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Quantum geometry encoded to pair potentials

Akito Daido ,* Taisei Kitamura , and Youichi Yanase
Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

(Received 24 October 2023; revised 17 July 2024; accepted 16 August 2024; published 10 September 2024)

Bloch wave functions of electrons have properties called quantum geometry, which has recently attracted
much attention as the origin of intriguing physical phenomena. In this paper, we introduce the notion of the
quantum-geometric pair potentials (QGPP) based on the generalized band representation and thereby clarify how
the quantum geometry of electrons is transferred to the Cooper pairs they form. QGPP quantifies the deviation
of multiband superconductors from an assembly of single-band superconductors and has a direct connection
to the quantum-geometric corrections to thermodynamic coefficients. We also discuss their potential ability
to emulate exotic pair potentials and engineer intriguing superconducting phenomena including topological
superconductivity.
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I. INTRODUCTION

Recent years have witnessed a variety of exotic supercon-
ducting phenomena beyond the Bardeen-Cooper-Schrieffer
(BCS) paradigm. Topological superconductivity (TSC) [1–3]
is an example, which is characterized by the nontrivial topol-
ogy of the wave functions of Bogoliubov quasiparticles. At
the early stage of the research, topology coming from the
exotic Cooper-pair wave function in unconventional super-
conductors has mainly been investigated. On the other hand,
it has later been recognized that topology can also originate
from the nontrivial Bloch wave function of the normal-state
electrons. For example, Rashba superconductors become TSC
under strong Zeeman fields even with s-wave pairing, where
the normal-state Berry curvature is faithfully encoded to the
Bogoliubov quasiparticles (Fig. 1), thereby playing a role
similar to the chiral p-wave order parameter [4,5]. This idea
has significantly expanded the research field of TSC, as un-
conventional superconductors are rare in nature.

Generally speaking, the interesting properties of the wave
functions are quantified by the concept of quantum ge-
ometry [6,7]. Quantum geometry refers to the nontrivial
wave-number (or generally parameter) dependence of wave
functions around each wave number such as the Berry curva-
ture, while its global structure in the Brillouin zone gives rise
to the topology such as the Chern number. In superconductors,
wave functions of both Bloch electrons and Cooper pairs
contribute to quantum geometry, which describes as a whole
the quantum geometry of the superconducting states (Fig. 1).

Quantum geometry is important not only because it gives
rise to topology but also because it directly appears in
physical phenomena. Indeed, Berry curvature is known to
cause various Hall responses in normal and superconduct-
ing states [2,6], and its multipoles play important roles in
nonlinear Hall responses [8–13]. It has also been revealed
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that the quantum metric, another quantum-geometric quan-
tity, strongly enhances the two-dimensional superconducting
transition temperature in twisted bilayer graphene [14–17]
and FeSe [18]. This follows from the correction to the su-
perfluid weight by quantum geometry, which is overlooked in
the standard Fermi-liquid formula [19–23]. The effect of the
quantum metric on the coherence length [24–26], collective
modes [27,28], finite-momentum superconductivity [29–32],
Cooper-pair wave functions [33], and pairing interactions
[34,35] have also been investigated.

The discovery of the quantum-geometric corrections to
superconducting properties raises a question about to what
extent the textbook formulas of the BCS theory remain
valid in existing superconductors. In particular, a number
of non-BCS superconductors have recently been reported
even aside from unconventional superconductivity, includ-
ing superconductors in the BCS-Bose-Einstein-condensation
(BEC) regime [36–43], to which the twisted bilayer graphene
belongs. Quantum geometry is generally developed in sys-
tems with multiple degrees of freedom such as orbitals and
sublattices. A comprehensive understanding of the quantum-
geometric effects is indispensable to establishing a modern
theory of superconductivity.

FIG. 1. Schematic figure for the quantum geometric properties
encoded to Cooper pairs. The configuration of ± signs in the fig-
ure represents the electric quadrupole moment of the Bloch wave
packet, i.e., the quantum metric [44,45].
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In this paper, we provide a unified viewpoint on how the
quantum-geometric properties of normal-state electrons are
encoded to Cooper pairs (Fig. 1), with particular emphasis
on how they affect equilibrium properties. We clarify the
similarities and differences between the single-band model
and multiband systems, the former and the latter of which
lack and accompany quantum geometry, respectively. By
introducing the concept of the quantum-geometric pair poten-
tial (QGPP), we show that QGPP can naturally explain the
quantum-geometric contribution to the thermodynamic prop-
erties and can also be used as a guiding principle to explore,
e.g., TSC candidates. QGGP is applied to general systems
beyond flat-band ones as well as to general superconducting
order parameters. For this reason, we do not assume flat-band
dispersion throughout the paper unless otherwise specified.
The general formulation of QGPP is discussed after initially
illustrating QGPP for the plain s-wave state (assuming the so-
called uniform pairing) in the first few sections. The obtained
formulas are illustrated in a spinful bilayer model for various
order parameters with nontrivial matrix structures in the spin
and/or layer spaces, whereby we show that QGPP induced by
external fields can be used to emulate exotic superconducting
states.

II. QGPP IN SYSTEMS OF NONDEGENERATE BANDS

To clearly illustrate the basic concepts, we first assume
nondegenerate energy bands and the plain s-wave supercon-
ductivity whose pair potential is of the form

�0

∑
l

(c†
k↑,l c

†
−k↓,l − c†

k↓,l c
†
−k↑,l ). (1)

The index l runs over the internal degrees of freedom except
for spin such as sublattices and orbitals. We next discuss the
generalization to non-s-wave states in Secs. II E and III, where
the assumption of Eq. (1) is removed and general matrix pair
potentials are considered.

Throughout the paper, we neglect the external-field depen-
dence of the order parameter �0 in the orbital basis. Such
effects, if necessary, can be taken into account in our theory by
making an additional expansion of the order parameter in the
orbital basis in terms of the external field as determined from
the gap equation. This should be independently discussed for
each microscopic model as done in Ref. [22] since it requires
the details of the pairing interaction.

A. Band representation

Let us introduce Bogoliubov de-Gennes (BdG) Hamilto-
nian and its band representation. We consider the mean-field
Hamiltonian of the superconducting state,

Ĥ = 1

2

∑
k

�†(k)HBdG(k)�(k) + const., (2)

with the Nambu spinor

[�†(k)]l = (c†
↑,l (k), c†

↓,l (k), c↓,l (−k),−c↑,l (−k)). (3)

When we adopt Eq. (1), the BdG Hamiltonian in this basis is
given by

HBdG(k) =
(

HN(k) �0

�0 −U�HN(−k)T U †
�

)
, (4)

where HN(k) is the Bloch Hamiltonian of the normal state.
The gap function is proportional to the identity matrix, while
the spin-singlet wave function U� = isy in the usual basis
is removed by the choice of the Nambu spinor. Here, si

represents Pauli matrices in the spin space. An advantage
of this basis is that the hole sector becomes the time-
reversal partner of the electron sector: −U�HN(−k)T U †

� =
−�HN(−k)�−1, where �≡U�K and K represent the time-
reversal and complex-conjugate operators, and HN(−k)T =
HN(−k)∗ is used. These properties of this basis allow easier
access to the analogy with single-band superconductivity.

The band representation is a frequently used approach to
understand the properties of the BdG Hamiltonian HBdG(k).
We start from the normal-state Hamiltonian, which is diago-
nalized as

UN(k)HN(k)U †
N(k) ≡ ε(k), [ε(k)]nm = δnmεn(k). (5)

By writing the time-reversal partner of ε(k) as ε�(−k), we
obtain the BdG Hamiltonian in the band representation

Hb(k) ≡ Ub(k)HBdG(k)U †
b (k) (6a)

=
(

ε(k) �b(k)
�b(k)† −ε�(−k)

)
, (6b)

with Ub(k) = diag(UN(k),�UN(−k)�−1). The order param-
eter in the band basis is given by

[�b(k)]nm = �0 〈un(k)|�um(−k)〉 , (7)

with HN(k) |un(k)〉 = εn(k) |un(k)〉.
An important point here is that the system described by

a generally complicated Bloch Hamiltonian HN(k) recasts
into another system with a simple normal-state Hamiltonian
ε(k), a diagonal matrix. The effective order parameter Eq. (7)
generally has off-diagonal components but becomes diagonal
in the presence of time-reversal symmetry. Thus, in this case,
Eq. (4) recasts into the collection of the small two-by-two
matrices of the form

hnn(k) ≡
(

εn(k) �0

�∗
0 −εn(k)

)
. (8)

This allows us to intuitively understand the system based
on the textbook knowledge of the single-band superconduc-
tivity: For example, the low-energy spectrum is given by
±

√
εn(k)2 + |�0|2.

B. Quantum geometry in Cooper pairs

We have seen that the system may be understood by us-
ing the single-band model, in particular in the presence of
time-reversal symmetry. Indeed, the prescription is sufficient
to capture spectral properties like the specific heat and density
of states. However, such identification of multiband systems
with the assembly of single-band models is incomplete if we
are to consider the response to the perturbation.

To be specific, let us consider the case of the Cooper-pair
momentum 2q, or the applied supercurrent. For a single-band
s-wave superconductor, q is incorporated by

hsingle(k; q) =
(

ε(k + q) �0

�0 −ε(k − q)

)
. (9)
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The O(q) contribution causes the so-called Doppler shift
of the energy dispersion: The spectrum shifts upward or
downward by q · ∂kε(k). This effect makes the paramagnetic-
current contribution to the superfluid weight, which is
negligible at low temperatures. The O(q2) correction gives
rise to the diamagnetic-current contribution and is responsible
for the conventional expression of the superfluid weight Di j

S �
ne/mi j with ne the electron density and 1/mi j the inverse
effective mass tensor.

In contrast to the ideal single-band superconductivity, the
(n, n) sector of the band-represented Hamiltonian has the fol-
lowing form:

hnn(k; q) =
(

εn(k + q) [�b(k; q)]nn

[�b(k; q)]∗nn −εn(k − q)

)
. (10)

The effective order parameter in the band basis is given by

[�b(k; q)]nn = �0 〈un(k + q)|un(k − q)〉
= e−iθnn (k,q)�0

(
1 − qiq jG i j

n (k)
)
, (11)

up to O(q2). Here, we defined the phase θnm(k, q) ≡
γn(k, q) − γm(k,−q), with γn(k, q) = ∫ q

0 dq̄ jA
j
nn(k + q̄) =

q jA
j
nn(k) + O(q2). This is related to the Berry phase and is

the Wilson line along the open straight path 0 → q. Note
that the Wilson line includes the Berry connection Ai

nm(k) ≡
−i 〈un(k)|∂ki um(k)〉 and explicitly ensures the gauge covari-
ance.1

The important point is the appearance of the quantum met-
ric G i j

n (k) ≡ ∑
m 
=n Ai

nm(k)Aj
mn(k) + c.c. in the gap amplitude,

Eq. (11). This quantity measures the “distance,” or the dif-
ference, of the neighboring Bloch states at k ± q. Indeed, we
obtain

2qiq jG i j
n (k) = 1 − | 〈un(k + q)|un(k − q)〉 |2 � 0, (12)

up to O(q2), which vanishes for q = 0. For an intuitive un-
derstanding, note that for q = 0, Cooper pairs are formed
between the states with k and −k, whose wave functions are
essentially equivalent owing to the time-reversal symmetry.
In the presence of q 
= 0, there appears a mismatch of the
wave functions with the wave numbers k + q and −k + q,
since they are not related by symmetry. This mismatch causes
difficulty in forming the pair, decreasing the amplitude of
the effective pair potential. Such a correction to the band-
represented pair potential is dubbed QGPP in the following.

Another aspect of QGPP is the appearance of the interband
component,

[�b(k; q)]nm = �0
[ − 2iqiA

i
nm(k)

]
e−iθnm (k,q), (13)

for n 
= m up to O(q2). Equation (13) indicates that the in-
terband component necessarily appears under finite q, or the

1Indeed, the factor e−iθnn (k,q) acquires e−i[χn (k+q)−χn (k−q)] upon
gauge transformation |un(k)〉 → |un(k)〉 eiχn (k), which is the prop-
erty [�b(k; q)]nn should follow as understood from the first line of
Eq. (11). Direct Taylor expansion of the first line of Eq. (11) will lead
to collections of various gauge-dependent quantities, and thus the
introduction of the Wilson line is quite helpful to obtain physically
transparent expressions.

supercurrent, ensured by quantum geometry. Thus we cannot
simply identify the system as the collection of the single-band
superconductor with hsingle(k; q), as the different bands n and
m are coupled through Eq. (13).

In summary, combining Eqs. (11) and (13), QGPP for the
parameter q is defined by �g (k; q) as follows:

[�b(k; q)]nmeiθnm (k,q) = �0 δnm + [�g (k; q)]nm, (14)

while generalized definitions are given in latter sections by
Eqs. (28) and (36). In particular, �g (k; q) is O(q2) and O(q)
for the intra- and interband components, respectively. The
phase factor eiθnm (k,q) can be removed by a unitary transforma-
tion and is not essential for thermodynamic properties. Thus
the appearance of �g (k; q) is the only and essential differ-
ence in the single- and multi-band models for thermodynamic
properties.

The expression of the intraband QGPP for the supercurrent
in spin-singlet superconductors Eq. (11) has been pointed out
in Ref. [46] with allowing spatially nonuniform pairings. Here
and hereafter in this paper, we give the unified understanding
and description of QGPP for general superconducting order
parameters with internal degrees of freedom such as sub-
lattices and spin-triplet pairings. Note also that expressions
similar to Eqs. (11) and (13) in Refs. [27,28] are not gauge
covariant and thus different from QGPP.

C. Geometric contribution to free energy and susceptibilities

The presence of QGPP implies that multiband spin-singlet
superconductors respond to the perturbation differently from
the collection of single-band superconductors. To see this, we
expand the free energy �(q) in terms of the O(q) quantity
�g (k; q), in addition to the q dependence of the normal-state
dispersion. We obtain up to O(q2),

�(q) = −
∫

dd k

(2π )d

1

2β
tr ln[1 + e−βHb(k;q)] + const.

= �(0) + �c (q) + �g (q). (15)

Note that we can use Hb(k; q) instead of HBdG(k; q) to eval-
uate the free energy according to the circularity of the trace.
The conventional free energy �(0) + �c(q) is calculated by
the first line of Eq. (15) with replacing �b(k; q) with �0.
In this contribution, the effect of q is incorporated only
through the normal-state energy dispersion, and therefore,
single-band results hold true. Accordingly, �c(q) is divided
into paramagnetic- and diamagnetic-current contributions,

�c (q) = �para (q) + �dia (q), (16)

only the latter of which survives at zero temperature. On the
other hand, QGPP contribution to the free energy �g (q) de-
scribes the correction by �g (k; q) to the single-band picture.
After some calculations in Appendix A, �para (q), �dia (q) and
�g (q) are written down as follows:

�para (q) = 1

2
qiq j

∑
n

∫
BZ

dd k

(2π )d
∂qiεn∂q j εn f ′(En),

�dia (q) = 1

4
qiq j

∑
n

∫
BZ

dd k

(2π )d
∂qi∂q j εn

[
1 − εn

En
tanh

βEn

2

]
,
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�g (q) = 1

8
qiq j

∫
BZ

dd k

(2π )d
�2

0

∑
n 
=m

G i j
nm

∑
s,s′=±1

× (εn − εm)2

EnEm
ss′ f (sEn) − f (s′Em)

sEn − s′Em
. (17)

Here, ∂q indicates limq→0 ∂qεn(k + q) = ∂kεn(k), for exam-

ple. We defined the quasiparticle energy En =
√

ε2
n + �2

0

and the band-resolved quantum metric G i j
nm = Ai

nmAj
mn + c.c.,

while the wave-number dependence of quantities is implicit.
The integral runs over the first Brillouin zone (BZ), and d is
the dimension of the system. The Fermi distribution function
is denoted by f (E ) = (eβE + 1)−1 with the inverse tempera-
ture β.

The O(q2) coefficient of the free energy �(q) describes
the Meissner effect, and is known as the superfluid weight
Di j

S . According to Eq. (17), Di j
S is given by the sum of

three pieces: In addition to the text-book paramagnetic- and
diamagnetic-current contributions Di j

para + Di j
dia , there exists

QGPP contribution to the superfluid weight unique to multi-
band systems Di j

g :

Di j
S = Di j

para + Di j
dia + Di j

g , (18)

each of which is naturally given by Di j
g = ∂qi∂q j �g (q) and

so on. The contribution from QGPP, Di j
g , reproduces the ge-

ometric superfluid weight in the literature [19,20] [see also
Appendix A and Eq. (A15)], and thus QGPP offers a way to
interpret it.

D. Generalization to other perturbations

The concept of QGPP can be generalized to any pertur-
bation of the normal state. Equations (10)–(17) remain valid
for an arbitrary time-reversal-breaking parameter by simply
replacing q. For the case of the Zeeman magnetic field h, we
replace qi with hi, and accordingly, the Berry connection is
replaced with that for the field hi,

Ahi
nm(k) ≡ −i 〈un(k; h)|∂hi um(k; h)〉 |h→0

= 〈un(k)|si|um(k)〉
εn(k) − εm(k)

(n 
= m), (19)

which describes the quantum geometry related to spin s.
On the other hand, QGPP does not appear under time-
reversal-symmetric perturbations for the case of spin-singlet
superconductivity in systems of nondegenerate bands. Indeed,
the wave function of an electron remains essentially the same
as its time-reversal partner, and thus �b = �01 is preserved
according to Eq. (7). The absence of QGPP reminds us of the
absence of the depairing by time-reversal-symmetric pertur-
bations known as Anderson’s theorem [47], although QGPP
is absent not only for the s-wave but also for the d-wave
superconductivity as is clear by replacing �0 → �0(k2

x − k2
y ).

The generalization allows us to describe the crossed re-
sponse of q and h as well. Let us write time-reversal-breaking
fields as X = (q, h). The generalized susceptibility reads

χXaXb ≡ ∂Xa∂Xb�(X ) = χXaXb
para + χ

XaXb
dia + χXaXb

g . (20)

This corresponds to the superfluid weight for (Xa, Xb) =
(qi, q j ) and spin susceptibility for (Xa, Xb) = (hi, h j ), while
describes the supercurrent-induced magnetization, i.e. the
superconducting Edelstein effect [48–53], for (Xa, Xb) =
(hi, q j ). �(X ) and thus χXaXb are immediately obtained by re-
placing q → X in Eqs. (17), in particular with G i j

nm → GXaXb
nm ≡

AXa
nmAXb

mn + c.c.. The QGPP correction of the susceptibility also
implies the change in the transition temperature, as expected
from �g (X ) ∝ �2

0.
To illustrate the QGPP contribution to the susceptibilities,

let us consider the two-band model

HN(k + q; h) = ξ (k + q) + [g(k + q) − h] · s, (21)

where the first term is proportional to the identity matrix. This
is a minimal model for the noncentrosymmetric superconduc-
tors under the supercurrent and the magnetic field [54,55].
Here, g(k) = −g(−k) represents the antisymmetric spin-orbit
coupling, which is allowed without the inversion symmetry.

At zero temperature, we obtain χ
XiXj
para = 0 and

χ
XiXj

dia =
∫

BZ

dd k

(2π )d

∑
n=±1

1

m
XiXj
n

1

2

[
1 − εn

En

]
, (22a)

χ
XiXj
g = 4

∫
BZ

dd k

(2π )d
GXiXj

g2�2
0

(E+ + E−)E+E−
, (22b)

from Eqs. (17) with εn = ξ + ng, g = |g|, and the helicity
n = ±1. Here, the k dependence is implicit. The susceptibil-
ities are determined by the generalized inverse mass tensor
1/m

XiXj
n ≡ ∂Xi∂Xj εn and quantum metric tensor GXiXj , which is

given by(
Gqiq j GqiHj

GHiq j GHiHj

)
=

(
1
2∂ki ĝ · ∂k j ĝ − 1

2g∂ki ĝ j

− 1
2g∂k j ĝi

1
2g2 (δi j − ĝiĝ j )

)
. (23)

The direction of the g-vector is denoted by ĝ ≡ g/g.
The susceptibility is further simplified for weak-coupling

superconductors, where the Fermi energy EF is much larger
than the g-vector g and the order parameter �0. We obtain

χ
XiXj

dia � [
χ

XiXj

dia

]
�0=0, (24a)

χ
XiXj
g � 4N (0)〈g2 GXiXj I (�0/g)〉FS , (24b)

with the Fermi-level density of states N (0) defined for
ξ (k) and the average over its Fermi surface 〈·〉FS . As is
the case for the superfluid weight, the diamagnetic contri-
bution χ

XiXj

dia is approximated by that in the normal state.
The geometric contribution includes a dimensionless function
I (δ) ≡ δ2√

1+δ2 tanh−1 1√
1+δ2 , which is obtained after integra-

tion over ξ and monotonically increases from 0 to 1 as δ =
�0/g grows (Fig. 2). We neglected the ξ dependence of the
g-vector, the generalized inverse mass tensor, and the quantum
metric, for simplicity.

For the case of the superfluid weight (Xa, Xb) = (qi, q j ),
Eqs. (22a) and (24a) clearly reproduces the Fermi-liquid for-
mula Di j

c ∼ ne/mi j . The ratio of the geometric term to Di j
c

is estimated to be χ
qiq j

g /χ
qiq j

dia ∼ g2

E2
F
I (δ), that is, ∼�2

0

E2
F

ln( g
�0

)

for �0 � g, and ∼g2/E2
F for g � �0. Thus the geometric

superfluid weight would become important in the BCS-BEC
crossover regime EF ∼ � as exemplified in previous studies
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FIG. 2. Plot of the function I (δ) ≡ δ2√
1+δ2

tanh−1 1√
1+δ2

.

[19–23], though strictly speaking the weak-coupling expres-
sions (24) are not applicable in the strong-coupling region
EF ∼ �.

For the spin susceptibilities (Xa, Xb) = (hi, h j ), only the
information around the Fermi surfaces comes into play due to
the cancellation between different helicity bands. We obtain

χ
hih j

dia � −2N (0) 〈δi j − ĝiĝ j〉FS , (25a)

χ
hih j
g � 2N (0) 〈I (�0/g)(δi j − ĝiĝ j )〉FS . (25b)

Here, an extra minus sign appears compared with the usual
definition ∂Mi/∂h j = −χhih j . Note that the spin susceptibil-

ity χ
hih j

dia + χ
hih j
g vanishes in the centrosymmetric spin-singlet

superconductors (g � �0), while only the ĥ ‖ ĝ part vanishes
in the noncentrosymmetric limit (g � �0), as it should be
[54,55]. It should be noticed that QGPP is responsible for the
crossover between these two limits, whose key parameter is
�0/g instead of �0/EF. Note also that for g 
= 0, χ

hih j

dia cor-
responds to the Van-Vleck susceptibility of the normal state,
while the Pauli susceptibility vanishes in the superconducting
state at zero temperature. The geometric susceptibility χ

hih j
g

makes a superconducting and quantum-geometric correction
to the Van Vleck term. This is consistent with the observation
in Ref. [56].

The superconducting Edelstein effect is described by the
response formula Mi = αi j j j , with magnetization M and su-
percurrent j. The coefficient αi j = χhiqk [χqq]−1

k j depends on

the susceptibility χhiq j , which is obtained as

χ
hiq j

dia � 2N (0)
〈
g∂k j ĝi

〉
FS

, (26a)

χ
hiq j
g � −2N (0)

〈
gI (�0/g)∂k j ĝi

〉
FS

. (26b)

The ratio of QGPP contribution to conventional one is again
I (�0/g) ∼ O(�0/g)2 for �0 � g, and thus χ

hiq j
g is quantita-

tively important when �0 ∼ g.
In summary, the QGPP contribution can be important when

�0 is comparable to some of the energy scales in the normal
state. For the superfluid weight, a large ratio of the order
parameter to Fermi energy is required, and thus the BCS-
BEC superconductors such as FeSe [36], LixZrNCl [37–39],
and twisted bi- and trilayer graphene [40–43] offer a good
platform. For the spin susceptibility and the superconducting
Edelstein coefficient, the ratio to spin-orbit coupling instead

of Fermi energy is important. In particular, QGPP plays an
essential role in the crossover from the centrosymmetric to
noncentrosymmetric spin-singlet superconductivity.

In this section, we have focused on the quantum-geometric
terms in the free energy quadratic regarding the external fields.
On the other hand, quantum-geometric terms can also appear
in the first order of the external fields. Anapole supercon-
ductivity [57] offers such an example, which refers to the
superconductivity spontaneously breaking the time-reversal
symmetry but preserving the �I symmetry, namely the com-
bined time-reversal and inversion symmetry. More precisely,
the quadratic product of the order parameter should have
a component symmetry-equivalent to the supercurrent: This
defining property allows the q-linear coupling in the free en-
ergy. The quantum-geometric origin of such a coupling has
been discussed [29], and would also be understood based on
the concept of QGPP. The impact of quantum geometry on
field-linear couplings in exotic superconductivity is an inter-
esting future direction.

E. Generalization to non-s-wave states

We here generalize QGPP to arbitrary pair potentials for
nondegenerate bands and discuss its potential ability to engi-
neer exotic superconducting phenomena. Generally speaking,
pair potential �(k) has a matrix structure and depends on
the wave number. For example, we can write �(k) = ψ (k) +
d(k) · s when the system has only the spin degree of freedom.
Here, ψ (k) and d(k) describe the spin-singlet and -triplet
Cooper pairs, respectively, and coexist in the absence of the
inversion symmetry. The pair potentials in the band basis with
and without time-reversal breaking fields X are then given by
[�b(k)]nm = 〈un(k)|�(k)|um(k)〉 and

[�b(k; X )]nm = 〈un(k; X )|�(k)|um(k; −X )〉 , (27)

respectively, instead of Eqs. (7), (11), and (14), for arbitrary
systems without degenerate bands.

QGPP induced by time-reversal breaking fields X can be
obtained by expanding �b(k; X ). In doing so, it is transparent
to expand the combination [�b(k; X )]nmeiθnm (k;X ) rather than
[�b(k; X )]nm itself to ensure the gauge covariance, as detailed
in Appendix B. The result is

[�b(k; X )]nmeiθnm (k;X ) = [�b(k) + �g (k; X )]nm, (28)

with

�g (k; X ) = −iXi
{
AXi

inter (k),�b(k)
} + O(X 2). (29)

Here, we defined the interband Berry connection
[AXi

inter (k)]nm ≡ (1 − δn,m)AXi
nm(k). Similarly to the s-wave

case, Eq. (29) ensures the presence of the interband
order parameter under time-reversal breaking fields such
as supercurrent and Zeeman field.

Interestingly, a finite intraband component can be obtained
from Eq. (29) when the original order parameter has an inter-
band component. Let us consider the system with only the
spin degree of freedom and lacks inversion symmetry. The
normal-state Hamiltonian is generally written as a two-by-two
matrix,

HN(k) = ξ (k) + g(k) · s, (30)
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where g(k) is the antisymmetric spin-orbit coupling such as
the Rashba-type one. For the pair potential �(k) = ψ (k) +
d(k) · s, the intraband component without the field X is given
by [�b(k)]nn = ψ (k) + nd(k) · ĝ(k), where n = ±1 is the
band index or the helicity of normal electrons and specifies
electron’s spin parallel and antiparall to the g-vector, respec-
tively. The intraband component of QGPP induced by the
Zeeman field −h · s is given by

[�g (k; h)]nn = i

|g(k)|2 h · g(k) × d(k). (31)

For the case of the supercurrent X = q, the Zeeman field h
on the right-hand side is replaced with −[q · ∇k]g(k). The
derivation of the results are given in Appendix B 1.

Importantly, the induced QGPP inherits the symmetry of
the external field X : The effective intraband pair potential
[�b(k) + �g (k; X )]nn breaks time-reversal symmetry and is
analogous to that of chiral superconductivity. This implies
the possibility of TSC induced by quantum geometry. Indeed,
Eq. (31) gives a unified description of the previously proposed
gap opening and TSC in mixed d- and p-wave superconduc-
tors under the Zeeman field [58–60] and supercurrent [61,62].
With Rashba-type spin-orbit coupling and Zeeman field, the
intraband pair potential is of the form [see Ref. [60] for
deitals]

[�b(k) + �g (k; X )]nn ∼ k2
x − k2

y + i kxky. (32)

This effectively realizes spinful chiral dx2−y2 + idxy-wave su-
perconductivity with Chern number 4.

It should be noted that QGPP is not the only way to en-
code the quantum geometry of normal states into Bogoliubov
quasiparticles. Actually, the unitary matrix to band representa-
tion Ub(k) can contribute to topological invariants, though not
to the free energy and thus not to thermodynamic properties.
A finite Chern number of topological s-wave superconduc-
tivity [4,5] is achieved by its contribution. In this sense, the
QGPP contribution to TSC describes the topological proper-
ties relative to the putative system where the effective order
parameter in the band basis �b(k; X ) = �b(k) + �g (k; X ) is
formally replaced with a trivial s-wave order parameter �01.
The engineering of exotic superconducting properties based
on both Ub(k) and QGPP is important especially to identify
TSC candidates. The former is completely determined by
the normal-state properties, while the effect of nontrivial pair
potential is fully captured by QGPP.

III. QGPP IN SYSTEMS WITH ENTANGLED BANDS

We finally discuss the general situations where the bands
can have nontrivial band degeneracy. This allows us to de-
scribe systems with combined inversion and time-reversal
symmetries along with the spin-orbit coupling, such as
centrosymmetric metals at zero magnetic fields and �I-
symmetric antiferromagnets. The formalism can also be
applied to several bands that are entangled and have degen-
eracy in some discrete points in the Brillouin zone, that is,
Dirac and Weyl fermions in the general sense.

A. QGPP and generalized band representation

Here we show the results of QGPP and related concepts for
general situations. The derivation is given by introducing the
non-Abelian generalization of the phase factor eiθnm (k;X ) and
also the concept of the quantum-geometry factor, as discussed
in Appendix C.

We can generally perform a unitary transformation of the
BdG Hamiltonian to obtain the expression like

H̄b(X ) =
(

ε̄(X ) �b + �g (X )
�

†
b + �g (X )† −ε̄(−X )

)
. (33)

Here and hereafter, we drop the argument k unless necessary
since all the quantities share the same wave number. We call
Eq. (33) the generalized band representation (GBR) of the
BdG Hamiltonian. GBR recasts to the Bloch basis adopted
to study nonlinear optical responses in Ref. [63] when X is
the vector potential and the band degeneracy is absent. Let us
consider the degenerate bands in the absence of the external
fields. The normal-state component ε̄(X ) is a block-diagonal
matrix [ε̄(X )]nλ,n′λ′ = δnn′ [εn(X )]λλ′ , and is explicitly given by

[ε̄n(X )]λλ′ = εnδλλ′ + Xi
〈
u(λ)

n

∣∣∂Xi HN

∣∣u(λ′ )
n

〉
, (34)

neglecting O(X 2) terms, whose leading-order term is available
in Appendix C. Here, we introduced the eigenstates |u(λ)

n 〉 for
X = 0, whose eigenvalues are degenerate:

HN |u(λ)
n 〉 = εn

∣∣u(λ)
n

〉
(λ = 1, 2, . . . ). (35)

We can show that the effective order parameter in GBR

�̄b(X ) ≡ �b + �g (X ), (36)

is given by the sum of that in the absence of the field X ,

[�b]nλ,n′λ′ = 〈
u(λ)

n

∣∣�∣∣u(λ′ )
n′

〉
, (37)

and QGPP,

�g (X ) = −iXi
{
AXi

inter,�b
} + 1

2 XiXj
( − i

[
AXi,

inter;Xj
,�b

]
− {

AXi
inter,

{
A

Xj

inter,�b
}}) + O(X 3), (38)

whose first and third terms naturally generalize Eqs. (29) and
(11). The second term includes the covariant derivative of
the Berry connection AXi

inter;Xj
, which is a quantum-geometric

quantity giving rise to the shift-current optical responses
[64–67]. It should also be noted that the last term does not
coincide with the quantum metric except for the case of plain
spin-singlet superconductivity �b ∝ 1. The formula (38) is
one of the central results of this paper, suggesting quantum-
geometric corrections to equilibrium properties beyond the
quantum metric.

The above expressions almost remain valid even when the
degeneracy is slightly lifted, that is, for a system of entan-
gled bands. In this case, we have only to replace εn → εnλ

in Eqs. (34) and (35). We also note that similar expressions
are obtained for time-reversal-symmetric perturbations. We
discuss this point in Appendix C 4 and show in Appendix E
an application to the weakly noncentrosymmetric bilayer un-
der the Zeeman field, where a noncentrosymmetric two-band
model is extracted as the effective Hamiltonian.

Note that we have neglected the external-field dependence
of the pair potential in the orbital basis � to simplify the

094505-6



QUANTUM GEOMETRY ENCODED TO PAIR POTENTIALS PHYSICAL REVIEW B 110, 094505 (2024)

discussion. If it is necessary, we can simply replace the
orbital-basis order parameter � with that determined self-
consistently, namely �(X ), by solving the gap equation in the
external field. This amounts to replacing �b here and hereafter
with �b(X ). The net thermodynamic coefficients, for exam-
ple, can be obtained by additionally expanding �b(X ) by X
up to O(X 2). If this is done, the obtained superfluid weight,
for example, should coincide with that of, e.g., Ref. [22].

As illustrated in previous sections for the plain s-wave su-
perconductivity, QGPP describes all the quantum-geometric
effects on the thermodynamic responses for a given pair po-
tential in the orbital basis. This can be explicitly seen by
following the discussion near Eq. (15) and that in Appendix A
for the plain s-wave superconductivity. The free energy in the
field X is given by

�(X ) = −
∫

dd k

(2π )d

1

2β

∑
ωn

tr ln
[
Ḡ−1

b (iωn, X )
] + const.,

(39)

where ωn is the fermion Matsubara frequency and
Ḡ−1

b (iωn, X ) = iωn − H̄b(X ) is the inverse Green’s function
in GBR. The inverse Green’s function can be separated into
two parts, i.e., the conventional one

Ḡ−1
c (iωn, X ) = iωn −

(
ε̄(X ) �b

�
†
b −ε̄(−X )

)
(40)

and the QGPP in the Nambu space,

�̂g (X ) ≡
(

0 �g (X )
�†

g (X )

)
. (41)

Since Ḡ−1
c (iωn, X ) contains the X dependence only through

the “energy dispersion” ε̄(X ), Ḡ−1
c (iωn, X ) contains no

quantum-geometric effects in this sense.2 By using

ln
[
Ḡ−1

b (iωn, X )
] = ln

[
Ḡ−1

c (iωn, X )
]

(42)

+ ln[1 − Ḡc (iωn, X )�̂g (X )], (43)

the first term describes the thermodynamic response without
the quantum geometry, namely the conventional contribution.
It is now evident that all the quantum-geometric effects on
the thermodynamic responses come from the second term,
namely, the contribution from the QGPP.

In the remainder of this section, we illustrate the concept
of QGPP and GBR in non-Abelian situations, taking a locally
noncentrosymmetric bilayer model with Kramers degeneracy
as an example. Systems under the supercurrent and the Zee-
man field are discussed order by order.

2In general ε̄(X ) can have a matrix structure, e.g., when the
Kramers degeneracy is lifted by the magnetic field h as seen in
the following sections. In this case ε̄(X ) is the collection of two-
by-two matrices. Each two-by-two sector describes the well-known
anisotropic spin susceptibility of spin-triplet superconductors, for
example. In this paper, the quantum-geometric effects are intended
to mean the effects beyond such situations.

B. Illustration with spinful bilayer models

Let us consider a locally noncentrosymmetric bilayer

HN(k) = ξ (k) + t⊥(k)ηx + g(k) · s ηz (44)

to illustrate QGPP. Here, ηi are the Pauli matrices in the layer
space. The Hamiltonian preserves the inversion and time-
reversal symmetries by assuming g(k) = −g(−k),

IHN(k)I† = HN(−k), �HN(k)�−1 = HN(−k), (45)

with I = ηx, � = isyK , and the complex-conjugation operator
K . Thus the system has the Kramers degeneracy on the whole
Brillouin zone. The spectral decomposition of the Hamilto-
nian is given by

HN =
∑
n=±

εnPn, (46)

with εn = ξ + nR, R =
√

t2
⊥ + g2, g = |g| and

Pn = n(HN − ε−n)

ε+ − ε−
. (47)

Here and hereafter, we abbreviate the argument k again.
To gain physical insight, it is convenient to adopt the

manifestly covariant Bloch basis (MCBB) for gauge fixing,
because MCBB makes the Kramers degree of freedom to
transform in the same way as the real spin [68]. For the case of
the spinful bilayer models, the matrix element of an arbitrary
matrix A in the MCBB gauge can be calculated by the formula
[see Appendix D]〈

uσ
n

∣∣A∣∣uσ ′
n′

〉 = [
a0

nn′ (A) + ann′ (A) · σ
]
σσ ′,

aμ

nn′ (A) = Tr [Pη
+sμPnAPn′ ]√

Tr [PnPη
+]Tr [Pn′Pη

+]
, Pη

+ ≡ 1 + ηx

2
, (48)

with μ = 0, 1, 2, 3 and s0 = 1. Here we used σ instead of λ

to distinguish the degenerate eigenstates, to emphasize that
the degeneracy is due to the Kramers degree of freedom, i.e.,
the pseudospin.

1. Zeeman field

Let us consider the case of the Zeeman field. In this
case, Xi∂Xi HN = −h · s, and thus by substituting this for A in
Eq. (48), we obtain the normal-state part

ε̄n(h) = εn − hn · σ + O(h2). (49)

This means that the originally degenerate bands acquire a
Zeeman splitting, with the effective magnetic field

hn = [ĝ · h]ĝ + n
t⊥
R

ĝ × [h × ĝ],

≡ h‖ + n
t⊥
R

h⊥, (50)

where ∂hi
n/∂h j corresponds to the (k-dependent) g-factor of

the band n. Here, we defined the unit vector ĝ = g/g and the
component of the magnetic field parallel and perpendicular to
the g-vector as

h‖ ≡ [ĝ · h]ĝ, h⊥ ≡ ĝ × [h × ĝ] = h − h‖, (51)
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respectively. The interband Berry connection for the Zeeman
field is given by

hi
[
iAhi

inter

]
n,−n = ng

2R2
h⊥ · σ, (52)

which simply means that the magnetic field perpendicular to
the g-vector causes the interband transitions.

To illustrate QGPP for the Zeeman field, we consider two
examples of the superconducting order parameter that typi-
cally appear in bilayer superconductors. One is the even-parity
order parameter

�e = ψ + d · s ηz, (53a)

and the other is the odd-parity order parameter

�o = ψ ηz + d · s. (53b)

The first component of the even-parity order parameter �e is
the spin-singlet pair potential ψ . The other component d · sηz

is the spin-triplet pair-density-wave state, which belongs to
an even-parity representation and thus is generally admixed.
The first component ψηz in the odd-parity order parameter
�o is the pair-density-wave state, while the second component
corresponds to the spin-triplet pairing state. The realization
of the order parameter like �o has been theoretically pre-
dicted in bilayer superconductors [60,69] and has recently
been discussed for the high-field superconducting phase of a
two-phase superconductor CeRh2As2 [70,71].

In GBR with MCBB, the even-parity order parameter is
given by

[�e,b]nn′ = δnn′
[
ψ + ng

R
d · ĝ

]

+ δn,−n′

[
−d · ĝ

t⊥
R

− ind × ĝ · σ

]
, (54)

from Eqs. (48) and (53a). The odd-parity order parameter is
given by

[�o,b]nn′ = δnn′

[
ψ

ng

R
ĝ + d‖ + n

t⊥
R

d⊥

]
· σ

+ δn,−n′

[
−ψ

t⊥
R

ĝ + g

R
d⊥

]
· σ, (55)

from Eqs. (48) and (53b), by introducing d‖ = [d · ĝ]ĝ and
d⊥ ≡ ĝ × [d × ĝ]. The intraband components of the even- and
odd-parity order parameters are purely pseudospin-singlet and
-triplet, respectively, in accordance with the inversion symme-
try.

By using Eq. (52), the field-linear QGPP is given by

[�e,g (h)]nn′ = −[
ihiA

hi
inter

]
n,−n[�e,b]−n,n′

− [�e,b]n,−n′
[
ihiA

hi
inter

]
−n′,n′

= δnn′

[−i

R2
h · d × g

]
− δn,−n′

[
ψ

ng

R2
h⊥ · σ

]
,

(56)

for the even-parity order parameter. For the odd-parity order
parameter, we obtain

[�o,g (h)]nn′ = δnn′

[
−iψ

ngt⊥
R3

ĝ × h + i
ng2

R3
d⊥ × h⊥

]
· σ

+ δn,−n′

[
i
gψ

R3
h × g + i

gt⊥
R3

h⊥ × d⊥

]
· σ.

(57)

The obtained QGPP indicates that chiral superconductivity
is effectively realized for the even-parity order parameter,
in a way similar to the Abelian case discussed previously
(Sec. II E). Actually, the BdG Hamiltonian in GBR + MCBB
has the form

H̄b(h) = ⊕n=±

(
εn − hn · σ ψn(h)

ψ∗
n (h) −εn − hn · σ

)
, (58a)

ψn(h) ≡ ψ + ng

R
d · ĝ − i

1

R2
h · d × g, (58b)

when the interband order parameter [�̄b(h)]n,−n is neglected
as validated for |ψ | � R. On the other hand, nonunitary spin-
triplet states are effectively realized for the odd-parity pairing.
By writing the BdG Hamiltonian in GBR + MCBB as

H̄b(h) = ⊕n=±

(
εn − hn · σ dn(h) · σ

d∗
n(h) · σ −εn − hn · σ

)
, (59)

neglecting [�̄b(h)]n,−n, we obtain the effective spin-triplet
order parameter, for example,

dn(h) = ψ
ng

R

[
ĝ + i

t⊥
R2

h × ĝ

]
, (60)

for the purely pair-density-wave state ψ 
= 0 and d = 0, and
its nonunitarity is represented by

dn(h) × d∗
n(h) = −2i|ψ |2 t⊥g2

R4
h⊥. (61)

For the case of the staggered Rashba spin-orbit coupling
g(k) ∼ (−ky, kx, 0), the perpendicular magnetic field h⊥ =
(0, 0, hz ) gives rise to the the perpendicular Cooper-pair mag-
netization as expected from Eq. (61).

2. Supercurrent

For the case of the supercurrent, we consider an even-parity
order parameter

�e2 = ψ + ψ ′ηx, (62)

to highlight the difference from the Zeeman field. The order
parameters ψ and ψ ′ represent coexisting spin-singlet Cooper
pairs within and between the layers, respectively, and the
GBR+MCBB expression is given by

[�e2,b]nn′ = δnn′

[
ψ + nt⊥

R
ψ ′

]
+ δn,−n′

[
g

R
ψ ′

]
. (63)

The system preserves combined inversion and time-
reversal symmetry (�I symmetry) even under the supercur-
rent, and therefore the spectrum remains degenerate:

ε̄n(q) = εn + q · vn + O(q2), (64)
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whose leading-order term represents the Doppler shift with
the group velocity vn ≡ ∇kεn. The interband Berry connection
for the supercurrent coincides with the usual Berry connection
and is given by

qi
[
iAi

inter

]
n,−n = −ng[q · ∇k]t⊥

2R2
+ nt⊥[q · ∇k]g

2R2

+ i
[q · ∇kg] × ĝ

2R
· σ. (65)

The field-linear QGPP for the even-parity order parameter
�e2 in Eq. (63) is given by

[�e2,g (q)]nn′ = δnn′

[
−iψ ′ [q · ∇kg] × g

R2
· σ

]

+ δn,−n′
[ − 2ψqi

[
iAi

inter

]
n,−n

]
. (66)

The intraband component effectively realizes the so-called
anapole superconductivity [29,57] in accordance with the pre-
served �I symmetry. Indeed, the effective intraband order
parameter

[�̄e2,b(q)]nn = ψ + nt⊥
R

ψ ′ − iψ ′ [q · ∇kg] × g
R2

· σ, (67)

is a s + ip-wave state when ψ and ψ ′ are k-independent and
g(k) is linear in k. This result indicates the engineering of
the pseudospin-triplet component, out of only the even-parity
spin-singlet Cooper pairs.

In closing the section, we make a comment on
the covariant-derivative term of QGPP −i[AXi

inter;Xj
,�b] in

Eq. (38). For the case of the supercurrent X = q, the covariant
derivative of the Berry connection is given by

[
iAi

inter; j

]
n,−n

= nt⊥
2R2

[
ĝ · ∂ki∂k j g − 2g

R2
∂ki g∂k j g

]

+
[

ig3

2R3
∂ki∂k j ĝ + it2

⊥
2R3

∂ki∂k j g
]

× ĝ · σ, (68)

and coincides with the usual definition, i.e., that for the
wave-number space. Here we neglected the k derivatives
of t⊥ for simplicity. This expression indicates that the term
−i[Ai

inter; j,�b] generally becomes finite as is explicitly con-
firmed for the order parameters in GBR given in Eqs. (54),
(55), and (63), leading to a quantum-geometric contribution
to equilibrium properties.

IV. SUMMARY

In this paper, we have elucidated how the quantum ge-
ometry of normal electrons is encoded to Cooper pairs, by
introducing the notion of quantum-geometric pair potential
(QGPP). QGPP describes the change of the pair-potential
in the band representation in response to the external field,
and is essential to understand the superconducting proper-
ties in the external field. We have clarified that QGPP is
solely responsible for the quantum-geometric corrections to
the thermodynamic coefficients for a given pair potential in
the orbital basis. QGPP is introduced in the generalized band
representation (GBR), which ensures an explicit gauge co-
variance for each Taylor coefficient in terms of the external
field. We illustrated the basic ideas based on the system of

nondegenerate bands from plain s-wave superconductivity to
arbitrary pair potentials and then discussed its extension to
the system with degenerate and/or entangled bands. GBR
with QGPP in multiorbital systems offers a concise analyt-
ical method to reduce the system’s degrees of freedom and
derive the effective Hamiltonian, which helps to understand
the equilibrium properties of the system based on the known
results of the simpler models. QGPP describes the correction
to the pair potential from the external field and quantum
geometry, not only contributing to thermodynamic properties
but also offering a guiding principle to design exotic super-
conducting states such as chiral superconductivity, nonunitary
spin-triplet superconductivity, anapole superconductivity, and
topological superconductivity. QGPP can play a particularly
important role in flat-band superconductors and/or supercon-
ductors with a shallow Fermi sea, i.e., those in the BCS-BEC
regime, as well as in systems with nearly degenerate bands
near the Fermi energy.
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APPENDIX A: QUANTUM-GEOMETRIC EXPANSION

In this section, we derive quantum-geometric correction to
the free energy based on QGPP. Hereafter, we keep the argu-
ments of the quantities implicit when they are unnecessary.
Based on the discussion in the main text, we start from

� = −
∫

dd k

(2π )d

1

2β
tr ln[1 + e−βHb ] + const. (A1)

In principle, all we have to do is simply expand Hb in terms
of �g , an O(X ) quantity. Here, we take another route, which
allows a transparent expansion regarding QGPP. We rewrite �

by using the Green’s function

� = −
∫

dd k

(2π )d

1

2β

∑
ωn

tr ln
[
G−1

b (iωn)
] + const., (A2)

with G−1
b = iωn − Hb. Here and hereafter, the convergence

factor is abbreviated, which is unnecessary for our purpose.
By defining the Green’s function free from the quantum ge-
ometry

G−1
c (iωn) ≡ iωn −

(
ε(X ) �0

�
†
0 −ε(−X )

)
, (A3)

the Dyson equation reads

Gb(iωn)−1 = Gc (iωn)−1 − �̂g

= Gc (iωn)−1[1 − Gc (iωn)�̂g ], (A4)

where we introduced the matrix

�̂g ≡
(

0 �g

�†
g 0

)
. (A5)
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This allows us to separate the contribution of QGPP,

� = �c + �g , (A6)

with

�c = −
∫

dd k

(2π )d

1

2β

∑
ωn

tr ln
[
G−1

c (iωn)
] + const., (A7)

�g = −
∫

dd k

(2π )d

1

2β

∑
ωn

tr ln[1 − Gc (iωn)�̂g ]. (A8)

1. Conventional free energy

We first discuss the conventional free energy �c . By defi-
nition, we obtain

�c (X ) = [�(X )]�g →0

= −
∫

dd k

(2π )d

1

2β
tr ln[1 + e−βHc ] + const., (A9)

with

Hc (k; X ) =
(

ε(X ) �0

�
†
0 −ε(−X )

)
. (A10)

Since this is a direct sum of single-band superconductivity,
textbook calculations are available. We obtain

�c (X ) = �c (0) + �para (X ) + �dia (X )

= �(0) + �para (X ) + �dia (X ), (A11)

with

�para (X ) = 1

2
XaXb

∑
n

∫
BZ

dd k

(2π )d
∂Xaεn∂Xbεn f ′(En),

�dia (X ) = 1

4
XaXb

∑
n

∫
BZ

dd k

(2π )d
∂Xa∂Xbεn

·
[

1 − εn

En
tanh

βEn

2

]
. (A12)

We used the fact that
∑

n

∫
BZ

dd k
(2π )d ∂Xi∂Xj εn vanishes, which

can be checked explicitly for X = q, h. (If this does not hold,
the 1

2

∫
BZ

dd k
(2π )d tr [HN] term included in the “const.” in the free

energy depends on X . Taking account of this contribution, the
above results are reproduced by the cancellation. Note also
that the time-reversal symmetry is assumed in the absence of
X , leading to vanishing O(X ) contribution.)

2. Quantum-geometric free energy

We obtain the expansion of �g as follows:

�g = �1 + �2 + O(X 3), (A13a)

with

�1 =
∫

dd k

(2π )d

1

2β

∑
ωn

tr [Gc (iωn)�̂g ], (A13b)

�2 =
∫

dd k

(2π )d

1

4β

∑
ωn

tr [(Gc (iωn)�̂g )2]. (A13c)

To evaluate the first term, note that Gc(iωn) includes only
the intraband component. Accordingly, only the intraband

component of �g contributes, which is O(X 2). Thus we can
replace Gc(iωn) with the Green’s function in the absence of
the field X . By writing its nth band component as

gn(iωn)−1 = iωn − εnτz − �0τx, (A14)

with the Pauli matrices in the Nambu space τμ, we obtain

�1 =
∫

dd k

(2π )d

1

2β

∑
ωn,n

tr τ [τx gn(iωn)]
[ − �0XaXbGXaXb

n

]

=
∫

dd k

(2π )d

1

β

∑
ωn,n

[ − �2
0XaXbGXaXb

n

]
(iωn − En)(iωn + En)

= 1

2
XaXb

∫
dd k

(2π )d

∑
n

�2
0 GXaXb

n

tanh βEn/2

En
. (A15)

This term makes a dominant contribution to the superfluid
weight of the flat-band superconductivity [20]. Here, we de-
fined the quantum metric GXaXb

n ≡ ∑
m 
=n AXa

nmAXb
mn + c.c., with

the Berry connection AXa
nm ≡ −i 〈un(k; X )|∂Xa um(k; X )〉 |X→0.

To evaluate the second term of �g , Gc (iωn) can again be
replaced with those at X = 0, since �g = O(X ). In particular,
only the interband component of �g is O(X ), and thus we
obtain

�2 =
∫

dd k

(2π )d

1

4β

∑
ωn,n 
=m

× tr τ [gn(iωn)[�g ]nmgm(iωn)[�g ]mn]

=
∫

dd k

(2π )d

XaXb

4

∑
n 
=m

8�2
0AXa

nmAXb
mn

· 1

β

∑
ωn

−�2
0 + (iωn + εn)(iωn − εm)(
ω2

n + E2
n

)(
ω2

n + E2
m

) . (A16)

To obtain the second line, note that ωn-odd components van-
ish. By using the decomposition such as

− iωn + εn

ω2
n + E2

n

= 1

2

∑
s=±1

(
1 + sεn

En

)
1

iωn − sEn
, (A17)

we obtain

1

β

∑
ωn

−�2
0 + (iωn + εn)(iωn − εm)(
ω2

n + E2
n

)(
ω2

n + E2
m

)
= 1

4

∑
s,s′=±1

ss′�2
0

EnEm

f (sEn) − f (s′Em)

sEn − s′Em

+ 1

4

∑
s,s′=±1

(
1 + sεn

En

)(
1 − s′εm

Em

)
f (sEn) − f (s′Em)

sEn − s′Em
.

(A18)

Since this is symmetric with respect to the permutation of n
and m, we can replace XaXbAXa

nmAXb
mn with

XaXbRe
[
AXa

nmAXb
mn

] = XaXb

2
GXaXb

nm , (A19)

with GXaXb
nm ≡ AXa

nmAXb
mn + c.c. We can show �2 = �g − �1

with the expression of �g given in Eq. (17). Actually, we can
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evaluate �2 as follows:

�2 =
∫

dd k

(2π )d

XaXb

4

∑
n 
=m,s,s′

4�2
0GXaXb

nm

1

4

[−ss′�2
0

EnEm
+

(
1 + sεn

En

)(
1 − s′εm

Em

)]
f (sEn) − f (s′Em)

sEn − s′Em

=
∫

dd k

(2π )d

XaXb

8
�2

0

∑
n 
=m,s,s′

GXaXb
nm

[−2ss′�2
0 + 2(En + sεn)(Em − s′εm)

EnEm

]
f (sEn) − f (s′Em)

sEn − s′Em

=
∫

dd k

(2π )d

XaXb

8
�2

0

∑
n 
=m,s,s′

GXaXb
nm

[−2ss′�2
0 + 2EnEm − 2ss′εnεm + 2(sεnEm − s′εmEn)

EnEm

]
f (sEn) − f (s′Em)

sEn − s′Em

=
∫

dd k

(2π )d

XaXb

8
�2

0

∑
n 
=m,s,s′

GXaXb
nm

[−2ss′�2
0 + 2EnEm − 2ss′εnεm

EnEm

]
f (sEn) − f (s′Em)

sEn − s′Em

=
∫

dd k

(2π )d

XaXb

8
�2

0

∑
n 
=m,s,s′

GXaXb
nm

[
ss′ (εn − εm)2 − (sEn − s′Em)2

EnEm

]
f (sEn) − f (s′Em)

sEn − s′Em

= �g −
∫

dd k

(2π )d

XaXb

8
�2

0

∑
n 
=m,s,s′

GXaXb
nm

[(
s′

Em
− s

En

)
[ f (sEn) − f (s′Em)]

]

= �g −
∫

dd k

(2π )d

XaXb

8
�2

0

∑
n 
=m,s,s′

GXaXb
nm

(
− s′

Em
f (s′Em) − s

En
f (sEn)

)

= �g − �1.

We used the decomposition

ss′(εn − εm)2 = −2ss′�2
0 + ss′(sEn − s′Em)2

+ 2EnEm − 2ss′εnεm, (A20)

and the fact that the term (sεnEn − s′εmEn) is odd in the
permutation of (n, s) ↔ (m, s′) and thus does not contribute.
Thus we reproduce �1 + �2 = �g in the main text.

APPENDIX B: DERIVATION OF QGPP (ABELIAN CASE)

Here we derive QGPP in the absence of band degeneracy
up to the first order for readers’ convenience. We abbreviate
the arguments k in the following. Let us define the Wilson line
through

γn(X ) ≡
∫ X

0
dX̄j A

Xj
nn(X̄ ), (B1)

where the integral is taken along the straight line 0 → X .
Here, the Berry connection is defined by

AXi
nm(X ) ≡ −i 〈un(X )|∂Xi |um(X )〉 , (B2)

and we use AXi
nm ≡ AXi

nm(0) in the following. By using
θnm(X ) ≡ γn(X ) − γm(−X ), we obtain

∂Xi [e
iθnm (X ) 〈un(X )|�|um(−X )〉]

= eiθnm (X )
{
i∂Xiθnm(X ) 〈un(X )|�|um(−X )〉

+ 〈
∂Xi un(X )

∣∣�|um(−X )〉 + 〈un(X )|�∣∣∂Xi um(−X )
〉}

.

(B3)

We obtain

lim
X→0

∂Xiγn(X ) = AXi
nn, (B4)

and thus

lim
X→0

∂Xiθnm(X ) = AXi
nn + AXi

mm. (B5)

We also obtain〈
∂Xi un(X )

∣∣�|um(X )〉
=

∑
l

〈
∂Xi un(X )

∣∣ul (X )〉 〈ul (X )|�|um(X )〉

= −iAXi
nl (X )[�b(X )]lm, (B6)

and so on. Thus we obtain

lim
X→0

∂Xi [e
iθnm (X ) 〈un(X )|�|um(−X )〉]

= −iAXi
nl [�b]lm − i[�b]nlA

Xi
lm + i

(
AXi

nn + AXi
mm

)
[�b]nm

= −i
{
AXi

inter,�b
}
. (B7)

Higher-order derivatives can also be calculated by using the
formula for the Abelian Wilson line,

∂Xiγn(X ) = AXi
nn(X ) +

∫ 1

0
dt t �

XiXj
nn (tX )Xj, (B8)

with the Berry curvature �
XiXj
nn (X ) ≡ ∂Xi A

Xj
nn(X ) − ∂Xj A

Xi
nn(X ),

and the results corresponding to Eq. (38) are obtained. For
derivation of Eq. (B8), follow the discussion in the Ap-
pendix of Ref. [72] and replace the vector potential with the
Berry connection AXi

nn(X ). The derivation for the non-Abelian
version of Eq. (B8) is given in Appendix C 5.
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1. QGPP for the two-band model

Here we illustrate QGPP for the two-band model

HN = ξ (X ) + g(X ) · s =
∑
n=±

εn(X )Pn(X ), (B9)

with εn(X ) = ξ (X ) + n g(X ) and

Pn ≡ 1 + nĝ(X ) · s
2

. (B10)

In particular, we calculate the intraband component of QGPP.
Abbreviating the argument X , we obtain[

∂Xi�g
]

nn = −i
∑
l 
=n

AXi
nl [�b]ln + [�b]nlA

Xi
ln

=
∑
l 
=n

〈un|∂Xi HN|ul〉 〈ul |�|un〉 − (n ↔ l )

εn − εl

= 1

2ng

{
tr

[
Pn∂Xi HNP−n�

] − (n → −n)
}
. (B11)

After calculating the trace for

� = ψ + d · s, (B12)

we obtain

[�g ]nn = iXi
ĝ × ∂Xi g · d

g
. (B13)

For the case of the Zeeman field X = h, we obtain

g(X ) = g(h) = g − h, (B14)

and thus Xi∂Xi g(X ) = −h. QGPP is given by

[�g ]nn = −i
ĝ × h · d

g
. (B15)

In the case of the supercurrent, we obtain

g(k; X ) = g(k + q), (B16)

and thus Xi∂Xi g(X ) = q · ∇kg(k). QGPP is given by

[�g ]nn = i
ĝ × [q · ∇k]g · d

g
. (B17)

APPENDIX C: DERIVATION OF QGPP (GENERAL CASE)

Here we derive QGPP for the general case in the presence
of band degeneracy. Let us consider HN generally with de-
generacy in the absence of the time-reversal breaking field
X . We denote its eigenstates by |u(λ)

n 〉, where the index λ =
1, 2, . . . , Nn distinguishes the eigenstates with the same en-
ergy: HN |u(λ)

n 〉 = εn |u(λ)
n 〉. They can generally have different

energies under the field X ,

HN(X )
∣∣u(λ)

n (X )
〉 = ε (λ)

n (X )
∣∣u(λ)

n (X )
〉
, (C1)

with ε (λ)
n (X = 0) = εn. Let us define

U †
X = (∣∣u(1)

1 (X )
〉
, . . . ,

∣∣u(N1 )
1 (X )

〉
,
∣∣u(1)

2 (X )
〉
, . . .

)
. (C2)

For the latter convenience, we allow an additional arbi-
trary unitary transformation within each originally degenerate
space. Thus the redefined |u(λ)

n (X )〉 may not be an ex-
act eigenstate of HN(X ), while HN(X ) |u(λ)

n (X )〉 belongs

to the space spanned by originally degenerate states, i.e.,
{|u(1)

n (X )〉 , . . . , |u(Nn )
n (X )〉}. The unitary transformation U †

X is
also redefined in this way. Thus the Hamiltonian in this ba-
sis, UX HN(X )U †

X = ε(X ), is block-diagonal in the originally
degenerate space.

By using U †
X , the Berry connection is given by

iAXi (X ) = UX∂XiU
†
X . (C3)

We also define AXi ≡ limX→0 AXi (X ). The order parameter in
the band representation is given by

�b(X ) = UX�U †
−X , (C4)

since Ub(X ) ≡ diag(UX ,U−X ) diagonalizes the normal-state
part of the BdG Hamiltonian

HBdG(X ) =
(

HN(X ) �

�† −HN(−X )

)
, (C5a)

Hb(X ) ≡ Ub(X )HBdG(X )Ub(X )†

=
(

ε(X ) �b(X )
�

†
b(X ) −ε(−X )

)
. (C5b)

The gauge transform of the Bloch states is represented by

UX → VXUX . (C6)

Here, VX is a block-diagonal unitary matrix, which has finite
components only between the states originally with the same
energy. The gauge transform here means that we allow the
mixture of the states with energies different by O(X ).

1. QGPP in GBR

The order parameter transforms according to �b(X ) →
VX�b(X )V †

−X . On the other hand, we want the QGPP ex-
pansion of the form �b(X ) ∼ �b(0) + O(X ). Since �b(0)
transforms by V0 instead of V±X , we should first construct a
quantitiy similar to �b(X ) but transforming by V0. For this
purpose, we introduce the non-Abelian Wilson line operator

UX = P exp

(
−i

∫ X

0
dX̄ · AX̄

intra (X̄ )

)

≡ lim
N→∞

W (X N , X N−1)W (XN−1, X N−2) · · ·
W (X 2, X 1)W (X 1, X 0), (C7)

which is a generalization of e−iθnm (X ). Here, we choose the path
to be the straight line X i = (i/N )X and defined

[W (X i, X j )]nλ,n′λ′ ≡ 〈
u(λ)

n (X i )
∣∣u(λ′ )

n (X j )
〉
δnn′ . (C8)

We also defined the Berry connection within the degenerate
space, [

AXi
intra (X )

]
nm = δnmAXi

nm(X ), (C9a)

AXi
intra ≡ lim

X→0
AXi

intra (X ). (C9b)

We introduce the Berry connection connecting the different
degenerate spaces by

AXi
inter (X ) ≡ AXi (X ) − AXi

intra (X ), (C10a)

AXi
inter ≡ lim

X→0
AXi

inter (X ), (C10b)
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for the latter use. The Wilson line transforms by

UX → VXUXV †
0 , (C11)

and therefore the quantity

�̄b(X ) ≡ U†
X�b(X )U−X

= U†
XUX�U−XU†

−X

transforms by

�̄b(X ) → V0�̄b(X )V †
0 , (C12)

as desired. This ensures that each Taylor coefficient of �̄b(X )
transforms by V0 and thus is gauge covariant. In the following,
we write

�̄b(X ) = ŪX�Ū †
−X , (C13)

by introducing

ŪX = U†
XUX . (C14)

2. Expansion of QGPP

Let us expand �̄b(X ). At zero-th order, it coincides with
�b(0) ≡ �b. We obtain

∂Xi�̄b(X ) = [
∂XiŪXŪ †

X

]
ŪX�Ū †

−X

+ ŪX�Ū †
−X

[
Ū−X∂XiŪ

†
−X

]
= −[

QXi (X )�̄b(X ) + �̄b(X )Q−Xi (X )
]
, (C15)

where we introduced the quantum-geometry factor

QXi (X ) ≡ ŪX∂XiŪ
†
X , QXi ≡ lim

X→0
QXi (X ). (C16)

The second-order derivative is given by

∂Xi∂Xj �̄b(X )

= −[[
∂Xj QXi (X )

]
�̄b(X ) − �̄b(X )∂−Xj QXi (−X )

]
− [

QXi (X )∂Xj �̄b(X ) + ∂Xj �̄b(X )QXi (−X )
]

→ −[
∂Xj QXi ,�b

] + {
QXi ,

{
QXj ,�b

}}
, (C17)

for X → 0 with ∂Xj QXi ≡ limX→0 ∂Xj QXi (X ).
Let us evaluate the quantum-geometry factor and its deriva-

tive. It can be written as

QXi (X ) = U†
XUX∂Xi [U

†
XUX ]

= iU†
X [AXi (X ) − AXi (X )]UX . (C18)

Here, we defined a quantity related to Berry connection

iAXi (X ) = UX∂XiU†
X , (C19a)

AXi ≡ lim
X→0

AXi (X ) = AXi
intra. (C19b)

We obtain

QXi = i[Ai − Ai] = i
[
Ai − Ai

intra

] = iAi
inter. (C20)

We also obtain

∂Xj QXi (X ) = iU†
X iAXj (X )[AXi (X ) − AXi (X )]UX

− iU†
X [AXi (X ) − AXi (X )]iAXj (X )UX

+ iU†
X∂Xj [A

Xi (X ) − AXi (X )]UX

→ i(∂ j[A
Xi − AXi ] + i[AXi , (AXi − AXi )]). (C21)

The symmetric part with respect to i, j is important for QGPP
since we are interested in the combination ∂Xj QXi XiXj/2. The
symmetric part of ∂Xj Qi is given by

∂ jQi + ∂iQ j

2
=

AXi
inter;Xj

+ A
Xj

inter;Xi

2
, (C22)

while ∂XjAXi has an antisymmetric component related to the
Berry curvature (see Appendix C 5). Here, we defined the
covariant derivative of the interband Berry connection

AXi
inter;Xj

(X ) ≡ ∂Xj A
Xi
inter (X ) + i

[
A

Xj

intra (X ), AXi
inter (X )

]
, (C23)

and AXi
inter;Xj

≡ limX→0 AXi
inter;Xj

(X ). Thus we obtain QGPP by
means of the interband Berry connection and its covariant
derivative,

�̄b(X ) = �b + �g (X ), (C24)

with

�g (X ) = −iXi
{
AXi

inter,�b
} + 1

2 XiXj
( − i

[
AXi,

inter;Xj
,�b

]
− {

AXi
inter,

{
A

Xj

inter,�b
}}) + O(X 3). (C25)

3. GBR and normal-state Hamiltonian

After the unitary transformation to obtain QGPP, we obtain

H̄b(X ) =
(
U†

X 0
0 U†

−X

)
Hb(X )

(
UX 0
0 U−X

)

=
(

ε̄(X ) �b + �g (X )
�

†
b + �g (X )† −ε̄(−X )

)
, (C26)

with ε̄(X ) ≡ ŪX HN(X )Ū †
X . We call this basis the generalized

band representation (GBR). Let us consider the normal-
state part ε̄(X ) ≡ U†

Xε(X )UX , which transforms by ε̄(X ) →
V0ε̄(X )V †

0 . We obtain

∂Xi ε̄(X ) = ŪX∂Xi HN(X )Ū †
X − [

QXi , ε̄(X )
]
, (C27)

and

∂Xj ∂Xi ε̄(X ) = ŪX∂Xi∂Xj HN(X )Ū †
X − [

QXj , ŪX∂Xi HN(X )U †
X

]
− [

∂Xj QXi , ε̄(X )
] − [

QXi , ∂Xj ε̄(X )
]

= ŪX∂Xi∂Xj HN(X )Ū †
X

− [
QXj , ∂Xi ε̄(X ) + [

QXi , ε̄(X )
]]

− [
∂Xj QXi , ε̄(X )

] − [
QXi , ∂Xj ε̄(X )

]
. (C28)

We thus obtain, by using Ū0 = U0 and symmetrization of i and
j,

ε̄(X ) = ε + Xi
(
U0∂Xi HNU †

0 − [
iAXi

inter, ε
])

+ 1
2 XiXj

(
U0∂Xi∂Xj HNU †

0

− [
iA

Xj

inter,
[
iAXi

inter, ε
]] − 2

[
iAXi

inter, ∂Xj ε̄
]

− [
iAXi

inter;Xj
, ε

])
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= ε + Xi
(
U0∂Xi HNU †

0 − [
iAXi

inter, ε
])

+ 1
2 XiXj

(
U0∂Xi∂Xj HNU †

0 − [
iAXi

inter;Xj
, ε

]
+ [

iAXi
inter,

[
iA

Xj

inter, ε
]] − 2

[
iAXi

inter,U0∂Xj HNU †
0

])
,

(C29)

up to O(X 2). The obtained Taylor expansion is explicitly
gauge-covariant and thus we can arbitrarily choose the eigen-
states of HN for X = 0 to evaluate ε̄(X ) and �̄b(X ).

Note that we have not used the fact that ε is proportional
to the identity within each space specified by n. Therefore all
the results discussed above remain valid for entangled bands,
where the band degeneracy, if any, exists at some discrete
points in the Brillouin zone, including completely degenerate
bands as a special case. In this case, ε is a block-diagonal
matrix as is ε̄(X ), [ε]nλ,n′λ′ = [εn]λλ′δnn′ .

Equations (C27) and (C28) give the formulas for cal-
culating the interband Berry connection and its covariant
derivative. Since ε̄(X ) is block-diagonal by construction and
does not have matrix elements between different indices n, the
(n, n′) block of the left-hand side of the equations vanishes
for n 
= n′. By using Eq. (C37) for ∂Xj QXi derived in the next

section and �
XiXj

nn′ = 0 for n 
= n′, we obtain the well-known
formula[

iAXi
inter

]
nn′εn′ − εn

[
iAXi

inter

]
nn′ = [

U0∂Xi HNU †
0

]
nn′ , (C30)

and similar one for the covariant derivative,[
iAXi

inter;Xj

]
n,n′εn′ − εn

[
iAXi

inter;Xj

]
n,n′

= (
U0∂Xi∂Xj HNU †

0 + [
iAXi

inter,
[
iA

Xj

inter, ε
]]

− [
iAXi

inter,U0∂Xj HNU †
0

] − [
iA

Xj

inter,U0∂Xi HNU †
0

])
n,n′ ,

(C31)

by noting that the Berry curvature has only the n = n′ com-
ponent. The formula (C31) reproduces that for the Abelian
case [66], by using the fact that the n 
= n′ component of
[U0∂Xi HNU †

0 ]nn′ coincides with [iAXi
inter, ε]nn′ while its n = n′

component corresponds to the group velocity.

4. QGPP by time-reversal symmetric perturbations

So far, we have considered QGPP induced by time-
reversal-odd perturbations. We can also evaluate QGPP
induced by time-reversal-even perturbation Y . Note that the
normal-state part has the same expression except for X → Y ,
since we did not use the time-reversal parity of X during
the derivation. Thus the expansion of the normal-state part
is simply obtained by X → Y in the formulas. On the other
hand, the order parameter in GBR is given by

�̄b(Y ) = ŪY �Ū †
Y , (C32)

where Ū †
−X on the right-hand side of Eq. (C13) is replaced

with Ū †
Y . Since this has the same matrix structure as ε̄(X ) =

ŪX HN(X )Ū †
X , we immediately obtain from Eq. (C29),

�̄b(Y ) = �b − Yi
[
iAYi

inter,�b
] + 1

2YiYj
( − [

iAYi
inter;Yj

,�b
]

+ [
iAYi

inter,
[
iA

Yj

inter,�b
]])

. (C33)

In the presence of both X and Y , we can first expand quantities
by X based on the formulas in the previous sections and then
expand them by Y by replacing �b → �̄b(Y ) and so on.

5. Formula for the quantum-geometry factor

In this section, we show the formula

AXa (X ) − AXa
intra (X )

= UX

[∫ 1

0
dt t U†

tX�XaXb (tX )UtX Xb

]
U†

X , (C34)

following the derivation of the non-Abelian Stokes’ theorem
[73,74]. Here, we defined the Berry curvature

�XaXb (X ) = ∂Xa AXb
intra (X ) − ∂XbA

Xa
intra (X )

+ i
[
AXa

intra (X ), AXb
intra (X )

]
. (C35)

The relation leads to the formula for the quantum-geometry
factor

QXa (X ) = U†
X iAXa

inter (X )UX

− i
∫ 1

0
dt t U†

tX�XaXb (tX )UtX Xb. (C36)

As a corollary, it follows that the symmetric part of ∂Xj QXi is
given by that of AXi

inter;Xj
as used in the previous section:

∂Xj QXi = iAXi
inter;Xj

− i

2
�XiXj . (C37)

Let us define

U (X 2, X 1) ≡ P exp

(
−i

∫ X 2

X 1

dX ′
a AXa

intra (X ′)

)
, (C38)

for convenience, where the path is the straight line between
X 1 and X 2. By using this, we can write UX = U (X , 0) and
U (X 2, X 1)† = U (X 1, X 2). Thus we obtain

iAXa (X ) = lim
ε→0

ε−1UX [U†
X+εâ − U†

X ]

= lim
ε→0

ε−1[U (X , 0)U (0, X + ε) − 1], (C39)

with ε ≡ εâ and the unit vector â in the a direction. The first
term is given by

U (X , 0)U (0, X + ε) = �(X , ε)U (X + ε, X )†

= ε · iAX
intra (X ) + �(X , ε) + O(ε2),

(C40)

with

�(X , ε) ≡ U (X , 0)U (0, X + ε)U (X + ε, X )

= UX P exp

(
−i

∮
C

dX ′
a AXa

intra (X ′)
)
U†

X

= 1 + O(ε). (C41)

Here, the loop C is the infinitesimal triangle

C : 0 → X → X + ε → 0. (C42)

In the following, we evaluate the O(ε) contribution in the loop
integral I[C] ≡ P exp(−i

∮
C dX ′

a AXa
intra (X ′)).
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Note that the loop C can be deformed to the following C′
without changing the value of I[C]. Let us take N points on
the line 0 → X by Ai ≡ tiX with ti = i/N (i = 1, . . . , N ). We
also take N points Bi ≡ ti(X + ε) on the line 0 → X + ε. The
path C′ is given by a combination of loops,

C′ : D0 → D1 → D2 → · · · → DN−1, (C43)

with

D0 : 0 → A1 → B1 → 0,

Di : 0 → Bi+1 → Bi → Ai → Ai+1 → Bi+1 → 0, (C44)

for i = 1, · · · N − 1. Accordingly, we obtain

I[C] = I[C′] = I[DN−1] · · · I[D1]I[D0]. (C45)

The (i − 1)th loop contributes by

I[Di−1] = U (0, Bi )U (Bi, Ai )U (Ai, Ai−1)

· U (Ai−1, Bi−1)U (Bi−1, Bi )U (Bi, 0)

= 1 + i
tiε

N
U†

tiX
�XaXb (tiX )UtiX Xb, (C46)

neglecting O(1/N2, ε2) terms. Thus we obtain by N → ∞

I[C] = 1 + iε
∫ 1

0
dt t U†

tX�XaXb (tX )UtX Xb, (C47)

up to O(ε) and reproduce Eq. (C34).

APPENDIX D: MCBB FOR THE SPIN-ORBIT-COUPLED
BILAYER

To evaluate ε̄(k; X ) and �̄b(k; X ) for a given model Hamil-
tonian, we must calculate matrix elements of the form

[U0AU †
0 ]nσ,n′σ ′ = 〈

u(σ )
n (k)

∣∣A∣∣u(σ ′ )
n′ (k)

〉
, (D1)

which needs a gauge fixing. For this purpose, it is convenient
to choose the MCBB gauge, whose gauge constraint is

〈k = 0,+, s
∣∣u(1)

n (k)
〉 = akδs↑ (ak > 0), (D2a)∣∣u(2)

n (k)
〉 = �I

∣∣u(1)
n (k)

〉
. (D2b)

Here, we defined the orbital

|k = 0,+, s〉 = |+〉η ⊗
(

δs,↑
δs,↓

)
s

, (D3)

where |+〉η = (1, 1)η/
√

2 is the positive eigenstate of ηx for
the centrosymmetric bilayer. In the other models, the |+〉η
state should be replaced with a local orbital belonging to a
one-dimensional representation of the point group. The gauge
constraint (D2) coincides with the original one [68], which is
given by real-space matrix elements, owing to the translational
invariance of |u(1)

n (k)〉. Importantly, |k = 0,+, s〉 transforms
in the same way as the spin state |sz = s〉 under symmetry
operations. This transformation property is passed down to
|u(σ )

n (k)〉, and the pseudospin σ in the MCBB gauge can be
regarded as something close to the real spin s [68].

Let us introduce P+s = Pη
+

1+s sz

2 with Pη
+ ≡ |+〉η 〈+|η. The

gauge condition Eq. (D2a) can be rewritten as

P+↑
∣∣u(1)

n (k)
〉 = ak |k = 0,+,↑〉 , (D4a)

P+↓
∣∣u(1)

n (k)
〉 = 0. (D4b)

Let us define P(σ )
n (k) = |u(σ )

n (k)〉 〈u(σ )
n (k)| and Pn(k) =

P(1)
n (k) + P(2)

n (k). By the action of �I to Eq. (D4b), we obtain
P+↑ |u(2)

n (k)〉 = 0, and thus

P+↑P(2)
n (k) = 0. (D5)

We also obtain Pn(k)P+↑P(1)
n (k) = a2

kP(1)
n (k) from

Pn(k)P+↑
∣∣u(1)

n (k)
〉 = akPn(k) |k = 0,+,↑〉
= a2

k

∣∣u(1)
n (k)

〉
. (D6)

Thus we obtain

Pn(k)P+↑Pn(k) = Pn(k)P+↑
[
P(1)

n (k) + P(2)
n (k)

]
= a2

kP(1)
n (k). (D7)

Taking the trace of the equality, we obtain

a2
k = Tr [Pn(k)P+↑] = Tr [Pn(k)Pη

+]/2. (D8)

The MCBB eigenstate is given by

∣∣u(1)
n (k)

〉 = 1

a2
k

Pn(k)P+↑
∣∣u(1)

n (k)
〉

= 1

ak
Pn(k) |k = 0,+,↑〉 . (D9)

|u(2)
n (k)〉 is obtained by acting �I . We finally obtain

∣∣u(σ )
n (k)

〉 =
√

2

Tr [Pn(k)Pη
+]

Pn(k) |k = 0,+, σ 〉 . (D10)

Thus the MCBB matrix elements are evaluated by the formula

〈
u(σ )

n (k)
∣∣A∣∣u(σ ′ )

n′ (k)
〉 = 2Tr [Pη

+ |σ ′〉s 〈σ |s Pn(k)APn′ (k)]√
Tr [Pn(k)Pη

+]Tr [Pn′ (k)Pη
+]

,

|σ ′〉s 〈σ |s = δσσ ′
1 + σ sz

2
+ δσ,−σ ′

sx − iσ sy

2
.

(D11)

It is convenient to rewrite the matrix elements by using the
Pauli matrices of the pseudospin,〈

u(σ )
n (k)

∣∣A∣∣u(σ ′ )
n′ (k)

〉 = [
a0

nn′ (A) + ann′ (A) · σ
]
σσ ′ . (D12)

The first term is given by

a0
nn′ (A) = 1

2

∑
σ

〈
u(σ )

n (k)
∣∣A∣∣u(σ )

n′ (k)
〉

= Tr [Pη
+Pn(k)APn′ (k)]√

Tr [Pn(k)Pη
+]Tr [Pn′ (k)Pη

+]
. (D13)

The second term is given by

ann′ (A) = 1

2

∑
σσ ′

σσ ′σ
〈
u(σ )

n (k)
∣∣A∣∣u(σ ′

n′ (k)
〉

= Tr [Pη
+sPn(k)APn′ (k)]√

Tr [Pn(k)Pη
+]Tr [Pn′ (k)Pη

+]
. (D14)

Thus we arrive at the formula (48) in the main text.
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The interband Berry connection in the MCBB gauge is
given by A → ∂Xi HN/(εn′ − εn) in the formulas obtained
above:[

iAXi
inter

]
nn′ = (1 − δnn′ )σμ

εn′ (k) − εn(k)

· Tr [Pη
+sμPn(k)∂Xi HN(k)Pn′ (k)]√

Tr [Pn(k)Pη
+]Tr [Pn′ (k)Pη

+]
. (D15)

The covariant derivative of the interband Berry connection
AXi

inter;Xj
can be obtained by using Eq. (D15) and MCBB matrix

elements of A → ∂Xi∂Xj HN based on the formula Eq. (C31).
For example, for the case of Aqi

inter;q j
, which coincides with the

covariant derivative in the wave-number space Ai
inter; j (k), we

obtain[
iAi

inter; j

]
n,−n(ε−n − εn)

= [wi j]n,−n − [
iAi

inter, v
j
intra

]
n,−n − [

iA j
inter, v

i
intra

]
n,−n.

(D16)

Here we defined

[wi j]nσ,n′σ ′ = 〈
u(σ )

n

∣∣∂ki∂k j HN

∣∣u(σ ′ )
n′

〉
,[

vi
intra

]
nσ,n′σ ′ = δnn′

〈
u(σ )

n

∣∣∂ki HN

∣∣u(σ ′ )
n′

〉
. (D17)

By using this, we obtain the covariant derivative of interband
Berry connection in the spinful bilayer model as shown in
Eq. (68).

APPENDIX E: WEAKLY NONCENTROSYMMETRIC
BILAYER

The GBR is applicable to the cases where the two bands
are entangled, i.e., degenerate at some discrete points in the
Brillouin zone. As an example, let us consider the weakly
noncentrosymmetric bilayer

HN(k;V ) = ξ (k) + t⊥(k)ηx + V ηz + g(k) · s ηz, (E1)

by introducing the potential gradient V to the Hamiltonian in
Eq. (44). Here, V is much smaller than the band gap with-
out V , i.e., R(k) =

√
t⊥(k)2 + g(k)2, but can be larger than

the applied Zeeman field. We assume the even-parity order
parameter

�(k) = ψ (k) + d(k) · s ηz. (E2)

In the following, let us consider the response of this system to
the Zeeman field −h · s.

By using the results for GBR and QGPP in Appendix C 4,
the normal-state part of the GBR + MCBB is given by

ε̄n(V ) = εn + (gn − hn) · σ + O(h2, [V/R]2), (E3)

after some calculations based on Eq. (C29). This means that
a spinful noncentrosymmetric system is effectively realized
with the spin-orbit coupling

gn = nV

R
g, (E4)

and the Zeeman field hn given in Eq. (50). We used the Berry
connection for the potential gradient

V
[
iAV

inter

]
n,−n = nt⊥V

2R2
ĝ · σ. (E5)

QGPP is also obtained by, from Eqs. (C33) and (38),

�g (h,V ) = δnn′

[
t⊥V

R2

(
nt⊥
R

d‖ + d⊥

)
· σ

]

+ δn,−n′

[
t⊥gV

R3
d‖ · σ

]
+ [�e,g (h)]nn′ , (E6)

where we abbreviated O(hV, h2,V 2) terms for simplicity and
[�e,g (h)]nn′ is given in Eq. (56). Thus neglecting the compo-
nents of the order parameter between n and −n, the system is
described by the assembly of the effective two-band models,
H̄b(h,V ) = ⊕n=±H̄b,n with

H̄b,n ≡
(

εn + (gn − hn) · σ ψn + dn · σ

ψ∗
n + d∗

n · σ −εn − (gn + hn) · σ

)
, (E7)

and

ψn = ψ + ng

R
d · ĝ − i

1

R2
h · d × g, (E8a)

dn = t⊥V

R2

(
nt⊥
R

d‖ + d⊥

)
. (E8b)

In accordance with the inversion symmetry, the effective order
parameter is spin-singlet in the absence of V , while the spin-
triplet component admixes in the presence of the potential
gradient V . By assuming V � h, we can further evaluate
QGPP for Abelian cases as illustrated in Sec. II. Based on the
results for the two-band model, this system is topologically
nontrivial when ψ and d are the dominant d-wave pairing
and p-wave pairing, respectively. The above results are rel-
evant to thin films of bilayer d-wave superconductors such
as YBa2Cu3O7 in proximity to ferromagnets and under the
potential gradient introduced by, e.g., gating techniques.
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