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Magnon-phonon interactions in the spinel compound MnSc2Se4

J. Sourd,1 Y. Skourski,1 L. Prodan,2,3 V. Tsurkan,2,3 A. Miyata,4 J. Wosnitza,1,5 and S. Zherlitsyn 1

1Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat,
Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

2Experimental Physics V, University of Augsburg, 86135 Augsburg, Germany
3Institute of Applied Physics, MD 2028 Chisinau, Republic of Moldova

4Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
5Institut für Festkörper- und Materialphysik, TU Dresden, 01062 Dresden, Germany

(Received 20 March 2024; revised 31 July 2024; accepted 20 August 2024; published 9 September 2024)

We investigated the magnetic and magnetoelastic properties of MnSc2Se4 single crystals at low temperature
under a magnetic field directed along the crystallographic [111] axis. The magnetization data at low temperature
show a linear increase with magnetic field, until saturation is reached above 15 T. In ultrasound, a longitudinal
acoustic mode shows a softening in field, which is absent for a transverse acoustic mode. We discuss these results
using a microscopic model based on the framework of linear spin-wave theory. The magnetic and magnetoelastic
data are qualitatively reproduced by considering magnon-phonon interactions arising from exchange-striction
coupling between the crystal lattice and spin-wave fluctuations in the zero-temperature limit.
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I. INTRODUCTION

The spinels constitute a large group of transition-metal
oxides or chalcogenides, having the general formula AB2X4.
They show many intriguing magnetic and dielectric proper-
ties [1,2]. Most of these materials are magnetic insulators or
semiconductors, and well described by a hard-sphere ionic
picture [3]. The anions X 2− are generally O2−, S2−, Se2−,
or Te2− and form a face-centered cubic lattice, stabilized by
interstitial A and B cations, which are generally earth-alkaline
or 3d transition metals.

In cubic spinels of the form A2+B3+
2 X 2−

4 , the A2+ ions oc-
cupy tetrahedral sites and form a diamond sublattice, whereas
the B3+ ions occupy octahedral sites and form a pyrochlore
sublattice. For cations with partially filled d shells, the pos-
sibility of different A and B networks together with different
crystal-field environments leads to a very rich physics involv-
ing the interplay of spin, charge, orbital, and lattice degrees
of freedom. The study of spinels, thus, has historically given
some precious light about novel types of magnetic order [4,5],
magnetic frustration [6], and spin-lattice couplings [7].

Accordingly, spinel compounds show very rich phase di-
agrams involving temperature, pressure, and magnetic field,
revealing some highly exotic states of matter, such as spin
loops in ZnCr2O4 [8], a magnetization plateau in MnCr2S4

[9], multiferroicity in CdCr2S4 [10], spin-dimerization in
CuIr2S4 [11], and an orbital-glass state in FeCr2S4 [12].

The case when only the A site of the spinel lattice is oc-
cupied by magnetic ions has gathered a considerable amount
of experimental [13,14] and theoretical [15,16] efforts, since
the magnetic ions are arranged on a geometrically frustrated
diamond lattice. In this respect, the A site spinels of formula
MnSc2X4 (X = S, Se, space group = Fd 3̄m) are particu-
larly interesting due to the competing antiferromagnetic and

ferromagnetic interactions between the magnetic Mn2+

(S = 5/2) ions.
MnSc2S4 shows a very rich phase diagram with the

presence of helical, incommensurate, modulated, and canted
orders, together with a skyrmion phase induced by magnetic
field [17,18]. With a particularly low Néel temperature, TN =
2.3 K, and a Curie-Weiss temperature of �CW = −22.9 K,
this compound exhibits a substantial frustration factor
f = |�CW |/TN ≈ 10.

Extending to the MnSc2X4 system (X = S, Se), the substi-
tution of sulfur by selenide can be understood as a chemically
induced pressure effect. The lattice spacing evolves from a0 =
10.6 Å in MnSc2S4 [13] to a0 = 11.1 Å for MnSc2Se4 [19],
thus increasing the distances between the magnetic Mn2+ ions
and decreasing the magnetic exchange energy. Magnetization
and neutron-diffraction measurements on powder samples
suggest that MnSc2Se4 exhibits magnetic order below TN =
2 K, with a Curie-Weiss temperature �CW = −18.4 K, giving
also a substantial frustration factor f = |�CW |/TN ≈ 9 [19].
A helical and a modulated magnetic order have been proposed
from the neutron data, but no skyrmion phase has been ob-
served, so far, in this compound.

In this paper, we explore the role played by spin-strain
interactions in the physics of frustrated spin systems. Prob-
ing magnetically frustrated systems through the spin-lattice
coupling has become a very fruitful method in recent years
[20,21]. In particular, measurement of the sound velocity and
sound attenuation provide useful information on the static and
dynamic properties of the magnetic fluctuations [22]. Further-
more, the use of different sound-wave polarizations permits to
probe low-energy excitations in detail.

The usual interpretation of ultrasound data is based
on a macroscopic picture of the elastic free energy for
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different strains. Within Landau’s phenomenology, ultrasound
has been widely used for the study of magnetic phase tran-
sitions such as in FeF2 [23] and chromium [24]. However,
in order to investigate the effect of quantum fluctuations
close to zero temperature, the use of a microscopic pic-
ture involving the interaction of phonons with low-energy
magnetic excitations is inevitable. Recently, theoretical and
experimental efforts have been devoted to build such approach
for ultrasound data for frustrated magnets at low temper-
ature, based on microscopic Heisenberg models and linear
spin-wave theory [25,26]. Using microscopic models allows
to take into account the crystal structure in a precise way,
and in particular permits to compare different phonon po-
larizations without any additional free parameters. We used
this approach to investigate magnetic-field dependence of
magnetic and magnetoelastic properties of single-crystalline
MnSc2Se4 samples at low temperatures. Providing a mi-
croscopic model based on the neutron-scattering results of
Ref. [19], we propose a magnetic excitation spectrum Ansatz
for MnSc2Se4 at low temperature. We reproduce qualitatively
the observed changes of the sound velocity and sound at-
tenuation induced by the magnetic field and, in particular,
give an interpretation of the observed difference between the
measurements using longitudinal and transverse sound-wave
polarizations.

II. EXPERIMENTAL DETAILS

We grew single crystals of MnSc2Se4 using the chemical
transport technique, as described in more detail in Ref. [17].
We analyzed the composition with powder x-ray diffraction
on a crushed single crystal, and by comparing the x-ray
refinement and the measurements of magnetization versus
temperature curve of the single crystals with a polycrys-
talline sample (see the Supplemental Material [27]). For
magnetization measurements, we selected a crystal of dimen-
sions 1.0 mm × 1.0 mm × 2.0 mm. Since MnSc2S4 shows a
very rich phase diagram with an extended skyrmion phase
for magnetic fields applied along [111] [18], we performed
our experiments using this field orientation. For ultrasound
measurements, we selected a larger crystal of dimensions
1.3 mm × 3.5 mm × 2.0 mm, and polished on two faces per-
pendicular to the [111] axis.

We obtained high-field magnetization curves M(H ) up
to 23 T in pulsed magnetic fields at the Dresden High
Magnetic Field Laboratory using the compensated pick-up
coil system described in Refs. [28,29]. We calibrated the
absolute value of the magnetization by a low-field mea-
surement using a commercial vibrating-sample magnetometer
(VSM).

We performed ultrasound measurements utilizing the trans-
mission pulse-echo technique with a phase-sensitive detection
as described in Ref. [22]. We attached LiNbO3 transducers
(36◦-Y cut and 41◦-X cut for longitudinal and for transverse
mode, respectively) to the polished surfaces of the single
crystal. We applied magnetic fields up to 17 T along the [111]
axis in a superconducting magnet. We have set the ultrasound
propagation direction k parallel to the magnetic field k ‖ H ‖
[111]. We give the ultrasound frequencies and velocities at 4 K
for the two different acoustic modes in Table I.

TABLE I. Ultrasound frequencies and velocities at 4 K. C11,C12,
and C44 denote the elastic constants in Voigt notation.

Longitudinal Transverse
1
3 (C11 + 2C12 + 4C44) 1

3 (C11 − C12 + C44)

f (MHz) 80 65
v (m/s) 3809 ± 200 1809 ± 100

III. RESULTS

In this section, we present the magnetization, sound-
velocity and attenuation changes measured as a function of
magnetic field in MnSc2Se4 single crystals.

A. Magnetization

Figure 1 displays the magnetization of MnSc2Se4 and
its derivative versus magnetic field applied along the [111]
axis, measured at different temperatures. Below 1.5 K, we
observe a clear kink of the magnetization curve about 15.4 T,
which indicates saturation as identified by the vanishing of
∂M/∂H [Fig. 1(b)]. This saturation suggests the presence of
a polarized state. At 0.5 K, the magnetic moment at satura-
tion is about 4.75μB/f.u., which is smaller but close to the
value 2S = 5 μB/f.u. expected for S = 5/2 Mn2+ ions with
quenched orbital moment [30]. A similar behavior has been

FIG. 1. Field-dependent (a) magnetization and (b) magnetization
derivative of MnSc2Se4 for different temperatures, with the magnetic
field applied along the [111] axis. Colored lines represent the experi-
mental data while the grey-dashed line corresponds to the calculation
at T = 0 from the Heisenberg model presented in Sec. IV.
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FIG. 2. (a) Field-dependent sound-velocity change for longitudi-
nal propagation and magnetic field applied along [111]. (b) Corre-
sponding ultrasound-attenuation change. (c) Field-dependent sound-
velocity change for transverse propagation with wave vector k and
magnetic field along [111], and polarization u along [11̄0]. The inset
in (b) shows the crystal used for the ultrasound measurements with
polished [111] surface.

observed in MnSc2S4 [31]. In Ref. [31], the small magnetic
moment in MnSc2S4 has been explained as originating from
thermal fluctuations due to the low Néel temperature TN =
2.3 K. This interpretation might be relevant for MnSc2Se4 too,
since the Néel temperature of 2 K is also small. At T = 3.7 K,
which is above the Néel temperature, the magnetization is
reduced compared to the value at 1.5 K.

B. Sound velocity and attenuation

Figure 2 shows the relative change of the sound veloc-
ity �v/v and attenuation �α in MnSc2Se4 as a function
of magnetic field, measured at different temperatures. No
field-induced transition is observed, in accordance with the
magnetization data. Instead, a smooth softening of the lon-
gitudinal acoustic mode is detected [Fig. 2(a)]. At 0.35 K,

a minimum in the sound velocity occurs at 13 T, which
is below the saturation field. Close to the saturation field
at about 15 T, the phonon softening is suppressed and
we observe a hardening. Finally, for fields above 16 T, the
sound velocity seems to reach a constant value. At 5 K, the
minimum is shifted towards smaller fields, in agreement with
the magnetization data where the kink is shifted towards
smaller fields with increasing temperature. Furthermore, we
detect a peak in the ultrasound attenuation just below the
saturation field [Fig. 2(b)]. This attenuation peak marks an
increase of the energy dissipation in the system and has been
reported for other antiferromagnetic materials close to the
saturation field, such as CsCuCl4 [25]. The shift of the at-
tenuation peak towards lower fields at the higher temperature
of 5 K is less pronounced than the corresponding shift of
the sound-velocity minimum, because the attenuation peak
should occur close to the inflection point of the sound-velocity
variation. We interpret this as a result of the reduction of the
magnetic correlations due to thermal fluctuations, in accor-
dance with the magnetization measurements.

Remarkably, we do not observe any significant phonon
softening for the transverse acoustic mode [Fig. 2(c)]. For
this mode, there occurs only a hardening close the satu-
ration field. Furthermore, we remark that this hardening is
about 3×10−4 at 17 T, comparable to the hardening observed
for the longitudinal mode. A small anomaly is observed at
T = 0.35 K and a magnetic field lower than 5 T. Its origin
remains unclear, as it is not observed in the longitudinal mode,
nor in the magnetization data.

For both longitudinal and transverse acoustic modes, the
sound-velocity variation is less pronounced at 5 K, compared
to the variation at 0.35 K. This is in accordance with the
reduced magnetization observed above the Néel temperature
(Fig. 1) and suggests that at low temperature the major contri-
bution to the elastic property changes of MnSc2Se4 originates
in the spin-lattice coupling. Thus, the dominating energy
scales for the elastic properties correspond to those of the
magnetic subsystem, namely the Néel temperature TN = 2 K
and the saturation field μ0Hsat = 15.4 T. Furthermore, above
the saturation field, the [111] axis becomes the hard magnetic
axis and induces a hardening of the elastic modes for propa-
gation along [111]. A similar effect has been reported in an
experimental study of the cone state of MnSi and explained
theoretically using free-energy calculations [32,33].

IV. THEORY

In this section, we present a microscopic model, which
reproduces qualitatively the observed sound-velocity and at-
tenuation changes in MnSc2Se4 upon varying the magnetic
field. This model follows closely the methods of Ref. [25] for
the description of sound-velocity changes in the cone state of
CsCuCl4, and of Ref. [26] for the frustrated magnet CdCr2O4.
We define a microscopic Hamiltonian, reproducing the dy-
namics of spin degrees of freedom Hs and lattice degrees of
freedom Hl , together with a spin-lattice interaction term Hsl ,
which can be written as

H = Hs + Hl + Hsl . (1)
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FIG. 3. (a) The diamond lattice of the Mn2+ ions in MnSc2Se4,
consisting of two fcc sublattices (blue and green), together with
the couplings J1, J2, and J3. (b) Cone state for MnSc2Se4, with the
opening of the cone along the [111] axis. The crystal structure is
represented as a superposition of triangular lattices perpendicular to
[111], which shows the geometric frustration induced by the cou-
pling J2. (c) Magnetic order on one triangular lattice perpendicular
to [111], which corresponds to the magnetic ordering vector q0 =
[ 3π

2a0
, − 3π

2a0
, 0] observed in neutron diffraction [19]. Between neigh-

boring [111] planes, there is an additional rotation of the magnetic
structure by 3π

4 .

Each term will be defined hereafter. In the first part, we
propose an Ansatz of a cone state for the magnetic order in
MnSc2Se4 in applied magnetic field. We adjust the micro-
scopic model parameter in order to reproduce the saturation
field observed experimentally and determine the spin-wave
spectrum using linear spin-wave theory. In the second part,
we derive the spin-lattice coupling based on the exchange-
striction mechanism. This permits us to determine the phonon
self-energy and the associated variations of the sound velocity
and attenuation in the third part. Finally, we compare the
theoretical results to the ultrasound experiments in the fourth
part.

A. Spin dynamics Hs

The dynamics in MnSc2Se4 at low temperature is be-
lieved to be dominated by fluctuations of magnetic moments
from Mn2+ ions, which will be represented by a Heisenberg
Hamiltonian. The Mn2+ ions occupy a diamond lattice, rep-
resented in Fig. 3. The neutron-scattering data on MnSc2Se4

[19] suggest to consider magnetic couplings up to the third
neighbor, with the values J1/kB = −0.24 K, J2/kB = 0.37 K,
and J3/kB = 0.072 K. Denoting a and b the two face-centered
cubic (fcc) sublattices of the diamond lattice of the Mn2+

ions and Sa
i , Sb

i the associated magnetic moments, the spin

Hamiltonian Hs is written as

Hs =
∑
iδ1

J1Sa
i · Sb

i+δ1
+ 1

2

∑
iδ2

J2
(
Sa

i · Sa
i+δ2

+ Sb
i · Sb

i+δ2

)

+
∑
iδ3

J3Sa
i · Sb

i+δ3
−

∑
i

h · (
Sa

i + Sb
i

)
, (2)

where i runs over the sites of one fcc sublattice, δ1, δ2, and
δ3 join the site i with its first-, second-, and third-nearest
neighbors, respectively, as represented in Fig. 3. h = gμBH
is related to the external magnetic field H, where we assumed
the value g = 2 for the Landé factor of the Mn2+ ion and with
μB the Bohr magneton. It has been proposed in Ref. [16] that
in the presence of external magnetic field, the ground state
of this Heisenberg model is a conical helix, with the helical
ordering vector perpendicular to the magnetic field direction.
For a magnetic field along [111], we will consider a state
of ordering vector q0 = [q0,−q0, 0]. In order to determine
the spin-wave spectrum associated to this conical helix, we
use a locally rotating reference frame, as done in Ref. [25].
We first define three orthonormal basis vectors: l0 ‖ [111]
in the direction of the magnetic field, and l1 ‖ [11̄0], l2 ‖
[112̄] perpendicular to it. Then, we define the reference
frame by

mα
i = cos θ

[
cos

(
q0 · rα

i

)
l1 + sin

(
q0 · rα

i

)
l2

] + sin θ l0,

eα1
i = sin

(
q0 · rα

i

)
l1 − cos

(
q0 · rα

i

)
l2,

eα2
i = sin θ

[
cos

(
q0 · rα

i

)
l1 + sin

(
q0 · rα

i

)
l2

] − cos θ l0, (3)

where mα
i points in the direction of the local magnetization at

the position rα
i , which corresponds to the site i of the sublattice

α = a, b. eα1
i , eα2

i are two mutually perpendicular transverse
vectors that permit to construct an orthonormal basis, and θ is
the opening angle of the conical helix. Defining eα±

i = eα1
i ±

ieα2
i , the magnetic moment of a given Mn2+ ion can be written

in the locally rotating reference frame as

Sα
i = Sα‖

i mα
i + 1

2 Sα+
i eα−

i + 1
2 Sα−

i eα+
i . (4)

The spin operators are then written with the Holstein-
Primakoff transformation [34]: Sa‖

i = S − a†
i ai, Sa+

i =√
2Sai, Sa−

i = √
2Sa†

i and Sb‖
i = S − b†

i bi, Sb+
i = √

2Sbi,

Sb−
i = √

2Sb†
i . With this formulation, we obtain linear and

quadratic terms in magnon operators. The ground-state energy
is minimized for

h = S sin θ
∑
δα

Jδα
[1 − cos(q0 · δα )], (5)

which is equivalent to a vanishing linear term in magnon
operators. Thus, the value of the magnetic field is directly
related to the opening of the helix, and in the follow-
ing we will use sin θ = H/Hc, where Hc is the saturation
field. The remaining Heisenberg Hamiltonian of Eq. (2) is
now quadratic in magnon operators, and using the Fourier
transform with an equal number of a and b sites N :
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ai = 1/
√

N
∑

q eiq·ri aq, bi = 1/
√

N
∑

q eiq·ri bq, we obtain

Hs = E0 +
∑

q

Aq(a†
qaq + b†

qbq) +
∑

q

1

2
Bq(a†

qa†
−q + a†

qa−q + b†
qb†

−q + bqb−q)

+
∑

q

(Cqa†
qbq + C∗

q aqb†
q) +

∑
q

(Dqa†
qb†

−q + D∗
qaqb−q ),

E0 = NS2
∑

δα=δ1,δ2,δ3

Jδα
[(1 + sin θ2) cos(q0 · δα ) − sin θ2],

Aq = −S
∑

δα=δ1,δ2,δ3

Jδα
cos(q0 · δα ) + SJ2

2

∑
δ2

[(1 + sin θ2) cos(q0 · δ2) + cos θ2 + 2i sin θ sin(q0 · δ2)]eiq·δ2 ,

Bq = SJ2

2

∑
δ2

cos θ2[cos(q0 · δ2) − 1] cos(q · δ2),

Cq = S

2

∑
δα′=δ1,δ3

Jδα′ [(1 + sin θ2) cos(q0 · δα′ ) + cos θ2 + 2i sin θ sin(q0 · δα′ )]eiq·δα′ ,

Dq = S

2

∑
δα′=δ1,δ3

Jδα′ cos θ2[cos(q0 · δα′ ) − 1]eiq·δα′ , (6)

with q0 = [ 3π
2a0

,− 3π
2a0

, 0], and a0 is the lattice spacing. Be-
cause the coupling J1 connects the center of a manganese
tetrahedron to its vertices [see Fig. 3(a)], there is no inversion
symmetry on a given manganese site and we did not obtain an
analytic expression for the Bogoliubov transformation in the
general case. We diagonalized the Hamiltonian of Eq. (6) nu-
merically, using the algorithm of Colpa [35] described within
the Supplemental Material [27]. We obtain

Hs = E0 + �E +
∑

q

(E+
q α†

qαq + E−
q β†

qβq),

�E = −
∑

q

Aq + 1

2

∑
q

(E+
q + E−

q ), (7)

with the results shown in Fig. 4. At zero magnetic field, two
soft modes are present at q = [0, 0, 0] and q = q0, which cor-
respond to the 
 and K points on the high-symmetry contour,
respectively [Fig. 4(a)]. When applying a magnetic field, a
planar anisotropy is induced [36] and a gap opens at the K
point [Fig. 4(b)]. Finally, for H → Hc, the magnon velocity
vmag becomes zero, leading to a parabolic dispersion around
the 
 point, typical for polarized systems [Fig. 4(c)]. In the
q → 0 limit, the Bogoliubov transformation can be done an-
alytically (see the Supplemental Material [27] and Ref. [37]
therein), and we show that the magnon velocity is a decreasing
function of the magnetic field, being maximum at H = 0.

The knowledge of the spin-wave spectrum allows us
to calculate the magnetization and its derivative, using
M = − 1

2N
∂ (E0+�E )

∂H (see the Supplemental Material [27] and
Ref. [38] therein). We can first determine the saturation
field with Eq. (5). Using S = 5/2, g = 2, and the values of
Ref. [19] for the J couplings, we obtain a saturation field of
11.1 T, which is somewhat lower than the experimental value.
Some differences between predicted values of the J couplings
are already discussed in the case of MnSc2S4 [18,39], and
might be relevant here. Keeping the ratios Jδα

/|J1| fixed in

order to reproduce q0 = [ 3π
2a0

,− 3π
2a0

, 0] observed experimen-
tally, our data suggest a bigger energy scale |J1|/kB =
0.33 K, leading to μ0Hsat = 15.4 T. Furthermore, this new
value produced a theoretical Curie-Weiss temperature of
S(S+1)

3kB

∑
δα

Jδα
= −17.4 K [40], which is close to the exper-

imental value of �CW = −18.4 K. Using these refined values
of the J couplings, we calculate M and ∂M/∂H [grey-dashed
lines in Fig. 1(b)]. The quantum correction to the energy �E
generates an upturn of ∂M/∂H with increasing magnetic field,
which should be small for large values of S and is not observed
experimentally. We also calculate the magnon velocity at zero
field vmag = 470 m/s. This velocity is, thus, roughly one order
of magnitude smaller than the phonon velocity v measured
experimentally (Table I), which is a consequence of the small
magnitude of the magnetic interactions in MnSc2Se4 with
TN = 2 K and �CW = 18.4 K.

B. Lattice dynamics Hl and exchange-striction coupling Hsl

In Heisenberg models, the spin-lattice coupling can be
introduced by evaluating the variation of the exchange param-
eters with respect to atomic displacements [41,42]. Atomic
displacements are taken into account by writing the position
of a given Mn2+ ion as Rα

i = (Rα
i )0 + Qα

i , with the equilib-
rium position (Rα

i )0 and the displacement Qα
i . Writing the

bond δα = Rα
i − Rα′

i+δ , the Taylor expansion of the coupling
parameters Jδα

around the equilibrium bond distance gives

Jδα
≈ J0

δα
+

∑
μ

∂Jδα

∂Rμ
]
(
Qαμ

i − Qα′μ
i+δ

)

+ 1

2

∑
μ,ν

∂2Jδα

∂Rμ∂Rν

(
Qαμ

i − Qα′μ
i+δ

)(
Qαν

i − Qα′ν
i+δ

)
, (8)

where μ, ν = x, y, z are Cartesian coordinates. The atomic
displacement Qα

i at atomic position i is then quantized with
the usual phonon destruction and creation operators ckλ and
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FIG. 4. Magnon dispersion for the Heisenberg Hamiltonian of
Eq. (6) for different values of the external magnetic field: H = 0
(a), H = 0.1Hc (b), and H = Hc (c). The high-symmetry contour of
the diamond-lattice Brillouin zone is defined by 
 = (0, 0, 0), X =
( 2π

a0
, 0, 0),W = ( 2π

a0
, − π

a0
, 0), and K = ( 3π

2a0
, − 3π

2a0
, 0), where a0 is

the lattice spacing. The values of the couplings have been set to
J2/|J1| = 1.54, J3/|J1| = 0.3.

c†
kλ

, of momentum k and polarization λ [43],

Qα
i = i

∑
kλ

√
1

2M0Nω0
kλ

εkλ(ckλ + c†
−kλ

)eik·(Rα
i )0

, (9)

where M0 denotes the mass of the Mn2+ ion, N the number
of sites in one fcc sublattice, εkλ = −ε−kλ the polarization
vector, and ω0

kλ the energy of the phonon excitation. In the
following, we will consider each phonon polarization inde-
pendently, and we thus drop the index λ. Taking the dynamics
of the phonons to be harmonic and using the expansion of
Eq. (8) in the spin Hamiltonian Hs of Eq. (2), the lattice
Hamiltonian and the spin-lattice coupling can be written as

Hl =
∑

k

ω0
k c†

kck,

Hsl =
∑

k

U 1
k Ck + 1

2

∑
kk′

U 2
kk′CkCk′ , (10)

where Ck = ck + c†
−k is the phonon displacement operator. U 1

k

and U 2
kk′ are given by

U 1
k = 1√

2M0Nω0
k

∑
iδα

Sα
i · Sα′

i+δα
(eik·Rα

i − eik·Rα′
i+δα )

×
⎛
⎝i

∑
μ

ε
μ

k

∂Jδα

∂Rμ

⎞
⎠,

U 2
kk′ = 1

2M0N
√

ω0
kω

0
k′

∑
iδα

Sα
i · Sα′

i+δα
(eik·Rα

i − eik·Rα′
i+δα )

× (
eik′ ·Rα

i − eik′ ·Rα′
i+δα

)⎛⎝i2
∑
μν

ε
μ

k εν
k′

∂2Jδα

∂Rμ∂Rν

⎞
⎠. (11)

Finally, upon replacing the spin operators Si by their
Holstein-Primakoff expansions, we obtain a system of in-
teracting phonons and magnons, which represent the inter-
action of the lattice degrees of freedom and the spin-wave
fluctuations.

The key ingredient of the spin-lattice coupling is the
derivative of the exchange parameters ∂Jδα

/∂Rμ. A simple
ansatz is an exponential dependence of the exchange inter-
action Jδα

= J0
δα

exp(−√
M0ξ |Qα

i − Qα′
i+δ|), as used to explain

the elastic properties of the frustrated magnet CdCr2O4 [26],
for example. In that case, the derivatives are easily evaluated,

1√
M0

⎛
⎝i

∑
μ

ε
μ

k

∂Jδα

∂Rμ

⎞
⎠ = −iξJ0

δα
(δα · εk ),

1

M0

⎛
⎝i2

∑
μν

ε
μ

k εν
k′

∂2Jδα

∂Rμ∂Rν

⎞
⎠ = −ξ 2J0

δα
(δα · εk )(δα · εk′ ),

(12)

and the spin-lattice coupling is then characterized by a single
parameter ξ . In the following, we replace the notation J0

δα
by

Jδα
= J1, J2, J3.

C. Phonon self-energy

In order to evaluate the phonon self-energy, we use the
Bogoliubov-rotated basis for the magnon operators, denoting
�†

q = (β†
q , α†

q, α−q, β−q ). In this basis, the magnon energy
is written as (Ēq)i, j = E−

q δi,1δ j,1 + E+
q δi,2δ j,2 + E+

−qδi,3δ j,3 +
E−

−qδi,4δ j,4. In the Supplemental Material [27] it is shown that
the spin-lattice couplings U 1

k and U 2
kk′ generate two relevant

terms to explain the changes of sound velocity and attenuation
in MnSc2Se4. The corresponding minimal Hamiltonian is then
written as

H = Hs + Hl + Hsl ,

Hl =
∑
kλ

ω0
kλc†

kλ
ckλ,

Hs = E0 + �E + 1

2

∑
q

�†
q Ēq�q,

Hsl = 1

2

∑
k


0
kCkC−k +

∑
qk

�
†
q+kM̄kq�qCk, (13)
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FIG. 5. (a) Interaction terms induced by the spin-lattice coupling,
as written in Eq. (13). Phonon propagators are represented by dashed
lines, and magnon propagators by full lines. (b) Associated contribu-
tion to the phonon self-energy at zero temperature.

where the vertices 
0
k and M̄kq are defined within the Sup-

plemental Material [27]. We define the magnon Green’s
function as Ḡs

0(q, τ ) = −〈T �q(τ )�q(0)†〉 where T is the
chronological-order operator. Using standard functional-
integral techniques [44–47], the phonon self-energy is
written as

�(k, iνn) = 
0
k − 1

βN

∑
q,iνm,i, j

(
Ḡs

0(q, iνn)
)

ii(M̄q,q+k )i j

× (
Ḡs

0(q + k, iνn + iνm)
)

j j (M̄q+k,−k ) ji, (14)

where iνn is a Matsubara frequency. These two interaction
terms and their associated self-energy contributions are rep-
resented schematically in Fig. 5. For the ultrasound results
presented in Fig. 2, we set an external perturbation in the form
of a displacement wave u(r, t ) = u0exp(i(k · r − ωt )), where
u0 ‖ εk is the sound-wave polarization. In our case, we have
k ‖ [111]. For the used frequencies below f ≈ 100 MHz,
we are in the limit k · δ � 1, where δ is of the order of the
interatomic distances [22]. In this limit, the phonon dispersion
along the [111] axis is linear ω0

k = vk. The sound-velocity
change as a function of magnetic field corresponds then to
the change of the phonon dispersion, which is evaluated up to
a shift �0 as the real part of the phonon self-energy �(k, iνn),

�v

v
= lim

k→0

�ω0
q

ω0
k

= lim
k→0

Re�(k, iνn)iνn→ω0
k +i0+

ω0
k

+ �0

= ξ 2S|J1|
v2

[S�1 + �2] + �0, (15)

where �1, �2, and �0 are dimensionless. The first term is a
constant background [Fig. 6(a)],

�1 = 1

2

∑
δα

Jδα

|J1| (sin θ2 + cos θ2 cos(q0 · δα ))

×
(

k · δα

||k||
)2

(δα · εk )2. (16)

This term leads to an increase of the sound velocity with
increasing H up to a saturation above Hc. The second term is

FIG. 6. (a) Phonon self-energy contribution from the constant
background �1, in the case of longitudinal and transverse phonon
polarization. (b) Phonon self-energy contribution from the magnon-
pair creation bubble �2, in the case of longitudinal and transverse
phonon polarizations.

evaluated at T = 0 and corresponds to a magnon-pair creation
bubble,

�2 = −|J1|S
4N

∑
q

⎡
⎣ ∣∣M̄23

q

∣∣2

E+
q + E+

−q

+
∣∣M̄14

q

∣∣2

E−
q + E−

−q

+
∣∣M̄24

q

∣∣2 + ∣∣M̄13
q

∣∣2

E+
q + E−

−q

⎤
⎦, (17)

where M̄q = 2
√

2
√

v

|J1|ξS
1
k limk→0 M̄q,q+k . The sum is evaluated

using standard Monte Carlo integration over the first Bril-
louin zone of the diamond lattice, and the result is shown in
Fig. 6(b).

Due to the presence of the magnon energies E±
q in the

denominator of Eq. (17), the major contribution will be as-
sociated to the regions where E±

q is small, i.e., by the soft
modes visualized in Fig. 4. With increasing magnetic field,
we identify two regimes. First, at low field the phonon self-
energy increases with the magnetic field, for both phonon
polarizations. This increase is related to the opening of the
gap at the soft-mode position q0 [Fig. 4(b)], which suppresses
a contribution to �2. At higher fields, we find a pronounced
softening of the phonon self-energy for the longitudinal mode,
leading to a minimum of �2 at H = 0.9Hc. Remarkably, for
the transverse mode, this softening is absent.

This softening can be explained as follows: on the one
hand, as H increases, the magnon velocity vmag decreases,
thus decreasing the value of the denominator in Eq. (17)
and increasing the magnitude of �2. On the other hand, the
anomalous vertices |M̄23

q |, |M̄14
q |, |M̄24

q |, and |M̄23
q | correspond
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to the expectation values of a†
qa†

−q, b†
qb†

−q, a†
qb†

−q, and b†
qa†

−q,
respectively. These expectation values are equal to zero in the
polarized state, and thus �2 has to vanish for H → Hc.

Thus, the phonon softening observed for the longitudinal
polarization has a purely quantum origin: it arises from the
quantum fluctuations of the antiferromagnetic state, which is
not an exact ground state of the Heisenberg Hamiltonian. As
the magnetic field is increased, the magnon spectrum softens,
changing continuously from a linear dispersion, typical for
antiferromagnetic systems, to a quadratic dispersion, typical
for ferromagnetic systems. This induces a progressive in-
crease of the phonon softening because of the interactions
with spin-wave fluctuations. However, since the polarized
state is the exact ground state of the Heisenberg Hamil-
tonian, the spin-wave fluctuations at zero temperature and
the associated phonon softening are suppressed above the
saturation field, leading to the characteristic feature shown
in Fig. 6(b).

Furthermore, the magnon-pair creation bubble gives the
only contribution to the ultrasound attenuation,

�α = − lim
k→0

Im�(k, iνn)iνn→ω0
k +iη

ω0
k

= πξ 2|J1|2S2

4Nv2
α2,

α2 =
∑

q

[∣∣M̄24
q

∣∣2
δη(E+

q + E+
−q) + ∣∣M̄13

q

∣∣2
δη(E−

q + E−
−q )

+ (∣∣M̄14
q

∣∣2 + ∣∣M̄23
q

∣∣2)
δη(E+

q + E−
−q )

]
, (18)

where δη(x) = 1
π
η/(η2 + x2) is the delta function for scatter-

ing time η = 10−4|J1| > 0. The only constraint on η is to be
positive and much smaller than the other energy scales of the
system, and for an arbitrary value of η > 0 Eq. (18) fixes the
value of the attenuation up to a constant factor. The result is
shown in Fig. 2, in good agreement with the experiment.

D. Comparison to ultrasound experiments

The theory reproduces qualitatively the observed features
of the sound-velocity changes in MnSc2Se4. This is caused by
a hardening of �1 from zero field to the fully polarized state,
which is present for both longitudinal and transverse acoustic
modes, and a softening of �2 in the intermediate-field regime,
which is present only for the longitudinal acoustic mode.

The field-dependent change of �v
v

in Eq. (15) depends only
on two known parameters: the value of the spin S = 5/2 and
the saturation field μ0Hc = 15.4 T. The only free parameter
of the theory is the magnetoelastic coupling ξ , which appears
in the constant factor ξ 2S|J1|

v2 .
For the longitudinal acoustic mode, the comparison be-

tween theory and experiments is shown in Fig. 2. The constant
was set to ξ 2S|J1|

v2 = 3×10−4. The agreement is particularly
good at high field. At low field, the theory predicts an increase
of the sound velocity, associated to the suppression of the soft
mode q0 [Fig. 6(b)], which is not observed experimentally.
Thus, the assumption of a spin-wave spectrum for MnSc2Se4

appears to be more justified above a certain threshold field.
In Ref. [16], it has been suggested that for MnSc2S4 at zero

magnetic field, the spin spiral resides in some specific planes,
due to the presence of magnetic anisotropy. This magnetic
anisotropy has been proposed to originate either from dipolar
interactions and covalence effects resulting in a spin den-
sity redistribution from Mn2+ d orbitals to the surrounding
chalcogenide p orbitals, or to spin-orbit effects [16]. Thus, the
presence of a soft mode at q0 in a direction perpendicular to
the magnetic field might be a wrong assumption, and includ-
ing anisotropy effects would be a reasonable extension of this
paper.

For the transverse acoustic mode, the theory overestimate
the magnitude of the hardening due to the factor 1/v2 present
in Eq. (15). This effect might also be related to an over-
simplification of the spin-lattice coupling, which takes into
accounts only the distance between different Mn2+ ions in the
dependence of the exchange integrals in Eq. (15), and do not
consider the effect of intermediate Se2− anions for example.
Nevertheless, the qualitative features such as the absence of
phonon softening is well reproduced by the model.

V. CONCLUSIONS

In this paper, we have investigated the field-dependent
magnetization, sound-velocity and attenuation changes in
MnSc2Se4 single crystals at low temperatures. We performed
magnetization measurements in pulsed fields up to 23 T, as
well as ultrasound experiments in static fields up to 17 T. We
also provide a minimal model that reproduces qualitatively
our observations.

Our results show the presence of a saturated state above
15.4 T, where the magnetization reaches 4.75μB/f.u., close
to the value 2S = 5 μB/f.u. expected for S = 5/2 Mn2+ ions
with quenched orbital moment. We have not observed any
sharp transition in the magnetic and magnetoelastic properties
between the zero-field state and the polarized state. However,
we found a significant phonon softening for the longitudi-
nal acoustic mode parallel to the field direction along [111],
which is absent in the transverse acoustic mode.

The presented microscopic model is based on linear spin-
wave theory, and supposes that the dynamics of MnSc2Se4 in
magnetic field at low temperatures is dominated by spin-wave
fluctuations. We can qualitatively reproduce the evolution
of sound velocity with respect to magnetic field with a
Hamiltonian taking into account two terms arising from the
exchange-striction mechanism: a constant background term
and a quantum fluctuation term. The background term leads
to a phonon hardening for both longitudinal and transverse
polarizations. In contrast, the fluctuation term contributes sig-
nificantly only for the longitudinal polarization and generates
a softening at intermediate fields. Up to a constant factor,
the model is in qualitative agreement with our experimental
results without any free parameter. Thus, we conclude that
ultrasound measurements at low temperatures permits clearly
to identify quantum fluctuation effects in frustrated magnets.
Our study also shows how the use of a microscopic model per-
mits to take into account the phonon polarization in a precise
way by considering the real microscopic displacements of the
Mn2+ ions in the exact crystal structure. While this picture is
simple enough to interpret the sound-velocity changes in the
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high-field regime, there is a sensitive mismatch at low field.
This difference might be attributed to an oversimplification of
the model, which neglect the role of the Sc3+ and Se2− ions in
the magnetic couplings, leading to possible anisotropy effects.
A small magnetization anisotropy of 2% between magnetic
field parallel and perpendicular to [111] has been observed
(see the Supplemental Material [27]).

Thus, a better characterization of the magnetic state at low
magnetic field would give new insights to the magnetism of
MnSc2Se4. In particular, the study of sound propagation k and
magnetic field H in directions different than the [111] axis
could give insights about possible anisotropy effects in this
material .
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