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Diagnosing quantum phases using long-range two-site quantum resource behavior
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We propose and demonstrate that the behaviors of long-range, two-site quantum resources can effectively
diagnose quantum phases. In an XX spin chain with symmetry-breaking quantum phase transitions, we reveal
that the gradually decaying and damped oscillating modes of quantum coherence or quantum discord, along with
two-site distance, can identify two spin-liquid phases, respectively. Moreover, based on our analytical results of
spin correlation functions, we confirm the existence of long-range entanglement in the system and establish a
connection between two-site entanglement and quantum phases. Furthermore, for the extended Ising model with
topological phase transitions, we find that coherence and quantum discord behaviors can also signify topological
quantum phases. In particular, we discover the quantum resource freezing phenomenon, where topologically
protected long-range quantum resources may have potential applications in quantum information processing.
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I. INTRODUCTION

Quantum resources [1], including quantum coherence,
entanglement, and quantum discord, are fundamental to nu-
merous quantum information processing (QIP) tasks [2–5].
Simultaneously, they have been developed into a powerful
tool for studying physical properties in quantum many-body
systems, with the relationship between quantum resources
and quantum phases being a particularly fascinating problem
[6–9].

Quantum phase transitions (QPTs) in many-body sys-
tems are accompanied by dramatic changes in their physical
properties [10], often exhibiting distinguishable signatures
on quantum resources. In a piece of pioneering work,
Osterloh et al. revealed the scaling behavior of two-site en-
tanglement [11] near the QPT point in the transverse Ising
model [12]. Beyond short-range, two-site entanglement, other
long-range quantum resources such as quantum coherence
[13–18], quantum discord [19,20], and multipartite entan-
glement [21–28] can also characterize various spin models
exhibiting symmetry-breaking QPTs [29–41], as well as topo-
logical quantum phase transitions (TQPTs) described by
symmetry-protected topological order [42–54].
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Although characterizing QPTs based on quantum re-
sources has achieved significant success in the last couple
of decades, identifying different quantum phases in many-
body systems remains challenging [55–57]. Recently, it was
demonstrated that multipartite entanglement, evidenced by
the scaling behavior of quantum Fisher information (QFI)
[58–61], can characterize symmetry-protected topological
phases in an extended Kitaev chain [55,56]. However, it is
both experimentally challenging to detect the QFI for a large
system and to extract the scaling exponents by tuning the
spin chain length [62–64]. While it is believed that two-site
quantum resources are more easily accessed experimentally
than the QFI [62] since they can be expressed as the functions
of two-spin correlations in general [65–68], it remains unex-
plored whether the behaviors of two-site quantum resources
can diagnose different quantum phases in many-body systems.

In this paper, we study the behaviors of long-range two-
site quantum resources and reveal that the decay modes of
these resources, along with two-site distance, can indeed di-
agnose quantum phases in many-body systems. In an XX
chain with three-spin interactions [32] exhibiting symmetry-
breaking QPTs, we show that the gradually decaying and
damped oscillating modes of two-site quantum coherence
and quantum correlations [19,20] can identify two types of
spin-liquid phases. The behavior of long-range two-site en-
tanglement [11] confirmed by our analytical results exhibits
the same functionality. Furthermore, in the extended Ising
model with TQPTs [51], we examine the relationship between
two-site quantum resources and topological quantum phases,
and discover a quantum resource freezing phenomenon that
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can characterize the topological quantum phases with winding
numbers N = ±1.

II. EXTENDED ISING MODEL AND ITS TWO-SITE
QUANTUM STATES

We study the extended Ising model with three-spin interac-
tions [51],

H = −
L∑

j=1

[
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1 + λσ z

j

+ ασ z
j

(
1 + δ

2
σ x

j−1σ
x
j+1 + 1 − δ

2
σ

y
j−1σ

y
j+1

)]
, (1)

where L is total spin number in the spin chain, γ is the
anisotropic parameter of the nearest-neighbor couplings, λ

is the strength of external magnetic field, α and δ represent
the strength and anisotropy of three-spin interactions, and σ x

j ,
σ

y
j , and σ z

j are the Pauli operators on the jth spin. When
γ = δ = 0, the system is the XXT model (an XX chain with
isotropic three-spin interactions) exhibiting the symmetry-
breaking QPTs. In a generic case for γ �= 0 and δ �= 0, the
extended Ising model exhibits the topological QPTs.

The Hamiltonian in Eq. (1) can be exactly diagonalized and
a review on the details is presented in Appendix A. For the
ith and jth spins, the two-site reduced density matrix of the
ground state has the form

ρr = ρi j =

⎛⎜⎜⎝
u+ 0 0 y−
0 z y+ 0
0 y+ z 0

y− 0 0 u−

⎞⎟⎟⎠, (2)

where r = | j − i| denotes the distance between the two
spins, and the nonzero matrix elements are u± = (1 ±
2〈σ z〉 + 〈σ z

0σ z
r 〉)/4, z = (1 − 〈σ z

0σ z
r 〉)/4, and y± = (〈σ x

0 σ x
r 〉 ±

〈σ y
0 σ

y
r 〉)/4. The magnetization 〈σ z〉 and two-site correlations

〈σ s
0σ

s
r 〉 with s = x, y, z are the functions of Gr (see the explicit

expressions in Appendix B). For a finite chain length L at zero
temperature, the Gr function can be written as [69,70]

Gr = − 1

L

∑
k

1

�k
{cos(φkr)zk + sin(φkr)yk}, (3)

where φk = 2πk/L with k = −M, . . . , M and M = (L −
1)/2 for odd L, the energy spectra �k =

√
z2

k + y2
k with zk =

λ − cos φk − α cos(2φk ), and yk = γ sin φk + αδ sin(2φk ). In
the thermodynamic limit, the function has the integral
form [71]

Gr = − 1

π

∫ π

0
F (γ , λ, α, δ, r)dφ, (4)

where the kernel is F (γ , λ, α, δ, r) = [cos(φr)z +
sin(φr)y]/�φ with the parameters being �φ =

√
z2 + y2,

z = λ − cos φ − α cos(2φ), and y = γ sin φ + αδ sin(2φ).
The Gr function here is vital in calculating quantum state ρr

and analyzing the behaviors of two-site quantum resources.

FIG. 1. The ground-state phase diagram of the XXT model de-
scribed by the number of Fermi points, where there are two Fermi
points φ+ and φ− in the SL-II phase (blue region), one point φ+ in
the SL-I phase (red region), and zero in ferromagnetic phase (green
regions of Ferr-I and Ferr-II).

III. CHARACTERIZATION OF QUANTUM PHASES
IN THE XXT MODEL

We first consider the XXT model for which the Hamil-
tonian in Eq. (1) has the parameters γ = 0 and δ = 0 [32].
In this case, the ground-state phase diagram is composed
of ferromagnetic phase, spin-liquid I (SL-I) phase and spin-
liquid II (SL-II) phase [72]. The symmetry-breaking QPTs
are connected with the number of Fermi points [72–77]. By
solving the energy equation �φ = 0 with φ ∈ {0, π} in the
thermodynamic limit, we obtain the two real Fermi points

φ±(α, λ) = arccos

[
−1 ± √

1 + 8α2 + 8αλ

4α

]
. (5)

As shown in Fig. 1, we find the number of Fermi points
can not only detect the QPTs but also identify the three
quantum phases, where there are two Fermi points in the
SL-II phase, one in the SL-I phase, and zero in ferromagnetic
phase (a detailed analysis on the Fermi points is presented
in Appendix C). The white dashed lines are critical lines
representing phase boundaries with λc1 = α + 1, λc2 = α − 1,
and λc3 = −(1 + 8α2)/8α (α � 0.25 for λc3 ).

We now study the property of long-range two-site quantum
coherence of reduced state ρr along with the distance of two
spins in the XXT spin chain. Quantum coherence is an impor-
tant resource in the QIP [78,79] and quantum thermodynamics
[80–83]. Here we adopt the l1-norm quantum coherence [13],
which is expressed as the sum of modulus of off-diagonal
element: Cl1 (ρr ) = ∑

i, j,i �= j |ρi j |. In the XXT model, since the
Hamiltonian is isotropic in the x and y directions (γ = δ = 0),
we have the matrix element y− = (〈σ x

0 σ x
r 〉 − 〈σ y

0 σ
y
r 〉)/4 = 0

in Eq. (2). Therefore, the l1-norm coherence of two-site quan-
tum state is

Cl1 (ρr ) = 2|y+| = ∣∣〈σ x
0 σ x

r

〉∣∣, (6)

where the spin correlation 〈σ x
0 σ x

r 〉 is a determinant of Gr

matrix (see the details in Appendix D). In order to obtain the
quantum coherence expediently, we derive the analytical for-
mula of Gr function in the thermodynamic limit for different
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(a)

(d) (e)

(b) (c)

FIG. 2. The l1-norm coherence in the XXT model. Cl1 (α, λ) for
two-site distances: (a) r = 1 and (b) r = 6 with the white dashed
lines being the phase boundaries. In (c), two set parameters are
chosen for Cl1 (r) in the SL-I and SL-II phases, and the gradually
decaying and damped oscillating modes of the coherence along with
two-site distance are further illustrated in (d) and (e).

regions of quantum phases

Gr =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−δ0r, Ferr-I

δ0r, Ferr-II
2 sin(rφ+ )

πr − δ0r, SL-I

2
( sin(rφ+ )

πr − sin(rφ− )
πr

) + δ0r, SL-II

(7)

where r is the distance of two spins and φ± are the Fermi
points given in Eq. (5). According to this analytical formula,
the spin correlation 〈σ x

0 σ x
r 〉 is zero in the ferromagnetic phase,

and then the corresponding quantum coherence is Cl1 (ρr ) = 0.
However, the quantum coherence in the SL-I and SL-II phases
is nonzero in general, where we can obtain a closed-form
expression in terms of system parameters for each fixed two-
site distance r (see the analytical expression in Appendix D).
As shown in Figs. 2(a) and 2(b), we plot quantum coher-
ence Cl1 (ρr ) as a function of magnetic field λ and interaction
strength α for spin-spin distances r = 1 and 6. We can dis-
tinguish the SL-I and SL-II phases from the ferromagnetic
phase with zero coherence, and the change patterns of Cl1
are different where Cl1 is gradually decaying in SL-I phase
and oscillating in SL-II phase. The intrinsic reason is that the
coherence decays along with the distance r in the gradually
decaying mode for SL-I phase but in the damped oscillating
mode for SL-II phase, as shown in Fig. 2(c). Therefore, the
gradually decaying and damped oscillating mode of Cl1 can
serve as an effective diagnostic of quantum phases, as illus-
trated by Figs. 2(d) and 2(e).

Next, we study two-site quantum entanglement in the same
model. As quantified by concurrence [11], the two-site entan-
glement can be written as

C(ρr ) = max{0, 2(|y+| −
√

u+u−)}, (8)

where y+ and u± are the off-diagonal and diagonal ele-
ments of reduced quantum state ρr in Eq. (2), respectively. In

(a) (b)

FIG. 3. Long-range two-site entanglement in (a) SL-I phase and
(b) SL-II phase, where the concurrence decays in the gradual mode
for SL-I phase but in the oscillating mode for SL-II phase. The
hollow dots indicate the distances with zero entanglement.

comparison with the l1-norm coherence in Eq. (6), the two-site
entanglement is smaller than corresponding quantum coher-
ence. In the previous analysis, we know that the coherence has
the long-range property, but whether there exists long-range
two-site entanglement is an open problem in multipartite spin
systems without long-range interactions [12,40,84–89]. In the
XXT model, although the concurrence is short range (no more
than the next-nearest neighbor) in generic regions of SL-I
and SL-II phases, we confirm the existence of long-range
two-site entanglement for which the parameters are close to
the phase boundaries (see Fig. 1) described by the critical
lines λc1 , λc2 (α � 0.25), and λc3 (a detailed analysis is given
in Appendix E). In SL-I and SL-II phases, we choose three
sets of parameters near the phase boundaries, and calculate the
concurrence as a function of two-site distance. As shown in
Fig. 3, the distinct decay modes of long-range two-site entan-
glement have the same functionality for identifying quantum
phases.

IV. CHARACTERIZATION OF TOPOLOGICAL QUANTUM
PHASES IN THE EXTENDED ISING MODEL

In the extended Ising system with γ �= 0 and δ �= 0, there
are topological quantum phases in the ground state, for which
the winding number is an effective geometric order parameter
[51]. The Hamiltonian in Eq. (1) can be further expressed
in the Bogoliubov–de Gennes form of the momentum space
[51,56]

H =
M∑

k=−M

(c†
k c−k )Hk

(
ck

c†
−k

)
, (9)

where M = (L − 1)/2 for odd L, Hk = �r(k) · �σ with �r(k) =
[0, yk, zk] and �σ = (σ x, σ y, σ z ), and the vector �r represents
a two-dimensional magnetic field with the components yk =
γ sin φk + αδ sin(2φk ) and zk = λ − cos φk − α cos(2φk ).
Zhang and Song established the connection between topolog-
ical quantum phase and corresponding winding number [51]

N = 1

2π

∮
(y dz − z dy)/|�r|2, (10)

which is an integer representing the direction and total times
that the closed loop travels around the origin point in the
y-z plane [90]. The winding numbers can identify topological
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(a)

(c) (d) (e)

(b)

FIG. 4. Energy spectra, winding vector trajectories, and long-
range quantum coherence Cl1 (α, r) in the extended Ising model with
the parameters γ = 1, δ = −1, and λ = 1 for the chain length L =
1001. (a) The energy spectra as a function of three-spin interaction α

where the four critical points and five topological phases are labeled.
(b) Different trajectories of the winding vectors in the y-z plane
correspond to the winding numbers 2, 0, 1, −1, and −2, respectively.
(c)–(e) The behaviors of long-range two-site quantum coherence in
different topological quantum phases.

quantum phases in the extended Ising model, and the critical
points for the TQPTs are available by solving the characteris-
tic equations [36].

Now, we study the connection between the long-range
two-site quantum coherence and topological quantum phases
in the extended Ising model. When the TQPTs are driven
by the three-spin interaction α, we choose the other system
parameters to be γ = 1, δ = −1, and λ = 1. As shown in
Fig. 4(a), the energy spectra �k = ±

√
z2

k + y2
k are plotted

for a finite chain length L = 1001, where the critical points
αc1 = (−√

5 − 1)/2, αc2 = 0, αc3 = (
√

5 − 1)/2, and αc4 = 2
are labeled. The trajectories of the typical winding vectors in
the auxiliary y-z plane are plotted in Fig. 4(b). As quantified
by the l1-norm measure, the two-site quantum coherence in
the extended Ising system is

Cl1 (ρr ) = 2(|y+| + |y−|), (11)

where y± = (〈σ x
0 σ x

r 〉 ± 〈σ y
0 σ

y
r 〉)/4 are the off-diagonal ele-

ments of two-site quantum state ρr in Eq. (2). It is noted
that the first-order derivative of adjacent two-site coherence
Cl1 can detect all the TQPTs in the extended Ising system
(see Appendix F). Here we focus on the properties of the
long-range two-site coherence in different topological phases.
In Figs. 4(c)–4(e), we plot Cl1 (ρr ) as a function of three-
spin interaction strength α and two-site distance r, where the
different topological phases are labeled by the corresponding
winding numbers. In the case of N = 2, the coherence decays
in the oscillating mode along with the increase of two-site
distance for a given value of α. But, in the case of N = −2,
the coherence decays in the gradual mode, although there
exists initial oscillating for short two-site distance due to the
influence of adjacent three-spin interactions. Moreover, the

strength of |α| can change the decay rate in both topological
phases of N = ±2. In the case of N = 0, the coherence
can decay in both oscillating and gradual modes for different
values of α as shown in Fig. 4(c). We further calculate the
second-order derivative of the coherence Cl1 (α) for r = 25 in
the topological phase N = 0, where the diverging coherence
derivative implies a symmetry-broken phase transition (see
Appendix F). It is noted that the ground state of the XXT
model we analyzed previously is also topologically trivial
(N = 0), where, as shown in Fig. 2, the quantum coherence
exhibits two kinds of decay modes too.

The winding numbers in the extended Ising model
characterize different topological orders and can identify cor-
responding topological phases. In the case of N = ±1, we
find that the two-site coherence exhibits a remarkable prop-
erty, where the nonzero coherence will become stable for a
given value of α after a slight decay of short two-site dis-
tances as shown in Fig. 4(d). In addition, the higher steady
coherence exhibits in the phase N = 1, and the lower steady
coherence occurs in the phase N = −1 (the relation between
spin correlations and quantum coherence is further analyzed
in Appendix G). The steady quantum coherence is the topo-
logically protected long-range quantum resource, and we refer
to it as quantum coherence freezing (QCF) phenomenon along
with the two-site distance, which is different from the case
of frozen quantum coherence under dynamical conditions
[91–94].

Therefore, as shown in Fig. 4, the behaviors of long-range
two-site coherence, such as damped oscillating and gradually
decaying modes or the freezing mode, can serve as an effec-
tive diagnostic of topological quantum phases. In addition, we
also investigate the TQPT driven by the external magnetic
field λ, and find that the long-range coherence can diagnose
the topological quantum phases too, where the coherence still
exhibits the QCF phenomenon in the case N = 1 (see the
details in Appendix H).

In order to explain further topologically protected coher-
ence exhibiting the QCF phenomenon, we consider a special
case of the Hamiltonian with γ = 1 and λ = α = 0, for which
the winding number is N = 1 and its ground state has an
analytical form [51]

|G1〉 = 1√
2

(
�
j∈e

| ↗〉 j �
j∈o

| ↙〉 j + �
j∈e

| ↙〉 j �
j∈o

| ↗〉 j
)
, (12)

where σ x
j | ↗〉 j (| ↙〉 j ) = | ↗〉 j (−| ↙〉 j ), and the summing

targets e and o denote the even and odd number of sites,
respectively. Its reduced quantum state of the ith and jth spins
with distance r is

ρN=1
r = 1

4

⎛⎜⎜⎝
1 0 0 −1
0 1 −1 0
0 −1 1 0

−1 0 0 1

⎞⎟⎟⎠, (13)

which is a constant matrix independent of the two-site dis-
tance and has the steady coherence Cl1 (ρN=1

r ) = 1. Similarly,
for the ground state |G−1〉 [51] with the winding number
N = −1, we can derive the distance-independent two-site
quantum coherence Cl1 (ρN=−1

r ) = 1.
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V. DISCUSSIONS

The above results for quantum coherence and quantum
entanglement can be extended to other quantum resources,
such as quantum discord, which can describe quantum corre-
lations beyond entanglement [95–97]. The two-qubit quantum
discord is quantified by the formula [19,20]

DA(ρAB) = S(ρA) − S(ρAB) + min
{EA

k }

∑
k

pkS(ρB|k ), (14)

where the measurement {EA
k } is performed on subsystem A

with the minimum running over all the projection measure-
ments, and S(·) is the von Neumann entropy. In the XXT
model, we find that the discord DA(ρr ) decays along with
two-site distance in the gradual mode for the SL-I phase and
in the oscillating mode for the SL-II phase (see Appendix I),
indicating that quantum discord has the same functionality
for the diagnostic of quantum phases. Furthermore, in the
extended Ising model, although two-site entanglement is short
range, quantum discord is long range which can identify topo-
logical quantum phases similar to the quantum coherence (see
Appendix J). In particular, different from the dynamical case
[98,99], we find a quantum discord freezing phenomenon in
topological phases with the winding numbers N = ±1.

The topologically protected quantum coherence and quan-
tum discord, exhibiting the freezing property, are key re-
sources in QIP. For example, quantum discord is related to
the fidelity of quantum remote state preparation (RSP) [100]
and the freezing quantum discord can keep the fidelity of RSP
steady along with the distance of two sites, which makes long-
range QIP possible. Moreover, assisted coherence distillation
(ACD) [101,102] can convert bipartite quantum discord to
single-party quantum coherence, and the freezing quantum
discord can make a steady conversion to quantum coherence
in the remote site, which can be further applied to quantum
enhancement of metrology [103–105].

VI. CONCLUSIONS AND OUTLOOK

In summary, we have demonstrated that the behaviors of
long-range two-site quantum coherence, quantum entangle-
ment, and quantum discord are able to diagnose quantum
phases in many-body systems with symmetry-breaking and
topological quantum phase transitions. In comparison with
multipartite entanglement that needs to extract the scaling
exponents of the QFI for global ground state [55,56], we
provide a method for identifying quantum phases by the be-
haviors of long-range two-site quantum resources, which is
feasible for the systems of cold atoms [66] and superconduct-
ing qubits [68] in the current or near-term experiments. The
universality of our presented method is still an open problem
and worth exploring in the future. Lastly, the topologically
protected two-site quantum resources exhibit freezing phe-
nomena, which have promising applications in long-range
QIP.
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APPENDIX A: DIAGONALIZATION PROCEDURE FOR
THE HAMILTONIAN OF THE EXTENDED ISING MODEL

The Hamiltonian of the extended Ising model given in the
main text has the form [51]

H = −
L∑

j=1

[
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1 + λσ z

j

+ ασ z
j

(
1 + δ

2
σ x

j−1σ
x
j+1 + 1 − δ

2
σ

y
j−1σ

y
j+1

)]
, (A1)

where L is the total spin number in the spin chain, γ is the
anisotropic parameter of the nearest-neighbor couplings, λ is
the strength of external magnetic field, α and δ represent the
strength and anisotropy of three-spin interactions, and σ x

j , σ
y
j ,

and σ z
j are the Pauli operators on the jth spin. Next, we will

give a brief review on the diagonalization procedure for this
Hamiltonian [69–71].

The spin operators in the Hamiltonian can be mapped
into the spinless fermion operators by introducing the Jordan-
Wigner transformation [10]

σ z
j = 1 − 2c†

j c j,

σ x
j =

∏
l< j

(1 − 2c†
l cl )(c

†
j + c j ),

σ
y
j = −i

∏
l< j

(1 − 2c†
l cl )(c

†
j − c j ), (A2)

where c†
j and c j are the spinless creation and annihilation

operators. After substituting the expressions in Eq. (A2) into
the Hamiltonian in Eq. (A1), we can obtain the form

H = −
L∑

j=1

λ(1 − 2c†
j c j )

−
L∑

j=1

[γ (c†
j c

†
j+1 − c jc j+1) + c†

j c j+1 − c jc
†
j+1]

−
L∑

j=1

α(c†
j−1c j+1 − c j−1c†

j+1)

−
L∑

j=1

αδ(c†
j−1c†

j+1 + c j−1c j+1). (A3)

Furthermore, the above Hamiltonian can be expressed in
the momentum space by the Fourier transformation, and the
Fourier transformation of fermion annihilation operator can
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be written as

c j = 1√
L

M∑
k=−M

ck exp(−i jφk ), (A4)

where φk = 2πk/L with k = −M, . . . , M and M = (L −
1)/2 for odd L. After some derivation, we can rewrite the
Hamiltonian in the form

H = − λL + 2(λ − 1 − α)c†
0c0

+
M∑

k=1

2[λ − cos φk − α cos(2φk )](c†
kck + c†

−kc−k )

+
M∑

k=1

2i[γ sin φk + αδ sin(2φk )](c†
kc†

−k + ckc−k ).

(A5)

After further applying the Bogoliubov transformation, the
Hamiltonian in Eq. (A5) can be transformed into the diagonal
form

H =
M∑

k=−M

2�k

(
η

†
kηk − 1

2

)
, (A6)

for which the energy spectra are ±�k and

�k =
√

z(k)2 + y(k)2 (A7)

with z(k) = λ − cos φk − α cos(2φk ) and y(k) = γ sin φk +
αδ sin(2φk ), and the mapping operator of Bogoliubov trans-
formation is

ηk = cos
θk

2
c−k − i sin

θk

2
c†

k , (A8)

in which the coefficients are

sin
θk

2
= �k − z(k)√

2�k[�k − z(k)]
,

cos
θk

2
= y(k)√

2�k[�k − z(k)]
, (A9)

with the parameter being

θk = arcsin{−[γ sin φk + αδ sin(2φk )]/�k}. (A10)

The above analysis completes the review of diagonalization
procedure for the Hamiltonian of the extended Ising model.

APPENDIX B: TWO-SITE REDUCED DENSITY MATRIX
OF GROUND STATE IN THE EXTENDED ISING MODEL

In the extended Ising model, the two-site reduced density
matrix of ground state for the ith and jth spins given in the
main text has the form

ρr = ρi j =

⎛⎜⎜⎝
u+ 0 0 y−
0 z y+ 0
0 y+ z 0

y− 0 0 u−

⎞⎟⎟⎠, (B1)

where r = | j − i| denotes the distance between the two
spins, and the nonzero matrix elements are u± = (1 ±
2〈σ z〉 + 〈σ z

0σ z
r 〉)/4, z = (1 − 〈σ z

0σ z
r 〉)/4, and y± = (〈σ x

0 σ x
r 〉 ±

〈σ y
0 σ

y
r 〉)/4, which can be calculated from the magnetization

and spin correlation functions.
For the nonzero elements in ρr , the magnetization 〈σ z〉 and

two-site correlation functions 〈σ s
0σ

s
r 〉 with s = x, y, z can be

written as [69,70]

〈σ z〉 = G0,

〈
σ x

0 σ x
r

〉 =
∣∣∣∣∣∣∣∣
G−1 G−2 . . . G−r

G0 G−1 . . . G−r+1
...

...
. . .

...

Gr−2 Gr−3 . . . G−1

∣∣∣∣∣∣∣∣,

〈
σ

y
0 σ y

r

〉 =
∣∣∣∣∣∣∣∣
G1 G0 . . . G−r+2

G2 G1 . . . G−r+3
...

...
. . .

...

Gr Gr−1 . . . G1

∣∣∣∣∣∣∣∣,〈
σ z

0σ z
r

〉 = 〈σ z〉2 − GrG−r, (B2)

where the Gr function for the case of a finite chain length
has the expression given in Eq. (3) of the main text and its
formula for the case of the thermodynamic limit is presented
in Eq. (4) of the main text. Therefore, according to Eqs. (B1)
and (B2), the two-site quantum state ρr can be obtained by
calculating the Gr functions and related determinants. More-
over, the two-spin correlations 〈σ x

0 σ x
r 〉 and 〈σ y

0 σ
y
r 〉 in Eq. (B2)

are the determinants of Gr matrices, whose matrix dimension
increases along with the two-spin distance r.

It should be noted that, in order to analyze the properties
of quantum state and its quantum resource expediently, an
analytical formula for the Gr function is very desirable.

APPENDIX C: GROUND-STATE PHASE DIAGRAM
AND FERMI POINTS IN THE XXT MODEL

In the XXT model, by solving the energy equation �φ = 0
with φ ∈ {0, π} in the thermodynamic limit, we can obtain the
two Fermi points φ+ and φ− [as given in Eq. (5) of the main
text] with the form

φ±(α, λ) = arccos

[−1 ± √
1 + 8α2 + 8αλ

4α

]
, (C1)

where λ is the external magnetic field and α is the strength
of three-spin interactions. It should be noted that the Fermi
points are required to be real numbers.

In Fig. 1 of the main text, we plot the ground-state phase di-
agram in the XXT model via the numbers of Fermi points. The
ground-state phase diagram is composed of ferromagnetic
phase, spin-liquid I (SL-I) phase, and spin-liquid II (SL-II)
phase, where the phase boundaries are described by the criti-
cal lines λc1 = α + 1, λc2 = α − 1, and λc3 = −(1 + 8α2)/8α

(α � 0.25 for λc3 ) as shown in the figure.
According to Eq. (C1), we calculate the Fermi point in

the ferromagnetic phase and find that there is no real Fermi
point. However, there are nonzero Fermi points in SL-I and
SL-II phases, and we plot the Fermi points φ± as the functions
of external magnetic field λ and the strength of three-spin
interactions. As shown in Fig. 5, the Fermi point φ+ is nonzero
in SL-I and SL-II phases, and the Fermi point φ− is nonzero
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(a) (b)

FIG. 5. The Fermi points (a) φ+ and (b) φ− as the functions of
external magnetic field λ and the strength of three-spin interaction α,
where the boundaries λ1, λ2, and λ3 are the critical lines representing
the phase boundaries.

only in SL-II phase (with λc1 , λc2 , and λc3 being the phase
boundaries).

Combining the two regions of nonzero Fermi points in
Figs. 5(a) and 5(b), we obtain that the number of Fermi points
can not only detect the QPTs but also identify the three quan-
tum phases, where there are two Fermi points in the SL-II
phase, one in the SL-I phase and zero in ferromagnetic phase
as illustrated in Fig. 1 of the main text.

APPENDIX D: ANALYTICAL FORMULA FOR THE Gr

FUNCTION IN THE XXT MODEL

We consider the XXT model, for which the Hamiltonian
shown in Eq. (1) of the main text has the parameters γ = 0,
δ = 0, and λ �= 0. In the thermodynamic limit, the Gr function
has the form [71]

Gr = − 1

π

∫ π

0
F (λ, α, r)dφ, (D1)

where the integral kernel is

F (λ, α, r) = cos(φr)z/�φ (D2)

in which the parameter is �φ = √
z2 with z = λ − cos φ −

α cos(2φ).
The Fermi points [72,73] characterize the positions at

which the energy �φ is equal to zero, which plays a key role
in the analysis on different quantum phases in the XXT model
as shown in Fig. 1 of the main text. There are two Fermi
points in the SL-II phase: one in the SL-I phase and zero in
the ferromagnetic phase (the regions of Ferr-I and Ferr-II are
the same phase). By solving the energy equation �φ = 0 with
φ ∈ {0, π}, we can obtain the two Fermi points φ+ and φ− as
given in Eq. (C1).

Next, according to the numbers and values of Fermi points,
we will analyze the kernel functions F (λ, α, r) in differ-
ent quantum phases. In the ferromagnetic phase, there is no
Fermi point and we can demonstrate that z(φ) = λ − cos φ −
α cos(2φ) is positive in the region of Ferr-I and negative in
the region of Ferr-II. Therefore, we have

F (λ, α, r) = cos(rφ)[λ − cos(φ) − α cos(2φ)]√
[λ − cos(φ) − α cos(2φ)]2

=
{

cos(rφ), Ferr-I
− cos(rφ), Ferr-II. (D3)

Substituting the result into the Gr function in Eq. (C1), we can
derive that Gr = 0 for the case of r �= 0 and the nonzero Gr

corresponds to the case of r = 0. After some calculation, we
obtain the analytical formula

Gr =
{−δ0r, Ferr-I
δ0r, Ferr-II. (D4)

In the SL-I phase, there is only one Fermi point φ+ which
divides the function z(φ) into two parts. It can be demon-
strated that z(φ) is negative in the region φ ∈ [0, φ+) and
positive in the region φ ∈ [φ+, π ]. Therefore, according to
Eq. (D1), we can have the kernel function

F (λ, α, r) = cos(rφ)[λ − cos(φ) − α cos(2φ)]√
[λ − cos(φ) − α cos(2φ)]2

=
{− cos(rφ), φ ∈ [0, φ+)

cos(rφ), φ ∈ [φ+, π ]. (D5)

By substituting the above expression into Eq. (C1), we can
derive the analytical formula of Gr . In the case of r �= 0, we
have

Gr = 1

π

∫ φ+

0
cos(rφ)dφ − 1

π

∫ π

φ+
cos(rφ)dφ

= 2 sin(rφ+)

πr
. (D6)

When r = 0, the function is

Gr = 1

π

∫ φ+

0
dφ − 1

π

∫ π

φ+
dφ = 2φ+

π
− 1. (D7)

Combining Eqs. (D6) and (D7), we can obtain the formula of
Gr in the SL-I phase

Gr = 2 sin(rφ+)

πr
− δ0r . (D8)

In the SL-II phase, there are two Fermi points φ+ and φ−,
which divide the function z(φ) into three parts where z(φ) > 0
in the region φ ∈ [φ+, φ−] and z(φ) < 0 in the regions φ ∈
[0, φ+) ∪ (φ−, π ]. Then the kernel function in the SL-II phase
has the form

F (λ, α, r) = cos(rφ)[λ − cos(φ) − α cos(2φ)]√
[λ − cos(φ) − α cos(2φ)]2

=
⎧⎨⎩− cos(rφ), φ ∈ [0, φ+)

cos(rφ), φ ∈ [φ+, φ−]
− cos(rφ), φ ∈ (φ−, π ].

(D9)

According to Eq. (C1), we can obtain the Gr function in the
case of r �= 0:

Gr = 1

π

∫ φ+

0
cos(rφ)dφ − 1

π

∫ φ−

φ+
cos(rφ)dφ

+ 1

π

∫ π

φ−
cos(rφ)dφ

= 2[sin(rφ+) − sin(rφ−)]

πr
, (D10)
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and the formula in the case of r = 0 is

Gr = 1

π

∫ φ+

0
dφ − 1

π

∫ φ−

φ+
dφ + 1

π

∫ π

φ−
dφ

= 2(φ+ − φ−)

π
+ 1. (D11)

Combining Eqs. (D10) and (D11), we can obtain the analytical
formula of Gr function in the SL-II phase

Gr = 2[sin(rφ+) − sin(rφ−)]

πr
+ δ0r . (D12)

The expressions in Eqs. (D4), (D8), and (D12) constitute the
analytical form of the Gr function in the XXT model, which
is given in Eq. (7) of the main text.

Based on the analytical formula of the Gr function, we can
expediently obtain the two-site reduced state ρr and study fur-
ther the properties of long-range two-site quantum resources
in the reduced states, such as two-site quantum coherence,
quantum entanglement, and quantum discord. For example,
we have the two-site quantum coherence in the XXT model

Cl1 (ρr ) = 2|y+| = ∣∣〈σ x
0 σ x

r

〉∣∣, (D13)

where the spin correlation 〈σ x
0 σ x

r 〉 is a determinant of Gr ma-
trix as shown in Eq. (B2). Since the determinant depends on
the two-site distance, we are unable to obtain the closed-form
expression of two-site quantum coherence in terms of two-site
distance and model parameters. However, we can still obtain
exactly the two-site quantum resources since for each fixed
two-site distance we have a closed-form expression for the
spin-spin correlation. In the case of r = 3 for the SL-I phase,
we have Cl1 (ρ3) = |〈σ x

0 σ x
3 〉|, and the spin-spin correlation has

the form

〈
σ x

0 σ x
3

〉 =
∣∣∣∣∣∣
G−1 G−2 G−3

G0 G−1 G−2

G1 G0 G−1

∣∣∣∣∣∣
= G3

−1 + G2
−2G1 + G2

0G−3 − 2G0G−1

× G−2 − G1G−1G−3, (D14)

where the Gr function has the analytical form given in
Eq. (D8). Substituting the expression of Gr into the above
equation, we are able to obtain the closed form of quantum
coherence

Cl1 (ρ3) =∣∣〈σ x
0 σ x

3

〉∣∣
= 2

3π3
{|12(π − 2φ+)cos(φ+)sin2(φ+)

− 2[cos(2φ+) − 7]sin3(φ+)

+ (π − 2φ+)2sin(3φ+)|}, (D15)

where φ+ is the Fermi point has the analytical expression in
terms of system parameters as shown in Eq. (C1).

When we plot the two-site quantum coherence in Fig. 2 of
the main text, the calculation method is similar and the value
of coherence Cl1 (ρr ) for each fixed two-site distance can be
determined exactly by the expression of spin-spin correlation
in Eq. (B2) and our analytical formula of Gr function in
Eq. (7) of the main text.

APPENDIX E: CONFIRMATION OF LONG-RANGE
TWO-SITE ENTANGLEMENT IN THE XXT MODEL

In multipartite spin systems, two-site entanglement is of-
ten short range along with two-site distance and exhibits the
phenomenon of entanglement sudden death [89]. Here, we
study the entanglement property of the reduced state ρr in the
XXT model and analyze its long-range behavior of two-site
entanglement. As quantified by the concurrence [11], we have

C(ρr ) = max{0, 2(|y+| −
√

u+u−)}, (E1)

where y± and u± are the off-diagonal and diagonal elements
of reduced state ρr which can be calculated by the analytical
formula of Gr . In the previous analysis, we have known that
the coherence has the long-range property in this model, but
whether there exists long-range two-site entanglement is still
an open problem. We mainly consider the spin-liquid phases
in the XXT model since the ground state in the ferromagnetic
phase is the product state for which the concurrence of re-
duced state is zero.

According to Eq. (E1), we find that the concurrence is short
range (no more than the next-nearest neighbor) in generic
regions of SL-I and SL-II phases, but there still exists the
long-range two-site entanglement for which the system pa-
rameters are close to the phase boundaries. Next, we give a
detailed analysis on the confirmation of long-range two-site
entanglement in the XXT model.

After some calculation, we can obtain the two-site concur-
rence in the SL-I phase

C(ρr ) = max
{

0, 2|y+| − 2

π2

√
(C1 − E1)(D1 − E1)

}
≈ max

{
0,Cl1 (ρr ) − 2

π2

√
C1D1

}
, (E2)

where the parameters are C1 = φ2
+, D1 = (π − φ+)2, and

E1 = sin2(rφ+)/r2 with φ+ being the Fermi point, and, in
the second equation, we use the two-site coherence Cl1 (ρr ) =
2|y+| in Eq. (6) of the main text and the approximation that the
parameter E1 tends to zero in the long-range case of two-site
distance. Therefore, we know that the two-site concurrence is
less than the corresponding two-site coherence. In Eq. (E2),
the two-site concurrence can be expressed as the difference
between the corresponding two-site coherence and the func-
tion of C1D1. When the term C1D1 is zero, the corresponding
model parameters are in the critical lines representing phase
boundaries (the red lines λc1 and λc2 ) as shown in the bottom
of Fig. 6(a). Due to the two-site coherence being zero in
the critical lines, the two-site concurrence will be zero when
C1D1 = 0 according to the second expression in Eq. (E2).

When the term C1D1 is a small value and tends to zero,
the corresponding model parameters are close to the phase
boundaries λc1 and λc2 as shown in Fig. 6(a). In this case, the
two-site quantum coherence is nonzero and decays gradually
along with two-site distance. According to the expression of
Eq. (E2), the competitive relation between the two-site co-
herence Cl1 and the function of C1D1 determines the two-site
entanglement (the minus sign between the two terms). It is
noted that, for the given model parameters, both the coher-
ence for r = 1 and the function of C1D1 are fixed values (we
assume the value of C1D1 is small enough to be smaller than
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(a) (b)

E2F2C1D1

FIG. 6. (a) C1D1 and (b) E2F2 as the functions of the parameters
α and λ, where the red lines on the bottom indicate the zero values
for the two functions and correspond to the phase boundaries with
the critical lines being λc1 , λc2 (α � 0.25), and λc3 , respectively.

that of the coherence for r = 1). Along with the increasing
of two-site distance, the coherence decreases gradually but
the term C1D1 keeps invariant, and the two-site entanglement
becomes zero when the two competitive terms are equal. The
smaller the value of C1D1, the larger the two-site distance
of nonzero concurrence. Therefore, when the term C1D1 is
close to the phase boundaries, there exists long-range two-site
concurrence. In the main text, we choose the model param-
eters close to the critical lines and confirm the existence of
long-range two-site entanglement up to the distance r = 60 as
shown in Fig. 3(a) of the main text.

The case for two-site concurrence in the SL-II phase is
similar, and we confirm the existence of long-range two-site
entanglement for the system parameters close to the phase
boundary between the SL-II phase and the Ferr-II phase. Ac-
cording to the formula in Eq. (E1), we can derive the two-site
entanglement in the SL-II phase

C(ρr ) = max

{
0, 2|y+| − 2

π2

√
(E2 − G2)(F2 − G2)

}
≈ max

{
0,Cl1 (ρr ) − 2

π2

√
E2F2

}
, (E3)

where the parameters are E2 = (π + φ+ − φ−)2, F2 = (φ+ −
φ−)2 and G2 = [sin(rφ+) − sin(rφ−)]2/r2 with φ± being the
two Fermi points, and we use the approximation that the
parameter G2 tends to zero in the long distance. After a similar
analysis as that in the SL-I phase, we can obtain the result
that the two-site entanglement is long-range in the case of
E2F2 tending to zero (i.e., the competitive relation between
the two terms in the second expression of Eq. (E3) determines
the long-range two-site entanglement). As shown in Fig. 6(b),
E2F2 = 0 corresponds the critical line λc3 (the red line in the
bottom) which represents the phase boundary. In the main
text, we choose a proper system parameters and confirm the
long-range entanglement up to the two-site distance r = 55.

APPENDIX F: DETECTION OF THE TQPTS BY THE
l1-NORM MEASURE OF QUANTUM COHERENCE

In the main text, we pointed out that the first-order deriva-
tive of adjacent two-site coherence Cl1 (ρr ) can detect the
topological quantum phase transition in the extended Ising
model. Here, we first consider the TQPTs driven by the three-
spin interaction α, and the other parameters in the model
are chosen to be γ = 1, δ = −1, and λ = 1, respectively. In

(a) (b)

(c) (d)

FIG. 7. The l1 norm of quantum coherence Cl1 and its derivative
∂αCl1 versus the three-spin interaction α [(a) and (b)] and external
magnetic field λ [(c) and (d)] for adjacent two-spin pair.

Figs. 7(a) and 7(b), we plot the l1-norm coherence and its
first-order derivative as a function of the parameter α for the
adjacent spin pair. As shown in the figures, the quantum co-
herence Cl1 (ρr ) is a continuous function, but its first derivative
exhibits the divergent behaviors where the divergent points
just indicate the critical points αc1 = (−√

5 − 1)/2, αc2 = 0,
αc3 = (

√
5 − 1)/2, and αc4 = 2 for the TQPTs.

We also analyze the TQPTs driven by external magnetic
field λ, and the other parameters in the model are chosen
to be α = 1.5, γ = 1, and δ = 1, respectively. In Figs. 7(c)
and 7(d), we plot the l1-norm coherence and its first-order
derivative as a function of the parameter λ for the adjacent
spin pair. As shown in the figures, the divergent points of
the first-order derivative can indicate the critical points λc1 =
−1.5, λc2 = 0.5, and λc3 = 2.5 for the TQPTs in the extended
Ising model. Moreover, similar to the above cases, the TQPTs
driven by the parameters γ and δ can also be detected by the
first-order derivative of l1-norm quantum coherence for the
adjacent two-spin pair.

In Fig. 4 of the main text, the two-site coherence in the
topological quantum phase with the winding number N = 0
exhibits two kinds of decay modes, which correspond to dif-
ferent symmetry-broken phases. As shown in Fig. 8, we plot
the coherence and its second-order derivative as the functions
of three-spin interaction α for the two-site distance r = 25,
where the diverging coherence derivative in Fig. 8(b) implies
a symmetry-broken quantum phase transition.

APPENDIX G: RELATION BETWEEN SPIN
CORRELATIONS AND QUANTUM COHERENCE IN

TOPOLOGICAL QUANTUM PHASES

According to Eq. (11) of the main text, the long-range two-
site quantum coherence Cl1 (ρr ) in the extended Ising model
can be expressed as the function of spin correlations 〈σ x

0 σ x
r 〉

and 〈σ y
0 σ

y
r 〉. It is pointed out in the main text that the behav-

iors of long-range quantum coherence (such as the damped
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(a) (b)

FIG. 8. In the topological phase N = 0, (a) the two-site coher-
ence Cl1 and (b) its second derivative ∂2Cl1 versus the three-spin
interaction α with the other model parameters γ = 1.0, δ = −1.0,
and λ = 1.0, respectively. The divergence of ∂2

αCl1 indicates a
symmetry-broken quantum phase transition.

oscillating and gradually decaying modes as well as the freez-
ing mode) can serve as the diagnostic tools for topological
phases with different winding numbers. Here, we further
study the relation between spin correlations and quantum co-
herence in the extended Ising model.

For the TQPTs driven by the three-spin interaction, we
choose six typical values for the parameter α, which corre-
spond to the topological phases with the winding numbers
N = 0,±1,±2, respectively. As shown in Fig. 9, two-site
spin correlations 〈σ x

0 σ x
r 〉 (red dotted lines) and 〈σ y

0 σ
y
r 〉 (blue

triangle lines), the related moduli of spin-spin correlations,
and the corresponding l1-norm coherence Cl1 (ρr )s (black
square lines) are plotted along with the increasing spin-spin
distance in different phases. In comparison with the panels in
the first row and the third row of this figure, we know that
the behaviors of two-site quantum resources are not equiv-
alent to those of the two-spin correlation functions (all the

spin-spin correlations are oscillating in the first row), even
if the two-site quantum coherence can be expressed as the
simple functions of two-spin correlations. It should be noted
that, in distinct quantum phases, one may expect the two-site
spin correlation behaving differently, the more important issue
is that how differently they behave and what kind of rules
they obey. In our work, we reveal that the rules that two-
site correlations obey are described by the two-site quantum
coherence.

In the topological phase N = 2, the quantum coherence
decays in the damped oscillating mode (see the first panel
in the third row) and mainly comes from the modulus of
spin correlation |〈σ x

0 σ x
r 〉|, where the spin correlation |〈σ y

0 σ
y
r 〉|

will disappear after a short two-site distance (see the first
panel in the second row). The coherence in the topological
phase N = 0 can decay in both oscillating and gradual modes,
where the damped oscillating coherence comes from spin
correlation |〈σ x

0 σ x
r 〉|, but the gradually decaying coherence is

due to the spin correlation |〈σ y
0 σ

y
r 〉| (see the panels and its

insets in the second column of Fig. 9). In the topological phase
N = −2, the quantum coherence decays in the gradual mode
and is mainly contributed by the modulus of spin correlation
|〈σ x

0 σ x
r 〉|, as shown in the bottom two panels in the fifth col-

umn of Fig. 9. Moreover, it was pointed out in the main text
that the quantum coherence in topological phases N = ±1
will exhibit freezing phenomenon after a short-range distance.
In the panels of the third and forth columns of Fig. 9, we plot
the quantum coherence and its corresponding moduli of spin-
spin correlations, where we find that the freezing coherence
in the case of N = 1 is contributed by the modulus of two-
spin correlation |〈σ y

0 σ
y
r 〉| (blue triangle line) but the freezing

resource in the case of N = −1 comes from the modulus of
two-spin correlation |〈σ x

0 σ x
r 〉| (red dotted line).

FIG. 9. Spin correlations (the first row), their absolute values (the second row), and quantum coherence (the third row) as the functions
of two-site distance in the topological phases with winding numbers N = 2, 0, 1, −1, and −2, where the TQPTs are driven by three-spin
interaction α with other system parameters being γ = 1, δ = −1, and λ = 1, respectively. The long-range two-site quantum coherence is
dominated by the modulus of spin-spin correlation |〈σ x

0 σ x
r 〉| or |〈σ y

0 σ y
r 〉| in different topological quantum phases.
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FIG. 10. Long-range properties of quantum coherence (the first row) and quantum discord (the second row) as a function of two-site
distance and external magnetic field accompanied with the corresponding energy spectra �k (λ) and trajectories of winding vectors, and, in the
third row, the oscillating-damped, gradual-damped, and freezing two-site quantum resources can serve as a set of effective diagnostic tools for
topological phases in the extended Ising model.

APPENDIX H: BEHAVIORS OF LONG-RANGE TWO-SITE
QUANTUM RESOURCES IN THE TOPOLOGICAL PHASES

DRIVEN BY EXTERNAL MAGNETIC FIELD

In this Appendix, we will study the long-range behaviors
of quantum coherence and quantum discord in the topological
phases driven by external magnetic field λ, where the other
parameters in the extended Ising model are chosen to be
α = 1.5, γ = 1, δ = 1. The critical points of the topological
quantum phase transitions can be obtained via solving the
characteristic equation [36]

3ξ−2/2 + ξ−1 − λ = 0 (H1)

for which the solutions are λc1 = −1.5 corresponding to ξ1 =
exp[±i arccos(−1/3)], λc2 = 0.5 corresponding to ξ2 = −1,
and λc3 = 2.5 corresponding to ξ3 = 1, respectively [106].
The two-site quantum coherence can be calculated according
to the formula in Eq. (11) of the main text, and the correspond-
ing quantum discord can be obtained by the method given in
Eq. (J6) of Appendix J.

In Fig. 10, we plot the energy spectra of the system with
a chain length L = 1001 (the three critical points and four re-
gions of topological phases are labeled), the trajectories of the
winding number vectors in the x-y planes (corresponding to
winding numbers N = 0, 1, and 2), and the long-range prop-
erties of two-site quantum coherence and quantum discord.
As shown in the first row of the figure, the l1-norm coherence
Cl1 (ρr ) in different regions of topological phases exhibits the

damped oscillating, gradually decaying, and freezing modes
along with two-site distance. In particular, the topologically
protected quantum coherence in the phase N = 1 will attain
to a steady value after a short two-site distance. The case for
two-site quantum discord DA(ρr ) is similar, which exhibits
the damped oscillating, gradually decaying, and freezing be-
haviors along with two-site distance in different regions of
topological phases as shown in the second row of the figure. In
the third row of the figure, we choose some typical values of
external magnetic field λ and plot the long-range behaviors of
quantum coherence and quantum discord, where the two kinds
of quantum resources exhibit the similar decaying modes
which further demonstrate that these long-range behaviors of
quantum resources can serve as a set of effective diagnostic
tools for topological quantum phases. Moreover, similar to the
case in the topological quantum phases N = ±1 driven by
three-spin interaction α, the topologically protected quantum
resources in topological phase N = 1 driven by magnetic
field λ still exhibit the freezing phenomenon along with two-
site distance.

APPENDIX I: CHARACTERIZATION OF QUANTUM
PHASES VIA THE LONG-RANGE TWO-SITE QUANTUM

DISCORD IN THE XXT MODEL

Quantum discord is a kind of typical quantum cor-
relation in quantum information processing and can be
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written as [19,20]

DA(ρAB) = S(ρA) − S(ρAB) + min{EA
k }
∑

k

pkS(ρB|k ), (I1)

where the measurement {EA
k } is performed on subsystem

A with the minimum running over all the projection mea-
surements, S(σ ) = −Trσ logσ is the von Neumann entropy
and ρB|k = TrA[EA

k ρABEA
k /Tr(EA

k ρABEA
k )] is the output state of

subsystem B after the measurement EA
k with the probability

being pk = Tr(EA
k ρABEA

k ).
In the XXT model, the two-qubit reduced state ρAB = ρr

has the form given in Eq. (2) of the main text, for which the
single-qubit reduced state for subsystem A is

ρA =
(

u+ + z 0
0 u− + z

)
. (I2)

After some derivation, we can obtain the von Neumann en-
tropies for the reduced states ρA and ρAB,

S(ρA) = −TrρA log2 ρA

= −1

2
(1 + 〈σ z〉) log2

[
1

2
(1 + 〈σ z〉)

]
−1

2
(1 − 〈σ z〉) log2

[
1

2
(1 − 〈σ z〉)

]
, (I3)

and

S(ρAB) = −Trρr log2 ρr

= −z1 log2 z1 − z2 log2 z2

−u+ log2 u+ − u− log2 u−, (I4)

where z1 = z + y+ = (1 + 2〈 σ x
0 σ x

r 〉 − 〈σ z
0σ z

r 〉)/4, z2 =
z − y+ = (1 − 2〈σ x

0 σ x
r 〉 − 〈σ z

0σ z
r 〉)/4, and u± = (1 ± 2〈σ z〉

+ 〈σ z
0σ z

r 〉)/4.
The third term in Eq. (I1) is the measurement-induced

conditional entropy, where the optimal measurement on sub-
system A can be determined via the method presented by Chen
et al. [107]. The two-qubit reduced state ρAB = ρr in the XXT
model has the X shape for which the optimal measurement for
DA(ρAB) is σz if

(y+)2 � (u+ − z)(u− − z), (I5)

and the optical measurement is σx if

|
√

u+u− −
√

z2| � |y+|, (I6)

where the parameters y±, u±, and z are the matrix elements
of ρr given in Eq. (2) of the main text. Therefore, the
measurement-induced conditional entropy in Eq. (I1) is

S̃(B|A) = min{σ k
x or σ k

z }
∑

k

pkS(ρB|k ), (I7)

where σ k
x and σ k

z with k = 0 and 1 are corresponding measure-
ment operators for the Pauli measurements, and the related
conditional entropies are∑

{σ k
x }

pkS(ρB|k ) = −λ+ log2(λ+) − λ− log2(λ−), (I8)

(a)

(d) (e)

(b) (c)

FIG. 11. The two-site quantum discord in the XXT model.
DA(α, λ) for two-site distances: (a) r = 1 and (b) r = 6 with the
white dashed lines being the phase boundaries. In (c), two set pa-
rameters are chosen for DA(r) in the SL-I and SL-II phases, and
the gradually decaying and damped oscillating modes of the quan-
tum discord along with two-site distance are further illustrated in
(d) and (e).

in which the parameters are λ± = (1 ± √〈σ x
0 σ x

r 〉2 + 〈σ z〉2)/2,
and

∑
{σ k

z }
pkS(ρB|k ) = −

∑
i=+,−

pi(ξilog2ξi + ηilog2ηi ), (I9)

in which the probabilities and the corresponding eigenvalues
of subsystem B are

p± = (1 ± 〈σ z〉)/2,

ξ± = (
1 − 〈

σ z
0σ z

r

〉)/
[2(1 ± 〈σ z〉)],

η± = (
1 ± 2〈σ z〉 + 〈

σ z
0σ z

r

〉)/
[2(1 ± 〈σ z〉)]. (I10)

Combining Eqs. (I7), (I3) and (I4), we can calculate the two-
site quantum discord for the reduced state ρr in the XXT
model.

Next, we study the long-range property of quantum discord
in the XXT model. As shown in Figs. 11(a) and 11(b), we plot
quantum coherence DA(ρr ) as a function of magnetic field λ

and interaction strength α for spin-spin distances r = 1 and
6. We can distinguish the SL-I and SL-II phases from the
ferromagnetic phase having zero coherence, and the change
patterns of DA are different where DA is gradual in SL-I phase
and oscillating in SL-II phase. The intrinsic reason is that
the quantum discord decays along with the two-site distance
r in the gradual mode for SL-I phase but in the oscillating
mode for SL-II phase as shown in Fig. 11(c). Therefore, the
gradually decaying and damped oscillating mode of quantum
discord can serve as an effective diagnostic of quantum phases
as illustrated by Figs. 11(d) and 11(e).
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APPENDIX J: BEHAVIORS OF LONG-RANGE QUANTUM
DISCORD IN THE TOPOLOGICAL PHASES DRIVEN BY

THREE-SPIN INTERACTIONS

In the main text, we have analyzed the properties of dif-
ferent topological phases with the behaviors of long-range
two-site quantum coherence. Here, we will further demon-
strate that the behaviors of long-range quantum discord have
the same functionality for characterization on the topological
phases driven by three-spin interactions. The expression of
two-site reduced state (ρr = ρAB) is given in Eq. (2) of the
main text, and the related quantum discord DA can be calcu-
lated according to the formula in Eq. (14) of the main text
where the von Neumann entropies S(ρA) and S(ρAB) can be
obtained via some direct calculation, but the measurement-
induced conditional entropy

S̃(B|A) = min{EA
k }
∑

k

pkS(ρB|k ) (J1)

needs to be optimized by all the projective measurements {EA
k }

on the subsystem A.
Although the two-site reduced state ρr is still X shape

in the extended Ising model (γ �= 0 and δ �= 0), the method
presented in Ref. [107] for selecting the optimal measurement
of DA(ρAB) is not applicable due to the condition on matrix el-
ements |y+ + y−| � |y+ − y−| not being satisfied. Therefore,
in order to calculate the measurement-induced conditional
entropy in quantum discord, we will consider the situation
for all the projective measurements in which the measurement
operator can be written as [32,108]

EA
i = V |i〉〈i|V †, (J2)

where {|i〉} is the standard computational basis {|0〉, |1〉} and
the unitary transformation matrix V has the form

V =
(

cos θ
2 e−iφ sin θ

2

eiφ sin θ
2 − cos θ

2

)
, (J3)

in which the parameters satisfy 0 � θ � π and 0 � φ < 2π .
In this case, the quantum discord DA can be obtained via the
optimization of parameters θ and φ in measurement-induced
conditional entropy. After carefully numerical verifications
similar to those of Ref. [32], we find that the optimal pro-
jective measurements in Eq. (J1) correspond to the following
three cases:

EA
k(I) : θ = π/2, φ = π/2,

EA
k(II) : θ = π/2, φ = 0,

EA
k(III) : θ = 0, φ = 0, (J4)

with k = 1, 2, and then the measurement-induced conditional
entropy is

S̃(B|A) = min{EA
k(I),E

A
k(II),E

A
k(III)}

∑
k

pkS(ρB|k ). (J5)

In Fig. 12, we choose three typical quantum states of ρr for
which the optimal measurements for S̃(B|A) correspond to
EA

k(I), EA
k(II), and EA

k(III), respectively.

FIG. 12. The measurement-induced conditional entropies S̃(B|A)
for three typical quantum states ρr (r = 2) which correspond to
optimal projective measurements: (a) {EA

k(I)} for ρr with parameters
γ = 1, δ = −1, λ = 1, and α = 0.1, (b) {EA

k(II)} for ρr with param-
eters γ = 1, δ = −1, λ = 1, and α = −2.5, and (c) {EA

k(III)} for ρr

with parameters γ = 1, δ = −2, λ = −0.3, and α = 1.

Based on the previous analysis, we can derive the two-site
quantum discord

DA(ρr ) = S̃(B|A) − S(B|A), (J6)

where the quantum condition entropy S(B|A) = S(AB) −
S(A) and the measurement-induced conditional entropy
S̃(B|A) is given by Eq. (J5) in which

S̃(I)(B|A) =
∑
EA

k(I)

pkS(ρB|k )

= −β+ log2(β+) − β− log2(β−) (J7)

with β± = [1 ± (〈σ y
0 σ

y
r 〉2 + 〈σ z〉2)1/2]/2,

S̃(II)(B|A) =
∑
EA

k(II)

pkS(ρB|k )

= −λ+ log2(λ+) − λ− log2(λ−) (J8)

with λ± = [1 ± (〈σ x
0 σ x

r 〉2 + 〈σ z〉2)1/2]/2, and

S̃(III)(B|A) =
∑

EA
k(III)

pkS(ρB|k )

= −
∑

i=+,−
pi(ξilog2ξi + ηilog2ηi) (J9)

with p± = (1 ± 〈σ z〉)/2, ξ± = (1 − 〈σ z
0σ z

r 〉)/[2(1 ± 〈σ z〉)],
and η± = (1 ± 2〈σ z〉 + 〈σ z

0σ z
r 〉)/[2(1 ± 〈σ z〉)].

In Figs. 13(a)–13(c), we plot quantum discord DA(ρr )
as a function of three-spin interaction α and two-site dis-
tance r, where the different topological phases are labeled by
the corresponding winding numbers. In the case of N = 2,
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(a) (b) (c)

(d) (e)
(f)

FIG. 13. (a)–(c) The quantum discord DA(ρr ) as a function of
three-spin interaction α and two-site distance r in different topolog-
ical phases with winding numbers N = 0, ±1, and ±2 where the
other parameters are chosen to be γ = 1, δ = −1, and λ = 1. (d)–(f)
The behaviors of long-range two-site discord for some typical values
of α in the five quantum phases.

the quantum discord decays in the oscillating mode along
with two-site distance for a given value of α. However, in
the case of N = −2, quantum discord decays in the gradual
mode after a short two-site distance as shown in Fig. 13(c).
Moreover, the quantum discord in topological phase N = 0
can decay in both oscillating and gradual modes as shown in
Fig. 13(a). In particular, given a value of α, the nonzero quan-
tum discord in topological phases N = ±1 exhibits quantum
correlation freezing phenomenon after a short two-site dis-
tance as shown in Fig. 13(b). In the generic case, the freezing
quantum discord in topological phase N = 1 has a larger
value than that of quantum discord in topological phase N =
−1. In Figs. 13(d)–13(f), we select some typical values in
different topological phases and plot the long-range behaviors
of quantum discord, where the damped oscillating, gradually
decaying, and freezing modes of DA(ρr ) can serve as the ef-
fective diagnostic tools for quantum phases. It should be noted
that the steady quantum discord is the topologically protected
long-range quantum correlation and has the potential applica-
tions in quantum computation and quantum communication.
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