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The Cn-symmetric topological crystalline insulator (TCI) emerges as a well-established platform known for
exhibiting confined edge and corner states protected by spatial rotational symmetry in Hermitian systems.
However, the exploration of non-Hermitian photonic TCIs remains relatively underdeveloped. In this study,
we introduce a topological hierarchy (TH) within an alternating gain-loss photonic crystal, encompassing
non-Hermitian two-dimensional surface, one-dimensional (1D) hinge, and zero-dimensional corner modes. Our
methodology demonstrates a complete TH by manipulating vertical and in-plane couplings. Our analysis shows
that both the real and imaginary parts of the energy bands maintain symmetry along the zero-energy line,
illustrating a TH similar to that observed in Hermitian systems. Study reveals that in the non-Hermitian case, 1D
hinge modes are split into two distinct directions with different real and imaginary component wave intensities.
Further investigation shows that our design supports a TH and non-Hermitian higher-order topological modes
in higher-orbital band gaps. This work expands the study of three-dimensional non-Hermitian photonic systems
and offers a promising route to manipulate wave transmission in disentangled higher-orbital bands.
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I. INTRODUCTION

The development of topological insulators (TIs) over
the past few decades has advanced the field of condensed
matter physics [1–3]. TIs are characterized by integer topo-
logical invariants—e.g., the Chern number, in momentum
space—which exhibit band topology that conforms to bulk-
boundary correspondence. Topological crystalline insulators
(TCIs), which host hundreds of space groups and spa-
tial symmetries, exhibit bulk dipole moments and support
fractionized boundary charge [4–10]. Recently, higher-order
topological insulators (HOTIs) have been extensively studied.
HOTIs have higher bulk quadrupole moments and fraction-
ized corner modes in two-dimensional (2D) TCIs [11–21].
In three-dimensional (3D) configurations, quadrupole mo-
ments contribute to hinge states, while octupole moments
give rise to corner-bound charges [22–30]. Efforts have
been made concerning 2D TCIs in acoustics, photonics,
and nanostructures, where robust in-gap corner modes have
been successfully observed [31–33]. Experiments have been
carried out to implement TCIs in 3D structures, such as topo-
logical quadrupolar semimetals based on rotational symmetry,
resulting in localized hinge modes [34–42]. In parallel, 3D
photonic TIs reveal other intriguing physical phenomena such
as 3D photonic Chern insulators [43–45], 3D dislocations
[46], and so on [47–50].

Recently, the concept of topological hierarchy (TH) was
proposed to achieve the coexistence of surface, hinge, and cor-
ner states within a single model by adjusting both in-plane and
out-of-plane couplings [51–53]. The establishment of each
hierarchy involves the elimination of band degeneracy. When
the one-dimensional (1D) Su-Schrieffer-Heeger (SSH) chain
is topological, the 3D bulk mode undergoes splitting into two
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components: in-plane bulk modes and out of plane boundary
states. By further adjusting the ratio of intra- and intercell
coupling terms, the 2D TCI develops in-plane hinge and cor-
ner states. To date, the majority of existing THs have been
explored in acoustic crystals, mainly due to the easier manip-
ulation of sonic wave wavelengths in experimental settings.

In addition, the phononic lattice structure facilitates air
transmission within atom tubelike tunnels and cavities, with a
band spectrum that aligns with tight-binding models (TBMs).
In contrast, the intricate electromagnetic (EM) properties of
photonic crystals (PhCs) pose challenges in designing and
fabricating THs on photonic platforms. Similar difficulties
arise in the context of 3D photonic crystals. Recently, work
on a photonic DH in the Mie-confined resonance framework
revealed the possibility of manipulating EM waves at different
dimensions [54]. Meanwhile, Mie-confined resonance PhCs
have also been shown to be qualified candidates for deriving
disentangled higher-orbital band gaps [55]. However, the
realization of TH in a non-Hermitian photonic system is
rarely discussed.

In this investigation, we present a non-Hermitian PhC
consisting of a double-monolayer C4-symmetric TCI com-
prising gain and loss dielectric pillars. To establish vertical
couplings, the lattice is covered with drilled metal plates at
the top and bottom, effectively forming a one-dimensional
SSH chain. The embedded metal pillars in the PhC re-
sult in a confined Mie-resonance state, and EM waves are
strongly localized around the dielectric cylinders at the lowest
bands, matching the linear combination of atomic orbitals in
TBMs. We use topological indices to identify the third-order
topology of the photonic TCI by analyzing the irreducible
representation of rotational invariant points on occupied bands
[56]. Simulations show that a nested hierarchy of topologi-
cal phases is available in our designed frameworks. As the
non-Hermitian term continues to grow, the imaginary parts
of the higher-order topological phases are well distinguished,
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FIG. 1. The schematic presentations of the proposed 3D non-Hermitian PhC and and corresponding real and complex band structures.
(a) 3D and horizontal and vertical visions of the TBM with C4 symmetry. (b) The architecture of the unit cell: the blue and red cylinders
represent the dielectric rods with gain and loss term. (c) The in-plane schematic view of the upper and lower layers in the PhC. (d)–(f) The real
part of the energy bands with equal in-plane and out of plane couplings, nontrivial SSH chain, and both nontrivial in-plane and out of plane
couplings. (g)–(i) Imaginary part of the energy bands with t1 = t0 and tz1 = tz0, t1 = t0 and tz1 > tz0, and t1 > t0 and tz1 > tz0.

and the traditional hinge states are separated into vertical and
horizontal components. Also, the |Ez| intensity of the hinge
with alternating gain-loss array is strongly depressed com-
pared to the hinge with the same gain or loss dielectric rods.
Finally, we extend the non-Hermitian higher-order photonic
modes to higher-orbital band gaps and prove the existence of
robust hinge wave propagation. Our model validates the ex-
istence of TH in non-Hermitian photonic systems, establishes
the feasibility of this approach for the development of pho-
tonic devices capable of engineering EM waves in multiple
dimensions, and enriches the story of non-Hermitian physics
in higher-orbital bands.

II. CONSTRUCTIONS OF THE 3D PHOTONIC CRYSTAL

To present the full dimensional hierarchy of our photonic
TCIs in a straightforward picture, we introduce the minimal
TBM of the PhC. The unit cell is divided into two parts: in-
plane monolayer lattices and vertical SSH chains. Figure 1(a)
conceptually depicts the double-layer Hermitian TCI with C4

rotational symmetry. The intra- and intercell hopping terms
are t0 and t1, while the intra- and interlayer couplings are tz0

and tz1. To begin with, we set the gain and loss term as zero to
write the Hermitian Hamiltonian of these complete 3D TBM
models with Cn rotational symmetry as

H (k) = Hz ⊗ I4 + I2 ⊗ Hxy, (1)

where I2 and I4 are 2 × 2 and 4 × 4 identity matrices,
respectively. Hxy is the Hamiltonian of the in-plane
monolayer lattice, and Hz is the Hamiltonian of ver-
tical SSH chains. Here, Hz = (tz0 + tz1coskz )σx + sinqzσy

is the vertical SSH Hamiltonian, σx and σy are Pauli
matrices, and the monolayer C4-symmetric lattice Hamil-
tonian Hxy = [0, h4(kx, ky); h∗

4(kx, ky), 0] with h4(kx, ky) =
[t0 + t1exp(−ikxa), t0 + t1exp(−ikya); t0 + t1exp(ikya), t0 +
t1exp(ikxa)]. From Eq. (1), we can obtain the eigenenergy of
H (k) as E = Exy + Ez, and the corresponding eigenstate of
the model is expressed as � = �xy ⊗ �z. We can describe the
dimensional hierarchy of these TCIs as follows: the system
keeps bulk modes when �xy and �z are both bulk states
(equal directional couplings with t0 = t1 and tz0 = tz1); the
model manifests surface states when either of �xy or �z is
nontrivial (altering couplings with t0 < t1 or tz0 < tz1); the
hinge and corner modes come up when both �xy and �z

remain topological.
In the pursuit of creating a PhC that facilitates both hori-

zontal and vertical transmission of EM waves, a conventional
approach is to organize dielectric rods in a lattice configu-
ration. It is imperative to ensure that all resonators maintain
an equidistant position from the center of the lattice, while
preserving the Cn rotational symmetry [57,58]. Metallic plates
are drilled and positioned on the top and bottom of the
cylindrical rods, serving as components for vertical couplings.
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The hollow circles in the plates and dielectric rods align to
ensure equal vertical coupling of resonators in adjacent layers.
Metal plates are considered perfect electric conductors (PECs)
to prevent interactions between in-plane and out of plane EM
wave couplings. Figure 1(b) provides a full 3D view of the
C4-symmetric PhC. The lattice consists of two layers, each
containing four dielectric rods with embedded PECs at the
center and sides of the plane.

Recent research demonstrates the use of a confined Mie-
resonance PhC, achieved by inserting metal pillars between
dielectric rods [55]. The upper and lower drilled plates act
as vertical interlayer coupling, while the drilled central layer
acts as intralayer coupling. The ratio of vertical coupling
strength is adjusted by varying the size of the air holes in the
metal plates. By changing the size of the metal rods, in-plane
distortions can be modulated to control the decay amplitude
of Mie-resonance states. Similarly, by adjusting SSH inter-
connect couplings, the size of c1 and c0 can be increased or
decreased. The lattice parameters are defined as follows: the
in-plane and out of plane lattice constants are a = 24 mm
and h = 16 mm, the height of the dielectric pillar is hr = 6
mm; the width of the central metal plane is w = 1 mm; the
diameter of the cylinder scatter is d = 4 mm; the diameter
of the upper-lower (middle) drilled holes is c1 (c0); the side
lengths of the side, corner, and central metal rod are a2, a1,
and a0, respectively. The relative dielectric permittivity of
dielectric rods is ε = 9. The band diagrams in our papers are
calculated by COMSOL MULTIPHYSICS.

III. DIMENSIONAL HIERARCHY IN THE
NON-HERMITIAN PHOTONIC CRYSTAL

It is natural to ask whether TH can be realized in
non-Hermitian systems [59–65]. Recently, a proposal for
higher-order non-Hermitian 3D topological PhC was intro-
duced to support topological phase transitions [66]. This is
achieved by designing a gain-loss layered SSH model along
the z direction and an alternating gain-loss domain wall at
the in-plane interface. The system exhibits strongly localized
surface, hinge, and corner states. However, this framework in-
cludes honeycomb-shaped stacked PhCs with non-Hermiticity
only in the vertical direction, leading to the availability of 1D
hinge and zero-dimensional (0D) corner states in the presence
of layered SSH unit cells with opposite gain-loss placement
at each layer. In other words, higher-order topological phases
emerge at the interface boundary in a multilayer metasample.
In addition, the in-plane distortion is achieved by moving the
dielectric rods toward or behind the lattice center, which is
relatively inconvenient and suffers from the slow-decaying
Mie-resonance states. In our non-Hermitian scheme, as
depicted in Fig. 1(b), the gain and loss terms are obtained
by defining the signs of the imaginary part (γ ) of the rel-
ative permittivity. The cylinder placement on the upper and
lower layers of the square lattice is opposite, where the
red (blue) rods represent loss (gain) with γ = 0.5 (–0.5).
Therefore, we define the relative permittivity of the gain
(loss) rods as 9 + 0.5i (9 − 0.5i), and the lattice incorporates
two non-Hermitian SSH chains in both the y and z direc-
tions. The Hamiltonian of the non-Hermitian square PhC is

written as

H (k) = HNH(k)

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 A† B† 0 C 0 0 0

A 0 0 B† 0 C 0 0

B 0 0 A† 0 0 C 0

0 B A 0 0 0 0 C

C† 0 0 0 0 A† B† 0

0 C† 0 0 A 0 0 B†

0 0 C† 0 B 0 0 A†

0 0 0 C† 0 B A 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

where A = t0 + t1exp(ikx ), B = t0 + t1exp(iky), C = tz0 +
tz1exp(ikz), and HNH(k) = diagonal {iγ , iγ ,−iγ ,−iγ ,−iγ ,

−iγ , iγ , iγ }, were iγ (−iγ ) denotes the on-site loss (gain)
for each cylinder of a square unit cell. H (k) preserves the
anti-parity-time (P T ) symmetry with (P T )H (k)(P T )−1 =
−H (k); P and T are parity and time operators. The
eigenfrequencies of the non-Hermitian band structure are
composed of real and complex values compared to the
Hermitian system. Figures 1(d)–1(f) gives the real part of
the band spectrum of the non-Hermitian square lattice under
original (t1 = t0, tz1 = tz0), first-order (t1 = t0, tz1 > tz0), and
second-order (t1 > t0, tz1 > tz0) configurations, respectively.
The geometrical parameters of the first- and second-order
square PhC are the same as the Hermitian system given in
the Supplemental Material [67]. It can be found that the
band degeneracy collapses as the equal couplings are broken.
More importantly, the dimensional hierarchy appears in the
imaginary part of the eigenbands, as plotted in Figs. 1(g)–1(i).

Next, we consider the realization of non-Hermitian 2D
surface and 1D hinge modes in our square PhC. We construct
a three-layer stacked PhC array along the z direction, as shown
in Fig. 2(a). The top and bottom of the supercell are covered
with undrilled metal plates to produce PEC boundaries. The
x and y directions are still periodic conditions. Figures 2(b)
and 2(e) show the calculated surface mode profiles |Ez| with
the first- and second-order supercells (t1 > t0, tz1 > tz0). The
corresponding real and complex surface band diagrams of
first- and second-order supercells are plotted in Figs. 2(c),
2(d), 2(f), and 2(g), respectively. It is obvious that these energy
bands experience the degeneracy lifting process when the sys-
tem transmits from the first-order TI to the second-order TI. In
addition, the projected complex surface bands, Figs. 2(d) and
2(g), are symmetrically located along the zero-energy line. To
build a second-order square PhC hosting 1D hinge modes, we
expand the surface supercell along the y direction to allow
transmission of hinge states along the edge, as depicted in
Fig. 2(h). Two ends of the hinge supercell are cut to formulate
PEC boundaries in the y direction. In this way, we have a
horizontal SSH chain with alternating gain and loss sites along
the y direction. Figures 2(j) and 2(k) calculate the correspond-
ing real and complex part of hinge dispersions, where band
degeneracy occurs at about 9.64 GHz at kx = π/a, and the
corresponding hinge eigenmode fields of the hinge supercell
are displayed in Fig. 2(i).
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FIG. 2. The non-Hermitian surface and hinge supercell and corresponding real and complex band structures. (a) The architecture of the
stacking non-Hermitian square supercell, where the blue and red cylinders represent the dielectric rods with gain and loss, respectively.
(b) Normalized electric field distributions of the first-order surface states at 8.71 − 0.21i and 9.14 + 0.22i GHz, respectively. (c),(d) Real and
imaginary parts of the energy bands of the first-order supercell. (e) Normalized electric field distributions of the second-order surface states at
10.26 − 0.24i and 10.40 − 0.25i GHz, respectively. (f),(g) Real and imaginary parts of the energy bands of the second-order supercell. (h) The
3D view of the non-Hermitian hinge supercell. (i) Normalized electric field distributions of the hinge states at 9.64 + 0.24i and 9.64 − 0.24i
GHz, respectively. (j),(k) Real and imaginary part of the second-order hinge supercell band diagrams.

We investigate eigenmode solutions in a non-Hermitian
system using a multilayer PhC array, as illustrated in Fig. 3(a).
Each layer consists of 25 unit cells with PEC boundaries at
the four edges. Figure 3(d) displays the eigenmode solutions
of the stacked sample in a Hermitian system, where eight de-
generate corner states (depicted by orange dots) are observed
around 9.15 GHz, while the hinge modes (represented by light
blue dots) span from 9.42 to 9.88 GHz. Introducing a non-
Hermitian term of γ = 0.5, we observe the distributions of real
and imaginary solutions in the multilayer sample, illustrated
in Figs. 3(e) and 3(f). Compared to the Hermitian model,
the real parts of the eigenmodes with γ = 0.5 exhibit two
distinct types of hinge modes: horizontal (H hinge represented
by dark blue dots) and vertical (V hinge represented by light
blue dots). Additionally, the imaginary parts of the eigenmode
solutions are nonzero.

To provide a clearer understanding of non-Hermitian fea-
tures, we calculate the PT-symmetry complex phase diagram
of corner and hinge states, as depicted in Figs. 3(b) and
3(c). In Fig. 3(b), we illustrate the spectral positions of the
second corner state in the eigenmode solutions shown in
Figs. 3(d) and 3(e). It is evident that as γ increases, the com-
plex conjugate corner states (corner 1 and corner 2) exhibit
a linear tendency to move in opposite directions. When it
comes to the hinge phase transition diagram, as pictured in

Fig. 3(c), we find an exceptional point of i = 0.483. The two
hinge modes maintain the P T -symmetric phase for i < 0.483,
where the imaginary parts degenerate at zero. If i > 0.483,
the P T -symmetric phase is broken for the hinge modes, and
the imaginary components become a complex conjugate pair.
The inset in Fig. 3(c) plots the zoom-in P T -symmetric phase
transition point at i = 0.483 (marked by the dashed line). It
can be noticed that the two hinge eigenmodes (hinge 1 and
hinge 2) in Fig. 3(c) are a complex conjugate pair that is
closer to the imaginary zero-energy line. Additionally, we plot
the transmission fields of hinge electromagnetic (EM) waves
for both the Hermitian and non-Hermitian (γ = 0.5) cases.
Figure 3(g) displays the hinge eigenmodes at 9.46 and 9.84
GHz, where the hinge state propagates along the top sides of
the stacked sample. Figure 3(h) shows V-hinge eigenmodes at
9.64 + 0.23i and 9.84 + 0.63i GHz, while Fig. 3(i) illustrates
H-hinge eigenmodes at 9.46 − 0.23i and 9.46 + 0.23i GHz.
The introduction of the non-Hermitian parameter γ divides
the original hinge modes into two orthogonal components.

IV. INFLUENCE OF THE NON-HERMITICITY
ON HIGHER-ORDER HINGE MODES

We conduct a detailed analysis of the transmission prop-
erties of the non-Hermitian H-hinge and V-hinge states as
γ varies. To excite surface wave propagation, a source (red
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FIG. 3. The construction of 3D PhC with six layers and corresponding eigenmode solutions, and electric field distributions. (a) The 3D
view of the non-Hermitian stacking TCI model composed of second-order square PhCs. The part of the top metal plane is deleted for the
visualization of gain and loss cylinders at each layer. (b),(c) P T -symmetry complex phase diagram of the corner and hinge states. (d) Solution
numbers of the Hermitian multilayer 3D PhC. (e),(f) Real and imaginary part of the solution numbers of the non-Hermitian sample with
γ = 0.5. (g) Normalized electric field distributions of the Hermitian model. (h),(i) Normalized electric field distributions of the non-Hermitian
model.

circle) is placed on top of the stacked sample consisting of
alternating gain and loss cylinder resonators, as illustrated in
Fig. 3(a). Two detectors positioned on the vertical and hori-
zontal top sides (green circle and orange circle) are deployed
to measure the intensity profiles of V-hinge and H-hinge EM
waves. We extract the real and complex parts of the EM wave
intensity spectra under different non-Hermitian parameters
γ = 0.05, 0.1, 0.2, and 0.5, respectively. Figures 4(a) and 4(e)
illustrate the real [Re(|Ez|)] and imaginary [Im(|Ez|)] compo-
nents of |Ez| across the frequency range of 8.5–10.5 GHz with
γ = 0.05. It is evident that the [Re(|Ez|)] of both the H hinge
(orange) and the V hinge (green) within the frequency band
of 9.55–9.75 GHz remains approximately constant at mag-
nitudes around 4 × 107 and 5 × 107 V/m. At 9.6 GHz, the
Im(|Ez|) of the V hinge (blue) is almost twice as large as that
of the H hinge (yellow). Figure 4(i) presents the normalized
EM wave transmission field of the top surface of the multi-
layer sample with γ = 0.05 at 9.6 GHz, highlighting the prop-
agation suppression of the H hinge in contrast to the V hinge.

By adjusting γ = 0.1, the ratio of Re(|Ez|) between the V
hinge and the H hinge reaches 2.7 at 9.65 GHz, as depicted
in Fig. 4(b). However, in Fig. 4(f), the Im(|Ez|) value of the
V hinge is 1.25 × 109 V/m, almost 17 times that of the H
hinge which measures 7.4 × 107 V/m. Figure 4(j) illustrates
the normalized EM wave field distributions of the top slice
with γ = 0.1 at 9.65 GHz, where only the V-hinge mode is

observable. As γ goes to 0.2, the peak value of Re(|Ez|) for the
V hinge (H hinge) reaches 6.8 × 107 V/m (4.3 × 107 V/m)
at 9.60 GHz, and the Im(|Ez|) for the V hinge (H-hinge) mea-
sures 1.05 × 107 V/m (5.5 × 107 V/m) at 9.50 GHz (9.55
GHz), as shown in Figs. 4(c) and 4(g). Similarly, Fig. 4(k)
shows that only the V-hinge mode is supported on the top
surface side at 9.50 GHz.

When γ = 0.5, the Re(|Ez|) ratio of the V hinge (H hinge)
is 130 at 9.65 GHz, while the Im(|Ez|) ratio of the V hinge
(H hinge) is 2400 at 9.65 GHz, as shown in Figs. 4(d) and
4(h). The surface EM wave transmission graph at 9.65 GHz
in Fig. 4(l) shows that only V-hinge mode exists. From these
data, it is evident that introducing the non-Hermitian parame-
ter not only introduces non-Hermitian electromagnetic wave
components, but also alters the propagation mode of hinge
waves. Furthermore, by increasing the magnitude of the non-
Hermitian term γ , both the real and imaginary parts of |Ez|
for the H-hinge mode are significantly lessened. This implies
that the non-Hermitian term can be effectively utilized to
adjust the intensity of specific hinge modes as desired.

V. NON-HERMITIAN TH AND HINGE MODES
IN HIGHER-ORBITAL BAND GAPS

So far, we have discussed the non-Hermitian topological
phase and TH in the lowest band gaps. The higher-order states
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FIG. 4. The real and complex EM wave intensity spectra at different non-Hermitian terms and corresponding hinge wave propagation
profiles. (a)–(d) The real components of the H-hinge and V-hinge wave intensity spectra with γ = 0.05, 0.1, 0.2, and 0.5, respectively. (e)–(h)
The imaginary components of the H-hinge and V-hinge wave intensity spectra with γ = 0.05, 0.1, 0.2, and 0.5, respectively. (i)–(l) The
normalized |Ez| propagation field distributions with γ = 0.05, 0.1, 0.2, and 0.5 at 9.60, 9.65, 9.50, and 9.65 GHz, respectively.

and TH in higher-orbital energy bands are not yet realized in
the 3D photonic system. The main difficulty of obtaining a
higher-orbital topological phase is the mixed band spectrum
in the dielectric PhC. The proposed confined Mie-resonance
photonic lattice has successfully make the higher-orbital band
gaps disentangled [55]. Inspired by this, we do further study
on the non-Hermitian higher-order higher-orbital topologi-
cal phase in a 3D photonic framework. Figures 5(a)–5(c)
[Figs. 5(d)–5(f)] show the real (imaginary) component of
higher-orbital band structures under original, first-order, and
second-order unit cells, respectively. It is evident that both
the real and complex parts of the higher-orbital band spectra
behave as a dimensional hierarchy as the directional equal
couplings are broken. Similarly, we calculate the projected
real and imaginary surface band diagrams of the first- and
second-order supercells, as presented in Figs. 5(g) and 5(h)
[Figs. 5(j) and 5(k)]. As the supercell experiences a phase shift
from the first order to the second order, the surface energy
bands will lose the degeneracy properties. Further, we give
the hinge supercell band dispersions, as displayed in Figs. 5(i)
and 5(l). The hinge states exist in the band gaps from 17.3
to 18.6 GHz, and from 18.7 to 18.9 GHz, matching the band
gaps in the second-order surface bands shown in Fig. 5(h).

To prove the existence of the higher-orbital hinge modes
in a 3D PhC model, we compute the real and complex solu-
tion numbers of the eigenmodes ranging from 17.5 to 19.5
GHz, as shown in Figs. 6(a) and 6(b). The multilayer 3D
photonic architecture uses the same settings in Fig. 3(a). We
find that the hinge modes are located in the two band gaps of

17.5–18.6 GHz and 18.7–18.9 GHz, and the imaginary parts
of the hinge modes have nonzero values. Finally, we examine
the wave transmission of the hinge states in the higher-orbital
band gaps by placing two detectors on the top vertical and
horizontal edges, as marked in Fig. 3(a). Figures 6(c) and 6(d)
provide the Re(|Ez|) and Im(|Ez|) intensity profiles of the V
hinge and H hinge with non-Hermitian term γ = 0.5. It can
be obviously witnessed that the Re(|Ez|) of the V hinge (H
hinge) is 4 × 109 V/m (1 × 107 V/m) at 18.65 GHz, while
the Im(|Ez|) of the V hinge (H hinge) is 1.25 × 108 V/m
(2.7 × 106 V/m) at 18.0 GHz. Figure 6(e) demonstrates the
top surface hinge wave propagation field distributions at 18.65
GHz, where only the V hinge is visible, proving the robust
higher-orbital hinge wave transmission.

VI. CONCLUSIONS

We establish a non-Hermitian dimensional hierarchy in
a 3D square lattice by implementing an alternating loss-
and-gain configuration in both the y and z directions. By
modulating in-plane and vertical hopping, we successfully
induce first-order surface, second-order hinge, and third-
order corner states on both the top and bottom surfaces
of the 3D samples. Band structures reveal a hierarchy of
band degeneracy in both the real and imaginary parts.
Our framework supports robust non-Hermitian hinge and
corner modes at sample edges without the need to build
domain walls. Analysis shows non-Hermitian phase transi-
tions as the parameter increases for both hinge and corner

104103-6



TOPOLOGICAL HIERARCHY IN NON-HERMITIAN … PHYSICAL REVIEW B 110, 104103 (2024)

FIG. 5. The real and complex band structures of a square lattice with different dimensional hierarchy. (a)–(c) Real part of band diagrams
of original, first-order, and second-order unit cells at higher bands. (d)–(f) Imaginary part of band diagrams of original, first-order, and second-
order unit cells at higher bands. (g),(h) Real part of surface band spectra with first- and second-order supercells. (i) Real part of hinge band
spectra. (j),(k) Complex part of surface band spectra with first- and second-order supercells. (l) Complex part of hinge band spectra.

modes. In addition, the transmission intensity of both H-
hinge and V-hinge modes can be modulated by adjusting the
non-Hermitian parameter, resulting in suppression of elec-
tromagnetic waves in both real and complex components
along orthogonal directions. Further analysis proves that the
higher-orbital non-Hermitian higher-order hinge state is also

available in our confined Mie-resonance PhCs. This work
opens up possibilities for manipulating optical devices with
flexible EM wave engineering at varying dimensions, and
paves the way for achieving non-Hermitian higher-order topo-
logical phases in higher-orbital bands with exotic physical
properties.

FIG. 6. The real and complex higher-orbital topological phase eigenmode solutions and corresponding hinge wave intensity spectra and
propagation profiles. (a),(b) The real and complex components of the eigenmode solutions. (c),(d) The real and imaginary components of
the H-hinge and V-hinge wave intensity spectra with γ = 0.5. The normalized |Ez| higher-orbital hinge propagation field distributions with
γ = 0.5.
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