry-based topology. The detailed derivation is
presented in Appendix E.

V. OBSERVATION OF TOPOLOGICAL EDGE
STATES FROM TOPOLOGY RECONSTRUCTION

IN PHOTONIC CRYSTALS

In this section we would like to introduce both methods
of the topology reconstruction into dielectric PhC systems.
This work can be easily done since TBM can be realized by
artificial atoms in dielectric 2D PhCs [44–46].

First, we set up the model of photonic Rice-Mele ladder
and construct the photonic tight-binding model (TBM) theory
for our model. Then both methods of topology reconstruction
for asymmetric photonic systems, the homomorphic map-
ping method and the perturbation approximation method, are
demonstrated. We also show that the topological invariant
obtained by our theory from photonic tight-binding eigen-
state, namely, the renormalized real-space winding number,
matches precisely with the numerical results obtained from
the finite-element method (FEM). At last, in the laboratory,
the topological edge states from both kinds of topology re-
construction for asymmetric systems are observed through the
experiments, which agree well with our theoretical prediction.

A. Photonic Rice-Mele ladder

The model of a PhC unit cell of the photonic Rice-Mele
ladder is shown in Fig. 7(a), which is periodic in x direction
while both boundaries in y direction are taken as perfect
electric conductor (PEC). Each cell consists of four dielectric
rods with ε1 marked by a, b, c, d , which are further divided

… …

(b) (c)

(a)

a b
c d

(mm)

FIG. 7. (a) Schematic of photonic Rice-Mele ladder. In this
work, we set lx1 as the tuning parameter. Other parameters are
set to a = 18 mm, r1 = 2 mm, r2 = 1.8 mm, lx2 = 5.4 mm, ly1 =
2.5 mm, ly2 = 2.9 mm, ε0 = 1, ε1 = 7.9. PEC boundary in y direc-
tion is marked by thick black line. The four rods are marked by
a, b, c, d , respectively. (b) The lowest four TM bands of photonic
Rice-Mele ladder with lx1 = 4.5 mm. (c) The band structure versus
lx1 for 40-unit-cell photonic Rice-Mele ladder with PEC boundary
in both x and y directions. Two types of topological edge states are
marked by blue and red lines, respectively.

into two pairs diagonally with radius r1 and r2, respectively.
We take the x-direction spacing between upper rods lx1 as the
tuning parameter to control the topological phase transition.
Other parameters are set to a = 18 mm, r1 = 2 mm, r2 =
1.8 mm, lx2 = 5.4 mm, ly1 = 2.5 mm, ly2 = 2.9 mm, ε0 = 1,
ε1 = 7.9. Obviously, the model is spatially asymmetric in
every aspect. Based on Mie resonance theory [47], the cor-
responding relation between photonic model and TBM can
be established as the following laws. First, the Mie resonant
frequency of dielectric rod, which can be adjusted by altering
the radius r1 or r2, mimics the onsite energy in TBM. Second,
the coupling strength between different rods, which can be
adjusted by altering the spacing between rods, mimics the
hopping terms in TBM. In our model, the difference between
r1 and r2 is relatively minor in order to suppress the next-
nearest-neighbor (NNN) coupling, which is neglected in our
theory.

For the convenience of experimental realization, here we
focus on the transverse magnetic (TM) (Ez polarization)
modes of our PhC structure. The four lowest TM bands with
PBC are shown in Fig. 7(b). As we expect, the band-gap struc-
ture of PhC is similar to the Rice-Mele ladder investigated
above. In Fig. 7(c), we also calculate the band structure of
40-unit-cell PhC with PEC boundary in both x and y directions
versus the tuning parameter lx1. When lx1 < 3.0 mm, edge
states marked by red lines can be observed in the second
gap. When lx1 > 3.6 mm, edge states marked by blue lines
can be observed in the first and third gaps. We will see that
all of these edge states are topologically protected and the
corresponding topological phases can be described by the
topological invariant introduced in the next subsection.
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(a)

(b)

(c) max

min

max

min

FIG. 8. (a) The distributions of product matrices UU †, U †U . The
ith column of the U matrix is the ith tight-binding PhC eigenstate.
(b), (c) The spatial distribution of a PhC eigenstate obtained by
(b) FEM and (c) Eq. (38).

B. Photonic renormalized real-space winding number
and topological phases

In this subsection, we derive the method to calculate
the photonic renormalized real-space winding number, from
which the topological phases of the photonic Rice-Mele lad-
der can be signified clearly.

To calculate the renormalized real-space winding number
of the photonic systems, we must first obtain the tight-binding
version of our PhC eigenstate, i.e., ψ = ∑

j,α Cj,α| j, α〉 where
j is the index of unit cell, α = a, b, c, d is the index of
sublattice, and Cj,α is the effective probability amplitude of
site | j, α〉. Generally speaking, this can be done by expanding
the continuous eigenstate E (x) obtained by FEM in the max-
imally localized Wannier functions (MLWF) [44]. However,
this method can be rather complicated and inconvenient. In
this work, we develop an approximate method to obtain Cj,α

in a much easier way. According to Mie theory, the origin of
lower-order PhC bands can be understood as the coupling be-
tween the first-order Mie resonant states of the dielectric rods,
which is mainly concentrated on the rod. With all these basic
observations and the original idea of TBM that the electronic
wave function could be represented by a complex amplitude at
the position of nuclear, we can suppose that the TBM of our
lowest four bands could be similarly defined. First, we can
assume a θ function:

θ j,α (x) =
{

1√
Sαε1

, inside the rod;

0, outside the rod.
(37)

Here Sα stands for the cross-sectional area of the α rod. Then,
we can obtain the approximate TBM of PhC for the lowest
four bands as

Ci
j,α =

∫
θ∗

j,α (x)Ei(x)ε(x)dx, (38)

where Ei(x) is the ith eigenstate of N-unit-cell PhC with
PBC [38] obtained by FEM, i = 1, . . . , 4N (N eigenstates per
band).

To check the property of our approximate TBM of PhC,
we exhibit the unitarity of U matrix whose ith column is the
ith tight-binding PhC eigenstate and the results are shown
in Fig. 8(a). It is clear that both UU † and U †U are almost

FIG. 9. (a) The four product matrices UAU †
A , U †

AUA, UBU †
B , U †

BUB

calculated without renormalization for the second, first, and third
gap, respectively. (b) The renormalized real-space winding number
of the 2nd, 1st, 3rd gap versus lx1. (c) The width of the second, first,
and third gaps versus lx1. (d) The |Ez|2 distribution of the second and
third Bloch eigenstates with k = 0 at lx1 = 3.0 mm. Both of them
are chiral eigenstates, which can be regarded as an evidence of the
topological phase transition point.

identity matrices except the negligible off-diagonal elements,
which indicates the orthogonality and normalization proper-
ties of these approximate TBM eigenstates. Moreover, the
effectiveness of our approximate method is proved from
the comparison between eigenstates obtained by FEM and
our approximate TBM in Figs. 8(b) and 8(c). Most impor-
tantly, with the tight-binding eigenstates, we can directly
calculate the renormalized real-space winding number to
identify the topological phases of such asymmetric photonic
system.

First, we consider the topology of the second gap, which
corresponds to the gap around zero energy for Rice-Mele
ladder whose topology reconstruction method is based on
homomorphic mapping which is introduced in Sec. III. In this
case, rods a and d are defined as sublattice A while rods b
and c as sublattice B. The corresponding four product matrices
UAU †

A , U †
AUA, UBU †

B , U †
BUB shown in Fig. 9(a) exhibit typical

characteristics of Rice-Mele–type system shown in Fig. 2(b).
Following the way of renormalization, we can obtain the
renormalized matrices ŪA, ŪB satisfying Eq. (6), with which
the renormalized real-space winding number can be calcu-
lated. Shown in the first column of Fig. 9(b), the renormalized
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real-space winding number shows the quantized property and
a unit jump from 1 to 0 appears at around lx1 = 3.0 mm,
which agrees with disappearing of the edge states in Fig. 7(c).

The physical reason for the topological phase transition at
lx1 = 3.0 mm can be explained from two aspects. In terms
of band structure, as shown in the first column of Fig. 9(c),
the gap width of the second gap achieves minimum at
lx1 = 3.0 mm. In terms of gap-edge eigenstates, as shown in
Fig. 9(d), we find that both Bloch states at k = 0 marked
by triangle and circle are chiral eigenstates. These two prop-
erties of topological phase transition agree with the typical
band structure characteristics of Rice-Mele–type topology
discussed in Sec. III.

Second, we will discuss the case of the first and third gaps
whose topology reconstruction is based on the degenerate
perturbation approximation as introduced in Sec. IV. Before
the discussion, we need to note that there is a significant
difference between the eigenstates of photonic systems and
that of electronic systems described by Eq. (1) for the first and
the third gaps. As mentioned above, the topology of the first
gap in Rice-Mele ladder is dominated by the low-energy state
of the dimer in the y direction, i.e., the [1 −1]T state. For
our PhC model discussed in this section, taking its waveguide
properties into consideration, the behavior of PhC eigenstates
in y direction should be determined by the order of the guided
modes. From this point of view, the topology of the first gap in
PhC is dominated by the lower-order mode, i.e., the [1 1]T

state. To be precise, in our PhC model, we need to redefine
the sublattices A and B in Eq. (24), i.e., {ψA

2i}, {ψB
2i} for the

1
4 -filling gap while {ψA

1i}, {ψB
1i} for the 3

4 -filling gap. We note
that this phenomenon could be explained by the negative ef-
fective hopping in classical systems, which also widely exists
in sonic crystals [42]. The corresponding Uσ matrices and
the renormalized real-space winding number are shown in the
second and third columns of Figs. 9(a) and 9(b). We can see
that there is a unit jump from 0 to 1 at lx1 = 3.6 mm for
the renormalized real-space winding number, which agrees
with the appearing of edge states at the first and third gaps
in Fig. 7(c).

The physical reason for the topological phase transition
at lx1 = 3.6 mm can also be explained from two aspects.
First, shown in the second and third columns of Fig. 9(c),
the gap width of the first and third gaps achieve minimum
at lx1 = 3.6 mm. Second, we find that the intracell (intercell)
spacing between upper rods is exactly the same as the intercell
(intracell) spacing between lower rods, which coincides with
the topological phase transition point δ = �, i.e., the intercell
(intracell) hopping of the upper chain equals the intracell
(intercell) hopping of the lower chain, of Rice-Mele ladder
in the fractional-filling gaps discussed in Sec. IV.

To confirm the different topological properties, we can
consider the structure consisting of two types of PhCs with
opposite topological phases to investigate the topologically
protected edge states. As shown in Fig. 10(a), 11-cell PhC
with lx1 = 2.5 mm is attached to 11-cell PhC with lx1 =
4.5 mm. Three topological edge states appear in three gaps
whose Ez distributions are shown in Fig. 10(b). The edge state
in the first gap shows clear evidence of coupling between

[1 1]T state which is similar to the edge state of Rice-Mele
ladder in the 3

4 -filling gap shown in Fig. 6(d). The edge state in

FIG. 10. (a) Schematic of the bonded PhC with 11 unit cells of
lx1 = 2.5 mm on the left and 11 unit cells of lx1 = 4.5 mm on the
right. The whole structure is enclosed by PEC boundary marked by
thick black lines. (b) Band structure of the bonded PhC and the Ez

distribution of the three in-gap edge states. The yellow and green
shaded sections represent the band regions of lx1 = 2.5 and 4.5 mm,
respectively.

the third gap exhibits the coupling between [1 −1]T which
is similar to the edge state of Rice-Mele ladder in the 1

4 -filling
gap shown in Fig. 6(c). On the other hand, the edge state in
the second gap exhibits the zigzag feature, which coincides
with the edge state of Rice-Mele ladder in the half-filling gap
shown in Fig. 2(a). Thus, we conclude that both kinds of the
reconstructed topology in Rice-Mele ladder can also realized
in its photonic counterpart.

C. Experimental observation of topological edge states
in photonic Rice-Mele ladder

To verify the effectiveness of our theory of topology recon-
struction, here we try to observe the topological edge states
through experiments at microwave frequency range from 6
to 11 GHz. The three-dimensional (3D) realization of the
photonic Rice-Mele ladder is shown in Fig. 11(a). Here we
set the height of dielectric rods h = 4 mm. Two boundaries
in z direction are taken as PEC so that the system is quite
similar to the 2D model introduced in the last section. For
frequencies under consideration, only Ez-polarized modes are
available whose band-gap structure is the same as the 2D
photonic Rice-Mele ladder introduced above.

To investigate the topological edge states, as shown in
Fig. 11(b), we consider the structure composed of two
topologically opposite PhCs with lx1 = 2.5 and 3.8 mm, re-
spectively. Since the bonded PhCs can be regarded as a
rectangle waveguide propagating in x direction, the topolog-
ical edge state can be observed in the form of transmission
peak inside certain gap from transmission spectra. The exper-
imental setup to detect the transmission spectra is shown in
Fig. 11(c). The ports of PNA-X Network Analyzer N5245B
of Keysight are connected to the bonded PhC structure with
waveguide-coaxial couplers to send and detect the signals,
respectively. Since the waveguide-coaxial coupler can only
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FIG. 11. (a) Three-dimensional structure of a unit cell with the
upper plate removed. (b) Photograph of the bonded PhC structure
with the upper plate removed. The boundary of two topologically
opposite structures with N = 5 are marked by dashed boxes. (c) Pho-
tograph of the experimental setup for the transmission spectra. The
bonded PhC structure (A) is connected to the network analyzer (C)
through waveguide-coaxial coupler (B).

activate the fundamental TE10 modes, here we would like
to take the first gap edge state to represent the perturbation-
based topology and the second gap edge state to represent the
homomorphic-mapping-based topology. To optimize the ex-
perimental results, for the frequencies around the first gap, we
set the number of unit cells N = 11 with waveguide-coaxial
coupler BJ70. For the frequencies around the second gap, we
set the number of unit cells N = 6 with waveguide-coaxial
coupler BJ100.

For the first gap, the experimental transmission spectra are
marked by red line in Fig. 12(a), which agree very well with

FIG. 12. (a), (b) The transmission spectra of (a) the first gap
and (b) the second gap. The numerical and experimental results
are denoted by the red lines and the blue lines, respectively. The
in-gap transmission peaks are marked by red arrows. (c), (d) The
simulated |Ez|2 distribution at the transmission peaks (c) 7.33 GHz
and (d) 9.72 GHz, respectively. Both of them are highly localized at
the boundary.

the numerical results marked by blue line. An in-gap trans-
mission peak from the topological edge state can be found at
7.33 GHz for both numerical and experimental results. The
simulated field distribution |Ez|2 at 7.33 GHz is shown in
Fig. 12(c) exhibiting clear evidence of edge state defined on

[1 1]T , same as theoretically predicted.
For the second gap, as shown in Fig. 12(b), an in-gap

transmission peak from the topological edge state can also
be found near 9.72 GHz for experiment (red line) and sim-
ulation (blue line). The zigzag characteristic of the simulated
|Ez|2 distribution at 9.72 GHz is shown in Fig. 12(d) which
coincides with our theoretical prediction.

One may notice that the absolute value of transmission
spectra obtained by the experiment is smaller than the the-
oretical expectations despite sharing a similar trend. Several
possible reasons may explain the difference, such as the ab-
sorption of the ceramic rods or the reflection at the boundary
between our PhC structure and the waveguide-coaxial cou-
pler. Nevertheless, we experimentally demonstrate that both
of the topology reconstruction methods by the homomorphic
mapping and the perturbation approximation can be realized
in photonic systems.

VI. CONCLUSION

In summary, taking Rice-Mele–type systems as examples,
we propose two methods of topology reconstruction for the
multiband systems without symmetries. For the first method,
we find a strict mapping relationship between asymmetric
Rice-Mele–type system and its chiral counterpart, so that the
topology protected by chiral symmetry can be reconstructed.
For the second method, through perturbation approximation,
the whole Hilbert space can be reduced into degenerate sub-
spaces where Rice-Mele–type topology can be discovered.
Based on these methods, the complicated topology origin for
the edge states inside the near-zero-energy gap at half-filling
and other gaps at fractional filling can be revealed. It is also
shown that both of the methods can be utilized in various
asymmetric systems beyond Rice-Mele ladder model to inves-
tigate their topological properties, i.e., 2D Rice-Mele model
and 1D superconducting systems. As to the effective topo-
logical invariant, we introduce the renormalized real-space
winding number which can identify these new topological
phase transitions by the integral jumping. Both methods
are further extended to photonic asymmetric systems. By
simplified photonic TBM, we can calculate the photonic
renormalized real-space winding number and the topological
phases are clearly shown. Finally, the topological edge states
of the photonic Rice-Mele ladder at different gaps are ob-
served through experiments, which match precisely with the
numerical results from our two methods. Our findings offer
a unique perspective on topology in complex systems. First,
the homomorphic mapping goes far beyond the conventional
adiabatic deformation method, i.e., it can connect the topology
of two systems with intrinsic differences. For example, the
topological critical point without gap closing of asymmetric
system can be mapped into the gap-closing one of symmet-
ric system. Second, the perturbation approximation, which is
thought to be irrelevant to the topological properties generally,
could take an important role in the topology study since it can
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generate simpler subspaces whose nontrivial topology could
be revealed. From this view, we could have missed many
topological phenomena if we had not gone deeper into the
approximation subspace to explore their topological origin.
Even more, these topological edge states from the approxi-
mation method show extraordinary robustness and can go far
beyond the proper range of perturbation approximation, which
implies that the strong perturbation can extend the original
topology to the systems which might look very different. In
other words, a new relationship between different topological
insulators might be set up based on the approximation recon-
struction method.

Our work leaves several open questions for further study.
First, for the homomorphic mapping method of topology re-
construction, we need to choose proper sublattices. Is there a
general criterion of such choosing proper sublattices? Second,
we show that the topological edge states from approximation-
based topology still exist when the perturbation is relatively
strong. So where is the boundary of perturbation-based
topology? Furthermore, what is the mechanism behind the
boundary? If these questions can be answered, we believe that
the topology of asymmetric systems will be understood more
thoroughly.
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APPENDIX A: NECESSARY CONDITION
FOR REAL-SPACE WINDING NUMBER

In this Appendix, we give a detailed proof on Eq. (6). Al-
though the result has been briefly mentioned in Refs. [25,38],
here we would like to emphasize that it is actually a con-
sequence of chiral symmetry and should be regarded as a
necessary condition for the validity of real-space winding
number.

The Hamitonian of chiral system takes the form

H =
[

0 h
h† 0

]
. (A1)

Resembling the method used in the topology reconstruction
of Rice-Mele–type system in Sec. III, the eigenequation of H
can be decomposed into two decoupled equations:

hh†ψAn = E2
n ψAn,

h†hψBn = E2
n ψBn. (A2)

As a result, ψA and ψB are both orthogonal in their own
subspaces:

〈ψAn|ψAm〉 = 〈ψBn|ψBm〉 = 0, when n 
= m. (A3)

On the other hand, as chiral operator � anticommutes
with H, for any eigenstate ψn = [ψAn ψBn]T , �ψn =
[ψAn −ψBn]T is also an eigenstate with opposite energy,
which ensures that ψn and �ψn are nondegenerate states.
From the orthogonality condition, we have

〈ψn|�ψn〉 = 〈ψAn|ψAn〉 − 〈ψBn|ψBn〉 = 0. (A4)

Consider the normalization condition

〈ψn|ψn〉 = 〈ψAn|ψAn〉 + 〈ψBn|ψBn〉 = 1, (A5)

together we get

〈ψAn|ψBn〉 = 〈ψBn|ψBn〉 = 0.5. (A6)

In terms of Uσ matrix, Eqs. (A6) and (A3) can be
interpreted as

UAU †
A = U †

AUA = UBU †
B = U †

BUB = 0.5. (A7)

APPENDIX B: DISORDER ANALYSIS
IN RICE-MELE LADDER

In this Appendix, we would like to investigate the robust-
ness of the edge states in Rice-Mele ladder against different
kinds of disorder. Here we introduce the following disorder
Hamiltonian H′′ to the system:

H′′ = H′′
horizontal + H′′

vertical + H′′
onsite, (B1)

where H′′
horizontal = ∑

j (s
ab
j b†

ja j + sba
j a†

j+1b j + scd
j d†

j c j +
sdc

j c†
j+1d j + H.c.) stands for disorder in the horizontal

hopping terms, H′′
vertical = ∑

j (s
ac
j c†

j a j + sbd
j d†

j b j + H.c.)
stands for disorder in the vertical hopping terms,
H′′

onsite = ∑
j (s

a
j a

†
j a j + sb

jb
†
jb j + sc

jc
†
j c j + sd

j d†
j d j + H.c.)

stands for disorder in the onsite energy terms. The disorder
terms {sα

j } are random numbers that follow a uniform
distribution in [−w,w], where w is the disorder strength.

We first consider the robustness of the edge states in the
half-filling gap. As shown in Figs. 13(a) and 13(b), the behav-
ior of the edge states varies widely between different kinds
of disorder. To be precise, the edge states are exactly pinned
at ±v if the disorder only exists in the hopping terms, i.e.,
H′′ = H′′

horizontal + H′′
vertical. However, for the disorder in the

onsite energy terms, i.e., H′′ = H′′
onsite, the edge states de-

viate considerably from their original values as the disorder
strength grows. Based on the mapping relationship shown in
Eq. (15), for the system after mapping, it is easy to see that
H′′

horizontal + H′′
vertical preserves chiral symmetry while H′′

onsite
breaks it. The argument can be confirmed by the four product
matrices in the right column of Figs. 13(a) and 13(b). These
results clearly show that the edge states are robust against the
“symmetry”-preserving disorder, i.e., they are topologically
protected. We note that here the “symmetry” refers to the
property of the system after mapping.

Next, for the edge states in the fractional-filling gaps,
similar results can be obtained. From Sec. IV, one can see
that the vertical hopping terms μ1, μ2 stand for the effective
onsite energy terms in the perturbation subspace Hamiltonian.
Therefore, as is shown in Figs. 13(c) and 13(d), by introducing
H′′

vertical, chiral symmetry is broken for the subspace after
mapping and the edge states deviate considerably. Meanwhile,
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(c)

(a)

(d)

(b)

FIG. 13. The robustness of edge states against different random
disorder. Left column: (a), (b) The robustness of edge states in the
half-filling gaps against random disorder (a) in the hopping terms
or (b) in the onsite energy terms. The parameters are set to t = 3,
δ = 2, Δ = 1, μ1 = μ2 = 1, v = 1. (c), (d) The robustness of edge
states in the fractional-filling gaps against random disorder (c) in the
horizontal hopping terms or (d) in the vertical hopping terms. The
parameters are set to t = 3, δ = 1, � = 2, μ1 = 10, μ2 = 11, v = 1.
Right column: The corresponding four renormalized product matri-
ces ŪAŪ †

A , Ū †
AŪA, ŪBŪ †

B , Ū †
BŪB with the disorder strength w = 0.5.

when only H′′
horizontal is introduced in, even with large dis-

order strength, the edge states are still around their original
values despite the minor fluctuation caused by higher-order
perturbation terms. Overall, these phenomena provide extra
evidence that all of the edge states in the Rice-Mele ladder
are topologically protected, and their topology can only be
uncovered after topology reconstruction.

APPENDIX C: CHIRAL BLOCH EIGENSTATES
AT THE TOPOLOGICAL PHASE TRANSITION

POINT OF RICE-MELE–TYPE SYSTEMS

In this Appendix, we would like to prove that a pair of
chiral Bloch eigenstates can be found if and only if the Rice-
Mele–type system is at the topological phase transition point.

For any Rice-Mele–type system and its chiral counterpart,

HRM(k, R) =
[

vIn h(k, R)
h(k, R)† −vIn

]
, (C1)

Hchiral(k, R) =
[

0 h(k, R)
h(k, R)† 0

]
, (C2)

where k is the Bloch vector, R is the tuning parameter. Based
on the homomorphic mapping relationship, both of them share
the same topological phase transition point RC . For Hchiral

at RC , the gap around zero energy closes, i.e., there should
be a pair of doubly degenerate zero-energy Bloch states
ψ1(k0), ψ2(k0). Considering the chiral operator �, one can see
that �ψ1(k0), �ψ2(k0) are also the zero-energy eigenstates:

Hchiral�ψ1(k0) = −�Hchiralψ1(k0) = 0. (C3)

Through the combination of degenerate eigenstates ψ1(k0),
ψ2(k0), �ψ1(k0), �ψ2(k0), the zero-energy eigenstates of
Hchiral(k0, RC ) can be taken as chiral states with opposite
sublattices occupied:

ψ1(k0)′ =
[
ϕAn

0

]
,

ψ2(k0)′ =
[

0
ϕBn

]
. (C4)

According to Eq. (16), ψ1(k0)′, ψ2(k0)′ are also the eigen-
states of HRM(k0, RC ). Therefore, at the topological phase
transition point of Rice-Mele–type system, there exist a pair
of chiral Bloch eigenstates.

On the other hand, if HRM(k, R) possesses a pair of
chiral Bloch eigenstates, they must also be zero-energy eigen-
states of its chiral counterpart Hchiral(k, R). Therefore, for
Hchiral(k, R), the gap around zero energy closes, indicating
both Hchiral(k, R) and HRM(k, R) are at the topological phase
transition point R = RC .

APPENDIX D: EXAMPLE OF DIRECT
PERTURBATION-BASED TOPOLOGY

RECONSTRUCTION IN 1D LADDER SYSTEMS

To verify the independence of our perturbation-based
topology, in this Appendix we would like to exhibit an
example of the 1D ladder model whose topology in the
fractional-filling gaps can be obtained directly through degen-
erate perturbation.

The schematic of the 1D ladder model is shown in
Fig. 14(a), which could be realized by introducing additional
onsite energies to the site b, d of SSH ladder. Similar to Rice-
Mele ladder, both spatial symmetry and chiral symmetry are
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FIG. 14. (a) Schematic of the example 1D ladder model. The
dimers in y direction are marked by dashed boxes. (b) The band struc-
ture versus � with t = 3, δ = 1, μ = 15, v = 5. (c) The distributions
of the four product matrices UAU †

A , U †
AUA, UBU †

B , U †
BUB calculated by

Eq. (36). (d) The real-space winding number exhibits a unit jump at
the critical point δ = �. (e) The spatial distribution of the edge state
in the third gap.

broken here. The Hamiltonian can be written as

H =
∑

j

[(t + δ)b†
ja j + (t − δ)a†

j+1b j + (t − �)d†
j c j

+ (t + �)c†
j+1d j + μa†

j c j + (μ − v)b†
jd j + H.c.]

+ vb†
jb j + vd†

j d j . (D1)

Similarly, in the strong-coupling limit μ, v � t , δ, �, we
consider the dimers composed of two atoms in y direction:

HA
dimer =

[
0 μ

μ 0

]
, HB

dimer =
[

v μ − v

μ − v v

]
. (D2)

The eigenenergies and eigenstates of dimers can be
expressed as

EA
1i = −μ, ψA

1i = 1√
2

(|i, a〉 − |i, c〉),

EA
2i = μ, ψA

2i = 1√
2

(|i, a〉 + |i, c〉),

EB
1i = −μ + 2v, ψB

1i = 1√
2

(|i, b〉 − |i, d〉),

EB
2i = μ, ψB

2i = 1√
2

(|i, b〉 + |i, d〉), (D3)

where {ψA
2i} and {ψB

2i} share the same eigenenergy. Therefore,
they form the degenerate subspace. The perturbation Hamil-
tonian of the degenerate subspace can be written as

H′ =
∑

j

[
t1

∣∣ψA
2 j

〉〈
ψB

2 j

∣∣ + t2
∣∣ψB

2 j

〉〈
ψA

2( j+1)

∣∣ + H.c.
]
, (D4)

where t1 = t + 1
2 (δ − �), t2 = t − 1

2 (δ − �). One can easily
see that H′ is exactly the Hamiltonian of the SSH model.
Based on the conclusion of Sec. IV, a pair of in-gap edge
states should be found in the third gap around E = μ when
δ < �, which is confirmed in the band structure shown in
Fig. 14(b). On the other hand, since the subspace perturbation
Hamiltonian H′ already possesses chiral symmetry, shown
in Fig. 14(c), the unitary matrices UA,UB can be obtained
directly via Eq. (36) without renormalization. The real-space
winding number calculated by UA,UB shown in Fig. 14(d) is
quantized and a unit jump can be observed at the critical point
δ = �. Furthermore, the spatial distribution of the third gap
edge state shown in Fig. 14(e) exhibits clear evidence of chiral
edge state defined on the degenerate subspace {ψA

2i}, {ψB
2i}.

Therefore, in this example of 1D ladder model, its topological
properties at 3

4 filling can be reconstructed independently via
perturbation theory.

APPENDIX E: PERTURBATION-BASED TOPOLOGY
IN DIMERIZED BIPARTICLE SUPERCONDUCTING

SYSTEM

In previous works on 1D biparticle superconducting sys-
tems [12,17,43], it is found that the Hamiltonian of Kitaev
chain in Majorana quasiparticle representation shares similar
form with that of the SSH ladder. Theoretically speaking,
all the topological properties of the SSH ladder should have
counterparts in superconducting systems. As the Kitaev chain
belongs to BDI class, only the topological properties at zero
energy have been well discussed. Following the perturbation-
based topology reconstruction method introduced in the main
text, in this Appendix we would like to exhibit the nonzero
topological phase in 1D dimerized Kitaev chain, namely, the
Rice-Mele–type fermionic phase. This finding shows the gen-
erality of our method as well as its potential to greatly extend
the study of topological band theory in various systems.

First, we transform the Bloch Hamiltonian of our non-
superconducting model of Eq. (2) with v = 0 into Majorana
quasiparticle representation [17,43]:

HMaj(k) =
[

0 [iM(k)]
[iM(k)]† 0

]
. (E1)

One can prove that HMaj(k) and H(k) in Eq. (2) share the
same band structure and band topology. Then we can express
the Hamiltonian in the Bogoliubov–de Gennes (BdG) form
[17] through the following unitary transformation:

HBdG(k) = U ′HMaj(k)U ′†, (E2)

U ′ = 1√
2

⎡
⎢⎢⎣

1 0 i 0
0 1 0 i
1 0 −i 0
0 1 0 −i

⎤
⎥⎥⎦. (E3)
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We note that U ′ actually represents the relationship between
Majorana quasiparticle and fermion:

γ1 = 1√
2

(c + c†),

γ2 = i√
2

(c − c†). (E4)

Then we have

HBdG(k) =

⎡
⎢⎢⎣

μ1 z 0 w

z∗ μ2 −w∗ 0
0 −w −μ1 −z

w∗ 0 −z∗ −μ2

⎤
⎥⎥⎦, (E5)

where z = t1 + t2eik , w = − 1
2 t ′ + 1

2 t ′eik , t1 = t + 1
2 (δ − �),

t2 = t − 1
2 (δ − �), t ′ = δ + �. Finally, we obtain its real-

space representation by performing inverse Fourier transfor-
mation to Eq. (E5):

H =
∑

n

(μ1c†
A,ncA,n + μ2c†

B,ncB,n)

+ (t1c†
A,ncB,n + t2c†

A,n+1cB,n + H.c.)

+ 1

2
t ′(c†

A,nc†
B,n + c†

A,n+1c†
B,n + H.c.). (E6)

The Hamiltonian in Eq. (E6) is the superconducting counter-
part of SSH ladder, which can be regarded as a dimerized
Kitaev with staggered onsite energy. For the gap around zero
energy, it is well known that there exist a pair of Kitaev-type
Majorana modes with nontrivial winding number [12].

On the other hand, since Eq. (E6) and SSH ladder share
the same band-gap structure, for the nonzero gaps, there
should also be nonzero in-gap edge states when t2 > t1. Their
topological properties might be explained through our pertur-
bation method. One may notice that the dimer representation
presented in Sec. IV is equivalent to the following unitary
transformation:

U = 1√
2

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎤
⎥⎥⎦, (E7)

which shares a similar form with U ′ in Eq. (E3). Com-
paring Eq. (E3) with (E7), we can obtain the following

relationship:

c1i,A −→ c†
A,i,

c2i,A −→ cA,i,

c1i,B −→ c†
B,i,

c2i,B −→ cB,i, (E8)

where c1i,σ , c2i,σ are the annihilation operators corresponding
to Eq. (24):

c1i,A = 1√
2

(ci,a − ci,c),

c2i,A = 1√
2

(ci,a + ci,c),

c1i,B = 1√
2

(ci,b − ci,d ),

c2i,B = 1√
2

(ci,b + ci,d ). (E9)

That is to say, the degenerate subspace {ψA
1i, ψ

B
1i} defined in

Sec. IV corresponds to the hole subspace in Eq. (E6) while
subspace {ψA

2i, ψ
B
2i} corresponds to particle subspace. From

this point of view, the subspace Hamiltonian is equivalent to
Eq. (E6) without the superconducting pairing gap t ′, which
is exactly the Hamiltonian of Rice-Mele model. Based on the
conclusion of Sec. III, a pair of fermionic edge states with E =
μ1, μ2 would appear when t2 > t1, which coincides with the
properties of nonzero edge states of the SSH ladder at 3

4 filling.
Moreover, if we keep in mind the anticommunication relation
between the annihilation operator c and creation operator c†,
in the hole subspace, the energies of fermionic edge states
become E = −μ1,−μ2, which agree with the edge states of
the SSH ladder at 1

4 filling. Therefore, from the perspective
of Eq. (E6), the perturbation-based topology of the first gap
and the third gap actually correspond to the same Rice-Mele–
type fermionic topological phase in dimerized Kitaev chain.
As a result, four rather than two nonzero edge states would
appear in the topologically nontrivial region, which confirms
its fermionic property as every fermion is divided into two
quasiparticles in BdG form. It is worth noting that the Rice-
Mele–type phase differs from the SSH-type phase protected
by chiral symmetry in Ref. [17] in two senses. First, it appears
with nonzero μ1, μ2 and nonzero topological edge states;
Second, it is independent of Kitaev-type topology. While
the Kitaev-type topology protected by chiral symmetry (in
the form of particle-hole symmetry for BDI superconducting
systems) is determined by t and μ1, μ2, the Rice-Mele–type
topology relies on the other two parameters δ and �.
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[12] K. Padavić, S. S. Hegde, W. DeGottardi, and S. Vishveshwara,
Topological phases, edge modes, and the Hofstadter butterfly
in coupled Su-Schrieffer-Heeger systems, Phys. Rev. B 98,
024205 (2018).

[13] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topologi-
cal bands for ultracold atoms, Rev. Mod. Phys. 91, 015005
(2019).

[14] J. K. Asbóth, B. Tarasinski, and P. Delplace, Chiral symmetry
and bulk-boundary correspondence in periodically driven one-
dimensional systems, Phys. Rev. B 90, 125143 (2014).

[15] X.-S. Li, J.-R. Li, S.-F. Zhang, L.-L. Zhang, and W.-J. Gong,
Topological properties of the dimerized Kitaev chain with long-
range couplings, Results Phys. 30, 104837 (2021).

[16] C. Li, S. Lin, G. Zhang, and Z. Song, Topological nodal points
in two coupled su-schrieffer-heeger chains, Phys. Rev. B 96,
125418 (2017).

[17] R. Wakatsuki, M. Ezawa, Y. Tanaka, and N. Nagaosa, Fermion
fractionalization to majorana fermions in a dimerized Kitaev
superconductor, Phys. Rev. B 90, 014505 (2014).

[18] J. Fraxanet, U. Bhattacharya, T. Grass, D. Rakshit, M.
Lewenstein, and A. Dauphin, Topological properties of the
long-range Kitaev chain with Aubry-André-Harper modulation,
Phys. Rev. Res. 3, 013148 (2021).

[19] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[20] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on
Topological Insulators (Springer, New York, 2016).

[21] J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett.
62, 2747 (1989).

[22] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[23] M. Xiao, Z. Q. Zhang, and C. T. Chan, Surface impedance and
bulk band geometric phases in one-dimensional systems, Phys.
Rev. X 4, 021017 (2014).

[24] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized
electric multipole insulators, Science 357, 61 (2017).

[25] W. A. Benalcazar and A. Cerjan, Chiral-symmetric higher-order
topological phases of matter, Phys. Rev. Lett. 128, 127601
(2022).

[26] D. Wang, Y. Deng, J. Ji, M. Oudich, W. A. Benalcazar, G.
Ma, and Y. Jing, Realization of a Z-classified chiral-symmetric
higher-order topological insulator in a coupling-inverted acous-
tic crystal, Phys. Rev. Lett. 131, 157201 (2023).

[27] K. Hattori, K. Ishikawa, and Y. Kaneko, Energy polarization
and energy pumping in Rice-Mele chains, Phys. Rev. B 107,
115401 (2023).

[28] A. Anastasiadis, G. Styliaris, R. Chaunsali, G. Theocharis, and
F. K. Diakonos, Bulk-edge correspondence in the trimer Su-
Schrieffer-Heeger model, Phys. Rev. B 106, 085109 (2022).

[29] V. M. Martinez Alvarez and M. D. Coutinho-Filho, Edge states
in trimer lattices, Phys. Rev. A 99, 013833 (2019).

[30] Z. Wang, X. Wang, Z. Hu, D. Bongiovanni, D. Jukic, L.
Tang, D. Song, R. Morandotti, Z. Chen, and H. Buljan, Sub-
symmetry-protected topological states, Nat. Phys. 19, 992
(2023).

[31] W. Yan, W. Cheng, W. Liu, and F. Chen, Topological edge
states in photonic decorated trimer lattices, Opt. Lett. 48, 1802
(2023).

[32] W. Kohn, Analytic properties of Bloch waves and Wannier
functions, Phys. Rev. 115, 809 (1959).

[33] M. J. Rice and E. J. Mele, Elementary excitations of a lin-
early conjugated diatomic polymer, Phys. Rev. Lett. 49, 1455
(1982).

[34] S.-L. Zhang and Q. Zhou, Two-leg Su-Schrieffer-Heeger chain
with glide reflection symmetry, Phys. Rev. A 95, 061601(R)
(2017).

[35] J. Liu, Y. Han, and C. Liu, Topological phases of a non-
Hermitian coupled SSH ladder, Chin. Phys. B 28, 100304
(2019).

[36] M. Jangjan and M. V. Hosseini, Floquet engineering of topo-
logical metal states and hybridization of edge states with bulk
states in dimerized two-leg ladders, Sci. Rep. 10, 14256 (2020).

[37] J.-W. Ryu, S. Woo, N. Myoung, and H. C. Park, Topological
edge states in bowtie ladders with different cutting edges, Phys.
E (Amsterdam) 137, 114941 (2022).

[38] L. Lin, Y. Ke, and C. Lee, Real-space representation of the
winding number for a one-dimensional chiral-symmetric topo-
logical insulator, Phys. Rev. B 103, 224208 (2021).

[39] Y. Zhang, L. Xiong, and X. Jiang, The generalized method to
calculate the real-space winding number for one-dimensional
systems with complex multi-band-gap structure, J. Phys.:
Condens. Matter 34, 425401 (2022).

[40] D. D. Vu and S. Das Sarma, Weak quantization of noninteract-
ing topological Anderson insulator, Phys. Rev. B 106, 134201
(2022).

[41] M. Jangjan and M. V. Hosseini, Topological properties of
subsystem-symmetry-protected edge states in an extended
quasi-one-dimensional dimerized lattice, Phys. Rev. B 106,
205111 (2022).

[42] L. Liu, T. Li, Q. Zhang, M. Xiao, and C. Qiu, Universal mirror-
stacking approach for constructing topological bound states in
the continuum, Phys. Rev. Lett. 130, 106301 (2023).

[43] Z. Guo, J. Jiang, H. Jiang, J. Ren, and H. Chen, Observation of
topological bound states in a double Su-Schrieffer-Heeger chain
composed of split ring resonators, Phys. Rev. Res. 3, 013122
(2021).

104106-17

https://doi.org/10.1038/nmat5012
https://doi.org/10.1103/PhysRevLett.100.013905
https://doi.org/10.1364/OPTICA.6.000786
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevB.98.024205
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/PhysRevB.90.125143
https://doi.org/10.1016/j.rinp.2021.104837
https://doi.org/10.1103/PhysRevB.96.125418
https://doi.org/10.1103/PhysRevB.90.014505
https://doi.org/10.1103/PhysRevResearch.3.013148
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevX.4.021017
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevLett.128.127601
https://doi.org/10.1103/PhysRevLett.131.157201
https://doi.org/10.1103/PhysRevB.107.115401
https://doi.org/10.1103/PhysRevB.106.085109
https://doi.org/10.1103/PhysRevA.99.013833
https://doi.org/10.1038/s41567-023-02011-9
https://doi.org/10.1364/OL.485009
https://doi.org/10.1103/PhysRev.115.809
https://doi.org/10.1103/PhysRevLett.49.1455
https://doi.org/10.1103/PhysRevA.95.061601
https://doi.org/10.1088/1674-1056/ab3f94
https://doi.org/10.1038/s41598-020-71196-3
https://doi.org/10.1016/j.physe.2021.114941
https://doi.org/10.1103/PhysRevB.103.224208
https://doi.org/10.1088/1361-648X/ac8713
https://doi.org/10.1103/PhysRevB.106.134201
https://doi.org/10.1103/PhysRevB.106.205111
https://doi.org/10.1103/PhysRevLett.130.106301
https://doi.org/10.1103/PhysRevResearch.3.013122


YUNLIN LI et al. PHYSICAL REVIEW B 110, 104106 (2024)

[44] F. Liu, H.-Y. Deng, and K. Wakabayashi, Topological photonic
crystals with zero Berry curvature, Phys. Rev. B 97, 035442
(2018).

[45] B.-Y. Xie, G.-X. Su, H.-F. Wang, H. Su, X.-P. Shen, P.
Zhan, M.-H. Lu, Z.-L. Wang, and Y.-F. Chen, Visualization of
higher-order topological insulating phases in two-dimensional
dielectric photonic crystals, Phys. Rev. Lett. 122, 233903
(2019).

[46] X.-D. Chen, W.-M. Deng, F.-L. Shi, F.-L. Zhao, M. Chen, and
J.-W. Dong, Direct observation of corner states in second-order
topological photonic crystal slabs, Phys. Rev. Lett. 122, 233902
(2019).

[47] L. Xiong, Y. Zhang, Y. Liu, Y. Zheng, and X. Jiang, Higher-
order topological states in photonic Thue-Morse quasicrystals:
Quadrupole insulator and the origin of corner states, Phys. Rev.
Appl. 18, 064089 (2022).

104106-18

https://doi.org/10.1103/PhysRevB.97.035442
https://doi.org/10.1103/PhysRevLett.122.233903
https://doi.org/10.1103/PhysRevLett.122.233902
https://doi.org/10.1103/PhysRevApplied.18.064089

