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We study the transition between Néel and columnar valence-bond solid ordering in two-dimensional S = 3/2
square lattice quantum antiferromagnets with SO(3) symmetry. According to the deconfined criticality scenario,
this transition can be direct and continuous like the well-studied S = 1/2 case. To study the global phase diagram,
we work with four multi-spin couplings with full rotational symmetry, that are free of the sign-problem of
quantum Monte Carlo. Exploring the phase diagram with quantum Monte Carlo simulations, we find that the
phase transition between Néel and valence-bond solid is strongly first-order in the parts of the phase diagram
that we have accessed.
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I. INTRODUCTION

The effect of the spin quantum number S on the phase
diagram of spin models was brought to focus in Haldane’s
seminal work on one-dimensional spin chains [1,2]. The pa-
rameter S appears as a coefficient of a topological term in the
effective field theory of spin chains and simply changing it
from half-odd integer to integer has dramatic effects on the
physical properties, for example changing the spectra from
gapless to gapped (for a pedagogical introduction, see [3]).
This even-odd dependence on S in one-dimension has been
well studied and is firmly established in various microscopic
models of spin chains, see, e.g., [4–9].

On two-dimensional (2D) square lattices, the spin-S also
plays an important role in the field theory. Haldane showed
that half-odd integer spins result in a quadrupling of hedge-
hogs in the effective field theory, odd integer spins cause a
doubling of hedgehogs, and even integer spins do not affect
the action of hedgehogs [10]. While these differences are
not expected to affect the ordered Néel state, they can have
dramatic consequences on the quantum disordered phases
and the phase transitions between them. One consequence
of this difference was put forth as the “deconfined criticality
scenario” which predicted direct continuous transitions be-
tween Néel and four-fold valence-bond solid (VBS) ordered
states in S = 1/2 square lattice anti-ferromagnets [11]. Since
the original proposal, there has been an intense study of its
validity using large-scale numerical simulations of S = 1/2
antiferromagnets (see, e.g., [12–16]). What is the effect of
the higher spin-S on the S = 1/2 deconfined scenario? In
comparison to S = 1/2, work on the extensions to higher-S in
two dimensions is limited. An extension of the theory to S = 1
square lattice model studied the phase transition between Néel
and a nematic state, with a possible critical point [17]. Sign
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free S = 1 microscopic models for the transitions from Néel
to VBS [18], and Néel to the nematic state [19] have been
studied and the transitions found to be first order. Moving to
S = 3/2, according to Haldane’s Berry phase evaluation all
half-odd integer spin antiferromagnets should be described by
the same universal field theory, hence it is expected from field
theory that S = 3/2 antiferromagnetic models should exhibit
deconfined criticality very similiar to the S = 1/2 models,
although this expectation has not been studied numerically.

With this motivation, our purpose in this paper is to study
the Néel-VBS transition in square lattice S = 3/2 models
using Monte Carlo methods. There has been very limited
numerical work on microscopic models of S = 3/2 in two
dimensions–the larger Hilbert space is inconvenient for nu-
merical methods based on diagonalization, and the space of
sign problem-free models and the Monte Carlo algorithms to
simulate them is less well developed than for S = 1/2. Here,
we use the split-spin representation [20] and its use to design
sign-free spin-S models [19] to construct efficient simulation
algorithms for microscopic models of the phase transition.

This paper is structured as follows: In Sec. II, we introduce
the models studied. We then delve into the split-spin basis
of the Stochastic Series Expansion (SSE) Quantum Monte
Carlo (QMC) algorithm and elucidate the process of rewriting
the Hamiltonian on this basis. Following this, Sec. III studies
the finite-size scaling behavior of both Néel and VBS order
parameters. Remarkably, the findings from Sec. III provide
compelling evidence of a direct first-order Néel-VBS phase
transition. Finally, in Sec. IV, we provide a comprehensive
summary and offer insights into potential future research di-
rections.

II. MODEL AND METHOD

The spin-1/2 J-Q model is written as [12]

H = J
∑
〈i j〉

�Si · �S j − Q
∑
〈i jkl〉

(
1

4
− �Si · �S j

)(
1

4
− �Sk · �Sl

)
,

(1)
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FIG. 1. Illustrating the lattice representation of the J-Q model.
“J” denotes the antiferromagnetic interactions between adjacent
sites, and “Q” denotes the product of two singlet projection operators
acting on four neighboring sites.

where �Si refers to a S = 1/2 spin at site i in a 2D square lattice.
( 1

4 − �Si · �S j ) is a spin singlet projection operator acting on
two neighboring S = 1/2 spins. It eliminates the triplet states
and keeps the singlet state when acting on the two spins. A
quantum phase transition from the Néel state to the columnar
VBS is realized by tuning the ratio Q/J . The summation 〈i j〉
denotes all nearest two neighbors i, j on a bond, as depicted
by J in Fig. 1. Similarly, the summation 〈i jkl〉 represents all
nearest four neighbors i, j, k, l within a plaquette, illustrated
by Q in Fig. 1.

The naive generalization of the spin-1/2 J-Q model to the
S = 3/2 Hilbert space is the J 3

2
-Q 3

2
model

H 3
2

= J 3
2

∑
〈i j〉

�Si · �S j − Q 3
2

∑
〈i jkl〉

(
9

4
− �Si · �S j

)(
9

4
− �Sk · �Sl

)
,

(2)

with the �Si are now S = 3/2 operators. The only other dif-
ference from the S = 1/2 model is the factor of 9/4. Now
however, that ( 9

4 − �Si · �S j ) is not a singlet projector. When act-
ing on two neighboring spin-3/2 spins, it preserves all states
except for the total S = 3 state. The disparity between two S =
1/2 spins and two S = 3/2 spins lies in their respective states:
the former encompasses singlet and triplet states, while the
latter introduces a variety of additional states. In any case, nu-
merically, we find that the J 3

2
-Q 3

2
model fails to realize a phase

transition from Néel to VBS being Néel-ordered for all cou-
plings. The numerical evidence is presented in Appendix A.

As noted above, the Heisenberg interaction is not a singlet
projector for S = 3/2. Indeed, the two-site singlet projector is
a new SU(2) invariant interaction, P(�Si + �S j ). Its explicit form
is

P(�S) = − (S2 − 12)(S2 − 6)(S2 − 2)

144
. (3)

The operator P(�Si + �S j ), when applied to a system composed
of two spin-3/2 sites, results in the elimination of all states
except for the singlet state

χ0,0 = 1
2

(∣∣− 3
2 , 3

2

〉 − ∣∣− 1
2 , 1

2

〉 + ∣∣ 1
2 ,− 1

2

〉 − ∣∣ 3
2 ,− 3

2

〉)
. (4)

This operator clearly has SU(2) invariance. Indeed, it has
a larger SU(4) symmetry (in the staggered fundamental-
conjugate to fundamental representation) of which the SU(2)
is a subgroup.

Using this operator, we can introduce two more couplings
that act on our S = 3/2 Hilbert space, JSU(4) and QSU(4),

HSU(4) = −JSU(4)

∑
〈i j〉

P(�Si + �S j )

− QSU(4)

∑
〈i jkl〉

P(�Si + �S j )P(�Sk + �Sl ). (5)

The JSU(4)-QSU(4) model has been studied previously and hosts
a Néel-VBS transition in the context of SU(4) deconfined
criticality [21,22]. In this work, we will focus instead on the
SU(2) S = 3/2 criticality, which requires us to have some of
the terms in H 3

2
finite to lower the symmetry from SU(4) to

SU(2).
In the large space of four couplings we have introduced

above (J 3
2
, Q 3

2
, JSU(4), QSU(4)), we will focus here on the phase

diagram of the J 3
2
-QSU(4) model, which is tuned by one param-

eter g ≡ J 3
2
/QSU(4). We chose to work with these couplings

because we know, at g = ∞, the system must be in the Néel
state and the g = 0 state is in the VBS [21,22]. At any finite
value of g this model has only the SU(2) symmetry with a
four-dimensional Hilbert space appropriate to S = 3/2, and
is hence an appropriate model for SU(2) deconfined criti-
cality. We have studied other combinations of couplings and
included the results for completeness in Appendixes A–C.

We employ the QMC method based on the SSE representa-
tion [23] to simulate our system. For the J-Q model with S >

1/2, the Directed Loop method [24,25] is typically required.
In this paper, we use the split-spin [20] method to simulate the
spin-3/2 J 3

2
-QSU(4) model. We rewrite the spin-3/2 on each of

the N lattice sites as three spin-1/2 “mini-spins”,

�Si =
3∑

a=1

�sa
i . (6)

Here �sa
i has a lattice index i with 1 � i � N and a mini-spin

index a with 1 � a � 3. The N S = 3/2 spins then become
3N S = 1/2 spins. The dimension of the Hilbert space also
changes from 4N to 23N . To faithfully simulate the original
problem, we have to include a projection operator, P = ∏

i Pi,
where Pi projects out the spin-3/2 from the mini-spin basis.
This method makes the simulation of the models relatively
simple.

Using the mini-spin basis, the J 3
2

term can be expressed as

H
J 3

2
i j = �Si · �S j = −

∑
a,b

(
1

4
− �sa

i · �sb
j

)
. (7)

It can also be proven that the singlet projector on two S = 3/2
spins can be expressed as

P(�Si + �S j )

= P3
2

(
3∑

a=1

�sa
i

)
P3

2

(
3∑

b=1

�sb
j

)
1

18

∑
a �=c �=e
b�=d �= f

(
1

4
− �sa

i · �sb
j

)

×
(

1

4
− �sc

i · �sd
j

)(
1

4
− �se

i · �s f
j

)
, (8)

where P3
2
(
∑3

a=1 �sa
i ) projects out the spin-3/2 from the mini-

spin basis. It is worth noting that all interactions occur
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between mini-spins of different sites i and j. Details of this
algorithm can be found in [19].

In this work, we define g = J 3
2
/QSU(4) and set J2

3
2
+

Q2
SU(4) = 1, choosing β = L in the simulations to study the

quantum phase transition, where L is the linear size of
the system. N = L2 represents the total number of sites in the
square lattice.

III. RESULTS

The model is expected to exhibit a Néel phase for g large
enough and a VBS phase when g is small. By measuring
quantities sensitive to the Néel and VBS orders, we confirm
the existence of these two phases and investigate the phase
transition. We find that the Binder cumulants of these two
order parameters approach 1 in the ordered phase and 0 in the
disordered phase, and exhibit nonanalytic and negative diver-
gence as the system size approaches infinity. We also examine
the properties of the phase transitions from the histograms of
the order parameters. All these results are consistent with a
first-order phase transition.

A. Order parameters

In this section, we study the finite-size scaling of the
Néel and VBS order parameters. We are limited to somewhat
small system sizes L � 20 close to the transition because of
metastability issues associated with a first-order transition.
Metastability is interesting in itself and explored in Sec. III B.

The VBS phase, which breaks the Z4 symmetry, can be
characterized by 〈φ2〉, with the VBS order parameter �φ =
(φx, φy) defined as

φx = 1

N

∑
�r

Sz
�rSz

�r+x̂e−i�k·�r (9)

and

φy = 1

N

∑
�r

Sz
�rSz

�r+ŷe−i�k·�r . (10)

The wave vectors are �k = (π, 0) for φx and (0, π ) for φy. x̂
and ŷ represent neighboring sites in the x and y directions,
respectively. Figure 2 depicts 〈φ2〉 in the vicinity of the phase
transition point for various system sizes. The decrease of 〈φ2〉
from a finite value to 0 as g increases suggests the presence of
a phase transition from a VBS-ordered to a VBS-disordered
phase around g ≈ 0.113.

We define the Binder cumulant Uφ [26,27], which serves as
a useful quantity to study the transition, in particular, distin-
guishing between continuous and first-order phase transitions,

Uφ = 2 − 〈φ4〉
〈φ2〉2

. (11)

Uφ tends towards 1 in the ordered phase and towards 0
in the disordered phase as L approaches infinity. For a
continuous phase transition, for sufficiently large L, Uφ varies
continuously between 0 and 1 with the tuning parameter
and converges to a fixed point value for different system
sizes at the transition point, while for a first-order transition,
Uφ exhibits non-analyticity and negativity, tending towards

FIG. 2. The square VBS order parameter 〈φ2〉 for different sys-
tem sizes versus the tuning parameter g. A region in which 〈φ2〉 is
roughly volume-dependent is separated from a region where 〈φ2〉
appears to vanish, indicating a phase transition around g ≈ 0.113.
The location and nature of the VBS transition are explored further in
Fig. 3 using the Binder cumulant.

negative infinity near the phase transition point as size
increases to infinity. Figure 3 displays Uφ for various system
sizes in the vicinity of the phase transition point, showing the
characteristics of a first-order phase transition [28].

Since at the transition point of a first-order phase transi-
tion two distinct phases coexist, a direct method of detecting
a first-order phase transition is sampling the histograms of
order parameters. The distribution function P(φx, φy) should
exhibit peaks at (0,0) in the VBS-disordered phase, and at
(±φ0, 0) and (0,±φ0) in the VBS-ordered phase due to the
Z4 symmetry, where φ0 represents a finite value. Figure 4
illustrates the histograms of �φ for L = 16 in the VBS phase,
around the phase transition point, and in the VBS-disordered

FIG. 3. The Binder cumulant Uφ for different system sizes as
functions of g. Uφ tends to 1 in the ordered phase and 0 in the
disordered phase, indicating a phase transition at g ≈ 0.113. Uφ (L)
exhibits a pronounced negative trend in proximity to the phase tran-
sition point characteristic of a first-order phase transition.
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L = 16 g = 0.1121
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L = 16 g = 0.1125
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L = 16 g = 0.1127

(d)
L = 24 g = 0.1127

FIG. 4. The histograms of �φ. (a)–(c) for L = 16 in the VBS phase
(g = 0.1121), at around phase transition point (g = 0.1125), and in
the VBS-disordered phase (g = 0.1127), respectively; (d) for L =
24, at around phase transition point (g = 0.1127).

phase, respectively; and the histogram for L = 24 around the
phase transition point. The coexistence of peaks at (0,0) and
(±φ0, 0), (0,±φ0), and the sharpening of the peaks with
increasing system sizes provide further evidence of a first-
order phase transition from the perspective of the VBS order
parameter.

We now turn to the behavior of the Néel order parameter
close to the transition. The magnetically ordered phase with
the O(3) spin rotational symmetry broken can be character-
ized by the Néel order parameter mz

s , which is the z component
of staggered magnetization of the system.

mz
s = 1

N

∑
�r

Sz
�re−i�k·�r, (12)

with �k = (π, π ) is the wave vector corresponding to the Néel
phase, N = L2. This quantity is diagonal in the Sz basis and
easy to measure in the SSE simulations. For finite-size sys-
tems, the square staggered magnetization M2

z = 〈(mz
s )2〉 is

calculated to describe the order. Figure 5 illustrates M2
z in

the vicinity of the phase transition point for various system
sizes. The increase of M2

z from 0 to a finite value as g in-
creases suggests the presence of a phase transition from an
Néel-disordered to a Néel-ordered phase around g = 0.113.

The Binder cumulant of Néel order parameter is defined as

Um = 5

6

(
3 −

〈(
mz

s

)4〉
〈(

mz
s

)2〉2
)

. (13)

Similarly, as depicted in Fig. 6, Um becomes non-analytic,
tending towards negative infinity near the transition point, as
L increases, indicative of a first-order phase transition [28].

Just as for the VBS order parameter, we have sam-
pled the histogram of the Néel order parameter mz

s . The

FIG. 5. The squared staggered magnetization M2
z for different

system sizes versus g, showing two regions. For g smaller than
approximately 0.113, the order parameter scales to zero, and for
g larger than this value, it appears to scale to a finite value. The
transition point for the Néel order parameter is analyzed further in
Fig. 6.

histogram of mz
s exhibits a Gaussian distribution centered at

zero in the Néel-disordered phase, a uniform distribution in
the Néel-ordered phase (this is because we are measuring
one component of a vector order parameter), and a mixture
of these two distributions around the phase transition point
due to the coexistence of two different phases characteristic
of a first-order phase transition. Figure 7 displays the his-
togram of mz

s for the size L = 32 at various g near transition
point. The observed phenomenon of phase coexistence at g =
0.1123 serves as compelling evidence for a first-order phase
transition.

FIG. 6. The Binder cumulant of the staggered magnetization Um

for different system sizes as functions of g. The curves exhibit a pro-
nounced negative trend in proximity to the transition point, indicating
a first-order transition. The transition point for the Néel and order is
consistent with the transition point for the VBS order, indicating a
direct transition, which is confirmed in the analysis shown in Fig. 9.
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FIG. 7. The histograms of mz
s for L = 32 at the Néel phase (g =

0.1126), around phase transition point (g = 0.1123), and the VBS
phase (g = 0.1121). In the disordered phase a Gaussian distribution
is expected, and in the ordered phase a flat distribution. The distri-
bution close to the phase transition shows a superposition of these
distributions pointing to the coexistence between a Néel-ordered and
a disordered phase.

The crossings of the Binder cumulants should converge to
the transition point as system sizes increase. However, since
the transition is first-order, determining the phase transition
point from the crossings in this model proves challenging due
to their negative divergent behavior near the phase transition
point, as illustrated in Figs. 6 and 3. It is useful to define the
order parameter ratios Rm and Rφ , which goes to 1 in the
ordered phase and 0 in the disordered phase as the system
size L tends to infinity but avoids the negativity near the phase
transition point.

The Néel ratio averages over x and y Néel ratios

Rm = 1
2

(
Rx

m + Ry
m

)
(14)

with

Ra
m = 1 − Cm

(
(π, π ) + 2π

L â
)

Cm(π, π )
, (15)

and a labels x and y. Here Cm(�k) is the Néel structure factor

Cm(�k) = 1

N

∑
�r

〈
Sz

0Sz
�r
〉
e−i�k·�r, (16)

and â corresponds to the unit vector in the x, y direction,
respectively.

The VBS ratio average over x and y VBS ratios

Rφ = 1
2

(
Rx

φ + Ry
φ

)
(17)

with

Rx
φ = 1 − Cx

φ

(
π, 2π

L

)
Cx

φ (π, 0)
, (18)

FIG. 8. The order parameter ratios Rm and Rφ for different sys-
tem sizes as functions of g.

and

Ry
φ = 1 − Cy

φ

(
2π
L , π

)
Cy

φ (0, π )
. (19)

Here Ca
φ (�k) is the VBS structure factor defined basing on a

direction dimer-dimer correlator

Ca
φ (�k) = 1

N

∑
�r

〈
Sz

0Sz
âSz

�rSz
�r+â

〉
e−i�k·�r, (20)

a = x, y correspond to the x, y directions in 2D square lattice.
Figure 8 illustrates the order parameter ratios Rm and Rφ

varying with g. Ensuring the continuity of Rm and Rφ remains
a challenge, particularly as L increases, notably beyond L >

20, due to long tunneling times between the two phases of
the first-order phase transition. Consequently, we opt to utilize
smaller system sizes to ascertain the crossing points reliably.

Figure 9 illustrates the crossing points of (L, 2L) for Rm

and Rφ , where L ranges from 4 to 12. These crossings demon-
strate a convergence towards a common value when L → ∞,
indicating the phase transition point gc. Remarkably, this con-
vergence suggests that the phase transition described by two
distinct order parameters, 〈(mz

s )2〉 and 〈φ2〉, is a single phase
transition from a Néel-ordered state to a VBS-ordered state.

The preceding analysis demonstrates that both order pa-
rameters exhibit characteristics of a first-order phase transition
with a common critical coupling (direct transition), so the
Néel-ordered phase corresponds to the VBS-disordered phase,
and conversely, the VBS-ordered phase corresponds to the
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FIG. 9. The crossing points of (L, 2L) for Rm and Rφ with L =
4, 6, 8, 10, 12. The black solid lines are simultaneously fitted by
power laws gc(L)Rm = a + b1/Lc1 and gc(L)Rφ = a + b2/Lc2 , within
the range of L = 6 to 12. The statistical analysis yields gc(L →
∞) = a = 0.11327(3) with reduced χ 2 = 0.94. To get a conserva-
tive error that includes systematic error estimate we bound the critical
point by the two data points at the largest system size (assuming
continued monotonic behavior) which yields gc = 0.1131(2).

Néel-disordered phase. We now establish that at the transi-
tion both order parameters are finite. Figure 10 depicts the
finite-size behavior of the order parameters M2

z and 〈φ2〉 close
to the phase transition point, up to L = 20. Both parameters

FIG. 10. Finite-size behavior of the order parameters M2
z and

〈φ2〉 close to the phase transition point up to L = 20. Power-law
extrapolation for both the VBS and the Néel-order parameters in
the form f (L) = a + b/Lc converge to finite values at a common
coupling strength of g = 0.1130. The red solid lines represent the
fitted functions. The fitting results suggest that both order parameters
remain finite at the transition point as the system size approaches
infinity, indicative of a first-order phase transition, although the quan-
titative reliability of the fit values may be limited.

FIG. 11. MC histories of (mz
s )2 and φ2 near the phase transition

point g = 0.113 for L = 16, 20, 24. Each value in the diagram is
an average over 105 MC samples. They all show clear switching
behavior in both quantities, and the switching time becomes longer
as system size increases. Here ˜(mz

s )2 and φ̃2 are normalized values of
(mz

s )2 and φ2 such that the maximum is unity.

converge to finite values at the same coupling ratio g = 0.113
as the system size tends to infinity, indicating simultaneous
transitions. This observation leads to the conclusion that a
first-order phase transition occurs between two distinct or-
dered states, the VBS state and the Néel state.

B. Metastability

In the preceding subsection on order parameters, we only
show data up to L = 20 due to the considerable difficulty
in obtaining reliable statistical averages for L > 20. This
challenge arises from the extended tunneling time between
different phases near the phase transition point, which makes
ergodic simulations difficult on large lattices.

The long tunneling time can also be studied by simply
viewing the time series in the MC-binned data. Figure 11
illustrates the MC histories of (mz

s )2 and φ2 with g = 0.113,
near the phase transition point, for system sizes L = 16, 20,
and 24. Clear switching behavior is evident in both quantities
across all system sizes, with longer switching times observed
as the system size increases. Notably, one order parameter
predominates when the other is absent, indicating a recipro-
cal relationship between the ordered states. Specifically, the
presence of the Néel order corresponds to the absence of the
VBS order, and vice versa. This phenomenon of switching
between the two orders near the phase transition point is
characteristic of a first-order transition and suggests a single
transition between two distinct ordered states.

The extended tunneling time leads to a hysteresis phe-
nomenon, which we can simulate using the following strategy:
initiate simulations at a specific value of g within the VBS-
ordered phase and incrementally increasing g to transition
into the disordered phase, while continuously measuring the
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FIG. 12. The hysteresis loops of the order parameters M2
z (upper

panel) and 〈φ2〉 (lower panel). We have used a protocol described in
the text where the finite Monte Carlo runs do not explore the phase
space ergodically, clearly displaying the phenomena of metastability
close to the phase transition, as expected for a first-order transition.

order parameters 〈(mz
s )2〉 and 〈φ2〉. Subsequently, the final

configuration obtained at a particular g serves as the starting
point for the subsequent simulations incrementally decreas-
ing g. When the system size L is large, the tunneling time
becomes significantly longer compared to the simulation du-
ration. Consequently, the system may persist in a metastable
phase even after transitioning beyond the phase boundary.
Figure 12 presents the average behavior of the order param-
eters throughout this process, revealing prominent hysteresis
phenomena.

Finally, we note that as shown in Appendix A the Q 3
2

term favors the Néel order. So, the combination of the Q 3
2

term and QSU(4) term also realizes the phase transition from
VBS to Néel. We present the numerical analysis of this model
in Appendix C. We find that similar to the analysis in this
section, the Q 3

2
− QSU(4) model also hosts a first-order Néel-

VBS phase transition, suggesting that the transitions in the
Q 3

2
− QSU(4) and J 3

2
− QSU(4) models are possibly connected

by a line of first order transitions.

IV. SUMMARY

In summary, we have studied the Néel-VBS transition in
sign-free S = 3/2 models on a square lattice. Utilizing un-
biased quantum Monte Carlo numerical methods, we have
demonstrated the presence of a direct first-order phase tran-

sition from the Néel state to the VBS state. Our analysis
involved studying Néel- and VBS-order parameters, Binder
cumulants, dimensionless ratios, and histograms of the two
different orders. The abrupt changes in order parameters, the
nonanalytic and negative behavior of the Binder cumulants,
and the mixture of distributions in the histograms near the
phase transition point provide compelling evidence of the
first-order phase transition behavior.

According to an application of the theory of deconfined
criticality, the S = 3/2 transition should be “as likely contin-
uous” (first-order transitions can never be ruled out in specific
microscopic models even if the transition can be continuous in
some models) as the much discussed S = 1/2 case, since the
effective field theory is identical. Yet we find in our models a
strong first-order transition and no evidence even for a weakly
first-order transition as has been established in the S = 1/2 J-
Q model [15].

It would be intriguing to find other spin-3/2 models in
which the Néel-VBS phase transition is less strongly first
order and look for evidence of scaling, so that the scaling
dimensions can be compared with the spin-1/2 case [16]. One
particular strategy (which can be accessed in the models stud-
ied here) would be to begin with the JSU(4) − QSU(4) model,
which has a continuous or weakly first-order transition [21,22]
and then add some J 3

2
− Q 3

2
terms that reduce the symmetry

from SU(4) to SU(2). We leave the exploration of the phase
diagram in this parameter regime for future work.
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APPENDIX A: NUMERICAL RESULTS
ON THE J 3

2
-Q 3

2
MODEL

Here, we verify that the J 3
2
-Q 3

2
model described by Eq. (2)

does not exhibit a phase transition to VBS order. Employing
the same definitions for the order parameters as in Eqs. (9),
(10), and (12), we conduct QMC simulations for the spin-3/2
J 3

2
-Q 3

2
model.

Finite-size analysis of the order parameters for the spin-
3/2 J 3

2
-Q 3

2
model at g1 ≡ J 3

2
/Q 3

2
= 0, 0.2, 0.4 is depicted in

Fig. 13. g1 = 0 represents the strongest relative Q 3
2

interac-

tion. As observed, 〈(mz
s )2〉 converges to a finite value, while

〈φ2〉 tends towards zero as L approaches infinity regardless of
the value of g. This behavior provides compelling evidence
that there is no VBS phase present in the spin-3/2 J 3

2
-Q 3

2

model.

APPENDIX B: NUMERICAL RESULTS
ON THE JSU(4)-Q 3

2
MODEL

Here we verify that the JSU(4)-Q 3
2

model does not exhibit
a phase transition to a VBS order. We already know that both
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FIG. 13. Finite-size analysis of the order parameters for the spin-
3/2 J 3

2
-Q 3

2
model at g1 = J 3

2
/Q 3

2
= 0, 0.2, 0.4. The value appears

to be unaffected by g and tends towards 0 for M2
z , while remaining

finite for 〈φ2〉. The solid line depicted in the figure is fitted using a
power-law function f (L) = a + b/Lc at g1 = 0. This fitting reveals
the presence of Néel order and the absence of VBS order in the J 3

2
-

Q 3
2

model.

JSU(4) and Q 3
2

models are magnetically ordered, so it is un-
likely that VBS order can emerge for intermediate couplings,
but it is helpful to verify nonetheless. Employing the same
definitions for the order parameters as in Eqs. (9), (10), and
(12), we conduct QMC simulations for the spin-3/2 JSU(4)-Q 3

2

model.
Finite-size analysis of the order parameters for the spin-

3/2 JSU(4)-Q 3
2

model at g2 ≡ Q 3
2
/JSU(4) = 0, 0.01, 0.05 is

depicted in Fig. 14. When g2 = 0, the relative JSU(4) inter-
action is the strongest. As shown, M2

z converges to a finite
value as L approaches infinity, and this value increases with
g2. Conversely, 〈φ2〉 tends towards zero as L approaches in-
finity, regardless of the value of g2. This behavior provides

FIG. 14. Finite-size analysis of the order parameters for the spin-
3/2 JSU(4)-Q 3

2
model at g2 = Q 3

2
/JSU(4) = 0, 0.01, 0.05. The solid

line depicted in the figure is fitted using a power-law function f (L) =
a + b/Lc at g2 = 0. This fitting reveals the presence of Néel order
and the absence of VBS order in the JSU(4)-Q 3

2
model.
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0

0.5

1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1

(a)
L = 14 g3 = 0.01981

(b)
L = 14 g3 = 0.01988

(c)
L = 14 g3 = 0.01992

(d)
L = 16 g3 = 0.02000

FIG. 15. The histograms of �φ. (a)–(c) for L = 14 at VBS phase
(g3 = 0.01981), at around phase transition point (g3 = 0.01988), and
at Néel phase (g3 = 0.01992), respectively; (d) for L = 16, at around
phase transition point (g3 = 0.02000).

compelling evidence that there is no VBS phase present in
the spin-3/2 JSU(4)-Q 3

2
model, while the Néel order is always

present and strengthens with increasing g2.

APPENDIX C: NUMERICAL RESULTS
ON THE Q 3

2
-QSU(4) MODEL

Following the same definitions for the order parameters as
in Eqs. (9), (10), and (12), and setting g3 = Q 3

2
/QSU(4), we

FIG. 16. The histograms of mz
s for L = 16 at the Néel phase

(g3 = 0.02010), around phase transition point (g3 = 0.02004), and
the VBS phase (g3 = 0.01998).
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also conduct QMC simulations for the Q 3
2
-QSU(4) model. In

this model, we are guaranteed a Néel-VBS transition because,
as we have discussed, the Q 3

2
model is magnetically ordered

and the QSU(4) model is VBS ordered. We only present a brief
analysis here since the results are similar to the spin-3/2 J 3

2
-

QSU(4) model presented in the main text, exhibiting a direct

first-order phase transition from the VBS-ordered phase to the
Néel-ordered phase. The behavior of the order parameters and
Binder cumulants is similar to that of the spin-3/2 J 3

2
-QSU(4)

model. To avoid redundancy, we only present the histograms
of the two order parameters near the phase transition point in
Figs. 15 and 16.
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