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Dynamic critical exponent in quantum long-range models
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Quantum long-range models at zero temperature can be described by fractional Lifshitz field theories, that is,
anisotropic models whose actions are short range in time and long range in space. In this paper, we study the
renormalization of fractional Lifshitz field theories with weakly relevant cubic or quartic self-interactions. Their
nontrivial infrared fixed points exhibit Lifshitz scale invariance and we compute the lowest-order corrections to
the dynamic critical exponent.
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I. INTRODUCTION

Systems with long-range interactions appear in a large
variety of physical situations [1]. Among the many possible
instances, a particularly interesting class of systems is the one
described by models with a two-body interaction that decays
with distance according to a power law, with sufficiently slow
decay. The paradigmatic example in such a class is the long-
range Ising model, associated to the classical Hamiltonian

HI = −J
∑

i, j∈L

σi σ j

|i − j|d+2ζ
, (1)

where L ⊂ Zd is a finite d-dimensional lattice, σi = ±1 are
the Ising variables at site i ∈ L, J > 0 is their coupling, and
the long-range exponent is in the range 0 < ζ < 1, with the
limiting case ζ = 1 being equivalent to the nearest-neighbor
(or short-range) model. Such model, and its extensions with
internal O(N ) symmetry, has been extensively studied, both
in its lattice version and in its field-theoretic Ginzburg-Landau
formulation [2–15], and several related experimental systems
have been constructed in recent years (see [16] for a review).

We emphasize that L in (1) represents space only, with time
being frozen, as is always the case in classical equilibrium
statistical mechanics. When considering instead quantum
versions of long-range models, a short-range temporal inter-
action arises after the standard quantum-to-classical mapping
[17,18], as explicitly emphasized in [19] (see, also [20–22]).1

Keeping with the Ising example, the quantum model is ob-
tained by replacing the classical Ising variables σi with Pauli
matrices σ̂ z

i at each site, and adding to the Hamiltonian a trans-
verse field interaction h

∑
i σ̂

x
i , in order to induce a nontrivial

quantum dynamics,

ĤqI = −J
∑

i, j∈L

σ̂ z
i σ̂ z

j

|i − j|d+2ζ
− γ

∑
i∈L

σ̂ x
i . (2)

The quantum statistical partition function at inverse tempera-
ture β can then be mapped to a classical one by applying the
Trotter formula to e−βĤqI and, after some manipulations [17],
obtain

ZqI = Tr[e−βĤqI ] ∼ lim
n→∞

∑
{σi,t =±1}i∈L,t=1...n

exp

{
βJ

n

∑
i, j,t

σi,t σ j,t

|i − j|d+2ζ
+ β

2
ln coth

(
γ

n

) ∑
i,t

σi,tσi,t+1

}
, (3)

where the classical Ising variables now have a second index, interpreted as discrete Euclidean time, and periodic boundary
conditions are assumed: σi,n+1 = σi,1. One then concludes that the Ginzburg-Landau description of the quantum long-range
Ising model must be an anisotropic scalar field theory, long range in space and short range in time. In [19], we called such a
theory a fractional Lifshitz field theory, and the scope of this paper is to further study its critical properties.

Scalar Lifshitz field theories were first studied in [25] to describe tricritical points in the presence of paramagnetic,
ferromagnetic, and modulated phases. Denoting the time coordinate τ and the d-dimensional spatial coordinates x, a standard
example is an action of the form2

S[φ] =
∫

dτdd x

{
1

2
(∂τφ)2 + ρ0

2

∑
j

(∂ jφ)2 + 1

2

( ∑
j

∂ j∂ jφ

)2

+ V [φ]

}
, (4)

1Models with long-range temporal dynamics can also be conceived, for example, in the presence of dissipation, impurities, or memory effects
(e.g., [23,24]), but we will not consider them here.

2From now on, when discussing the field-theoretic approach to these models, we will talk about actions rather than Hamiltonians.
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with j ranging over the spatial dimensions. Usual ordered
and disordered phases can be reached by tuning the potential,
while a spatially modulated phase, breaking translation invari-
ance, can be obtained by choosing ρ0 < 0. The Lifshitz point
[25] is, by definition, the critical point at the intersection of
such phases, and one is interested in computing the associated
critical exponents. For example, this has been done for a
model in this family with a quartic interaction, using either
perturbative methods up to two loops [26–28] or the func-
tional renormalization group approach [29], while in [30–32],
the anisotropic quartic O(N ) vector model was studied by
means of the 1/N expansion. Notice that in the original setting
of Lifshitz points, “time” is actually one spatial direction of a
spatially anisotropic classical system, but it can have an inter-
pretation as (real or imaginary) time in other contexts, such
as Lorentz-violating quantum field theories with improved
ultraviolet behavior [33–35] or quantum Lifshitz points [36].

One interesting feature of Lifshitz field theories is that
while they break explicitly Lorentz or rotation invariance,
they exhibit anisotropic scale invariance at fixed points of the
renormalization group. An anisotropic scaling transformation
of an operator O is

O(τ, x) = l
OO(lzτ, lx), (5)

with 
O the scaling dimension of O, and z �= 1 the anisotropy
exponent, also known as the dynamic critical exponent due
to its similar role in dynamic critical phenomena [37]. Typi-
cal Lifshitz field theories in the literature are constructed as
perturbations of a Gaussian theory with an integer anisotropy
exponent, as in the example above, which has z = 2. However,
a noninteger z generally appears at interacting fixed points.
The way this happens in practice is that in the renormalized
theory, the operators (∂τφ)2 and (

∑
j ∂ j∂ jφ)2 get different

anomalous dimensions, say η2 and η4, respectively, and one
finds the relation [28,29]

z = 4 − η4

2 − η2
. (6)

Here, we will study a Lifshitz type of model in which
a nonlocal operator, known as fractional Laplacian, replaces
the higher-order spatial derivative terms.3 In other words, we
will consider a continuum version of the model (3), with the
long-range kernel corresponding to the integral representation
of a Laplacian to power ζ , with 0 < ζ < 1. As a conse-
quence of that, the standard short-range term (∂ jφ)2 is, in
this case, irrelevant,4 and thus there is no modulated phase
in these models. Moreover, the nonlocal nature of the spatial
term implies that it needs no renormalization, and hence its
anomalous dimension vanishes. Therefore, we expect to find
z = 2ζ/(2 − η2), which we will confirm.

3From the point of view of our motivation, the time direction has
the interpretation of imaginary time in the classical description of
a quantum statistical model. However, a spatial interpretation of
an anisotropic classical statistical model is also possible (see, for
example, [38] for a more general model with this interpretation).

4However, beyond some value of the long-range exponent, it might
become a dangerously irrelevant operator, as in the isotropic case
[4,12].

We will consider models with either a cubic or a quartic
interaction in the regime in which they are weakly relevant,
that is, for ζ slightly above its lower critical value (i.e., the
value below which the infrared fixed point is noninteracting
and thus mean-field theory applies). We will show that they
exhibit a nontrivial infrared renormalization group fixed point,
and we will explicitly compute the corrections to the canonical
value of z (i.e., z = ζ ) at leading order in the perturbative
expansion.

The model with quartic interaction has Z2 invariance and
it can be interpreted as the Ginzburg-Landau theory for the
quantum long-range Ising model, as explained above. The
cubic model instead will require an imaginary coupling and
thus it can be interpreted as describing the Yang-Lee edge
singularity at imaginary magnetic field for the same model,
similarly to the usual Yang-Lee model [39] (recently reviewed
in [40]).

We will start from the cubic model in Sec. II, as calcula-
tions in this case are slightly easier, and as such it provides
a useful benchmark for general renormalization aspects. We
will then move to the quartic case in Sec. III. The latter has
also been studied in [20–22], but with methods and results
that are complementary to ours.

II. THE CUBIC MODEL

The free model. The free fractional Lifshitz theory in d + 1
dimensions with Euclidean signature is defined by the action5

S[φ] = 1

2

∫
dx φ(x)

[
(−∂2)ζ − ∂2

τ

]
φ(x), (7)

where x = (τ, x) and dx = dτdd x, with τ being the Euclidean
time and x being the d-dimensional position, while (−∂2)ζ =
(−∑d

i=1 ∂i∂
i )ζ stands for the fractional Laplacian in the d

spatial dimensions [42]. In position space, the latter is given
by a nonlocal integral kernel which corresponds to the contin-
uum version of (1),

(−∂2)ζ φ(τ, x) ∝
∫

dd y
φ(τ, y)

|x − y|d+2ζ
. (8)

For the sake of conciseness and to stress the analogy to ordi-
nary Lifshitz field theories, in the rest of the paper we will use
the derivative notation when writing the action.

The covariance of the model, written as Fourier transform,
is6

C(τ, x) =
∫

dd p dω

(2π )d+1

eıωτ+ıpx

ω2 + (p2)ζ
, (9)

and it enjoys the anisotropic Lifshitz scale invariance,

C(τ, x) = l2
φ C(lζ τ, lx), (10)

with 
φ = d−ζ

2 the mass dimension of the field under
anisotropic scaling. As the model is free, the correlators are

5The same model has recently been considered in [41] with appli-
cations to entanglement and holography.

6Interestingly, this covariance can be also interpreted in terms
of Lévy walks, thus generalizing the usual relation between the
isotropic short-range propagator and Gaussian random walks [43].
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computed by the Wick theorem and obey the scaling law,

F (n)(τ1, x1; . . . ; τn, xn) =
∫

[dφ]e−S(φ) φ(x1) . . . φ(xn)∫
[dφ]e−S(φ)

= ln
φ F (n)(lζ τ1, lx1; . . . ; lζ τn, lxn),
(11)

reflecting the invariance of the action under a field change of
variable φ(τ, x) = l
φφ′(lζ τ, lx), where we took into account
the fact that the Jacobian of this change of variable is field
independent.

Only the correlators with even n are nonzero, and if one
restricts to connected correlation functions G(n), only the two-
point function is nontrivial and it equals the covariance:

G(2)(τ1, x1; τ2, x2) = C(τ1 − τ2, x1 − x2). (12)

The interacting model: Bare theory and scaling. For the
interacting theory, one needs to distinguish between the bare
and the renormalized versions of the model. We start by dis-
cussing the bare theory, defined by the action

Sb[φb] =
∫

dx
{

1

2
φb(x)

[
(−∂2)ζ − ∂2

τ

]
φb(x) + ı

λb

3!
φb(x)3

}
,

(13)

which depends on the bare field φb(τ, x). Depending on the
regularization scheme, additional linear and quadratic terms
might be needed for renormalization, but we can view the
above action as representing our target scale-invariant theory.
No couplings are introduced in the kinetic term, as they can
always be set to 1 by a rescaling of φb, τ , and λb. Note that we
have explicitly factored an imaginary unit in the interaction,
which is standard for cubic interactions. We will also assume
λb > 0 since the two choices of sign are related by a field
redefinition, φb → −φb.

The critical value of ζ for which the cubic interaction is
marginal, that is, such that the interaction is invariant under the
field change of variable φb(τ, x) = l
φφ′

b(lζ τ, lx), respects
3
φ − d − ζ = 0, that is, ζ = d

5 . The weakly relevant case is
obtained by setting ζ = d+ε

5 , with ε > 0 small, leading to the
mass dimension of the coupling, [λb] = d + ζ − 3
φ = ε

2 .
In order to have an interesting renormalization group flow
towards the infrared, and keep ζ < 1, which is needed for
the long-range interpretation and for avoiding the need of a
relevant φb∂

2
x φb term in the action, we must stick to d < 5.

With the above choices, the action is invariant under the
simultaneous change of field variables and coupling,

φb(τ, x) = l
φφ′
b(lζ τ, lx), λb = lε/2λ′

b

⇒ Sb[φb, λb] = Sb[φ′
b, λ

′
b]. (14)

We stress that this is essentially dimensional analysis, not a
a true invariance of the theory, because the above actions are
evaluated at different values of the coupling.

For ε > 0, using analytical continuation when needed, the
correlation functions of the theory are finite order by order
in the perturbative expansion, and they display the following
behavior under rescaling (we denote the arguments of the

correlators collectively by τ, x):

F (n)
b (τ, x|λb) =

∫
[dφb]e−Sb[φb,λb] φb(x1) . . . φ(xn)∫

[dφb]e−Sb[φb,λb]

= ln
φ F (n)
b (lζ τ, lx|l−ε/2λb). (15)

Equivalently, the bare correlation functions respect the differ-
ential equation,[

n
φ − ε

2
λb∂λb + ζDτ + Dx

]
F (n)

b (τ, x|λb) = 0, (16)

where Dτ = ∑
i τi∂τi is the time and Dx = ∑

i,ν xν
i ∂xν

i
is the

space dilatation operator. Formally, the bare correlators are
eigenfunctions of the anisotropic dilatation operator ζDτ +
Dx in the marginal ε = 0 case, and slightly break it in the
weakly relevant case.

This is, however, formal because, as usual, the bare corre-
lation functions display poles in 1/ε, which we will eliminate
by passing to renormalized ones.

The effective action. One often considers the effective ac-
tion of the model, which is minus the generating function of
amputated one-particle irreducible (1PI) correlators. For the
bare theory, this is (somewhat formally)

e−�b[�b] =
∫

1PI
dϕ e−Sb[�b+ϕ]. (17)

The transformation of the bare action under scaling implies
that

�b[�b|λb]
∣∣
�b=l
φ �′

b(lζ τ,lx)
λb=lε/2λ′

b

= �b[�′
b|λ′

b], (18)

and it follows that under a rescaling, the bare amputated 1PI
correlators behave as7

�
(n)
b (τ, x|λb) = ln(ζ+d−
φ )�

(n)
b (lζ τ, lx|l−ε/2λb)

⇒
[

n(ζ + d − 
φ ) − ε

2
λb∂λb

+ ζDτ + Dx

]
�

(n)
b (τ, x|λb) = 0. (19)

In momentum space, the scaling transformation becomes
�

(n)
b (ω, p|λb) = l−n
φ �

(n)
b (l−ζω, l−1 p|l−ε/2λb), but we note

that there is one subtlety: this scaling relation concerns the
full n-point amputated correlators. Such correlators contain a
global conservation of momentum and frequency,

�
(n)
b (ω, p|λb) = δ

(∑
ω

)
δ
(∑

p
)

�̄
(n)
b (ω, p|λb),

�̄
(n)
b (ω, p|λb) = lζ+d−n
φ �̄

(n)
b

(
ω

lζ
,

p

l

∣∣∣∣ λb

lε/2

)
, (20)

7We use the following:∫
dτdx�b(τ, x)n�

(n)
b (τ, x|λb)

=
∫

dτ ′dx′[l−
φ �b(l−ζ τ ′, l−1x′)]n�
(n)
b (τ ′, x′|l−ε/2λb).
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FIG. 1. Left: bubble diagram B(p0). Right: triangle diagram
T (p1; p2).

where we denoted �̄(n) as the momentum space n-point ker-
nels of the effective action.8

The one-loop order. At one-loop order, the bare effective
action is expanded in powers of the field as follows:

�b[�b] = Sb[�b] + ı
λb

2

∫
dx �b(x)C(0)

+ λ2
b

4

∫
dxdx′ �b(x)�b(x′)C(x − x′)2

− ı
λ3

b

3!

∫
dxdx′dx′′ �b(x)�b(x′)�b(x′′)

× C(x − x′)C(x′ − x′′)C(x′′ − x) + O(�4). (21)

The 1PI bare two- and three-point functions in momentum
space, where we factored out the global momentum and fre-
quency conservation, are at this order,

�̄
(2)
b (p0) = ω2

0 + (
p2

0

)ζ + 1
2λ2

b B(p0),

�̄
(3)
b (p1; p2) = ıλb − ıλ3

b T (p1; p2), (22)

where p = (ω, p), while B and T are, respectively, the bubble
and the triangle diagrams depicted in Fig. 1 with amplitudes

B(p0) =
∫

dd qdω

(2π )d+1

1

ω2 + (q2)ζ
1

(ω0 +ω)2 + [(p0+q)2]ζ
,

T (p1; p2) =
∫

dd qdω

(2π )d+1

1

ω2 + (q2)ζ
1

(ω1 + ω)2 + [(p1 + q)2]ζ

× 1

(ω1 + ω2 + ω)2 + [(p1 + p2 + q)2]ζ
, (23)

where we have labeled all the momenta as incoming.
Power counting. At arbitrary orders, the effective ac-

tion, as the sum over 1PI amputated Feynman graphs with
amplitude, is

A(ωE , qE ) =
∫ ∏

L

dωLdd qL

∏
e

1

ω2
e + (q2

e )ζ
, (24)

where qL, ωL are the independent loop momenta and frequen-
cies, qe, ωe are the momenta and frequencies of the internal

8In order to underline the distinction between �(n) and �̄(n),
observe that for an isotropic long-range free theory, we have
the two-point amputated correlator �(2)(p, q) = p2ζ δ(p + q), d =
2ζ + 2
φ which obeys the scaling law l−2
φ [l−2ζ p2ζ δ(l−1 p +
l−1q)] = p2ζ δ(p + q), while �̄(2)(p) = p2ζ obeys the scaling law
ld−2
φ (l−2ζ p2ζ ) = p2ζ .

edges, that is, linear combinations of loop momenta and fre-
quencies and external momenta and frequencies qE , ωE . Note
that we have factored a global conservation of frequency and
momentum.

The power counting of a graph with P propagators (edges),
V vertices, and n external points is obtained by taking qL ∼
� and ωL ∼ �ζ , leading to �(d+ζ )(P−V +1)−2ζP. Taking into
account that 2P = 3V − n, this is

�d+ζ−(d+ζ )V +(d−ζ )P = �d+ζ− n
2 (d−ζ )+V ( d

2 − 5
2 ζ ), (25)

which, for ζ = d
5 , becomes �

d
5 (6−2n). We conclude, at ε = 0,

the following:
(i) Vacuum and one-point graphs (n = 0, 1) are power di-

vergent: the vacuum graphs play no role and the one-point
graphs are not 1PI, except for a generalized amputated tad-
pole. A linear counterterm will be added in order to cancel
this term and ensure that � = 0 is a stationary point for the
effective action.

(ii) Two-point graphs (n = 2) are power divergent,
A(ω0) ∼ �

2d
5 , and ∂ω2

0
A(ω0) ∼ �0 is logarithmically diver-

gent. Two counterterms bilinear in the field will be added in
order to subtract the divergent parts.

(iii) Three-point graphs (n = 3) are logarithmically diver-
gent. A cubic counterterm will be added to subtract their
divergent part.

Observe that as long-range models do not exhibit a wave-
function renormalization,9 the coefficient of the (p2

0)ζ term in
the two-point function is not divergent.

Renormalization. In order to subtract the divergences, we
consider the renormalized action,

Sr[φ] =
∫

x
{

1

2
φ(x)

[
(−∂2)ζ − Z ∂2

τ

]
φ(x)

+ δκ φ(x) + 1

2
δm2ζ φ(x)2 + ı

3!
λ φ(x)3

}
,

(26)

and the associated renormalized correlators for the renormal-
ized field φ.

We will parametrize λ = μ
ε
2 gZg, with g the dimensionless

renormalized coupling and Zg a multiplicative renormalization
factor. The renormalization functions Z = 1 + δZ (g), Zg =
1 + δZg(g), and δm2ζ (g) and δκ (g) are chosen so as to ensure
that the renormalized correlators have no divergences. The
precise form of the counterterms depends on the renormal-
ization scheme. For example, we could fix them by imposing
four renormalization conditions, one for each class of diver-
gent graphs. However, as usual for a massless theory, such
conditions must be imposed at a nonvanishing subtraction

9In order to separate the divergent part of a graph, we Taylor
expand it at small momentum; but in a Taylor expansion, only the
integer powers of the momentum appear, and hence the divergences
are subtracted by counterterms for bilinear operators with an integer
number of derivatives, φ(−∂2)mφ.
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momentum scale μ. In this respect, we note that it is more
practical to chose a configuration of external momenta in
which the spatial momentum is set to zero and the external
frequency acts as the cutoff:10

�̄(1)
r = 0,

�̄(2)
r (0, 0) = 0, ∂ω2

0
�̄(2)

r (μζ , 0) = 1,

�̄(3)
r [μζ , 0; −(1 + c)μζ , 0] = ıμ

ε
2 g. (27)

The constant c should be chosen so that the configuration
is nonexceptional [44], in our case meaning c �= 0, and it is
otherwise an arbitrary choice of the renormalization scheme,
not affecting any observable quantity such as the critical ex-
ponents. However, at one loop we encounter no problem at
c = 0, and as calculations are easier in this case, we will make
such exceptional choice in the following.

The first two conditions are automatically guaranteed in an-
alytic regularization because since the propagator is massless,
the amplitudes of the corresponding diagrams give pure power
divergences (in the momentum cutoff), which are set to zero in
analytic regularization. With other choices of regularization,
we would instead fix δm2ζ (g) and δκ (g) so as to completely
subtract the power divergent amplitudes. Either way, we can
safely ignore them from now on.

The remaining two conditions require, in general, sub-
tractions of both divergent and finite terms. In minimal
subtraction, we instead only subtract the divergent parts, and
hence ∂ω2

0
�̄(2)

r (μζ , 0) and �̄(3)
r (μζ , 0; −μζ , 0) will be more

complicated functions of the renormalized coupling, but the
structure of counterterms and renormalization group functions
is simplified. In the following, we will use minimal subtrac-
tion.

We go to the weakly relevant case ζ = d+ε
5 and compute

the amplitudes in analytic continuation in ε. Besides setting
the power divergences to zero, this has the effect of converting
the logarithmic divergences in poles in 1

ε
. Although ε is now

to be kept finite, the same renormalization procedure as for
the ε = 0 theory is to be carried out, as otherwise we would
not be entitled to trust the small ε expansion. In minimal
subtraction, the counterterms δZ (g) and δZg(g) are series in
1/ε (that is, they have no finite part) which are tuned so
that the renormalized correlators have a well-defined ε → 0
limit,11

δZ (g) =
∑
��1

α�(g)

ε�
, δZg(g) =

∑
��1

γ�(g)

ε�
. (28)

10Due to the anisotropy of the problem, it is not obvious that
this choice will prevent infrared divergence at all orders, but we
conjecture that it is true.

11In practice this is enforced at a renormalization point, as above,
but once the pole is taken out in such a way, the correlators �(n)

r (ω, p)
have a well-defined ε → 0 limit for arbitrary external frequencies
and momenta ω, p.

The coefficients α�(g) and γ�(g) are power series in g, starting
at the order of g2�,12 with finite coefficients independent of ε

or μ.
The counterterms are treated as additional vertices δZ (g)

and δZg(g) and, in the presence of such vertices, the renor-
malized two- and three-point 1PI functions are written at first
nontrivial order in g as

�̄(2)
r (p0) = [1 + δZ (g)] ω2

0 + (
p2

0

)ζ + με

2
g2 B(p0),

�̄(3)
r (p1; p2) = ıμε/2g[1 + δZg(g)] − ıμ3ε/2g3 T (p1; p2).

(29)

Note that B, T , and all the other graph amplitudes arising
in these expansions are computed with the bare propagator
ω2 + (p2)ζ . The point is that the bare expansion generates
divergences and these divergences are subtracted order by
order by adding the counterterms: there is never any reason to
compute amplitudes of graphs using the renormalized propa-
gator [1 + δZ (g)] ω2 + (p2)ζ . Indeed, using the renormalized
propagator corresponds to resummations of infinite families of
bare graphs with arbitrary insertions of the counterterm vertex
δZ (g) on all the edges.

For the bubble and the triangle graphs, we have the follow-
ing singular behavior:

∂ω2
0
B(μζ , 0) = −μ−ε b

ε
+ finite,

T (μζ , 0; −μζ , 0) = μ−ε t

ε
+ finite, (30)

where b and t are given in Appendix, and hence the minimal
subtraction counterterms that ensure that the one-loop diver-
gences are subtracted are

δZ (g) = 1

2
g2 b

ε
, δZg(g) = g2 t

ε
. (31)

Renormalized theory from the bare theory. Up to terms
which we can ignore, the renormalized theory is described by
the action

S[φ] =
∫

dx
{

1

2
φ(x)

[
(−∂2)ζ − Z∂2

τ

]
φ(x) + ı

λ

3!
φ(x)3

}
,

(32)

12In order to show this, first one notices that order-� poles appear
first at � loops, which in turn can, for example, be derived by the
finiteness of the β function and anomalous dimension, as in [45].
Next, remembering that for an n-point graph with P internal propa-
gators, V vertices, and � loops, we have the relations 3V = 2P + n
and � = P − V + 1, we find V = 2� + n − 2, from which, choosing
n = 2 and 3 and remembering that vertex counterterms are multiplied
by an extra factor of g, our statement follows.
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and maps onto the bare one by a field redefinition and change
of couplings,13

φ(τ, x) = Z− 1
4 φb(Z− 1

2 τ, x), λZ− 1
4 = λb,

⇒ S[φ; λ, Z] = Sb[φb, λb]. (33)

The renormalized correlators are related to the bare correlators
by

F (n)
r (τ, x|λ, Z ) =

∫
[dφ]e−S[φ] φ(x1) . . . φ(xn)∫

[dφ]e−S[φ]

= Z− n
4 F (n)

b (Z− 1
2 τ, x|λZ− 1

4 ), (34)

and we note that contrary to the more familiar isotropic case,
one needs to rescale the time argument with an appropriate
power of Z .

One computes the renormalized amputated 1PI correlators
of the theory using the renormalized action S[φ] or by a
change of variables in terms of the bare one,

e−�r [�] =
∫

1PI
dϕ e−S[�+ϕ;λ,Z]

=
∫

1PI
dϕ e−Sb[�b+ϕ;λZ− 1

4 ],

�(τ, x) = Z− 1
4 �b(Z− 1

2 τ, x), (35)

that is, the relation between the bare and renormalized ef-
fective actions reproduces the relation between the classical
actions, �r[�|λ, Z] = �b[�b|λZ− 1

4 ]|
�b(τ,x)=Z

1
4 �(Z1/2τ,x)

. This

implies that the amputated correlators transform like14

�(n)
r (τ, x|λ, Z ) = Z− n

4 �
(n)
b (Z− 1

2 τ, x|λZ− 1
4 ), (36)

or in momentum space,

�(n)
r (ω, p|λ, Z ) = Z

n
4 �

(n)
b (Z

1
2 ω, p|λZ− 1

4 ),

�̄(n)
r (ω, p|λ, Z ) = Z

n
4 − 1

2 �̄
(n)
b (Z

1
2 ω, p|λZ− 1

4 ). (37)

13In fact, because of the scale invariance of the free theory, a
one-parameter family of mappings onto different bare theories exists,
involving a rescaling also of τ and x:

φ(τ, x) = Z− 1
4 +α
φ φ

(1)
b (Z− 1

2 +ζατ, Zαx),

λZ− 1
4 −(d+ζ−3
φ )α = λ

(α)
b ,

S[φ; λ, Z] = Sb[φ (α)
b , λ

(α)
b ].

We can interpret this as a family of renormalization schemes, which
is more evident if we keep the bare coupling fixed. Remembering
that d + ζ − 3
φ = ε/2, only the α = 0 scheme corresponds to a
true minimal subtraction, in the sense that the relation between λ

and λb does not involve finite redefinitions of the coupling, λb =
με/2g(1 + ∑

n�1
γ̃n (g)
εn ). For α �= 0, the expansion in powers of g of

the factor Z−αε/2 leads to positive powers of ε that introduce, in the
above relation, new terms that are finite or vanishing in the ε → 0
limit.

14We use
∫

dτdx �(τ, x)n�(n)
r (τ, x|λ, Z ) = ∫

dτ ′dx′[Z
1
4 �(Z1/2

τ ′, x′)]n�
(n)
b (τ ′, x′|λZ− 1

4 ) and change the variable.

As a sanity check, we can compute the amplitudes of
graphs reorganizing the renormalized theory, that is, includ-
ing the full coupling Z in the propagator. The amplitudes of
amputated graphs contributing to the renormalized amputated
correlators are

Ã(ωE , qE ) =
∫ ∏

L

dωLdd pL

∏
e

1

Z ω2
e + (q2

e )ζ

×
ωL = ω′

LZ−1/2

(Z−1/2)P−V +1A(Z1/2ωE , qE )

= Z−V/4+n/4−1/2A(Z1/2ωE , qE ),

A(ωE , qE ) =
∫ ∏

L

dωLdd pL

∏
e

1

ω2
e + (p2

e )ζ
, (38)

with A(ωE , qE ) being the bare amplitude with Z = 1. Since
each such amplitude is multiplied by λV , we recover the above
relation between bare and renormalized proper vertices,

�̄(n)
r (ωE , qE |λ, Z ) = Z

n−2
4 �̄

(n)
b

(
Z

1
2 ωE , qE | λ

Z
1
4

)
. (39)

We note that contrary to the more familiar isotropic case,
the relation between the bare and renormalized versions of
the general correlators and of the amputated one-particle irre-
ducible ones is the same.

The renormalization group flow. The renormalized correla-
tors F (n)

r (τ, x|με
2 gZg, Z ) are functions only of g and μ (and,

of course, τ and x) and are free of divergences. To emphasize
this fact, and to follow common practice, we will write the
renormalized correlators as F (n)

r (τ, x|g, μ), with a slight abuse
of notation. In terms of such new notation, we rewrite Eq. (34)
as

F (n)
r (τ, x|g, μ) = Z− n

4 F (n)
b

(
τZ− 1

2 , x|με
2 g

Zg

Z
1
4

)
, (40)

where, at fixed g and ε > 0, both the renormalized and the
bare correlators depend on μ via the explicit combination on
the right-hand side of the equation. At ε = 0, due to the poles
in 1/ε of the bare correlators and renormalization functions, a
logarithmic dependence on μ survives.

The renormalization group is designed to capture the μ de-
pendence of renormalized correlators for a fixed bare theory,
and it does so with the introduction of the β function and
anomalous dimension. The β function β = μ

dg
dμ

is obtained
by tuning g with μ so that the bare coupling stays fixed,

μ
d

dμ

[
μ

ε
2 gZgZ− 1

4
] = 0,

⇒ β(g) = −
ε
2 g

1 + g
Z ′

g

Zg
− 1

4 gZ ′
Z

, (41)

where a prime denotes a derivative with respect to g. Using
the expansion (28) in powers of 1/ε for the counterterms, we
find

β(g) = −ε

2
g + g2

2

[
γ ′

1(g) − α′
1(g)

4

]
, (42)

and all the contributions from αn and γn with n > 1, as well as
higher powers of the n = 1 terms, must cancel for consistency.
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At one loop, we have α1(g) = 1
2 g2 b and γ1(g) = g2t , and

hence we get15

β(g) = −ε

2
g + g3

(
t − b

8

)
+ O(g5). (43)

Such β function has a zero, i.e., a fixed point, at (note that
t = 3b according to the Appendix)

g� =
√

ε

2t − b
4

= 2
d+5

2 πd/4

√
ε �

(
d
2

)
23

, (44)

which is infrared attractive, as the corresponding correction-
to-scaling exponent is positive,

∂gβ(g)|g=g� = ε. (45)

For the anomalous dimension η = μ d
dμ

ln Z = βZ ′/Z , at

one loop we find η = −g2b, which at the fixed point becomes

η� = − εb

2t − b
4

= −4ε

23
. (46)

The Callan-Symanzik equation encapsulates the change
of the renormalized correlators with the renormalization
scale. It is obtained by taking into account that the bare
correlators do not depend on the renormalization scale,
μ d

dμ
F (n)

b (τ, x|με
2 gZgZ− 1

4 ) = 0, and using (40). Due to the
time rescaling between the renormalized and the bare corre-
lator, one gets an additional term with respect to the usual
Callan-Symanzik equation,

μ
d

dμ
F (n)

r = −n

4
η F (n)

r − 1

2
ηDτ F (n)

r ,

⇒
[
μ∂μ + β∂g + n

4
η + η

2
Dτ

]
F (n)

r = 0, (47)

where Dτ = ∑
i τi∂τi is the time dilatation operator. We note

that contrary to the isotropic case, one gets the exact same
form of the Callan-Symanzik for the one-particle irreducible
amputated correlator.

Lifshitz scaling at fixed point. In order to understand the
behavior of the renormalized correlators (amputated or not)
under rescaling, we combine Eqs. (40) and (15) to conclude

F (n)
r (τ, x|g, μ) = ln
φ F (n)

r (lζ τ, lx|g, l−1μ), (48)

which again is just a statement about engineering dimensions.
In order to deduce scaling dimensions, we act on both sides
with the derivative l d

dl , evaluated at l = 0, and we combine it

15In the α-dependent scheme of footnote 13, we would obtain
β = − ε

2 g + g3[t − b(1 + 2εα)/8]. The scheme dependence of the
one-loop term is not surprising as it is scheme independent only
in the marginal case, ε = 0. The critical exponents are, instead, α

independent, as they should be.

with the Callan-Symanzik equation, obtaining16

[n
φ + ζDτ + Dx − μ∂μ]F (n)
r = 0,

⇒
[

n

(

φ + η

4

)
+

(
ζ + η

2

)
Dτ + Dx + β∂g

]
F (n)

r = 0.

(49)

At the fixed point, the correlators are eigenfunctions of the
anisotropic scaling operator zDτ + Dx, with the following dy-
namic exponent and scaling dimension:

z = ζ + η�

2
= d

5
+ 13ε

115
,


� = 
φ + η�

4
= 2d

5
− 33ε

230
. (50)

That is, they have the following Lifshitz scale invariance:

F (n)
r (τ, x|g�, μ) = ln
�F (n)

r (lzτ, lx|g�, μ). (51)

For example, at n = 2, the solution of the fixed point scaling
equation is

F (2)
r (τ, x|g�, μ) = |x|−2
�μ− η�

2 f

(
τ 2

μη� |x|2z

)
, (52)

where the function f (u) is regular in zero and vanishes at in-
finity as u−
�/z, and otherwise it is completely unconstrained.
The explicit factors of μ in (52) are there to make it compati-
ble with canonical dimensional analysis, summarized in (48),
but play no role for the more interesting scaling given by (51).

In order to compare to existing literature on Lifshitz field
theories, it is instructive to repeat the above analysis for the
proper vertices in momentum space. Recalling that the renor-
malized vertices are written in terms of the bare ones as

�̄(n)
r (ω, p|g, μ) = Z

n
4 − 1

2 �̄
(n)
b

(
Z

1
2 ω, p

∣∣∣∣με
2 g

Zg

Z
1
4

)
, (53)

we deduce the Callan-Symanzik equation,[
μ∂μ + β∂g +

(
1

2
− n

4

)
η − η

2
ω∂ω

]
�̄(n)

r (ω, p|g, μ) = 0.

(54)

Dimensional analysis gives instead

�̄(n)
r (ω, p|g, μ) = lζ+d−n
φ �̄(n)

r

(
ω

lz
,

p

l
|g, μ

l

)
, (55)

which, combined with the Callan-Symanzik equation, leads to

[(ζ + d − n
φ ) − ζDω − Dp − μ∂μ]

× �̄(n)
r (ω, p|g, μ) = 0,

⇒
[
ζ + d + η

2
− n

(

φ + η

4

)
−

(
ζ + η

2

)
Dω

− Dp + β∂g

]
�̄(n)

r (ω, p|g, μ) = 0. (56)

16Taking into account that the amputated correlator changes under
rescaling according to Eq. (19), an equation similar to Eq. (49) with

φ replaced by d + ζ − 
φ holds in that case. The two equations are
consistent as d + ζ − 
φ + η

4 = d + (ζ + η

2 ) − (
φ + η

4 ).
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FIG. 2. Left: melon diagram M(p0). Right: bubble diagram
B(p1 + p2).

For n = 2, at the fixed point, this becomes

[2ζ − zDω − Dp]�̄(2)
r (ω, p|g�, μ) = 0, (57)

whose solution is

�̄(2)
r (ω, p|g�, μ) = |p|2ζ f

(
ω2

μ−η� |p|2z

)
, (58)

where the function f (u) is regular in zero and blows up at
infinity as uζ/z. Therefore, we have

�̄(2)
r (0, p|g�, μ) ∼ |p|2ζ ≡ |p|2ζ−η2ζ ,

�̄(2)
r (ω, 0|g�, μ) ∼ ω2ζ/z ≡ ω2−η2 , (59)

where we introduced the standard definition of correlation
exponents η2 and η2ζ , for which we read off

η2 = 2 − 2ζ

z
= η�

ζ + η�/2
, η2ζ = 0. (60)

Lastly, we obtain the following expression for the dynamic
exponent:

z = 2ζ − η2ζ

2 − η2
, (61)

which also holds for integer values of ζ > 1, but with a non-
vanishing η2ζ .

As a final remark, we notice that for integer ζ , besides
the additional counterterms that need to be introduced, a dif-
ferent renormalization scheme is typically employed [26,27],
in which the bare and renormalized fields are simply related

by φ(τ, x) = Z
− 1

2
φ φb(τ, x), with no rescaling of τ . However,

a further rescaling is later performed on φ and x in order
to remove the redundant coupling associated to the spatial
higher-derivative operator (σ in the notation of [26,27]). It can
be shown that the net effect of such operations corresponds to

the choice α = 1/(2ζ ) in the α-dependent scheme of footnote
13. Therefore, universal quantities are not affected by such
choice.

III. THE QUARTIC MODEL

The results generalize mutatis mutandis to a model with
quartic potential,

Sb[φb] =
∫

dx
{

1

2
φb(x)

[
(−∂2)ζ − ∂2

τ

]
φb(x) + λb

4!
φb(x)4

}
.

(62)

While the field dimension is still 
φ = d−ζ

2 , the coupling has
dimension d + ζ − 4
φ . Therefore, the quartic interaction is
marginal for ζ = d

3 and weakly relevant for ζ = d+ε
3 , corre-

sponding to d + ζ − 4
φ = ε. Therefore, in order to have an
interesting renormalization group flow, and keep ζ < 1, we
must stick to d < 3.

We can rephrase the statement about marginality from the
point of view of power counting, which leads, like before, to
the superficial divergence �(d+ζ )(P−V +1)−2ζP. However, this
time we have 2P = 4V − n and thus the superficial diver-
gence is �d+ζ− n

2 (d−ζ )+V (d−3ζ ), which for ζ = d+ε
3 becomes

�
d
3 (4−n)−ε(V − 2+n

6 ). Therefore, for ε = 0, the theory is renor-
malizable, with logarithmically divergent four-point point
graphs, while for ε > 0, it is super-renormalizable, with finite
four-point graphs.

The bare full correlators and the bare 1PI correlators be-
have under rescaling as

F (n)
b (τ, x|λb) = ln
φ F (n)

b (lζ τ, lx|l−ελb)

⇒ [n
φ − ελb∂λb + ζDτ + Dx]F (n)
b (τ, x|λb) = 0 (63)

and

�
(n)
b (τ, x|λb) = ln(ζ+d−
φ )�

(n)
b (lζ τ, lx|l−ελb)

⇒ [n(ζ + d − 
φ ) − ελb∂λb

+ ζDτ + Dx]�(n)
b (τ, x|λb) = 0. (64)

Due to the Z2 invariance of the model, only the correlators
with even n are nonvanishing. For the n = 2 and 4 corre-
lators in momentum space, with the global momentum and
frequency conservation factored out, we have, at one loop,

�̄
(2)
b (ω0, p0) = ω2

0 + (
p2

0

)ζ − 1
6λ2

b M(ω0, p0),

�̄
(4)
b (ω1, p1; ω2, p2; ω3, p3) = λb − 1

2λ2
b[B(ω1 + ω2, p1 + p2) + (t, u chan.)], (65)

where M and B are, respectively, the melon and the bubble diagrams depicted in Fig. 2 with amplitudes

M(p0) =
∫

dd q1 dω1

(2π )d+1

∫
dd q2 dω2

(2π )d+1

1

ω2
1 + (q2

1 )ζ
1

ω2
2 + (q2

2 )ζ
1

(ω0 + ω1 + ω2)2 + [(p0 + q1 + q2)2]ζ
,

B(p0) =
∫

dd q dω

(2π )d+1

1

ω2 + (q2)ζ
1

(ω0 + ω)2 + [(p0 + q)2]ζ
. (66)

As renormalization point, we will take (ω1, p1) = (ω2, p2) = (ω3, p3) = (μζ /2, 0) and (ω4, p4) = (− 3
2μζ , 0), so that ω1 +

ω2 = ω1 + ω3 = ω2 + ω3 = μζ and
∑

i ωi = 0.
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Notice that the bubble integral is exactly the one we en-
countered for the two-point function of the cubic model, but
in the present case it is to be evaluated in a different range
of ζ , and it is now associated to a four-point function. The
net effect is that in the quartic model, we are not interested
in ∂ω2

0
B(μζ , 0), which in this case converges for ε → 0, but

rather in B(μζ , 0) itself, which has a 1/ε pole.
The renormalized action is

Sr[φ] =
∫

dx
{

1

2
φ(x)

[
(−∂2)ζ − Z ∂2

τ

]
φ(x)

+ 1

2
δm2ζ φ(x)2 + 1

4!
λ φ(x)4

}
, (67)

with λ = μεgZg and counterterms δZ (g) = Z − 1, δm2ζ , and
δZg(g) = Zg − 1. We will again employ analytic regulariza-
tion and ignore the mass counterterm. For the other two
counterterms, we have, in the minimal subtraction scheme, an
expression like (28), where, however, the coefficients α�(g)
and γ�(g) are now starting at the order of g�+1 and g�, respec-
tively.17

The renormalized 1PI two- and four-point functions, at first
nontrivial order in g, are

�̄(2)
r (p0) = [1 + δZ (g)] ω2

0 + (p2
0)ζ

− 1
6μ2εg2 M(p0),

�̄(4)
r (p1; p2; p3) = μεg[1 + δZg(g)] − 1

2μ2εg2

× [B(p1 + p2) + (t, u chan.)], (68)

with singular behavior

∂ω2
0
M(μζ , 0) = −μ−2ε M

ε
+ finite,

B(μζ , 0) = μ−ε B

ε
+ finite, (69)

with B and M given in the Appendix, and hence the minimal
subtraction counterterms that ensure that the divergences are
subtracted are

δZ (g) = −1

6
g2 M

ε
, δZg(g) = 3

2
g

B

ε
. (70)

The renormalized theory maps onto the bare one by the
following field redefinition and change of couplings:

φ(τ, x) = Z− 1
4 φb(Z− 1

2 τ, x), λZ− 1
2 = λb. (71)

The structure of the β function is slightly altered with respect
to the cubic case,

μ
d

dμ

[
μεgZgZ− 1

2
] = 0

⇒ β = − εg

1 + g
Z ′

g

Zg
− 1

2 gZ ′
Z

, η = β
Z ′

Z
, (72)

17In this case, order-� poles appear first at � + 1 loops, for ∂ω2 �̄
(2)
b ,

and at � loops, for �̄
(4)
b . Moreover, the topological relation is now

4V = 2P + n.

where, again, a prime denotes a derivative with respect to g.
Using the expansion (28) in powers of 1/ε for the countert-
erms, we find

β(g) = −ε

2
g + g2

2

[
γ ′

1(g) − α′
1(g)

2

]
, (73)

and all the contributions from αn and γn with n > 1, as well as
higher powers of the n = 1 terms, must cancel for consistency.
At leading order, we have α1(g) = − 1

6 g2 M and γ1(g) = 3
2 gB,

and hence we get18

β(g) = −εg + 3
2 g2B + O(g3),

η(g) = 1
3 g2M + O(g3), (74)

with fixed point g� = 2ε
3B and anomalous dimension η� =

4ε2M
27B2 .

The renormalized correlators written in terms of bare ones
are

F (n)
r (τ, x|g, μ) = Z− n

4 F (n)
b

(
Z− 1

2 τ, x

∣∣∣∣μεg
Zg

Z
1
2

)
, (75)

and hence the Callan-Symanzik equation is unchanged. In
particular, we again find[

n

(

φ + η

4

)
+

(
ζ + η

2

)
Dτ + Dx + β∂g

]
F (n)

r = 0. (76)

Recalling that 
φ = d−ζ

2 , we conclude as in the cubic case
that at the fixed point, the correlators are eigenfunctions of
the anisotropic scaling operator zDτ + Dx, with the following
dynamic exponent and scaling dimension:

z = ζ + η�

2
= d + ε

3
+ 2ε2M

27B2
,


� = 
φ + η�

4
= 2d − ε

6
+ ε2M

27B2
, (77)

with the constants B and M given in (A6) and (A19), respec-
tively.
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β(g) and η(g) at the same order in g, as we do here, rather than at the
same loop order.

104102-9



BENEDETTI, GURAU, AND LETTERA PHYSICAL REVIEW B 110, 104102 (2024)

APPENDIX: INTEGRALS

1. The bubble integral B
The bubble integral is

B(p0) =
∫

dd q dω

(2π )d+1

1

ω2 + (q2)ζ
1

(ω0 + ω)2 + [(p0 + q)2]ζ
.

(A1)

The integral is, in general, quite challenging, but when
p0 = 0, one can integrate ω by deforming the contour in the
complex plane and using the residue theorem, and then use
the spherical symmetry of the spacial momentum integral to
obtain

B(ω0, 0) =
∫

dd q

(2π )d

(q2)−ζ/2

4(q2)ζ + ω2
0

= − 21− d
ζ πω

d
ζ
−3

0

(4π )
d
2 �

(
d
2

)
ζ cos

(
πd
2ζ

) . (A2)

In the evaluation of the spatial integral, we have assumed
ζ ∈ (d/3, d ), where it is convergent. Analytic regularization
amounts to analytically continuing the result to the region of
interest.

In the cubic model, we are interested in 0 < ζ − d/5 �
1. In order to extract the coefficient b of Eq. (30), we take a
derivative with respect to ω2

0, and set ω0 = μζ and ζ = d+ε
5 .

We find

∂ω2
0
B(μζ , 0) = −μ−ε 2−d−3π− d

2

ε�
(

d
2

) + O(1), (A3)

and therefore

b = 2−d−3π− d
2

�
(

d
2

) . (A4)

In the quartic model, we are instead interested in 0 < ζ −
d/3 � 1, which lies in the range of convergence. In this case,
in order to extract the coefficient B of Eq. (69), we do not take
any derivative and we directly set ω0 = μζ and ζ = d+ε

3 . We

find

B(μζ , 0) = μ−ε 2−d−1π− d
2

ε�
(

d
2

) + O(1), (A5)

and therefore

B = 2−d−1π− d
2

�
(

d
2

) = 4b. (A6)

2. The triangle integral T
The triangle integral at the subtraction point is

T (μζ , 0; −μζ , 0) =
∫

dωdd q

(2π )d+1

1

[ω2 + (q2)ζ ]2

× 1

(ω + μζ )2 + (q2)ζ
. (A7)

Using again the residue theorem, we find

T (μζ , 0; −μζ , 0) =
∫

dd q

(2π )d

q−3ζ (12q2ζ + μ2ζ )

4(4q2ζ + μ2ζ )2

= 21− d (ζ+1)
ζ (d − 2ζ )μd−5ζ

π
d
2 −1ζ 2�

(
d
2

)
cos

(
πd
2ζ

) , (A8)

where the spatial momentum integral is convergent in the
interval ζ ∈ (d/5, d/3), which includes ζ = d+ε

5 . For small
ε, we find

T (μζ , 0; −μζ , 0) = μ−ε 3
2−d−3π− d

2

ε�
(

d
2

) + O(1), (A9)

and, therefore, the coefficient t of Eq. (30) is

t = 3
2−d−3π− d

2

�
(

d
2

) = 3b. (A10)

We can also verify that the above result is independent of
the choice of c in (27). For general c, we have

T [μζ , 0; −(1 + c)μζ , 0] =
∫

dωdd q

(2π )d+1

1

ω2 + (q2)ζ
1

(ω + μζ )2 + (q2)ζ
1

(ω − cμζ )2 + (q2)ζ
. (A11)

The integration of the frequency can be performed again by residue theorem, and the remaining integral in spherical coordinates
is

T [μζ , 0; −(1 + c)μζ , 0] = 21−dπ− d
2

�
(

d
2

) ∫ +∞

0
dq qd−1 q−ζ [12q2ζ + (1 + c + c2)μ2ζ ]

(4q2ζ + μ2ζ )(4q2ζ + c2μ2ζ )[4q2ζ + (1 + c)2μ2ζ ]
, (A12)

which we could not evaluate explicitly. However, we can extract the 1/ε pole by the following reasoning. The integral is
convergent for ζ ∈ (d/5, d ). At ζ = d

5 , it is logarithmically divergent, and as it does not contain subdivergences, in analytic
regularization it diverges as a simple pole in ε. Moreover, the coefficient of such pole does not depend on the infrared regulator.
Since the ultraviolet divergence that generates the 1/ε pole arises at large momenta, we can set μ = 0 in the integrand and
compute the integral with a sharp cutoff instead to extract the universal coefficient of the ε pole. We find, as before,

T [μζ , 0; −(1 + c)μζ , 0] = μ−ε

ε

3π− d
2

2d+3�
(

d
2

) + O(1). (A13)
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3. The melon integral M
The melon integral is

M(ω0, 0) =
∫

dd q1 dω1

(2π )d+1

∫
dd q2 dω2

(2π )d+1

1

ω2
1 + (

q2
1

)ζ

1

ω2
2 + (

q2
2

)ζ

1

(ω0 + ω1 + ω2)2 + [(q1 + q2)2]ζ
, (A14)

which, using the Schwinger parametrization, becomes

M(ω0, 0) =
∫

dd q1dω1

(2π )d+1

∫
dd q2dω2

(2π )d+1

∫ +∞

0
dα1dα2dα3 e−α1[ω2

1+(q2
1 )ζ ]−α2[ω2

2+(q2
2 )ζ ]−α3{(ω0+ω1+ω2 )2+[(q1+q2 )2]ζ }

=
∫

dd q1

(2π )d

∫
dd q2

(2π )d

∫ +∞

0
dα1dα2dα3 e−α1(q2

1 )ζ −α2(q2
2 )ζ −α3[(q1+q2 )2]ζ e− α1α2α3ω2

0
α1α2+α1α3+α2α3

4π
√

α1α2 + α1α3 + α2α3
. (A15)

Next, taking the derivative with respect to ω2
0 and setting the latter to zero, we obtain

∂ω2
0
M(0, 0) = −

∫
|q1|�μ

dd q1

(2π )d

∫
|q2|�μ

dd q2

(2π )d

∫ +∞

0
dα1dα2dα3

α1α2α3 e−α1(q2
1 )ζ −α2(q2

2 )ζ −α3[(q1+q2 )2]ζ

4π (α1α2 + α1α3 + α2α3)3/2
. (A16)

The subscript on the momentum integrals signals that as we have set ω0 = 0, the integral is infrared divergent and needs a cutoff
μ. As we are only interested in the leading ultraviolet divergence, the precise form of the infrared regulator is irrelevant.

In the sector α3 > α1, α2, we make the redefinition αi = tiα3 for i = 1, 2, and integrate over α3. Taking into account that we
have three sectors, we obtain

∂ω2
0
M(0, 0) = − 3

2π

∫ 1

0
dt1dt2

t1t2
(t1 + t2 + t1t2)3/2

∫
|q1|�μ

dd q1

(2π )d

∫
|q2|�μ

dd q2

(2π )d

1{
t1

(
q2

1

)ζ + t2
(
q2

2

)ζ + [(q1 + q2)2]ζ
}3 . (A17)

In order to extract the residue of the 1/ε pole, we use the following strategy. For d > 1, we go to spherical coordinates and
integrate out the angular coordinates, except the angle between q1 and q2, which we denote θ . Then, we define a vector with
the moduli of q1 and q2 as components q = (|q1|, |q2|), and we switch to polar coordinates q → (p, ϕ), with p = |q| and ϕ ∈
(0, π/2). We get

∂ω2
0
M(0, 0) = −3Sd−1Sd−2

(2π )2d+1

∫ 1

0
dt1dt2

t1t2
(t1 + t2 + t1t2)3/2

∫ ∞
√

2μ

d p
p2d−1

p6ζ

×
∫ π

0
dθ

∫ π/2

0
dϕ

sind−2(θ ) sind−1(ϕ) cosd−1(ϕ)

{t1[cos2(ϕ)]ζ + t2[sin2(ϕ)]ζ + [1 + 2 cos(θ ) sin(ϕ) cos(ϕ)]ζ }3
, (A18)

where Sn is the volume of the n sphere.
The integral over p is convergent for ζ = d+ε

3 > d/3 and it has a 1/ε pole,
∫ ∞√

2μ
p−1−2ε = μ−2ε

21+ε ε
. It follows that the coefficient

M in Eq. (69) is

M = 3Sd−1Sd−2

2(2π )2d+1

∫ 1

0
dt1dt2

t1t2
(t1 + t2 + t1t2)3/2

∫ π

0
dθ

∫ π/2

0
dϕ

× sind−2(θ ) sind−1(ϕ) cosd−1(ϕ)

{t1[cos2(ϕ)]d/3 + t2[sin2(ϕ)]d/3 + [1 + 2 cos(θ ) sin(ϕ) cos(ϕ)]d/3}3
, (A19)

and the remaining integrals are convergent and can be evaluated numerically.
For d = 1, there is no angular integration for the two momenta, and by directly performing the change of variables, (q1, q2) →

(p, ϕ), where now ϕ ∈ (0, 2π ), we get

M = 3

2(2π )3

∫ 1

0
dt1dt2

t1t2

(t1 + t2 + t1t2)
3
2

∫ 2π

0
dϕ

1{
t1[cos2(ϕ)]

1
3 + t2[sin2(ϕ)]

1
3 + [1 + 2 sin(ϕ) cos(ϕ)]

1
3
}3 . (A20)

A numerical evaluation with 1% precision gives

M �
{

3.19 × 10−4 for d = 2
2.66 × 10−3 for d = 1.

(A21)
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