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Unconventional superconductivity and paramagnetic Meissner response triggered by nonlocal
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Proximity phenomena and induced superconducting correlations in heterostructures are shown to be strongly
affected by the nonlocal nature of the electronic attraction. The latter can trigger the formation of Cooper
pairs consisting of electrons localized in neighboring layers even in the absence of direct quasiparticle transfer
between the layers. We investigate the manifestations of such nonlocal pairing and resulting unconventional
induced superconductivity in an exemplary two-dimensional (2D) electronic system coupled to a conventional
superconductor. The interplay between the quasiparticle tunneling and spin-triplet interlayer pairing is shown to
generate the odd-frequency superconducting correlations in the 2D material which give rise to the paramagnetic
contribution to the Meissner response and affect the energy resolved quasiparticle density of states. Experimental
evidence for the above nonlocal interface pairing would provide new perspectives in engineering the unconven-
tional superconducting correlations in heterostructures.
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I. INTRODUCTION

For more than half a century the physics of proximity phe-
nomena in various superconducting heterostructures remains
an attractive research direction both for experimentalists and
theoreticians. The key mechanism underlying the proximity
effect is known to arise from the electron transfer between
the superconducting and nonsuperconducting material which
results in the generation of the induced superconducting cor-
relations in the normal subsystem [1]. The structure of these
correlations is determined not only by the order parameter of
the primary superconductor but also by the properties of the
quasiparticle excitations inside the nonsuperconducting mate-
rial. As a result, manipulating the electronic spectrum of the
latter we get a unique possibility to engineer the induced su-
perconducting state. To tune, e.g., the spin structure of Cooper
pairs one can exploit the effect of exchange field in ferro-
magnetic subsystems [2,3] or the spin-orbit effects arising
at the interfaces in heterostructures or in noncentrosymmet-
ric materials [4–8]. On this way we can get very exotic
structure of superconducting correlations providing the pos-
sibility to control both the equilibrium and transport effects in
superconducting heterostructures. These unconventional su-
perconducting correlations are particularly interesting in the
context of recent development of the field of topologically
protected quantum computations [9,10] and superconducting
spintronics [5–8].

Is the above mentioned electron transfer between the sub-
systems the only mechanism underlying the proximity effect
in heterostructures? An obvious answer to this question is
positive provided we disregard the nonlocal nature of the
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attraction between the electrons responsible for the super-
conductivity phenomenon. However, in real systems, this
attractive interaction mediated, e.g., by phonons is not nec-
essary local and can in principle bind the electrons even
separated by the interface between the materials. In other
words, the interface impenetrable for electrons can be still
transparent for the phonons. Certainly, different crystal lat-
tice structures of contacting solids and, thus, different elastic
properties should result in the reflection of the elastic waves
incident on the interface. This reflection as well as the screen-
ing effects are expected to weaken any attractive forces
between the quasiparticles localized in neighboring subsys-
tems. Still, if this nonlocal attraction is nonzero it can cause
the formation of Cooper pairs of electrons positioned, e.g., in
neighboring layers of the multilayered structure. This scenario
of interlayer pairing is not completely new, of course, and
previously it was discussed in the context of different layered
superconductors such as transition metal dichalcogenides and
high-Tc cuprates [11–16]. An important property of such in-
terlayer pairing is that due to the nonlocality of the Cooper
pair wave function (or more rigorously, the anomalous Green
function) the Pauli principle does no more impose well known
severe restrictions on the spins of electrons in the pair [17]
which usually hamper the formation of triplet superconduct-
ing correlations. Exactly this argument in favour of possible
triplet interlayer pairing motivated A. I. Larkin and K. B.
Efetov [11] to consider this type of correlations to explain the
extremely high upper critical fields in TaS2 (pyridine) which
were shown to exceed the paramagnetic limit [18]. These
theoretical considerations of the interlayer pairing have been
further developed [12–16] in the context of extensive studies
of superconductivity in cuprates which also can be well de-
scribed by the model of identical superconducting layers.
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All the above theoretical works were devoted to the
study of natural layered compounds and, thus, assumed the
coinciding electronic structure of the individual layers. Recent
progress in the study of superconductivity in van der Waals
heterostructures (see Refs. [19,20] and references therein)
provides an interesting new possibility for engineering the
superconducting state. Besides combining different materials
in a hybrid structure, for identical layers in a stack the band
structure is highly sensitive to a relative layer twist and can
be also controlled by an external electric field. Such mod-
ifications of the electronic spectrum provides the way for
electrostatic control of the superconducting state [21]. Exist-
ing theoretical studies of the superconducting order in van der
Waals materials include the analysis of both intralayer and
interlayer pairing correlations as well as the analysis of the
spatial structure of the superconducting correlations in dis-
placed bilayer graphene and transition metal dichalcogenides
[22–25]. Rather common theoretical approach for considering
the effects of the interlayer pairing is based on the assump-
tion of the presence of an attractive interlayer interaction,
which is treated similarly as in the BCS theory. Such an
approach being rather general allows one to reveal qualitative
effects of the interlayer superconductivity for a wide range
of systems without reference to a specific mechanism of
the interlayer pairing. Physical mechanisms underlying such
nonlocal pairing are currently under theoretical investigation.
In particular, for AA-stacked bilayer graphene, it has been
shown that the interlayer Coulomb interaction can become
attractive [26]. It has been also recently shown that magnons
in the antiferromagnetic insulator sandwiched between two
transition metal dichalcogenide monolayers can give rise
to interlayer pairing with the resulting interlayer supercon-
ducting state of the form of coexisting s-wave and chiral
p-wave [27].

The goal of our work is to apply the idea of Larkin and
Efetov to the artificial heterostructures where the neighboring
layers can possess quite different individual electronic char-
acteristics including the difference in the normal state band
spectra as well as different pairing properties. Considering the
formation of the pairs consisting of electrons with different
band spectra one can immediately notice the formal analogy
of this problem to the one describing a standard singlet super-
conductor with the quasiparticle spectrum split by the Zeeman
or exchange field. Certainly, the effective exchange field in
our scenario will depend on the quasiparticle momentum but
the basic features of the system including the depairing ef-
fect of the difference in the electronic spectra, formation of
the odd-frequency superconducting correlations and the inho-
mogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state
should be similar to the well known models describing the
superconductors in the presence of the spin splitting field
[3,28–32] (see also Ref. [33] and references therein). Let
us emphasize that all these features are expected to appear
in heterostructures without any ferromagnetic layers which
could provide the source of the true exchange field determined
by the interaction of electron spins with ferromagnetic or-
dering. This observation looks particularly interesting if we
remind some rather old experiments indicating the presence
of low temperature paramagnetic contribution to the Meiss-
ner response in superconducting cylinders covered by thin

normal metal layers [34,35]. Several theoretical works ar-
gue that this phenomenon can be associated with the orbital
effects [36], the electronic repulsion in the normal metal layer
[37], the appearance of the p-wave superconductivity at low
temperatures [38], and the effects of the spin-orbit interac-
tion [39]. In view of the above discussion this paramagnetic
response could originate also from the odd-frequency super-
conducting correlations generated by the nonlocal electron
pairing according to the Larkin-Efetov mechanism. Another
interesting application of the interlayer pairing arises if we
consider its role in Majorana-type systems [40,41] where
this mechanism can probably help to get rid of necessity of
rather high magnetic fields providing the Zeeman splitting of
energy band in Majorana nanowires. Motivated by all these
arguments we studied the manifestation of the Larkin-Efetov
mechanism in two exemplary systems: (i) a bilayer consisting
of thin films with a certain energy shift of the conduction
bands (ii) a two dimensional electron gas (2DEG) placed in
contact with a thick superconducting layer (SC).

The paper is organized as follows. In Sec. II, we investigate
the influence of tunneling and the band offset on the spin-
singlet interlayer superconductivity and the electrodynamic
response of the superconducting state within the framework
of the two-layer model. In Sec. III, we reveal the manifes-
tations of the interlayer spin-triplet superconductivity on the
spectral and screening properties of the 2DEG in contact with
a massive conventional superconductor. Finally, the results are
summarized in Sec. IV.

II. TWO-LAYER MODEL

We proceed with the consideration of the phenomenon of
interlayer pairing in a two layer model which can be viewed as
the generalization of the one studied previously in Ref. [11].
The key point is that we assume the normal quasiparticle
spectra to differ by a certain constant shift due to different
conduction band offsets. For simplicity we neglect here the
Cooper pairing in each individual layer. It is important to
note that the considered two-layer model has some similar-
ities with the model of a two-band superconductor with the
interband pairing (see, e.g., Refs. [42,43]). In this regard, the
interlayer pairing is a reminiscent of a cross-band pairing
(or simply crosspairing) in multi-band models. However, the
two models are not equivalent and the main difference is the
presence of a tunable degree of the band hybridization in
the two-layer model described by a finite hopping parameter.
In a real experimental situation, the tunability of the layer
coupling can be achieved by changing the thickness of the
intermediate insulating layer. We expect that the intralayer
pairing should compete with the interlayer one causing a
non-BCS temperature dependencies of the order parameters
as well as unusual temperature behavior of the kernels in the
linear relationship between the supercurrent and the vector
potential. Possible effects of intralayer pairing also include
the temperature- and/or phase-offset driven phase transitions
between the superconducting states with different relative
phases of the order parameters [42,44]. These effects can also
manifest themselves through pecularities in the behavior of
the supercurrent response as function of temperature and the
band offset.
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A. Basic equations

The total Hamiltonian accounting for the interlayer pairing
takes the form: H = ∑

j=1,2 Hj + Ht + Hint, where

Hj =
∫

d2r ψ
†
jσ (x)ξ̂ jψ jσ (x), (1)

describe isolated two-dimensional layers, x = (r, τ ), τ is the
imaginary-time variable in the Matsubara technique, σ =↑,↓
denotes spin degrees of freedom (summation over repeated
indices is implied), ψ

†
jσ (x) and ψ jσ (x) are fermionic creation

and annihilation operators in the layer j in the Matsubara
representation, respectively, ξ̂ j = −∇2

r /2m − μ j , and m is the
effective mass. The relative shift of the conduction bands
is expressed as (μ1 − μ2) = 2χ , where μ j is the difference
between the chemical potential and the bottom of the cor-
responding energy band. Our consideration is restricted to
the case of momentum-conserving tunneling described by the
term

Ht =
∫

d2r[tψ†
1σ (r)ψ2σ (x) + t∗ψ†

2σ (r)ψ1σ (x)]. (2)

Note that the time-reversal symmetry imposes the following
constraint on the hopping parameter t = t∗. The interlayer
electron-electron interaction is described by the term

Hint = U0

2

∫
d2r ψ

†
1σ (x)ψ†

2σ ′ (x)ψ2σ ′ (x)ψ1σ (x). (3)

Assuming the existence of an attractive interlayer interaction
with U0 = −|U0| and treating the interlayer interaction within
the mean-field approximation, one gets the effective interac-
tion

Heff =
∫

d2r
[

2

|U0|Tr(�̂int�̂
†
int ) + (�̂int )σσ ′ψ

†
1σψ

†
2σ ′

+ (�̂∗
int )σσ ′ψ2σ ′ψ1σ

]
, (4)

in which �̂int is the 2 × 2 interlayer matrix gap function in the
spin space.

Our analysis is based on the Gor’kov equation for the
8 × 8 matrix Green’s function in the generalized layer-Nambu
(particle-hole)-spin space

G(x1, x2) = 〈Tτψ (x1)ψ†(x2)〉. (5)

Here Tτ is the time-ordering operator, ψ =
[ψ1↑, ψ1↓, ψ

†
1↑, ψ

†
1↓, ψ2↑, ψ2↓, ψ

†
2↑, ψ

†
2↓]T, and the angular

brackets stand for the thermodynamic average. The system’s
Green’s function has the following structure in the layer space

G =
(

Ǧ11 Ǧ12

Ǧ21 Ǧ22

)
, (6)

and the following one

Ǧi j =
(

Ĝi j F̂i j
ˆ̄Fi j

ˆ̄Gi j

)
, (7)

in the particle-hole space (i, j = 1, 2). For the derivation of
the Gor’kov equations we use the equations of motion for
the field operators in the Matsubara representation. Assuming

the in-plane translational symmetry and spatially homoge-
neous interlayer pairing state, we obtain the following system
of Gor’kov equations written in the Matsubara frequency-
momentum representation(

−iωn + τ̌zξ1k ť

ť† −iωn + τ̌zξ2k

)(
Ǧ11 Ǧ12

Ǧ21 Ǧ22

)
= 1, (8)

where ωn = 2πT (n + 1/2), T is temperature, n is an integer,
ξ jk = k2/2m − μ j , τ̌i (i = x, y, z) are the Pauli matrices act-
ing in the electron-hole space, and the coupling matrix ť is
given by

ť =
(

t �̂int

−�̂∗
int −t

)
. (9)

One can see that the Green functions of the subsystems (Ǧ11

and Ǧ22) as well as the mixed ones (Ǧ12 and Ǧ21) acquire
a nontrivial structure in the particle-hole space due to the
presence of the interlayer gap function �̂int, which satisfies
the self-consistency equation

�̂int = −U0

2
T

∑
ωn

∫
d2k

(2π )2
F̂12(k; ωn). (10)

Equations (8), (9), and (10) form the basis for our anal-
ysis of the interlayer pairing in the two-layer model. In the
following Sec. II B, we discuss the structure of the pairing
correlations and analyze the behavior of the self-consistent
interlayer pairing field as function of the relative band offset χ

and temperature. In Sec. II C, we present the results regarding
the influence of the interlayer pairing on the screening proper-
ties of the hybrid structure. For definiteness, the effects of the
nonlocal Cooper pairing in the two-layer system are analyzed
for an exemplary spin-singlet interlayer pairing

�̂int = d0(iσ̂y), (11)

where σ̂i (i = x, y, z) are the Pauli matrices acting in the spin-
space.

B. Structure of the pairing correlations and the self-consistent
solution for the interlayer order parameter

We proceed to the discussion of the structure of the pairing
correlations in the two-layer system and our starting point is
the Gor’kov Eq. (8)

(−iωn + τ̌zξ1k )Ǧ11 + ť Ǧ21 = 1, (12a)

(−iωn + τ̌zξ1k )Ǧ12 + ť Ǧ22 = 0, (12b)

(−iωn + τ̌zξ2k )Ǧ22 + ť†Ǧ12 = 1, (12c)

(−iωn + τ̌zξ2k )Ǧ21 + ť†Ǧ11 = 0. (12d)

Using Eqs. (9) and (11), we solve the above algebraic sys-
tem and obtain both the intralayer and interlayer anomalous
Green’s functions F̂i j = Fi j (iσ̂y)

F11(k) = −2td0ξ2kZ−1(k), (13a)

F12(k) = d0
[ − iωn(ξ1k − ξ2k )

+ω2
n + ξ1kξ2k + t2 + d2

0

]
Z−1(k). (13b)
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Here

Z (k) = (
ω2

n + t2 + d2
0

)2 + ω2
n

(
ξ 2

1k + ξ 2
2k

)
+ ξ 2

1kξ
2
2k − 2ξ1kξ2k

(
t2 − d2

0

)
. (14)

To obtain the functions F22 and F21, one should interchange the
layer indices 1 ↔ 2 in Eqs. (13). Note that the denominator
Z (k) is symmetric with respect to this change. The poles of
the resulting Green’s functions together with the replacement
iωn → E give the quasiparticle spectrum of the two-layer
system, which can be cast to the form

E2
±(k) = t2 + |d0|2 + ξ 2

k + χ2

± 2
√

ξ 2
k (t2 + χ2) + χ2|d0|2, (15)

with ξk = (ξ1k + ξ2k )/2.
The resulting Eqs. (13) and (14) demonstrate that in the

general case the superconducting state of the hybrid sys-
tem represents a mixture of the even- and odd-frequency
spin-singlet superconducting correlations. The intralayer cor-
relations [see Eq. (13a)] are even with respect to ωn →
−ωn and are present only for a finite hopping parameter t .
The interlayer superconducting correlations [see Eq. (13b)]
have both even- and odd-frequency components. The even-
frequency component is nonzero even in the absence of tunnel
coupling between the layers, and the odd-frequency compo-
nent of the interlayer correlations is proportional to (ξ1k − ξ2k)
and appears only for a finite band offset χ .

Below we demonstrate the analogy between the effects of
the band structure on nonlocal Cooper pairs and the ones of
the spin-splitting field in a conventional superconductor by
solving the self-consistency equation. Substituting the solu-
tion (13b) into Eq. (10) and using Eq. (15), we get

1 = −U0

4
T

∑
ωn

∫
d2k

(2π )2

[
1

ω2
n + E2−

+ 1

ω2
n + E2+

× −χ2√
ξ 2

k |t |2 + χ2
(
ξ 2

k + |d0|2
)
(

1

ω2
n + E2−

− 1

ω2
n + E2+

)]
.

(16)

The form of the gap Eq. (16) is similar to the one for the
superconductor with Rashba spin-orbit coupling under the
influence of the Zeeman field (see, e.g., Eq. (27) in Ref. [45]).
Thus we anticipate that a relative shift of the conduction bands
should provide a depairing effect for interlayer Cooper pairs
whereas the tunnel coupling mixes the states of isolated layers
and should play a role similar to the spin-orbit interaction. For
the solution of the self-consistency equation, we assume μ j to
be much larger than the cutoff energy 
 and then eliminate
the cutoff in favor of the superconducting critical temperature
of the interlayer order parameter T int

c0 at zero conduction band
shift χ = 0 [46]. The resulting gap equation reads

ln

(
T

T int
c0

)
+ 2πT Re

∑
ωn>0

×
[

1

ωn
− (|t |2 + iζ )

ζ
√−ω2

n − |d0|2 + χ2 + |t |2 + 2iζ

]
= 0, (17)

FIG. 1. The absolute value of the spin-singlet interlayer gap
function |d0| for the two-layer model (8) vs the band splitting χ for
T/T int

c0 = 0.2, 0.4, 0.6, and 0.8. (a) and (b) correspond to t/T int
c0 = 0.2

and 10, respectively. Unstable branches of the gap solution are shown
by dotted lines. Here T int

c0 is the critical temperature for the inter-
layer order parameter at χ = 0, t is the tunneling amplitude, and
d̄ = |d0(T = 0)|.

where ζ = √
ω2

n(|t |2 + χ2) + |t |2|d0|2. Typical |d0(χ )| plots
for different T shown in Fig. 1 demonstrate the suppression of
the interlayer gap function by the band splitting. Figure 1(a)
shows that for rather low temperatures and weak tunnel cou-
plings there appear χ -regions with more than one solution of
the gap equation, which is typical for the paramagnetic effect
in superconductors. Thus, by the analogy with the spin-split
superconductors [30–32], we argue that the relative band shift
can lead to the appearance of the odd-frequency interlayer
superconducting correlations and the FFLO instability. Note
that this analogy is exact within the limit t → 0. Figure 1(b)
shows that the quasiparticle tunneling suppresses the depair-
ing effect of the band splitting. Note also that if we now
consider the joint effect of the relative band shift and the true
Zeeman field, one can naturally expect the emergence of the
reentrant superconductivity similar to the situation considered
in Ref. [47].

Rigorous analysis of the superconducting state in the
presence of multiple solutions to the gap equation requires
calculations of the free energy and determination of stable
and metastable states. However, the exact correspondence
between the well-known model of spin-split superconductors
[48] and the two-layer model for t = 0 provides a complete
description of the influence of the band offset on the interlayer
superconductivity in the absence of tunneling. In particular,
for a homogeneous superconducting state at zero temperature,
besides the trivial solution the gap equation has one solution
for |χ | < d̄/2 and two solutions for d̄/2 < |χ | < d̄ . Here
d̄ = |d0(T = 0)| denotes the absolute value of the interlayer
gap function d0 at zero temperature. The lower branch d0 =
[d̄ (2χ − d̄ )]1/2 is characterized by a positive energy differ-
ence δE between the superconducting and the normal state.
For the upper branch d0 = d̄ one has δE ∝ (2χ2 − d̄2) and
the equilibrium superonductivity is realized only for |χ | <

d̄/
√

2 [see Fig. 1(a)]. So, increasing the band offset χ from
zero, the first-order transition into the normal state occurs at
χ = d̄/

√
2. The χ region with multiple solutions of the gap

equation shrinks upon the increase in temperature and starting
from some finite temperature the transition from the normal to
the superconducting state becomes of the second order for all
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relevant temperatures and band offsets. Our results (see Fig. 1)
demonstrate that the situation is qualitatively similar to the
above-described one only for rather small t and the first-order
transition as a function of χ should be possible only for rather
small T and t because the increase in the tunnel coupling
also narrows the χ range with multiple solutions of the gap
equation.

An alternative approach to establish the stability of the
superconducting state in the presence of multiple solutions
to the gap equation is to analyze the screening properties
of the system for a particular solution. Indeed, the unstable
solutions should reveal themselves via a total paramagnetic
response of the supercurrent to the external magnetic field,
which is unphysical in bulk superconducting systems (see
Refs. [33,49–51] and references therein). Corresponding re-
sults of the linear response for the two-layer systems are
presented in the next subsection. Let us note here that in our
numerical calculations we observe that a nontrivial solution
of the gap equation characterized by ∂d0/∂χ > 0 [see, e.g.,
the results shown by dotted lines in Fig. 1(a)] provides a total
paramagnetic response and is, thus, unstable.

Note also that the possibility of the band-offset induced
FFLO instability in the two-layer system does not follow
directly from our results shown in Fig. 1. Nevertheless, this
statement is correct due to the exact correspondence between
the two-layer model in the absence of tunneling and the model
of spin-split superconductors. Study of the FFLO instability
for finite tunnel couplings requires more sophisticated calcu-
lations and is behind the scope of our work.

C. Screening properties of the bilayer system

In this section, we provide the results regarding the linear
response of the in-plane supercurrent in the two-layer system
to the vector potential A(r) induced by an external magnetic
field. The total current density represents the sum of current
densities in the two layers and is given by the standard expres-
sion [52]

j(r) = ie

m

[
(∇r − ∇r′ )T

∑
n, j

G(1)
j j (r, r′; ωn)

]∣∣∣∣∣
r′→r

+ 2e2

m
A(r)T lim

τ→−0

∑
n

G(0)
j j (r, r; ωn)e−iωnτ . (18)

Here the upper subscripts denote the order of the perturbation
correction for the Green’s function with respect to the vector
potential. Note that in the above expression we utilized a
trivial structure of the normal intralayer Green’s functions
in the spin space. The first-order correction to the system’s
Green’s function has the form

G(1)(r1, r2)

= e

2m

∫
dr′ G(0)(r1, r′){p̂′, A(r′)}G(0)(r′, r2), (19)

in which the zero-order functions

G(0)(r1, r2) =
∫

d2k
(2π )2

G(0)(k)eik(r1−r2 ), (20)

FIG. 2. Color plots of the coefficient Qxx (q = 0) defined by
Eqs. (22) as functions of temperature and the band offset. The results
are given in units e2v2

F νn, where vF denotes the Fermi velocity at
χ = 0, and νn is density of states at the Fermi level. (a) and (b) refer
to t = 0.2T int

c0 and t = 4T int
c0 , respectively.

are defined by the solutions of the system (8). For the calcula-
tions of the current response we choose the transverse gauge
for the vector potential ∇A = 0 and use the standard trick of
adding and subtracting the normal-state contribution to the
right-hand side of Eq. (18). Such procedure leads to cancel-
lation of the second term in the right-hand side of Eq. (18)
due to the fact that the total average number of particles is
not affected by the transition into the superconducting state.
We put

j(r) =
∫

d2q
(2π )2

j(q)eiqr,

A(r) =
∫

d2q
(2π )2

A(q)eiqr (21)

and arrive at rather lengty relation between the Fourier com-
ponents of the supercurrent density and the vector potential

jα (q) = −Qαβ (q)Aβ (q), (22a)

Qαβ (q) = 2e2

m2c
T

∑
n

∫
d2k

(2π )2
kαkβ

× [
G11(k+)G11(k−) + F11(k+)F̄11(k−)

+ G12(k+)G21(k−) + F12(k+)F̄21(k−)

+ G22(k+)G22(k−) + F22(k+)F̄22(k−)

+ G21(k+)G12(k−) + F21(k+)F̄12(k−)

−G11(k+)G11(k−) − G12(k+)G (0)
21 (k−)

−G22(k+)G22(k−) − G21(k+)G (0)
12 (k−)

]
. (22b)

Here k± = k ± q/2, the anomalous Green’s function have
the following structure in the spin space F̂i j = Fi j (iσ̂y), ˆ̄Fi j =
F̄i j (−iσ̂y), and Gi j denote the Green’s functions for d0 = 0.
Numerical calculation procedure includes the determination
of the self-consistent solution for the gap equation followed
by the momentum integration and the summation over the
Matsubara frequencies in Eq. (22b).

Typical color plots of the coefficient in the linear relation
between the supercurrent and the vector potential (22) as func-
tions of temperature and the band offset are shown in Fig. 2.
The results reveal the diagonal elements Qxx (or Qyy) evalu-
ated at q = 0, and panels (a) and (b) correspond to t = 0.2T int

c0
and t = 4T int

c0 , respectively. One can see that despite the
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presence of the odd-frequency superconducting correlations
the total electromagnetic response of the two-layer system is
diamagnetic throughout the entire superconducting region of
the phase diagram. Our result is in qualitative agreement with
the results of the generic model of multiorbital superconduc-
tors [53]. As it is shown previously, for a finite band offset the
bilayer system possesses both even-and odd-frequency inter-
layer as well as the even-frequency intralayer superconducting
correlations. The fact that both the normal and anomalous
Green’s functions in the right-hand side of Eq. (22b) depend
on the interlayer pairing amplitude d0 makes it complicated to
separate the contributions from all relevant types of correla-
tions into the screening properties of the two-layer system.

III. 2DEG IN CONTACT WITH A THICK s-WAVE
SUPERCONDUCTOR

As a next step, we investigate the joint effect of the non-
local pairing and the proximity induced superconductivity on
the spectral properties and the Meissner response of 2DEG
placed in contact with a thick SC layer. Our goal here is
to demonstrate that one can obtain a nontrivial behavior of
the density of states in 2DEG along with the paramagnetic
contribution to the Meissner response. Although the struc-
ture of basic equations for 2DEG/SC model possess some
similarities with previously considered two-layer model, for
completeness below we provide an extensive description of
the model equations.

A. Basic equations

Consider a two-dimensional electron gas (z = 0) proximity
coupled to a conventional superconductor (z > 0). The Hamil-
tonian of the system reads

H = Hs + Hn + Ht + Hint, (23)

with the first term

Hs =
∫

d3R[ψ†
sσ (X)ξs(R)ψsσ (X) + �s(R)ψ†

s↑(X)ψ†
s↓(X)

+ �∗
s (R)ψs↓(X)ψs↑(X)], (24)

describing the s-wave superconductor (SC) and the second
term

Hn = d
∫

d2r ψ†
nσ (x)ξn(r)ψnσ (x), (25)

is the Hamiltonian of 2DEG. Here X = (R, τ ), x = (r, τ ),
ψ†

sσ (X) and ψsσ (X) (ψ†
nσ (x) and ψnσ (x)) are fermionic cre-

ation and annihilation operators in SC layer (2DEG) in
the Matsubara representation, d is the thickness of the
normal-metallic layer, ξs(R) = −∇2

R/2ms − μs and ξn(r) =
−∇2

r /2mn − μn stand for the quasiparticle kinetic energy op-
erators in the SC and 2DEG with respect to the corresponding
chemical potentials μs and μn, ms and mn are the effec-
tive masses of the electrons in the subsystems, and �s(r) is
the superconducting gap function in the SC layer. The cre-
ation and annihilation operators in 2DEG are normalized to
the layer volume [ψnσ (r, τ ), ψ†

nσ ′ (r′, τ )] = d−1δσσ ′δ(r − r′).

The tunnel Hamiltonian has the form:

Ht = dt
∫

d2r[ψ†
sσ (x)ψnσ (x) + ψ†

nσ (x)ψsσ (x)], (26)

where t ∈ R is the tinneling matrix element and we denote
ψsσ (x) = ψsσ (r, z = 0, τ ) for brevity. Assuming that the in-
terlayer attractive interaction is relevant in the vicinity of the
SC/2DEG interface, we choose the following form of the
interaction:

Hint = U0

2
d

∫
d2r ψ†

sσ (x)ψ†
nσ ′ (x)ψnσ ′ (x)ψsσ (x). (27)

Neglecting the back action of 2DEG on the superconductor
and the effects of the interlayer interaction in SC layer, we
derive the following Gor’kov equations for the Matsubara
Green’s functions in 2DEG written in the cooordinate-
Matsubara frequency representation (see Appendix for details
of the derivation):

[−iωn + τ̌zξn(r1)]Ǧn(r1, r2)

−
∫

d2r �̌(r1, r)Ǧn(r, r2) = d−1δ(r1 − r2), (28a)

�̌(r1, r) = dťǦs(r1, r)ť†, (28b)

Here Ǧs(r1, r) stands for the Green’s function of an isolated
SC layer taken at the SC/2DEG interface z1 = z = 0. The
4 × 4 matrix Green’s function in Eq. (28a) has the following
structure in the particle-hole space:

Ǧ =
(

Ĝ F̂
ˆ̄F ˆ̄G

)
. (29)

The presence of the interlayer pairing results in a nontrivial
structure of the coupling matrix

ť =
(

t �̂int

−�̂∗
int −t

)
, (30)

which is similar to the previously studied two-layer mode. The
interlayer gap function �̂int is defined through the relation

[�̂int (r)]σσ ′ = −U0

2
〈ψnσ (x)ψsσ ′ (x)〉. (31)

Note that Eqs. (28) can be significantly simplified when the
characteristic interatomic distance in the SC layer a0 is much
less than the one in 2DEG [54]. Indeed, for rapidly oscillating
Green’s function in the SC layer

Ǧs(r1, r) = ms

2π

{
τ̌z

cos (kFs|r1−r|)
|r1 − r| +ǧs(ωn)

sin (kFs|r1−r|)
|r1 − r|

}

× e− ms
√

ω2
n+|�s |2

kFs
|r1−r|

, (32)

the integral in Eq. (28a) converges at |r1 − r| ∼ a0, and the
resulting self-energy is local. Thus, under our model assump-
tions, Eqs. (28) can be cast to the form

[−iωn + τ̌zξn(r1) − �̌(ωn)]Ǧn(r1, r2) = d−1δ(r1 − r2),

(33a)

�̌(ωn) = πdνsa
2
0ť†ǧs(ωn)ť, (33b)

where kFs is the Fermi momentum in the normal-metal state of
the SC layer, νs = mskFs/2π2 is the density of states per spin
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projection in the normal-metal state of the superconductor,

ǧs(ωn) = iωn − |�s|σ̂yτ̌y√
ω2

n + |�s|2
, (34)

is the quasiclassical Green’s function in the SC layer.
The resulting Eqs. (33) are the basic equations for our

analysis of the influence of the interlayer pairing in 2DEG/SC
hybrid systems. In particular, we investigate the manifesta-
tions of the spin-triplet interlayer pairing and take as a model
example

�̂int = dt σ̂z(iσ̂y) = dt σ̂x, (35)

where dt is the interlayer pairing amplitude. For simplicity,
we choose the interlayer interaction amplitude dt to be a real
number. In calculations it is convenient to absorb the dimen-
sional factors in the self-energy part (33b) into the definitions
of t and dt

πdνst
2a2

0 → t2, (36a)

πdνsd
2
t a2

0 → d2
t , (36b)

πdνstdt a
2
0 → tdt , (36c)

so that the parameters t2, d2
t , and tdt in further consideration

are given in the energy units.

B. Structure of the superconducting correlations
and the density of state in 2DEG

In this section, we consider the effects of the spin-triplet
interlayer pairing (35) on the spectral properties of the two-
dimensional layer. First, we discuss the structure of the
resulting self-energy (33b) and then analyze the energy depen-
dence of the density of states in 2DEG. The results provided
in this section refer to the case of zero external magnetic field.

Substitution of Eqs. (34) and (35) into Eq. (33b) yields the
following form of the self-energy matrix in the particle-hole
space

�̌ =
(

�̂11 �̂12

�̂21 �̂22

)
, (37)

with

�̂11(ωn) = iωn
(
t2 + d2

t

)
√

ω2
n + |�s|2

+ 2tdt�sσ̂z√
ω2

n + |�s|2
, (38a)

�̂12(ωn) = −�s
(
t2 + d2

t

)
(iσ̂y)√

ω2
n + |�s|2

− 2iωntdt σ̂x√
ω2

n + |�s|2
. (38b)

Note that in the above expressions �̌ represents a diagonal
component of the self-energy in the layer space related to the
2DEG and its structure in terms of the spin indices is defined
by the Pauli matrices σ̂i (i = x, y, z). The other components
�̂22 and �̂21 can be obtained from Eqs. (38) via the relations

�̂22(ωn) = −�̂T
11(−ωn), (39a)

�̂21(ωn) = �̂
†
12(−ωn). (39b)

The off-diagonal matrix elements in the Nambu space �̂12

and �̂21 carry the information about the spin structure and
the frequency dependence of the superconducting correla-
tions in 2DEG. The first term in the right-hand side of

Eq. (38b) illustrates the fact that the spin-triplet interlayer
interaction results in the enhancement of the amplitude of the
spin-singlet superconducting correlations in 2DEG. It is re-
markable that the spin-singlet correlations in 2DEG survive in
the limit t → 0, so the interlayer interaction itself represents
a mechanism for transferring the spin-singlet superconducting
correlations from the superconductor to the two-dimensional
layer. Considering the second term in Eq. (38b), we see that
in the presence of the electron tunneling and the interlayer
spin-triplet pairing, the two-dimensional system features the
additional spin-triplet odd-frequency superconducting corre-
lations. Finally, one can see that diagonal matrix elements
�̂11 and �̂22 given by Eqs. (38a) and (39a) contain the ad-
ditional Zeeman-like terms ∝ tdt�sσ̂z. Correspondingly, the
spin-triplet superconducting correlations in 2DEG can be ac-
companied by an additional spin splitting for quasiparticles in
the two-dimensional system provided that it is coupled to the
superconducting layer.

The above described features of the quasiparticle energy
spectrum in 2DEG in the presence of the spin-triplet interlayer
pairing imply the appearance of the multi-peak structure in the
energy dependence of the density of states

ν2D(E ) = 1

π
ImTr[Ĝn(R, R; ωn → −iE + η)]. (40)

Here the trace is taken over the spin indices and η is an
infinitesimally small positive number. For the calculations of
the density of states, we solve Eq. (33) with a local self-energy
given by Eqs. (37)–(39). As a first step, we derive the expres-
sion for the normal Matsubara Green’s function in 2DEG at
coincident spatial arguments

[Ĝn(R, R)]σσ =
∫

d2p
(2π )2

[i(ω̃n − iσh) + ξn][
ξ 2

n + (ω̃n − iσh)2 + f 2
σ

] , (41)

where σ =↑,↓ (±1), ξn = p2/2mn − μn, and

ω̃n(ωn) = ωn

(
1 + t2 + d2

t√
ω2

n + �2
s

)
, (42a)

h(ωn) = 2tdt�s√
ω2

n + �2
s

, (42b)

fσ (ωn) = �s
(
t2 + d2

t

) + 2iσωntdt√
ω2

n + �2
s

. (42c)

Integration over the momentum in Eq. (41) gives

[Ĝn(R, R)]σσ = πνn
iω̃n + σh√

f 2
σ − (iω̃n + σh)2

. (43)

Here νn = mn/2π is the density of states in an isolated 2DEG
per spin projection. Finally, we substitute Eqs. (43) into
Eq. (40) and calculate the density of states.

Typical behavior of the density of states in 2DEG as a func-
tion of energy and model parameters are presented in Fig. 3.
Panels (a)–(c) show the color plots of the density of states as
a function of energy E and the interlayer gap function dt for
several tunneling rates t2 = 0, t2 = �s, and t2 = 3�s, respec-
tively. Panels (d)–(f) reveal ν2D(E ) plots for several values of
the interlayer gap function. We choose the energy level broad-
ening parameter η = 0.01�s to produce the plots. Figures 3(a)
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FIG. 3. Typical energy dependencies of the density of states in the two-dimensional layer ν2D/νn, where νn is the density of states at the
Fermi level per spin projection of an isolated 2DEG. [(a)–(c)] Color plots of the density of states as a function of energy E and the interlayer
gap function dt for several values of the tunneling rate t2. [(d)–(f)] ν2D(E ) dependencies for various values of the interlayer gap function dt .
(a) and (d), (b) and (e), and (c) and (f) correspond to t = 0, t2 = �s, and t2 = 3�s, respectively. We choose the energy level broadening
parameter η = 0.01�s to produce the plots.

and 3(d) refer to the case t = 0, for which the two-
dimensional layer only features the spin-singlet superconduct-
ing correlations [see Eq. (38b)]. One can see the emerging
minigap in the density of states for rather small dt values [see
the solid red line in Fig. 3(d)]. The magnitude of the minigap
for d2

t = 0.1�s is approximately 0.2�s, which is in agreement
with the result of Eq. (38b) in the case t = 0 and d2

t � �s.
Two additional features in the density of states are located
near the energy gap of the parent superconductor E ≈ ±�s.
The color plot in Fig. 3(a) shows that the spectral gap tends to
2�s upon the increase in the absolute value of the interlayer
gap function. We provide ν2D(E ) plots for a finite tunneling
rate t2 = �s and d2

t /�s = 0, 0.5, 1, and 3 in Fig. 3(e). Cor-
responding ν2D(E ) curve for dt = 0 (shown by a blue dashed
line) represents a typical energy dependence of the density
of states of 2DEG with the induced superconductivity and
possesses two pair of peaks, one of which (at E ≈ ±0.55�s)
marks the induced hard gap in the energy spectrum and an-
other one is located at E ≈ ±�s. The increase in the interlayer
gap function leads to the splitting of the peaks at the parent
gap and to the decrease in the induced gap, which eventually
disappears at a certain value of interlayer pairing amplitude.
The black solid line in Fig. 3(e) shows a pronounced zero-bias
peak in the density of states at d2

t ≈ t2. The color plot in
Fig. 3(b) demonstrates that the spectral gap reopens upon fur-
ther increase in dt and tends to 2�s for rather large dt values.
The results in Figs. 3(c) and 3(f) obtained for larger tunneling

rate t2 = 3�s also demonstrate the hard gap closing-
reopening feature upon the variation of the interlayer pairing
amplitude as well as the appearance of a zero-bias peak in the
density of states of the two-dimensional system at d2

t = t2.

C. Screening properties of the induced superconducting
correlations in 2DEG

We continue with the analysis of a linear response of the
induced superconducting correlations in 2DEG to an external
magnetic field. Corresponding linear relations between the
supercurrent j and the vector potential A in 2DEG are derived
within both the clean and dirty limit. For the derivation we
choose the transverse gauge for the vector potential divA = 0
and follow the approach described in Ref. [55]. The valid-
ity of the obtained results is restricted to the case when the
characteristic interatomic scale in 2DEG is much less than the
spatial scale of the induced superconducting correlations. We
stress that our results regarding the paramagnetic response of
2DEG coupled to massive superconductor is just the contri-
bution of the 2DEG to the total response, which is, of course,
diamagnetic due to a large diamagnetic response of a massive
superconductor.

1. Clean limit

Here we consider the ballistic case. For the derivation
of the quasiclassical equations in 2DEG, we introduce the
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Matsubara Green’s functions in the mixed representation

Ǧn(R, p) =
∫

dδR e−ipδRǦn(R, δR), (44)

where R = (R1 + R2)/2 and δR = R1 − R2. Using
Eqs. (28a), (44) and considering the quasiparticle states
in the vicinity of the Fermi surface

p = n(pFn + ξn/vFn), (45)

we derive the quasiclassical equations for the Green’s function
in the mixed representation[

−iωn + τ̌z

(
ξn − i

2
vFn∇R

)

− evFnA
(

R + i

2
vFn

d

dξn

)]
Ǧn(R, n, ξn)

− �̌(R)Ǧn(R, n, ξn) = 1. (46)

Here vFn = vFnn, vFn denotes the Fermi velocity in an iso-
lated 2DEG, n = [cos ϕp, sin ϕp, 0], pFn = mnvFn, and ξn is
the kinetic energy of quasiparticles relative to the chemical
potential. Note that in the above equation we used the local
approximation for the self-energy. The supercurrent density is
then determined from the solution of Eq. (46)

j(R) = −epFnT
∑
ωn

∫
dξn

(2π )

dn
(2π )

nTr[Ĝn(R, n, ξn)]. (47)

As a next step, we find the first-order correction for the
Green’s function with respect to the vector potential. For this
purpose, it is convenient to calculate the Fourier transform of
the Green’s function with respect to ξn

Ǧn(q) =
∫

Ǧn(ξn)eiqξn
dξn

2π
. (48)

Using Eq. (46), we derive the quasiclassical equation for the
Fourier transform (48). Eliminating the spatial derivative via
the replacement R → R − 1

2 vFnq, we get the equation[
−iωn − iτ̌z

∂

∂q
− evFnA(R + qvFn)

]
Ǧn(q)

− �̌

(
R + 1

2
qvFn

)
Ǧn(q) = δ(q). (49)

It is important to note that for the derivation of the linear
response it is sufficient to expand the Green’s function up to
the first-order term in the vector potential

Ǧn(q) ≈ Ǧ(0)
n (q) + Ǧ(1)

n (q), (50)

and take the unperturbed homogeneous self-energy �̌(0) given
by Eqs. (37)–(39). Indeed, within the local approximation the
self-energy involves the Green’s function in the supercon-
ducting layer at coincident spatial arguments. Therefore the
first-order correction �̌(1) vanishes upon averaging over the
momentum directions. Unperturbed Green’s functions have
the form

Ĝ(0)
n (q) =

∑
σ=↑,↓

�̂zσ G(0)
nσ (q), (51a)

F̂ †(0)
n (q) = −(iσ̂y)

∑
σ=↑,↓

�̂zσ F †(0)
nσ (q), (51b)

where �̂z↑,↓ = (1 ± σ̂z )/2 are the projection operators, and
the expressions for the components read as

G(0)
nσ (q) = γσ (q)

2

[
iω̃n + σh√

f 2
σ − (iω̃n + σh)2

+ isgn(q)

]
, (52a)

F †(0)
nσ (q) = γσ (q)

2

fσ√
f 2
σ − (iω̃n + σh)2

, (52b)

with γσ (q) = exp[−√
f 2
σ − (iω̃n + σh)2|q|]. The other

Green’s functions ˆ̄G(0)
n and F̂ (0)

n can be obtained from Eqs. (51)
by using the symmetry relations ˆ̄G(0)

n (ωn) = −Ĝ(0)
n (−ωn) and

F̂ (0)
n (ωn) = [F̂ †(0)

n (ωn)]T.
The first-order correction for the Green’s function at q = 0

is determined from the expression

Ǧ(1)
n (q = 0) =

∫
dq′Ǧ(0)

n (−q′)evFnA(R + q′vFn)Ǧ(0)
n (q′).

(53)

We put

A(R) =
∫

d2p
(2π )2

A(p)eipR, (54a)

j(R) =
∫

d2p
(2π )2

j(p)eipR, (54b)

and then substitute Eqs. (51) and (52) into Eq. (53). Perform-
ing the integration, we derive a linear relation between the
supercurrent and vector potential in the clean limit

j(p) = − e2 pFnvFnT
∑
ωn

∑
σ=↑,↓

1

2

f 2
σ√

f 2
σ − (iω̃n + σh)2

×
∫

dn
(2π )

n(nA(p))[
f 2
σ − (iω̃n + σh)2 + v2

Fn(np)2/4
] . (55)

Under the assumption of a local response, the above equa-
tion transforms as follows:

j(R) = −QA(R), (56a)

Q = e2 pFnvFn

4
T

∑
ωn,σ

f 2
σ[

f 2
σ − (iω̃n + σh)2

]3/2 . (56b)

Typical temperature dependencies of the coefficient Q in
the linear relation (56) are shown in Fig. 4. For the sake
of simplicity, we choose the interlayer gap function dt to
be constant within the considered temperature range. To
take into account the temperature dependence of the gap
function in the SC layer, we use the standard interpolation
formula [56]

�s(T ) = �0 tanh

[
1.74

√
Tc

T
− 1

]
, (57)

where �0 = �s(T = 0) and Tc denotes the superconducting
critical temperature. Figures 4(a)–4(c) show several Q(T )
plots for a fixed interlayer gap function and several tunnel-
ing rates t2/�0 = 0.1, 0.2, 0.3, 0.4, and 0.5. The results
in Fig. 4(a) for dt = 0 indicate that in the absence of the
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FIG. 4. Typical temperature dependencies of the coefficient Q in the linear relation between the supercurrent and the vector potential
(56a). The plots represent the results of Eq. (56b), which is valid in the clean limit and under the assumption of a local response. (a), (b), and
(c) correspond to d2

t = 0, 0.1�0, and 0.3�0, respectively. (d) Several Q(T ) plots for t2 = d2
t = 0.1�0, 0.2�0, 0.3�0, and 0.4�0. Eq. (57) has

been used to interpolate �s(T ) dependence whereas we choose the interlayer pairing amplitude dt to be constant throughout the considered
temperature range. Here �0 = �s(T = 0).

interlayer spin-triplet pairing the induced superconducting
correlations in 2DEG only exhibit the Meissner response
(Q > 0). Diamagnetic response of the induced Cooper pairs
becomes more pronounced at lower temperatures with de-
creasing t2. This behavior is consistent with the fact that
the induced gap in the quasiparticle energy spectrum of
the two-dimensional layer decreases upon the decrease in
the tunneling rate. Q(T ) plots in Figs. 4(b) and 4(c) reveal
several qualitatively different types of the linear response
within different temperature ranges. For d2

t = t2 = 0.1�0

and 0.3�0 [see a blue solid line in Fig. 4(b) and a black
dashed line in Fig. 4(c)], the superconducting correlations in
2DEG exhibit the paramagnetic response (Q < 0) within the
considered temperature range, and |Q| grows with decreas-
ing temperature. We note that this behavior is in qualitative
agreement with our calculations of the density of states in
the previous section, which yield a zero-bias anomaly at
t2 ≈ d2

t . The parameter range t2 > d2
t (t2 < d2

t ) is charac-
terized by the presence of the minimum on a Q(T ) curve
and a diamagnetic response at low temperatures. For clar-
ity, we also reveal the low-temperature behavior of Q for
d2

t = t2 = 0.1�0, 0.2�0, 0.3�0, and 0.4�0 in Fig. 4(d).
Note that the presence of the paramagnetic response of
2DEG at high temperatures in Figs. 4(b) and 4(c) is re-
lated to the presence of the spin-triplet superconducting
correlations in 2DEG, which actually survive in the limit
�s → 0.

2. Dirty limit

We proceed with investigating the linear response of the
induced superconducting correlations in 2DEG with randomly
distributed nonmagnetic point impurities. The effects of an
elastic scattering are described by the impurity self-energy

�̌imp(R) = 1

τ

∫
dξn

2π

dn
2π

τ̌zǦn(R, n, ξn)τ̌z, (58)

included into Eq. (46). Here τ is the average time between
collisions.

As a first step, we derive the Eilenberger equations for
ξn-integrated Green’s functions. For this purpose, we subtract
Eq. (46) and its transpose. As a result, we get

−ivFn∇Rǧn(R, n) − [w̌(R), ǧn(R, n)] = 0, (59)

where

w̌ = τ̌z[iωn + �̌(R) + �̌imp(R) + evFsA(R)], (60)

and the quasiclassical Green’s function is defined as follows:

ǧn(R, n) =
∫

dξn

2π
Ǧn(R, n, ξn)τ̌z. (61)

Using Eqs. (48), (51), and (52) evaluated at q = 0, it is
straightforward to show that the introduced quasiclassical
Green’s function (61) obeys the normalization condition ǧ2

n =
−1/4. In this subsection we consider the case when the mean
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FIG. 5. Typical temperature dependencies of the coefficient Q in the linear relation (66a). The plots are the results of Eq. (66b), which is
valid in the dirty limit. (a), (b), (c), and (d) correspond to d2

t = 0, 0.1�0, 0.2�0 and 0.3�0, respectively. Eq. (57) has been used to interpolate
�s(T ) dependence whereas we choose the interlayer pairing amplitude dt to be constant throughout the considered temperature range.

free path for elastic scattering � is much less than the spatial
scale of the superconducting correlations in 2DEG. In this
case one can seek the solution of Eq. (59) in the form

ǧn(R, n) = ǧ(0)
n (R) + n�̌n(R). (62)

Isotropic part of the Green function ǧ(0)
n satisfies the Usadel

equation

Dn∇̌R
[
ǧ(0)

s ∇̌Rǧ(0)
s

] − 1
2

[
τ̌z(iωn + �̌), ǧ(0)

s

] = 0, (63)

whereas a small correction �̌n is determined from the
expression

�̌n(R) = 2i�ǧ(0)
n (R)∇̌Rǧ(0)

n (R). (64)

In the above equations ∇̌Rǎ = ∇Rǎ − ieA[τ̌z, ǎ] and Dn =
vFn�/2 is the diffusion coefficient in 2DEG. Substituting
Eqs. (62) and (64) into Eq. (47), we get the expression for
the supercurrent

j(R) = − 2ieDnνnT
∑
ωn

Tr
[
ĝ(0)

n (R)∇Rĝ(0)
n (R)

+ f̂ (0)
n (R)(∇R + 2ieA(R)) f̂ †(0)

n (R)
]
. (65)

Note that for the chosen gauge of the vector potential divA =
0, the Usadel equation (63) doesn’t contain linear terms in A.
Correspondingly, the linear relation between the supercurrent
and the vector potential can be obtained by substituting the
zero-order spatially homogeneous Green’s functions defined

by Eqs. (51) and (52) into Eq. (65). As a result, we obtain the
local relation

j(R) = −QA(R), (66a)

Q = 2πe2DnνnT
∑
ωn

∑
σ=↑,↓

f 2
σ[

f 2
σ − (iω̃n + σh)2

] . (66b)

Typical temperature dependencies of the coefficient Q in
the linear relation (66a) are shown in Fig. 5. The plots are the
results of Eq. (66b). Panels (a), (b), (c), and (d) correspond to
d2

t /�0 = 0, 0.1, 0.2, and 0.3, respectively. Figure 5(a) shows
that in the absence of the spin-triplet interlayer pairing the
induced superconducting correlations in 2DEG only exhibit
the diamagnetic response. In contrast with the corresponding
results for the clean limit [see Fig. 4(a)], the plots in Fig. 5(a)
demonstrate that the magnitude of the response |Q| at low
temperatures grows with increasing tunneling rate. Similarly
to the previously considered case, we find that in the case of
a finite interlayer gap function the type of the linear response
can vary with temperature. In particular, the results for d2

t =
t2 = 0.1�0 [shown by a blue solid line in Fig. 5(b)] reveal
rather small diamagnetic response at low temperatures, which
switches into the paramagnetic one upon the increase in T .
The increase in the tunneling rate t2 results in the enhance-
ment of both the diamagnetic and paramagnetic response.
The temperature range corresponding to the diamagnetic re-
sponse increases for larger tunneling rates. Panels (c) and
(d) show typical Q(T ) plots within both parameter regions
t2 < d2

t and t2 > d2
t . Considering, for instance, Fig. 5(d), we

see that for t2 = 0.1�0 the two-dimensional layer features the
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diamagnetic (paramagnetic) response at low (high) temper-
atures. The temperature range, within which the Meissner
response is established shrinks upon the increase in t2. At
t2 = d2

t = 0.3�0 [see a black dashed line in Fig. 5(d)] 2DEG
exhibits the paramagnetic response within the considered tem-
perature range. Further increase in the tunneling rate t2 > d2

t
restores the low-temperature diamagnetic response and also
leads to the enhancement of the paramagnetic response at high
temperatures.

IV. CONCLUDING REMARKS

Finally, let us comment on the relation between the direct
and inverse proximity effect in superconductor-normal metal
structures. In a standard situation rather high transparency of
the barrier between the subsystems implies a strong inverse
proximity effect. Our results point out that in the presence of
the interlayer pairing this relation can break down, namely the
inverse proximity effect can be small whereas experimentally
measurable effects of the induced superconducting correla-
tions can be noticeable. Note that some indications of such
phenomena have been recently observed in [57].

To sum up, we have studied the manifestations of the in-
terlayer pairing in proximitized heterostructures. Depending
on the geometry and dimensionality of the system, we have
shown that the interlayer pairing can lead to the appearance of
the odd-frequency superconducting correlations, FFLO insta-
bility, the paramagnetic contribution to the Meissner response,
and the multi-peak structure of the density of states. We
believe that the obtained results can be useful both for the
analysis of experimental data on proximitized heterostructures
and for engineering new types of superconducting states in
systems with induced superconductivity. Since the considered
mechanism can play a role of the Zeeman field, it can be
possible that the related effects can be useful for development
of new platforms for topologically protected qubits based on
Majorana modes [9,10].
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APPENDIX: DERIVATION OF EQS. (28)
IN THE MAIN TEXT

Throughout the second part of our work we use the follow-
ing Green’s functions:

Ǧs(X1, X2) = 〈Tτ ψ̌s(X1)ψ̌†
s (X2)〉, (A1a)

Ǧn(x1, x2) = 〈Tτ ψ̌n(x1)ψ̌†
n (x2)〉, (A1b)

Ǧt (X1, x2) = 〈Tτ ψ̌s(X1)ψ̌†
n (x2)〉, (A1c)

Ǧt (x1, X2) = 〈Tτ ψ̌n(x1)ψ̌†
s (X2)〉. (A1d)

Here x = (r, τ ) and X = (R, τ ), τ is the imaginary time
variable in the Matsubara technique, Tτ is the time-ordering
operator. We define the Nambu spinors ψ̌s(X) and ψ̌n(x) as

ψ̌s(X) = [ψs↑(X), ψs↓(X), ψ†
s↑(X), ψ†

s↓(X)]T, (A2a)

ψ̌n(x) = [ψn↑(x), ψn↓(x), ψ†
n↑(x), ψ†

n↓(x)]T. (A2b)

Below we present the equations of motion for the field
operators and the derivation of the Gor’kov equations in the
absence of the external magnetic field. Note that in this sec-
tion we don’t restrict ourselves with a spatially homogeneous
hopping parameter and superconducting order parameters. For
the considered model (23), fermionic operators in the SC layer
satisfy the equations of motion
∂

∂τ
ψ̌s(X) = − [τ̌zξs(R) + �̌s(R)]ψ̌s(X) − dδ(Z )t (r)τ̌zψ̌n(x)

− U0

2
dδ(Z )τ̌z[ψ

†
nσ (x)ψnσ (x)]ψ̌s(X), (A3)

where τ̌i (i = x, y, z) are the Pauli matrices acting in the
particle-hole space and the superconducting gap matrix has
the form

�̌s(R) =
[

0 �̂s(R)
�̂†

s (R) 0

]
, (A4)

Here �̂s(R) = (iσ̂y)�s(R), σ̂i (i = x, y, z,) are the Pauli ma-
trices acting in the spin space. Equations of motion for the
field operators in 2DEG are as follows:

∂

∂τ
ψ̌n(x) = − τ̌zξn(r)ψ̌n(x) − t (r)τ̌zψ̌s(x)

− U0

2
τ̌z[ψ

†
sσ (x)ψsσ (x)]ψ̌n(x). (A5)

For the derivation of the Gor’kov equations for the Green’s
functions (A1), one should decouple thermodynamic averages
of four fermionic operators [52]. For instance, considering the
equation for the normal correlation function in 2DEG [Ĝn]αβ ,
we have the combinations

〈Tτψ
†
sσ (x1)ψsσ (x1)ψnα (x1)ψ†

nβ (x2)〉
= 〈Tτψ

†
sσ (x1)ψsσ (x1)〉〈Tτψnα (x1)ψ†

nβ (x2)〉
− 〈Tτψ

†
sσ (x1)ψnα (x1)〉〈Tτψsσ (x1)ψ†

nβ (x2)〉
+ 〈Tτψ

†
sσ (x1)ψ†

nβ (x2)〉〈Tτψsσ (x1)ψnα (x1)〉. (A6)

In the present work, we focus on the effects of the interlayer
anomalous averages represented, for instance, by the last term
in the right-hand side of Eq. (A6) and neglect the other contri-
butions. Using Eqs. (A1) and (A5), we derive the equations for
the Matsubara Green’s functions in 2DEG[

∂

∂τ1
+ τ̌zξn(r1)

]
Ǧn(x1, x2) + ť (r1)Ǧt (x1, x2)

= d−1δ(x1 − x2), (A7)

where the coupling matrix

ť (r) =
(

t (r) �̂int (r)
−�̂∗

int (r) −t (r)

)
, (A8)
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acquires a nontrivial structure in the particle-hole space due to
the presence of the interlayer gap function

[�̂int (r)]αβ = −U0

2
〈ψnα (x)ψsβ (x)〉. (A9)

Equations for the Green’s functions can be more conveniently
in the Matsubara frequency representation ωn = 2πT (n +
1/2). We set τ = τ1 − τ2 and write

Ǧ(r1, r2) =
∫ 1/T

0
dτ Ǧ(x1, x2)eiωnτ , (A10)

omitting the frequency argument for brevity. Equations for
the Green’s functions in 2DEG written in the Matsubara
frequency-coordinate representation have the form

[−iωn + τ̌zξn(r1)]Ǧn(r1, r2) + ť (r1)Ǧt (r1, r2)

= d−1δ(r1 − r2). (A11)

We derive the equation for the tunneling Green function in a
similar fashion

[−iωn + τ̌zξs(R1) + �̌s(R1)]Ǧt (R1, r2)

+ dδ(Z1)ť†(r1)Ǧn(r1, r2) = 0. (A12)

Neglecting the back action of 2DEG on the superconductor
and the effects of the interlayer interaction in the SC layer, the
Gor’kov equations in the SC layer read

[−iωn + τ̌zξs(R1) + �̌s(R1)]Ǧs(R1, R2) = δ(R1 − R2).
(A13)

To obtain a closed system of equations for the Green’s func-
tions in 2DEG we follow Ref. [54] and write the solution of
Eq. (A12)

Ǧt (R1, r2) = −d
∫

d2r′Ǧs(R1, r′)ť†(r′)Ǧn(r′, r2). (A14)

Substituting Eq. (A14) into Eq. (A11), we derive Eqs. (28) in
the main text.
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