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Superradiant emission stimulated by vortex-antivortex pair production in layered superconductors
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We report numerical simulations of coupled sine-Gordon and heat diffusion equations describing dynamic
states stimulated by a trapped vortex driven by dc current in a stack of up to N = 321 Josephson junctions.
It is shown that the Cherenkov wake behind the vortex shuttle trapped in the stack can trigger proliferation
of counterpropagating vortices and antivortices which get synchronized and form large-amplitude standing
electromagnetic waves. This happens if the dc current density J exceeds a threshold value Js which can be
well below the Josephson interlayer critical current density Jc for underdamped junctions. The cavity modes
stimulated by the vortex-antivortex pair production cause peaks in the radiated power PN (J ) with a nearly
monochromatic spectrum at discrete values of J corresponding to the zero-field Fiske resonances. The power
PN (J ) was evaluated for small rectangular stacks in the magnetodipole approximation and for large stacks in a
single mode state. For small stacks, the highest peak in PN (J ) increases rapidly, PN ∝ N6, with the number of
junctions at N � 81 and gradually slows down to PN ∝ N2 at 161 � N � 321. For stacks larger than the radiation
wavelength, we obtained PN ∝ N5 at N � 200–300 and PN ∝ N2 at larger N . At N � 321 and representative
parameters of Bi2Sr2CaCu2O8+δ , we observed moderate overheating and no hotspots. The vortex-antivortex pair
production can amplify THz radiation from Bi2Sr2CaCu2O8+δ mesas for which trapping Josephson vortices
could be used to stimulate THz emission at subcritical currents and optimize the radiation output.
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I. INTRODUCTION

The intrinsic Josephson effect [1] in Bi2Sr2CaCu2O8+δ

(Bi-2212), in which the CuO2 planes sandwiched between
the Bi2O2 insulating layers form Josephson junctions (JJs),
has caused much interest as a source of coherent radiation
from the layered cuprates [2–6]. This effect can be used for
the development of compact THz emitters and detectors for
fundamental research and applications. Experiments on Bi-
2212 mesas have revealed continuous radiation with powers
∼1–103 µW at 0.3–10 THz [3–6] and the appearance of
hotspots in the mesas [7–13]. Such THz emitters can operate
both at 4.2 K and 77 K [14,15].

The THz radiation from the JJ stack results from the ex-
citation of collective modes of synchronized JJs [2–5]. Such
modes can produce oscillating charge density at the edges of
the stack and can be enhanced by electromagnetic coupling
with surrounding structures [2–5] or mesa arrays [16,17].
Reaching higher radiation powers PN requires better syn-
chronization of JJs so that PN would increase quadratically
with the large number N of CuO planes in the crystal in
a superradiant state. To improve the synchronization of JJs
in Bi-2212 mesas it was proposed to use traveling elec-
tromagnetic (EM) waves [18–20], periodic inhomogeneity
of the interlayer current density [21,22], in-plane magnetic
fields [23], or currents [24].
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In this paper we consider a mechanism of intrinsic syn-
chronization of JJs and radiation stimulated by Cherenkov
instability of a current-driven Josephson (J) vortex trapped
in the stack [25]. Cherenkov radiation produced by moving
vortex structures in JJ stacks is usually regarded as an extra
contribution to the total radiation output [3,26]. Here we con-
sider a nonlinear Cherenkov synchronization of JJs stimulated
by a single vortex which triggers spontaneous production of
vortex-antivortex (V-AV) pairs above a threshold current Is

in the absence of dc magnetic field. Such V-AV pair produc-
tion has been observed in numerical simulation of single JJs
[27,28], two and three-stacked JJs [29–32], annular JJs [33],
JJ arrays [34,35], Josephson multilayers [25], and other sys-
tems described by coupled sine-Gordon equations [36,37].
This effect is most pronounced in underdamped JJ stacks in
which the threshold current Is can be well below the interlayer
Josephson critical current Ic.

At I < Is a vortex trapped in an underdamped JJ stack
bounces back and forth turning into antivortex upon each
reflection from the edges of the stack [25]. At I > Is such
a V-AV shuttle triggers proliferation of V-AV pairs which
get synchronized and form a large-amplitude standing EM
wave. Both the amplitude and the frequency of such resonant
mode increase by orders of magnitude as compared to those
of the V-AV shuttle at I < Is. This mode causes oscillations
of the magnetic moment and magnetodipole radiation from
small JJ stacks with the emitted power PN ∝ N6 increasing
rapidly with the number of JJs, as was shown by numerical
simulations of up to 81 JJs [25]. Such strong increase of
PN with N mostly results from the increase of the number
of produced V-AV pairs and the magnetic flux of a vortex
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FIG. 1. Stack of intrinsic Josephson junctions (brown) between
superconducting layers. A dc current I is injected from the top layer.

as the thickness of the stack increases. Extending these re-
sults to bigger stacks with N � 102–103 typical of Bi-2212
mesas requires extensive numerical simulations to address the
following questions. (1) How far can the strong increase of
PN ∝ N6 with N continue and at what N could PN eventually
level off or start decreasing? (2) How much is PN limited by
overheating, which was disregarded in Ref. [25]? (3) How can
the emission and its angular distribution change in mesas with
lateral dimensions greater than the radiation EM wavelength
∼10−1 mm at which the magnetodipole approximation is not
applicable? In this work we address these issues by calculating
PN and the radiation spectrum for JJ stacks with up to 321
junctions.

The paper is organized as follows. In Sec. II we present the
coupled sine-Gordon equations solved self-consistently with
an equation for the mean temperature T of the JJ stack. A
qualitative picture of a standing EM wave stimulated by a
V-AV shuttle is given in Sec. III. Calculations of the magne-
todipole radiated power PN (β ) as functions of the driving dc
current and the number of layers for a single vortex trapped
in the central JJ of a small stack are given in Sec. IV. In Sec.
V we calculate PN (β ) for one trapped vortex in each JJ. In
Sec. VI we evaluate the radiated power caused by a resonant
mode in a rectangular JJ stack of arbitrary dimensions. Sec-
tion VII concludes with a discussion of the results.

II. MAIN EQUATIONS

In this work we solve numerically generic sine-Gordon
equations [1–5,38–44], which describe dynamic states of a
stack of N coupled JJs shown in Fig. 1:

θ ′′
n = [1 − ζ (T )�d ]

[
αJ (T ) sin θn + ηθ̇n + θ̈n

]
, (1)

bn = [1 − ζ (T )�d ]−1θ ′
n. (2)

Here θn(x, t ) is the phase difference across the nth junction,
bn = Bn(x, t )/B0 the dimensionless magnetic field parallel
to the layers, B0 = μ0Jcλc0 = φ0/2πsλc0, λc and λ are the
penetration depths of the parallel magnetic field B along and

across the layers, respectively, λc0 = λc(T0), s is the spac-
ing between the layers, φ0 is the magnetic flux quantum,
�d fn ≡ fn+1 + fn−1 − 2 fn is the lattice Laplacian, Jc is the
Josephson critical current density, η = σcλc0/cε0

√
εc is a

damping parameter, σc is the interlayer quasiparticle con-
ductivity, ε0 and μ0 are the vacuum electric and magnetic
permittivities, the prime and overdot denote partial derivatives
with respect to the dimensionless coordinate x/λc0 and time
tωJ0, respectively, ωJ0 = c/

√
εcλc0 is the Josephson plasma

frequency at T = T0, c is the speed of light, and εc is the
dielectric constant along the crystal c axis. We consider one-
dimensional (1D) solutions θn(x, t ) and bn(x, t ) independent
of y and disregard the effects of charge imbalance [44] and
in-plane quasiparticle currents [6,45] in Eqs. (1) and (2).

At the edges of the stack we imposed the boundary condi-
tion θ ′

n(0) = θ ′
n(Lx ) = 0 of zero in-plane super current density.

Other boundary conditions account for a dimensionless dc
uniform current density β = J/Jc(T0) injected through the top
JJ (n = 1) and collected from the bottom JJ (n = N ) [41–43].
These boundary conditions were incorporated in the matrix
Eqs. (1) and (2), which were solved numerically using the
method of lines [46,47] as described in Appendix A.

The parameters αJ (T ) and ζ (T ) take account of dependen-
cies of Jc(T ) and λ(T ) on the JJ temperature T (J ),

αJ = Jc(T )

Jc(T0)
, ζ = λ2(T )

s2
, (3)

where ζ (T ) quantifies the inductive coupling of the layers. We
use Jc(T ) for SIS junctions and an interpolation formula for
λ(T ) in Bi-2212 single crystals [10,48]:

Jc(T )/Jc(0) = 1 − (T/Tc)2, (4)

λ2(0)/λ2(T ) = [1 − (T/Tc)6](1 − 0.6T/Tc). (5)

A mean temperature of the JJ stack T (J ) is calculated self-
consistently by solving Eqs. (1) and (2) and a stationary heat
diffusion equation. As shown in Appendix B, T (J ) in a thin
JJ stack of thickness d on a base of thickness w � d is
determined by the equation

1

w

∫ T

T0

κc(T )dT = h̄Jc0

2etaLx

N∑
n=1

∫ t0+ta

t0

dt

×
∫ Lx

0

[
ηθ̇2

n + αJ θ̇n sin θn
]
dx, (6)

where κc(T ) is the thermal conductivity of the base along the
c axis. The right-hand side of Eq. (6) is the power generated
per unit area of the stack. In our simulations t0 = 2000 was
chosen to be larger than the transient time after which the
steady-state solutions θn(t ) set in and ta = 200 is an averaging
time to calculate steady-state T (β ) and the radiation power.

Simulations start at a small current β � 1 and run until a
steady state θn(t ) was reached at t > t0. Then these solutions
were used to calculate T (β ) in Eq. (6) and update ζ (T ) and
αJ (T ) in Eqs. (1) and (2) for the next step β + �β, where
�β � 0.01. In this way Eqs. (1)–(6) were solved iteratively
for a sequence of driving currents βi+1 = βi + �β using
θn(t, βi ) obtained at the preceding ith step as initial conditions
for Eqs. (1) and (2) at the (i + 1)th step and to update T (βi ) in
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FIG. 2. Temporal oscillations of a magnetic moment M(t ) due
to reflections of vortices and antivortices from the edges at η = 0.1.
(a) M(t ) caused by a single vortex trapped in a central JJ at β =
0.585 < βs; (b) M(t ) caused by a bouncing flux structure with one
vortex per layer at β = 0.52 < βs.

Eq. (6). For the input material parameters, we took Tc = 85 K,
εc = 12, s = 1.5 nm, Jc(T0) = 200 A/cm2, λ(0) = 260 nm,
λ(T0) = 264 nm in a Bi-2212 crystal at the ambient temper-
ature T0 = 4.2 K, λc0 = 295 µm, ωJ0 = 0.29 THz, Lx = λc0,
and the base thickness w = 30 µm. The temperature depen-
dence of η(T ) was disregarded and κc(T ) = κ0(T/T0)a with
κ0 = 0.32 W/mK and a = 0.67 [10] was used.

III. RESONANT MODES STIMULATED
BY A VORTEX SHUTTLE

We start with an overview of the physics of the V-AV
pair production by a moving vortex trapped in a stack with
21 JJs. This case was considered in Ref. [25] in a model

FIG. 3. Phase profile of a vortex propagating along a long cen-
tral junction (n = 11, Lx � λc0) and the trailing tail of Cherenkov
radiation on the neighboring JJ (n = 10) calculated from Eq. (1) at
η = 0.1 and β = 0.685.

FIG. 4. (a) Stationary velocities of a vortex moving along the
central JJ as a function of the bias current at different damping
parameters η. (b) The threshold current density Js corresponding to
the end points of the v(β ) curves in (a) as a function of η calculated
for ζ = 30962.

with a constant dc bias current β through each JJ added in
Eq. (1) [44]. Here we adopt a more consistent approach in
which β is taken into account through the boundary conditions
at the top and the bottom JJ [41–43]. Both approaches produce
the same qualitative results.

Dynamics of a vortex in the current-biased JJ stack depends
crucially on the damping parameter η. If η � 1 a vortex ini-
tially trapped in a JJ is pushed by current toward the edge
of the stack and exits. In an underdamped stack with η � 1
the vortex colliding with the edge changes polarity and gets
reflected as antivortex. This process can also be viewed as a
vortex exit followed by penetration of antivortex. The polarity
change upon each reflection of the vortex from the edges
results in a vortex-antivortex (V-AV) shuttle and temporal
oscillations of the magnetic moment M(t ) with the flight
frequency fv 	 v/2Lx depending on the vortex velocity v and
the JJ length Lx. Such oscillations of M(t ) calculated from
Eq. (7) are shown in Fig. 2 for a vortex moving along a central
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FIG. 5. Snapshots of V-AV pairs generated by a vortex propagat-
ing along the central junction in a long stack (Lx � λc ) calculated at
η = 0.1 and β = 0.69.

JJ (a) and one trapped vortex per each JJ (b). In both cases we
have fv ∼ 10−2ωJ0. The ripples on M(t ) seen in Fig. 2 result
from the bremsstrahlung caused by acceleration of the vortex
due to its attraction to the AV image at the edges.

The velocity of the V-AV shuttle is controlled by the
balance of the Lorentz force and quasiparticle viscous drag
at small currents and by the radiation losses at higher cur-
rents [3]. The radiation losses are caused by the trailing
Cherenkov wake behind a moving vortex shown in Fig. 3. To
see interplay of these mechanisms, consider a vortex prop-
agating uniformly along a long JJ stack. Shown in Fig. 4
is the velocity v(β ) of a vortex driven along the central JJ
calculated from Eq. (1) without thermal feedback, where v(β )
is normalized to cs = cs/λ

√
εc of the order of the Swihart

velocity [3]. The initial steep increase of v(β ) controlled by
the weak viscous drag is followed by the sharp decrease in
the slope of v(β ) due to radiation losses. At η = 0.1 the
radiation-limited velocity v 	 0.5cs determines the flight fre-
quency fv = v/2Lx of the bouncing vortex. For Lx = λc0 used
in our simulations, fv ∼ (s/λ)ωJ0 ∼ 10−2ωJ0, consistent with
Fig. 2.

The radiation-controlled parts of v(β ) in Fig. 4 are termi-
nated at the end points β = βs. At β > βs the steady-state
propagation of the vortex becomes impossible because the
Cherenkov wake gets so strong that it causes spontaneous
production of V-AV pairs. This process is illustrated by Figs. 3
and 5, which show a Cherenkov wake with 5π/2 < θn <

7π/2 behind the moving vortex. A uniform state with 5π/2 <

θn < 7π/2 is unstable with respect to small perturbations
δθn � 1 but gets stabilized in a domain of finite length. As
β increases, the amplitude and the width of this domain grow
so that at β = βs it becomes unstable and splits, triggering a
cascade of expanding V-AV pairs, as shown in Fig. 5. In turn,
the Cherenkov wake on the central JJ induces new V-AV pairs
on the neighboring JJs. Those V-AV pairs start splitting and
propagating both along and across the stack; vortices and an-
tivortices bundle in spatially separated multiquanta flux spots

FIG. 6. (Top) Radiated power, PN (β ), as a function of current
calculated for a stack of length Lx = λc0 and N = 21. (Bottom)
Snapshots of a resonant mode in Bn(x, t ) on different JJs at the peak
in PN (β ) above at β = 0.85.

(macrovortices) [25] and counterpropagating flux spots with
opposite polarity [49]. According to Fig. 4(b), the threshold
current density Js(η) for the V-AV pair production in under-
damped JJ stacks can be well below the interlayer Jc.

Flux spots produced by the V-AV shuttle collide with the
edges of the stack and change polarity upon each reflection, as
shown in Ref. [49]. After repeated bouncing back and forth,
these flux spots get synchronized and form a standing EM
wave which can cause temporal oscillations of the magnetic
moment of the stack:

M(t ) = M0

∑
n

∫ Lx/λc0

0
bn(x)dx, (7)

where M0 = B0sλcLy/μ0 = φ0Ly/2πμ0. The oscillations of
M(t ) result in radiation from JJ stacks. For stacks much
smaller than the EM wavelength, the radiated power
can be evaluated in magnetodipole approximation PN =
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FIG. 7. Radiation power, PN (β ), calculated for a stack with 81, 161, 261, and 321 JJs as functions of the bias current.

μ0〈M̈2〉/6πc3, where 〈. . .〉 denotes time averaging [50]. It is
convenient to write PN in the form

PN = P0GN , P0 = cφ2
0L2

y

24π3μ0ε2
c λ

4
c

, (8)

GN =
∫ t0+ta

t0

[
N∑

n=1

∫ Lx/λc0

0
b̈n(x, t )dx

]2
dt

ta
. (9)

Here t0 = 2000 is chosen to be much larger than a transient
time to reach a steady state, ta = 200 is an averaging time,
and GN accounts for all harmonics of Bn(x, t ). For Ly = λc =
295 µm and εc = 12, we have P0 	 10−13 W. Figure 6 shows
the calculated PN (β ) which has multiple peaks diminishing at
β � 1. The peaks in PN (β ) occur at currents for which Bn(x, t )
has odd numbers of half-periods along the stack.

The standing EM wave shown in Fig. 6 is formed by
bundles of alternating J vortices and antivortices. The mag-
nitude of M(t ) is proportional to the magnetic flux � of these
bundles; both � and PN increasing strongly with the number N
of JJs in a stack with d = sN < 2λ. This is because the flux of

a J vortex φ in a thin stack can be much smaller than φ0 [25],
similar to the well-known result for the Abrikosov vortex in a
thin film [51–54]:

φ(u) = φ0

[
1 − cosh(u/λ)

cosh(d/2λ)

]
. (10)

Here u is the distance of the vortex from the center of the
stack. The flux φ(u) decreases with u and vanishes at the
surfaces u = ±d/2, where the vortex is extinguished by its
AV image [52,53]. If d � 2λ, Eq. (10) gives

φ(u) 	 φ0N2

8

( s

λ

)2
(

1 − 4u2

d2

)
, N � Nc = 2λ

s
. (11)

The reduction of φ(u) in a thin stack results from the con-
finement of vortex currents in a small area ∼d2 � λ2, which
can also be interpreted in terms of partially extinguishing the
vortex field by its AV images. For N = 21, s = 1.5 nm, and
λ = 264 nm, we get φ(0) 	 1.8 × 10−3φ0. At N � Nc the
flux φ is greatly reduced but � ∼ φ0(N/Nc)2N of flux spots
and PN ∝ N6 increase rapidly with N . For λ(T0) = 264 nm
and s = 1.5 nm, we obtain Nc 	 352 at 4.2 K. Overheating
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FIG. 8. Mean temperatures T (J ) of JJ stacks with different num-
bers of layers. The sharp increase of T (J ) occurs at the onset of the
V-AV pair production.

increases Nc(T ); for instance, at T = 50 K, Eq. (5) yields
Nc(T ) 	 440.

IV. SINGLE VORTEX TRAPPED
IN THE CENTRAL JUNCTION

In this section we present numerical results for a dynamic
state stimulated by a V-AV shuttle trapped in the central JJ
of a stack with η = 0.1 [44] and 21 � N � 321. After the
standing EM wave sets in at β > βs, the steady-state PN (β )
and TN (β ) were calculated. The resulting PN (β ) evaluated in
the magnetodipole approximation and TN (β ) raise sharply at
the current onset of the V-AV pair production Js, as shown in
Figs. 7 and 8. Here Js(N ) increases with N but remains below
the interlayer Jc, as shown in Fig. 9.

FIG. 9. Current threshold of the V-AV pair production βs as a
function of N .

FIG. 10. Snapshots of odd resonant modes in Bn(x, t ) on differ-
ent layers in a stack with (a) N = 81 at a radiation peak at β = 1.17,
(b) N = 161 at a radiation peak at β = 1.52, and (c) N = 321 at the
radiation peak at β = 1.39.

The radiated power PN (β ) as a function of current has sharp
peaks, whereas T (β ) increases smoothly with β after the
initial jump at β = βs. The peaks in PN (β ) occur for standing
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FIG. 11. Snapshot of even mode Bn(x, t ) on different layers at
minimum PN (β ) at β = 1.2 and N = 81.

waves in Bn(x, t ) with odd numbers m of half-periods, as
shown in Fig. 10. In turn, the minima in PN (β ) correspond
to even numbers m of half-periods of Bn(x, t ) with about the
same amplitudes as for the odd modes (see Fig. 11). The
unequal number of positive and negative peaks in Bn(x, t ) with
odd m causes temporal oscillations of M(t ) proportional to the
areas of the single peak. The field amplitudes of the strongest
resonant mode increase from 0.14B0 at N = 21 to 1.2B0 at
N = 321, where B0 = φ0/2πsλc0 is much larger than the
lower critical field Bc1 = (φ0/4πλλc)[ln(λ/s) + 1.12] [55].
The wavelength of the resonant mode at the highest peak in
PN (β ) increases with N , so MN (β ) proportional to the area
under the peak in Bn(x, t ) increases strongly with N , whereas
the heights of peaks in PN (β ) first increase with β and then
decrease with β. For Ly = Lx = λc0 = 295 µm, εc = 12, and
P0 	 10−13 W, we have P̃321 	 0.25 µW for a stack with
N = 321 at β ≈ 1.4 according to Fig. 7(d).

A. Spectral analysis and resonant frequencies

The spectral analysis of MN (β, t ) shows that the stand-
ing waves producing the peaks of PN (β, t ) are practically
monochromatic; the amplitudes of fundamental harmonics
increase strongly with N . Shown in Fig. 12 are the Fourier
spectra of M̃N (t, β ) for the stacks with N = 81 and 161, where
the tilde marks MN (t, β ) and PN (β ) corresponding to the high-
est peak in PN (β ) with frequencies f̃N 	 (1 − 2.2)ωJ0. The
Fourier spectra of M̃N (t, β ) also contain small low-frequency
harmonics and the third harmonic with amplitude ∼10−3 of
that of the main harmonic. Contributions of the low-frequency
and high-frequency harmonics to PN (β ) are negligible.

The EM standing waves shown in Fig. 10 can be de-
scribed by a subset of eigenmodes in a rectangular JJ
stack [39,44,56,57]:

B(x, z, t ) = Ba sin

(
πmx

Lx

)
sin

(πz

d

)
e−iωmt . (12)

No modes with nodes along z and y were observed in
our simulations. The frequencies fm = ωm/2π in Eq. (12)

FIG. 12. Fourier spectra of M(t ) at the highest peaks in PN (β ):
(a) N = 81 at β = 1.17; (b) N = 161 at β = 1.52.

for the modes with m half-periods obtained from the
Fourier spectra are equidistant in odd m. This is shown
in Fig. 13, where each point corresponds to a peak in
PN (β ). The so-obtained ωm match the eigenfrequencies in the
inductively coupled JJ stack, ω2(qx, qz ) = ω2

J + c2
i q2

x/[1 +
4ζ sin2(sqz/2)] [25,39,44], where ci = c/

√
εc, qx = πm/Lx,

qz = π/d , and ωm 	 (10 − 14)ωJ (see Figs. 10 and 12). Be-
cause (ωm/ωJ )2 � 102 and sqz/2 � 1, the frequencies fm =
ωm/2π are equidistant in m and decrease as the thickness of
the stack decreases:

fm = cm

2Lx�
, � =

√
εc[1 + (πλ/d )2]. (13)

For Lx = λc and ci/λc = ωJ , we get fmLx/mci = fm/mωJ =
1/2

√
1 + ζ (π/N )2. The ratios fmLx/mci calculated with the

account of the dependence of ζ (T ) on the JJ stack temperature

FIG. 13. Ratios fmLx/mci, where each data point corresponds
to the peaks in PN (β ) corresponding to the standing waves with m
integer half-periods. The dashed lines show 1/2

√
1 + ζ (T )(π/N )2.
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FIG. 14. (a) Mean time derivative of the phase difference 〈θ̇〉 =∑
n

∫ Lx

0 θ̇n(x, t )dx/NLx in a stack with N = 161. The dashed line
shows θ̇ = β/η with η = 0.1. (b) The number of nodes in the reso-
nant modes as a function of β calculated at N = 161. The dashed line
shows m = (β/πη)

√
1 + (πNc/2N )2 with Nc = 352 and η = 0.1.

T (β ) match our numerical data, as shown in Fig. 13. Here a
weak decrease of fmLx/mci with β results from overheating.

To get more insight into the resonant frequencies, we plot
the averaged 〈θ̇〉 = ∑

n

∫ Lx

0 θ̇n(x, t )dx/NLx per JJ at N = 161
in Fig. 14(a), where the dashed line shows θ̇r = β/η. The
good matching of 〈θ̇〉 with β/η implies that the dc voltage
h̄〈θ̇〉/2e produced by quasiparticle current causes an oscillat-
ing Josephson current Jc sin(βt/η), which excites a resonance
if β/η equals one of the mode frequencies πm/�. The re-
sulting linear relation m = β�/πη is consistent with our
numerical data shown in Fig. 14(b), where the terraces in m(β )
are due to the finite widths of peaks and plateaus in PN (β ). The
resonance condition m = β�/πη is equivalent to 2πV/φ0 =
πcm/�Lx, where V = Js/σc is the dc voltage per JJ. Such
resonances occur at applied voltages VN (m) = φ0cNm/2Lx�

or current densities,

Jm = φ0cσcm

2sLx�
. (14)

FIG. 15. Log-log plots of the peak radiation power P̃N (a) and
the Fourier amplitude M̃N (b) calculated for different numbers of
JJ layers in the stack. The dashed line in (b) describes the power
law M̃N ∝ N2.58.

The magnetic field Bn(x, t ) shown in Figs. 10 and 11
vanishes at the edges of the stack. These modes calculated
with the boundary conditions θ ′

n(0) = θ ′
n(Lx ) = 0 do not take

into account the self-field of transport current. As shown in
Appendix C, the self-field of a thin rectangular mesa is much
smaller than both the mode amplitudes Ba ∼ φ0/2πsλc and
B‖

c1. Equations (12) and (13) are derived in a continuum limit
in Appendix D.

B. Peak radiated power from small stacks

Now we turn to the dependence of the maximum magne-
todipole power P̃N on N , where the tilde marks the highest
peak in PN (β ). Our calculations for N = 21, 41, and 81 show
that P̃N increases as the power law P̃N ∝ N6, which gradu-
ally slows down at N > 81: P̃161 	 37P̃81, P̃261 	 6P̃161, and
P̃321 	 1.85P̃261.

Figure 15 summarizes the dependencies of P̃N and M̃N

on the number of JJs. One can see that P̃N ∝ N6 persists up
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FIG. 16. Resonant frequency f̃N at the highest peaks in the radi-
ated powers as a function of N .

to N = 81, while M̃N ∝ N2.56 persists up to N = 321. Here
M̃N is proportional to the amplitude of magnetic flux in the
odd resonant mode � = s

∑
n

∫
Bn(x, t )dx ∼ bmB0sNLx/m,

where m(β ) is the number of nodes and bm(β ) is the amplitude
of Bn(t ) in units of B0. The behavior of P̃N is determined by
the dependencies of M̃N and the corresponding resonance fre-
quency f̃ (N ) on N shown in Fig. 16. Because of the increase
of f̃ (N ) with N at small N , the power P̃N ∝ M̃2

N f̃ (N )4 ∝ N6

increases faster than M̃2
N , but slows down at N > 81 as f̃ (N )

starts decreasing. Stronger overheating in thicker stacks fur-
ther slows down the increase of P̃N with N .

According to Fig. 8, the overheating at N � 321 remains
moderate and not strong enough to cause a multivalued T (β )
necessary for the formation of hotspots [58] in thicker mesas.
Yet the decrease of Jc(T ) and ωJ (T ) with T (N ) diminishes
the magnitude and frequency of oscillations of M(t ). The
interplay of the increase of MN with N due to increasing
magnetic flux in J vortices and decrease of MN and ωJ (N )
due to increasing T (N ) as the stack gets thicker can pro-
duce a maximum radiation output at an optimum thickness,
although it is not yet reached in Fig. 15 as solving Eqs. (1)–
(6) with N > 321 becomes very time consuming. There are
experimental evidences that the power of THz emission from
Bi-2212 mesas increases for thicker Bi-2212 crystals [59].

V. ONE TRAPPED VORTEX PER JUNCTION

Given that the magnitudes of M(t ) at β < βs increase with
the number of trapped vortices [see Fig. 2(b)], one may expect
that trapping several vortices could produce stronger excita-
tion of the resonant mode and higher PN (β ). To investigate this
possibility, we solved Eqs. (1)–(6) at η = 0.1 with the initial
θn(x, 0) describing a tilted chain of vortices with one vortex
per JJ. Simulations show that, after a small current β � 1
is applied, this vortex configuration buckles and evolves to a
nonperiodic structure, consistent with instabilities predicted
for vortex structures interacting with a resonant mode in a
finite stack [45,60,61]. We observed that few vortices exited

FIG. 17. Radiated power PN (β ) for one trapped vortex per JJ for
stacks with (a) N = 21, (b) N = 81, and (c) N = 161.

the stack; some accelerated at the edges producing V-AV pairs
similar to that shown in Fig. 5.

As I is increased, trapped vortices driven along different
JJs start producing V-AV pairs in the bulk above different
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FIG. 18. T (J ) curves for one trapped vortex per JJ for different
numbers of layers. The initial jump is smeared out compared to that
in Fig. 8.

threshold currents βs(n) which depend on the positions of JJs
in the stack. Here βs(n) is minimum for the central JJ and
increases for JJs being closer to the current leads. This hap-
pens because the flux φ(un) [see Eq. (11)] and the Cherenkov
wake in a peripheral vortex is reduced stronger by its AV
image than for the vortex in the central JJ. This variation
of βs(n) across the stack and multiple degrees of freedom
associated with the relative motion of trapped vortices could
hinder the synchronization of JJs. Yet our simulations have
shown that the resonant mode stimulated by the V-AV pair
production by multiple trapped vortices does occur above a
threshold current. Such multivortex simulations are more time
consuming than for a single vortex, so we restricted ourselves
to the JJ stacks with N � 161.

Figures 17–21 summarize our numerical results for one
trapped vortex per JJ. The transition to the synchronized JJs
is evident from the strong peaks in PN (β ), a stepwise increase
of the stack temperature TN (β ) above a current threshold, and
the snapshots of Bn(x, t ). The resonant modes Bn(x, t ) are
stimulated by the multivortex shuttles in the stack, with the
peaks in PN (β ) corresponding to the odd number of nodes, as
shown in Fig. 19. The resonant frequencies satisfy Eq. (13)
like those shown in Fig. 13 for a single vortex. Yet the number
of trapped vortices affects the behavior of TN (β ) and PN (β ).
For instance, the temperature jump in Fig. 18 is broader than
in Fig. 8 and the distributions of peaks in PN (β ) in Fig. 17 are
clearly different from those in Fig. 7 for a single vortex.

Despite the differences in PN (β ) for the single and multi-
vortex cases, their maximum P̃N corresponding to the highest
peak in PN (β ), the respective resonance frequencies and
overheating temperatures are very close, as one can see by
comparing Figs. 12 and 20 and Figs. 15 and 21. Not only
did we observe the same power-law dependencies of P̃(N ) ∝
N6 and M̃(N ) ∝ N2.58 at N � 161, but also the nearly iden-
tical snapshots of Bn(x, t ) shown in Figs. 10 and 19, so
that the main characteristics at the maximum radiation out-
put turned out to be independent of the number of trapped
vortices.

FIG. 19. Snapshots of resonant modes Bn(x, t ) at the maximum
radiation power for one trapped vortex per JJ at N = 81 and β = 1.17
(top) and N = 161 and β = 1.52 (bottom).

VI. SINGLE-MODE RADIATION

For the parameters Lx = λc 	 300 µm, εc = 12, and ωJ0 =
c/λc0

√
εc 	 0.3 THz used in our simulations, PN (β ) is peaked

at fm 	 2ωJ0 	 0.6 THz (see Fig. 16) and ωm 	 3.8 THz.
The evaluation of PN in the dipole approximation captures the
qualitative behavior of PN (β ) but is applicable for stacks with
Lx,y � c/ωm 	 80 µm. Yet we can use our numerical results
for Bn(x, t ) valid for any Lx,y to evaluate PN produced by
single resonant modes defined by Eqs. (12) and (13) in larger
stacks with Lx,y � c/ωm. To do so, we express PN (β ) in terms
of the calculated mode amplitude Ba for a rectangular stack by
evaluating the far field single-mode radiation vector potential
A(R)e−iωmt at large distances R � k−1, where k = ωm/c is
the radiation wave vector in free space [50,56]:

A(R) = μ0eikR

4πR

∫
V

J(r)e−ikrd3r. (15)

As shown in Appendix D, the current densities Jx(r)e−iωmt =
−μ−1

0 ∂B/∂z and Jz(r)e−iωmt = μ−1
0 ∂B/∂x in Eq. (15) can be

obtained from Eq. (12), where Jx is determined by in-plane
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FIG. 20. Fourier spectra of M(t ) at the maximum radiation
power for one trapped vortex per JJ and (a) N = 81 at β = 1.17 and
(b) N = 161 at β = 1.52.

supercurrents and Jz by polarization currents. In this case the
differential radiation power dP within the solid angle d� for
modes with (ωm/ωJ )2 � 1 and η � 1 are given by

dP

d�
= 2cB2

aL2
x d2(k2

z + k2
x )k2

π6μ0m2k2
y

× sin2

(
kyLy

2

)
cos2

(
kxLx

2

)
, odd m, (16)

dP

d�
= 2cB2

aL2
x d2(k2

z + k2
x )k2

π6μ0m2k2
y

× sin2

(
kyLy

2

)
sin2

(
kxLx

2

)
, even m. (17)

For small stacks with Lx,y < c/ωm, Eqs. (16) and (17) can be
expanded in k, giving the dipole radiation power Po ∝ k4 at
odd m and quadruple radiation Pe ∝ k6 � Po at even m. In
spherical coordinates with ky = k cos χ , kx = k sin χ cos ϕ,
and kz = k sin χ sin ϕ, the angular dependence of dPo(χ, ϕ)
for odd m becomes

dPo

dχ
= ck4L2

x L2
y d2B2

a

π5μ0m2
sin3 χ. (18)

Integration in Eq. (18) gives the total power:

Po = 4ω4
mL2

x L2
y d2B2

a

3c3π5μ0m2
= μ0〈M̈2〉

6πc3
, (19)

where 〈M̈2〉=M2
aω4/2 and μ0Ma=Ly

∫ Lx

0 dx
∫ d

0 dz B(x, z)=
4BaLxLyd/μ0π

2m. Equations (18) and (19) reproduce dP/d�

and P of magnetodipole radiation used above. Taking ωm and
� from Eq. (13), we write Eq. (19) in the form

Po = cN2φ2
0L2

y m2b2
a

3π3μ0L2
xλ

2
cε

2
c [1 + (πNc/2N )2]2

. (20)

Here the dimensionless field amplitude ba = Ba/B0 with B0 =
φ0/2πsλc0 and the mode number m for the highest peak in P
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0
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10

15
(a)
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-1

0

1

2
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FIG. 21. Log-log plot of the maximum radiation power P̃N

(a) and the respective amplitude M̃N (b) versus the number of JJs
for one trapped vortex per JJ.

are to be extracted for each N from the numerical data shown
in Fig. 10.

For large stacks with kLy � 1, not only does the orienta-
tional dependence of dP(n)/d� change, but contributions of
even and odd modes become of the same order of magnitude.
For instance, Fig. 22 shows markedly different Po(n) and
Pe(n) for odd and even modes calculated at Ly = 4Lx and
Lx = λc. One can see that dP(n)/d� along the y axis gets
much smaller than dP(n)/d� within the xz plane. This hap-
pens in the case of large aspect ratios Ly/Lx for which the total
radiated power can be calculated using that sin2(kyLy/2)/k2

y
in Eqs. (16) and (17) is peaked at ky = 0, that is, χ = π/2.
Because radiation is mostly confined near the xz plane, we
first evaluate the sheet power Pϕ = ∫ π

0 P(χ, ϕ) sin χ dχ by
setting cos χ → u = (χ − π/2) � 1, sin χ → 1, and using∫ ∞
−∞ sin2(ukLy/2)du/u2 = πkLy/2 to obtain

dPϕ

dϕ
= cmLyd2B2

a

π2μ0Lx�3
cos2

[πm

2�
cos ϕ

]
, odd m, (21)

dPϕ

dϕ
= cmLyd2B2

a

π2μ0Lx�3
sin2

[πm

2�
cos ϕ

]
, even m. (22)
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FIG. 22. Angular distribution of the radiation power P(n)/Pa

in the resonant modes with m = 7 (a) and m = 8 (b) calculated
from Eqs. (16) and (17) with Lx = λc and Ly = 4λc. Here Pa =
2cB2

ad2L2
x k2/π 6μ0m2.

Integration of Eqs. (21) and (22) gives the total power:

Po = cmLyd2B2
a

πμ0Lx�3

[
1 + J0

(πm

�

)]
, odd m, (23)

Pe = cmLyd2B2
a

πμ0Lx�3

[
1 − J0

(πm

�

)]
, even m, (24)

where J0(x) is a Bessel function. As πm/� increases, Po

and Pe oscillate, approaching the common factor P∞ =
cmLyd2B2

a/πμ0Lx�
3, which can be written in the form

P∞ = cN2φ2
0Lymb2

a

4π3μ0Lxλ
2
c0ε

3/2
c [1 + (πNc/2N )2]3/2

. (25)

At πm/� � 1 we have Po → 2P∞ and Pe →
π2m2P∞/4�2 � Po, but Pe can exceed Po if πm/� > 1. For
instance, if εc = 12, N = 321, and Nc = 352, we have � =
6.9, Po(m = 7) ≈ 0.68P∞(m), and Pe(m = 8) ≈ 1.4P∞(m).
From Eqs. (20) and (25), it follows that the power radiation
scale P∞ from large mesas differs from Po for small mesas by
a factor ∼ (kLy)−1 	 Lx�/mLy.

To see how Po and Pe in Eqs. (23) and (24) depend on the
mode numbers m, we also need the dependencies of Ba on m
to be obtained from the numerical solution of Eqs. (1) and (2).

FIG. 23. Amplitudes of resonant modes as a function of the node
number m at N = 161. Here Ba(m) for odd modes is calculated at the
radiation peaks and Ba(m) for even modes is calculated at the middle
of the plateaus in PN (β ).

Such Ba(m) for even and odd modes at N = 161 are shown
in Fig. 23. Here Ba for odd m was calculated at the peaks
of PN (β ) and Ba for even m was calculated in the middle of
the plateaus in PN (β ) shown in Fig. 7(b). The evaluation of
Ba for even m is ambiguous as Ba varies along the plateau.
For odd modes, ba ≈ 1.32 − 0.038(m − 8) decreases linearly
with m so mb2

a in Eq. (25) first increases with m, reaches
maximum mb2

a ≈ 16.7 at m = 14, and decreases with m at
m > 14. However, interplay of nonmonotonic m dependencies
of mb2

a and 1 + J0(πm/�) produces an oscillatory Po(m) with
maxima at m = 7, and m = 23, as shown in Fig. 24. The
position and the height of the maxima in Po(m) depend on
the length of the stack, Lx.

Both Eqs. (20) and (25) give a gradual change of P(N )
from a very rapid increase with N in thin JJ stacks (N � Nc)
to a slower increase of P(N ) in thicker stacks with N � Nc.
The products m2b2

a in Eq. (20) and mb2
a in Eq. (25) also

depend on N but they vary much slower than the power laws
P ∝ N6 at N � Nc and P ∝ N2 at N � Nc. For small mesas,
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FIG. 24. Radiated power Po(m) in units of Pi =
cLyd2B2

0/π
2μ2

0Lx�
3 as a function of odd m calculated from

Eq. (23) at N = 161, εc = 12, and ba = 1.32 − 0.038(m − 8)
extrapolated from Fig. 23(a).

m2b2
a varies from 73 to 266 within the range 21 < N < 321 in

which P increases by 5–6 orders of magnitude. In larger mesas
Eq. (25) suggests a gradual transition from P ∝ N5 at N � Nc

to P ∝ N2 at N � Nc. Here the product mb2
a extracted from

the numerical data shown in Fig. 10 varies within the range
10–14 as N increases from 81 to 321. Another source of N
dependence of P∞ comes from overheating, which increases
λc(T ) and Nc(T ).

VII. DISCUSSION

This work shows that the bouncing vortex trapped in a
layered superconductor can stimulate the V-AV pair produc-
tion and resonant modes of the JJ stack at a subcritical dc
current Is < Ic. The giant amplification of the radiation power
at N � 1 comes from several effects. First, the explosive
V-AV pair production caused by Cherenkov instability of the
vortex shuttle with low bouncing frequency fv ∼ (sλc/λLx )ωJ

excites resonant modes of the JJ stack with frequencies fm ∼
ωJλcm/Lx some 2–3 orders of magnitude higher than fv .
This increases the radiation power by the factor ∼( fm/ fv )4 ∼
108–1012. Furthermore, the amplitude of magnetic oscillations
increases very rapidly with the number of layers due to better
synchronization of JJs caused by the increase of the magnetic
flux in J vortices and the number of produced V-AV pairs at
N � 2λ(T )/s ∼ 300–500.

Our simulations of up to 321 junctions have shown that
resonant modes stimulated by the V-AV shuttle produce peaks
in the radiation power PN (J ) at J > Js, yet increasing the
number of trapped vortices affects weakly the maximum radi-
ation output and the overheating. To estimate the magnitude of
PN (m) for the mode with m = 7 in the JJ stack with N = 321
and η = 0.1, we take ba ≈ 1.2 from Fig. 10(c), Ly/Lx = 4,
Lx = λc = 300 µm, and εc = 12. In this case P∞ 	 0.4 µW.
If the factor mb2

a remains weakly dependent on N at N > 321,

Eqs. (23)–(25) suggest P ∼ 10 µW in a 2–3 µm thick
Bi-2212 mesa. Calculation of the actual radiation output may
require taking into account a more complicated boundary
condition [62–65] at the edges of the stack instead of θ ′

n(0) =
θ ′(Lx ) = 0 used here. Given the large impedance mismatch
between the JJ stack and the vacuum captured by our bound-
ary conditions, the more consistent boundary condition taking
into account matching of incoming and radiated EM waves at
the edges may not qualitatively change our results but would
require numerical calculations including coupling of the mesa
with the surrounding structures [2–6,42–44].

The power PN depends essentially on the damping param-
eter η(T ) which is affected by doping [66–68]. Decreasing
η by doping would reduce both the onset Js(η) of V-AV
pair production (see Fig. 9) and the currents Jm of intrinsic
resonances given by Eq. (14). At η � 1 the trapped vortex
can excite high-frequency modes with m � 1 at J = Js, thus
increasing PN as compared to PN calculated here for η =
0.1 and stimulating THz emission at subcritical currents at
which overheating is reduced. Doping also affects a dissi-
pative contribution of in-plane quasiparticle currents [6,45]
neglected in Eqs. (1) and (2). The in-plane damping is
most pronounced in optimally doped Bi-2212 [6,16], in
which it can increase Js and mitigate the V-AV pair pro-
duction. We consider here the most favorable for the V-AV
pair production case of weak interplane damping and neg-
ligible in-plane damping which may pertain to underdoped
Bi-2212.

Utilizing trapped J vortices to stimulate THz emission of-
fers an opportunity to optimize the radiation output by tuning
the field cooling of the mesa through Tc in a weak magnetic
field. For a thick Bi-2212 crystal with d > 2λ, the paral-
lel lower critical field B‖

c1 = (φ0/4πλλc)[ln(λ/s) + 1.12] 	
B‖

c1(0)(1 − T 2/T 2
c ) [55] not only vanishes at Tc but B‖

c1(0) 	
0.12 Oe at T � Tc is below the Earth’s magnetic field. Thus,
trapping an optimum number of vortices upon cooling the
mesa through Tc requires appropriate screening and align-
ment of the Earth’s field relative to the ab planes. However,
B‖

c1(T ) at T → Tc exhibits a dimensional crossover from the
bulk limit at d > 2λ(T ) to a thin film limit at d < 2λ(T )
in which a weakly T dependent B‖

c1 	 (2φ0λ/πλcd2) ln(d/s)
can significantly exceed the bulk B‖

c1 because of the reduction
of magnetic flux of the vortex [51–54] (see Appendix C). In
thin JJ stacks with d < 2λ(0), the lower critical field is much
higher than the bulk B‖

c1(T ) at all T .
THz emission stimulated by trapped Josephson vortices

can be affected not only by the magnitude but also by the
orientation of the ambient field H relative to the ab planes
of Bi-2212 crystals. Good alignment of H with the ab planes
may be essential to mitigate detrimental penetration of pan-
cake vortices which could deteriorate synchronization of the
intrinsic JJs.
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APPENDIX A: MATRIX FORM OF EQ. (1) AND THE
BOUNDARY CONDITIONS

The current density across the nth Josephson junction be-
ing between the (n − 1)th and nth superconducting layers is
given by

Jz
n = αJ (T ) sin θn + ηθ̇n + θ̈n. (A1)

In turn, the Maxwell equations give [40–43]

θ ′′
n = Jz

n − ζ (T )
(
Jz

n+1 − 2Jz
n + Jz

n−1

)
. (A2)

Combining Eqs. (A1) and (A2) results in Eq. (1).
For the mesa geometry shown in Fig. 1, Jz

n−1 and Jz
n+1 for

the top and the bottom junctions, respectively, is replaced with
the injected dc current density J . Then Eqs. (A1) and (A2)
reduce to the matrix form

�′′ − V = A · (Jz − V), (A3)

where � = (θ1, θ2, . . . , θN ), V = β(1, 1, . . . , 1), and Jz =
(Jz

1, Jz
2, . . . , Jz

N ). The matrix A is given by Ai,i = 1 + 2ζ (T ),
Ai,i+1 = Ai,i−1 = −ζ (T ), and Ai, j = 0 otherwise. The result-
ing equations were solved by the method of lines [46] which
turns the partial differential Eq. (A3) into a set of ordinary
differential equations in time.

APPENDIX B: HEAT TRANSFER ACROSS THE MESA

For a thin mesa situated at 0 < z < d � w on a slab of
thickness w along z and length Lx along x, the thermal diffu-
sion equation is

C∂t T = ∂x(κ∂xT ) + ∂z(κc∂zT ) + Q(T )δ(z), (B1)

∂xT
∣∣
x=0 = ∂xT

∣∣
x=Lx

= 0, (B2)

where C(T ) is the specific heat, καβ (T ) is a thermal conduc-
tivity tensor with the principal values κ and κc in a uniaxial
crystal with c‖z, and Q(T ) is the power dissipated in the mesa
with thermally insulated sides.

A mean temperature Tm along the mesa satisfies a sta-
tionary equation, ∂z(κc∂zT ) + Qδ(z) = 0. Integrating this
equation gives a constant heat flux q = −κc∂zT at z > 0.
Hence q = ∫ w

0 κc∂zT dz/w = w−1
∫ Tm

Ti
κcdT and the condi-

tion Q(Tm) = q yields the equation for Tm:

1

w

∫ Tm

Ti

κc(T )dT = Q(Tm). (B3)

The temperature Ti at the bottom of the base is determined by
the boundary condition:

κc(Ti )∂zT
∣∣
z=w

= Y
(
T n

i − T n
0

)
. (B4)

Here Y is inversely proportional to the Kapitza contact thermal
resistance RK = (nY T n−1

0 )−1 at Ti − T0 � T0, resulting in a
temperature jump Ti − T0 between the base and the sample
holder maintained at the ambient temperature T0. The expo-
nent n can vary between 3 and 5, depending on the interface
properties [69]. The equation for Ti readily follows from
Eqs. (B3) and (B4):

1

w

∫ Tm

Ti

κc(T )dT = Y
(
T n

i − T n
0

)
. (B5)

We evaluate the effect of the Kapitza resistance on Tm

at Ti − T0 � T0 neglecting the temperature dependence of
κc(T ). Then Eqs. (B3) and (B5) reduce to

Q(Tm) = (Tm − Ti )κc/w, (B6)

(Tm − Ti )κc/w = (Ti − T0)hK , (B7)

where hK = nY T n−1
0 . Equations (B6) and (B7) yield

Q(Tm) = (Tm − T0)κc

w + κc/hK
. (B8)

The Kapitza resistance enhances overheating if whK < κc.
The magnitude of hK depends on many poorly understood
factors including the effect of the Bi-2212 layered structure
on the acoustic mismatch of the base and the substrate and
details of atomic structure of the interface [69]. Typically
hK ∼ (1–5) × 104 W/m2K between a metal and the liquid
He at 4.2 K, in which case whK/κc ∼ 1 for w = 30 µm and
κc = 0.6 W/mK. Yet because hK ∝ T 3 increases faster with
T than κc ∝ T 0.67, the mesa temperature T = 20–40 K shown
in Fig. 8 corresponds to the case hK � κc/w in which the
Kapitza resistance can be disregarded and Eq. (B3) becomes

Q(Tm) = κ0T0

w(a + 1)

[(
Tm

T0

)a+1

− 1

]
. (B9)

This equation with Tm → T was used in our calculations.

APPENDIX C: SELF-FIELD EFFECTS

The in-plane self-field Hy of a uniform current density J
flowing along z is given by the Biot-Savart law:

Hy(r) = J
∫

V

(x′ − x)d3r′

|(x − x′)2 + (y − y′)2 + (z − z′)2|3/2
. (C1)

We evaluate Hy in the middle of the stack left face parallel to
the trapped vortex (x = 0, y = Ly/2, z = d/2) by first inte-
grating Eq. (C1) with respect to z′:

Hy = Jd
∫ Lx

0
dx′

∫ Ly/2

−Ly/2

x′dy′

(x′2 + y′2)
√

x′2 + y′2 + (d/2)2
.

The y′ integral is then evaluated at Ly � Lx:∫ ∞

−∞

dy′

(x′2 + y′2)
√

(d/2)2 + x′2 + y′2 = 4

dx′ tan−1 d

2x′ .

Hence we obtain Hy at d � Lx:

Hy = 4J
∫ Lx

0
dx′ tan−1 d

2x′ 	 2Jd

[
ln

2Lx

d
+ 1

]
. (C2)

This formula defines the scale of the in-plane self-field Bi 	
μ0Hy(0) which is to be compared to the field amplitude
Ba ∼ B0 = φ0/2πsλc in the resonant modes shown in Fig. 10.
Using μ0Jc = B0/λc, we recast Bi to

Bi 	 2βB0
d

λc

(
ln

2Lx

d
+ 1

)
, (C3)

where β = J/Jc. The condition Bi � B0 requires

β � λc

2d[ln(2Lx/d ) + 1]
. (C4)
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Equation (C4) is satisfied at Lx = λc � d and β ∼ 1.
Compare now the self-field with the in-plane lower critical

field B‖
c1 = (φ0/4πλλc)[ln(λ/s) + 1.12] at d > λ [55]. The

condition Bi < B‖
c1 requires

β <
λc[ln(λ/s) + 1.12]

4Nλ[ln(2Lx/d ) + 1]
, d > 2λ. (C5)

If N > Nc(T ) = 2λ/s 	 300–500, Eq. (C5) may not be sat-
isfied at β > βs so vortices could penetrate as β is increased.
This may not significantly affect PN given the weak sensitivity
of PN to the number of trapped vortices.

If d < 2λ the condition Bi < B‖
c1 is satisfied more

easily due to larger B‖
c1 	 (2φ0λ/πλcd2) ln(d/s) in thin

films [51–54], where the factor λ/λc � 1 accounts for the
anisotropy of screening. In this case Bi < B‖

c1 if

β � 2λλc ln(d/s)

Nd2[ln(2Lx/d ) + 1]
, d < 2λ. (C6)

This condition is satisfied if d = λ/2, Lx = λc, N = 200,
λc/λ ∼ 103, and β 	 1, so the number of trapped vortices
remains constant, as it was assumed in our simulations.

APPENDIX D: SINGLE MODE RADIATION

To calculate the far field radiation vector potential in
Eq. (15), we express the current density in the mesa J(r) in
terms of the resonant field B along y. Because θn(x, t ) varies
slowly over the JJ spacing, we replace the discrete θn and
Bn with smooth functions θ (x, z, t ) and B(x, z, t ) satisfying
Eqs. (1) and (2) in a continuum limit:

∂2θ

∂x2
=

[
1 − λ2 ∂2

∂z2

][
α

λ2
c

sin θ + μ0σc
∂θ

∂t
+ εc

c2

∂2θ

∂t2

]
, (D1)

B − λ2 ∂2B

∂z2
= φ0

2πs

∂θ

∂x
. (D2)

Here the driving term sin θ oscillating with the frequency
βωJ/η sets the amplitude of the resonant mode calculated
numerically. The Josephson and ohmic terms in Eq. (D1)
affect weakly the resonant frequencies ωm � ωJ which
can be obtained by setting α = σc = 0. In this case the
eigenfrequencies and eigenfunctions of Eqs. (D1) and (D2)
satisfying the boundary conditions ∂xB(0, z) = ∂xB(Lx, z) =
0 and θ (x, 0) = θ (x, d ) = 0 are

ωm = πmc

Lx�
, � =

√
εc[1 + (πλ/d )2], (D3)

B = Ba sin

(
πmx

Lx

)
sin

(πz

d

)
e−iωmt , (D4)

θ = −2BasLx�
2

mφ0εc
cos

(
πmx

Lx

)
sin

(πz

d

)
e−iωmt . (D5)

The in-plane current density Jx is dominated by the Meissner
current; the displacement current is negligible (ωmλ/c)2 =

(πmλ/�Lx )2 � 1. In turn, Jz is dominated by the polar-
ization current Jz 	 (εch̄/2esc2μ0)ω2

mθ ∼ (ωm/ωJ )2Jc � Jc.
Using here θ from Eqs. (D3)–(D5), we obtain Jz = ∂B/∂x,
Jx = −∂B/∂z, and Jy = 0, where

Jx = −πBa

μ0d
sin

(
πmx

Lx

)
cos

(πz

d

)
e−iωmt , (D6)

Jz = πmBa

μ0Lx
cos

(
πmx

Lx

)
sin

(πz

d

)
e−iωmt . (D7)

In this mode ∇ · J = 0 so it produces no macroscopic charge
densities in the bulk and the surface.

The single-mode radiation vector potential A(k, R, t ) is
readily obtained from Eqs. (15), (D9), and (D10):

Ax = iπBamkzLxd[(−1)me−ikxLx − 1]

2R(k2
x L2

x − π2m2)(π2 − d2k2
z )ky

× [
1 + e−idkz

]
sin

(
kyLy

2

)
e−ikyLy/2+ikR−iωmt , (D8)

Az = −Ayky/kz, Ay = 0, (D9)

where k = ωm/c = πm/Lx�. Because dkz � dωm/c =
πmd/�Lx � 1, we set e−ikzd → 1.

The differential radiation power dP = S(n)R2d� within
the solid angle d� is determined by the Poynting vec-
tor S = c|B|2n/2μ0 for the far field B = ik × A = ix̂kyAz +
iŷ(kzAx − kxAz ) − iẑkyAx in a plane EM wave propagating
along the unit vector n = k/k [50]:

dP

d�
= cR2

2μ0

[
k2

y (|Ax|2 + |Az|2) + |kzAx − kxAz|2
]
. (D10)

Equations (D8)–(D10) give

dP

d�
= 2cm2L2

x d2B2
a

(
k2

z + k2
x

)
k2

π2μ0
(
k2

x L2
x − π2m2

)2
k2

y

× sin2

(
kyLy

2

)
cos2

(
kxLx

2

)
, odd m, (D11)

dP

d�
= 2cm2L2

x d2B2
a

(
k2

z + k2
x

)
k2

π2μ0
(
k2

x L2
x − π2m2

)2
k2

y

× sin2

(
kyLy

2

)
sin2

(
kxLx

2

)
, even m. (D12)

In spherical coordinates kx = k sin χ cos ϕ, ky = k cos χ ,
and kz = k sin χ sin ϕ, the factor π2m2 − k2

x L2
x in the de-

nominators of Eqs. (D11) and (D12) becomes π2m2[1 −
�−2 sin2 χ cos2 ϕ]. Because k2

x L2
x � π2m2 at �2 � εc � 1,

Eqs. (D11) and (D12) reduce to Eqs. (16) and (17).
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