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We discuss the topology of the parameter space of invertible phases with an onsite symmetry G, i.e.,
quantum many-body ground states that have neither fractionalization nor spontaneous breaking of the symmetry.
The classification of invertible phases is known to be obtained by counting the connected components in the
parameter space of the invertible phases. We consider its generalization — the deformation classes of the
mappings from n-dimensional spheres Sn to this parameter space for arbitrary integer n. We argue a direct
one-to-one correspondence in the framework of lattice models between the noncontractibility of Sn and (i) the
classification of invertible phases in d dimensions when d � n; or (ii) zero-dimensional invertible Hamiltonians
parametrized by Sn−d when d < n, using an isotropic modulating Hamiltonian approach. Explicitly, we construct
the noncontractible spheres of two-dimensional invertible phases, i.e., n = 2 and d = 2. We also propose a large
class of crystalline topological phases protected by a generalized magnetic translations.
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I. INTRODUCTION

Understanding various phases and phase transitions of
many-body quantum systems is an essential topic in con-
densed matter physics. Significant progress has been recently
made in the studies of a large class of short-range entan-
gled topological phases [1], and more generally, invertible
topological-ordered phases, which have a unique and gapped
ground state on any lattice (manifold) without boundary [2,3].
The invertible topological phases include symmetry-protected
topological (SPT) phases in the presence of some onsite
symmetry G [1,4–6], as well as gapped phases without any
symmetry imposed (G = 1), e.g., Kitaev p-wave supercon-
ductors [7]. The invertible topological phases have been
investigated using various approaches such as the K-theory
classification for free electronic systems [8–10], group co-
homology for bosonic systems [1,5], cobordism groups for
fermionic systems [11,12], and generalized cohomology [13].
Two invertible phases are distinct if they cannot be connected
by any adiabatic transformation that does not close a bulk
gap as long as G is preserved. It implies the existence of
an inevitable quantum phase transition between distinct in-
vertible phases in any G-respecting phase diagram at zero
temperature. Such a sharp distinction of phases is indicated
by a bulk topological invariant. A characteristic property of
invertible phases with nontrivial topological invariants is the
presence of gapless boundary modes at spatial boundaries.
The ingappability of boundary modes can be attributed to
quantum anomaly, e.g., ’t Hooft anomaly [14] associated with
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the symmetry G [15,16], or invertible gravitational anoma-
lies [17].

In the entire parameter space whose coordinate axes are
(all possible) local interaction couplings in Hamiltonians with
onsite symmetry G on a d-dimensional lattice, the parameter
space or the phase diagram of invertible systems, P (InvG

d ),
is divided into several disconnected components of distinct
invertible phases partitioned by the inevitable phase transi-
tions. Here InvG

d denotes the abstract set of d-dimensional
invertible Hamiltonians with onsite symmetry G, and P (InvG

d )
is a coordinate system for InvG

d . The classification of invertible
phases is given by [S0,P (InvG

d )]0, which is defined as the ho-
motopy classes of mapping from the 0-sphere S0 to P (InvG

d ),
and the subscript “0” indicates the imposed condition that the
“south pole” x0 ∈ S0 is mapped to a Hamiltonian in the trivial
phase of P (InvG

d ). Then the only remaining degree of freedom
in [S0,P (InvG

d )]0 is where the north pole of S0 is mapped.
Thus [S0,P (InvG

d )]0, as a set, is the same as the connected
components of P (InvG

d ). Later in Sec. II, we will elaborate on
the definition of the classification.

However, [S0,P (InvG
d )]0 only tells us about the simplest

topological structure, connectivity, of the phase diagram. The
parameter space of invertible systems P (InvG

d ) can be further
characterized by more intricate topological structures, e.g., the
presence or absence of intrinsically noncontractible loops or
spheres in the invertible phase diagram. Here “intrinsically
noncontractible” means that a certain loop or (hyper)sphere
cannot be shrunk continuously to a point within P (InvG

d ).
If such a loop is forced to contract, it necessarily touches a
gapless point or a noninvertible phase in the parameter space.
The higher topological structures of P (InvG

d ) are represented
by the homotopy class [S1,P (InvG

d )] for the contractibil-
ity of loops (i.e., a circle S1) and the nth homotopy class
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[Sn,P (InvG
d )] for n-sphere Sn in general. Here [Sn,P (InvG

d )]
is defined as the maps from Sn to P (InvG

d ) modulo contin-
uous deformations. It is also useful to introduce a smaller
set [Sn,P (InvG

d )]0 with the additional subscript “[· · · ]0” to
specify that the maps are required to map a fixed point �τ0 ∈ Sn

to a Hamiltonian in the trivial phase of P (InvG
d ). (All these

notations above will be elaborated in Sec. II).
Nontrivial higher topological structures have been studied

from various perspectives, e.g., defect classifications in nonin-
teracting electronic band theories [18], generalized Thouless
pumping [19], and parameter-space anomaly [20,21] in some
field theories. However, generic strongly-interacting systems
such as spin models do not necessarily have a field-theory
description. In fact, lattice constructions have been employed
to study the higher Berry phase [22,23], higher U(1)-charge
pumping [24], and adiabatic cycles in quantum spin mod-
els [25,26] and interacting fermionic systems [27]. Also,
the homotopy groups π0,1,2 of P (InvG

d ) in the spin-1/2 an-
tiferromagnets were discussed in connection with quantum
ingappabilities [28]. A suspension construction on lattices
proposed earlier [23] can in principle provide higher homo-
topy groups by several iterations of suspensions assuming
an �-spectrum structure [2,3]. We note, however, that these
approaches do not treat all spatial directions on equal footing,
and an isotropic lattice construction should be better suited
for comparison with numerical calculations and experiments.
Thus an explicit and isotropic lattice manifestation of higher
homotopy of the parameter space P (InvG

d ) still remains open.
On the other hand, when G includes lattice spatial sym-

metry, the corresponding invertible phases, i.e., crystalline
topological phases [29–44], are technically more compli-
cated to describe than the above-mentioned invertible phases
where G is purely onsite symmetry, because the effects of
the crystalline symmetry cannot always be captured by some
continuum field theory in general dimensions. Similarly to
the invertible phases with onsite symmetry, the boundary
modes of nontrivial crystalline topological phases are for-
bidden to be gapped out, as long as the bulk symmetry is
not explicitly broken at the boundary. However, the key dif-
ference from the onsite-symmetric case is that the boundary
Hamiltonian for such boundary modes can be realized in
its own dimension(s) without the bulk, since the associated
anomaly only implies the impossibility of realizing the bulk
symmetry (which is already nononsite) as an onsite symme-
try on the boundary. The famous Lieb-Schultz-Mattis (LSM)
theorem [45] and its various extensions [46–53] can be under-
stood as a boundary realization of some nontrivial crystalline
topological phase [40,54,55]. A natural interesting question is
whether the higher topological structures of invertible phases
with onsite symmetry have intrinsic relations with crystalline
topological phases. Such connections would be useful in
constructing unknown lattice crystalline phases from more
familiar invertible phases with onsite symmetry. Furthermore,
such constructions can produce generalizations of LSM-type
theorems when we focus on their boundaries.

In this work, we use a modulating Hamiltonian ap-
proach to argue a direct one-to-one correspondence between
[Sn,P (InvG

d )] and (i) the direct product [S0,P (InvG
d−n)]0 ×

[S0,P (InvG
d )]0 when d � n, or (ii) [Sn−d ,P (InvG

0 )]0 ×
[S0,P (InvG

d )]0 when d < n. To illustrate the underlying

FIG. 1. A typical case of co-1 Hamiltonian in d = 2: it is a stack
of two (red and blue) two-dimensional Hamiltonians, each of which
is an infinite stacking of one dimensional systems (lines).

idea, we first consider the contraction of loops and spheres
in P (InvG

d ) before discussing general cases. In general,
the construction is model-dependent and requires an ad-
ditional assumption. Nevertheless, we explicitly give a
model-independent lattice construction of [S2,P (InvG

2 )]0, as
a special case of d = n = 2. Furthermore, we apply the
modulating Hamiltonian method to propose a large class
of crystalline topological phases protected by a generalized
magnetic translation. This translation is a combination of
the lattice translation and a symmetry that can transform a
topological phase to its inverse. Our result is general and
can reproduce the original LSM theorem [45] and give its
magnetic translation generalizations.

II. NOTATIONS AND PREPARATIONS

Except in Sec. VI, we will always assume that all the
Hamiltonians preserve an onsite symmetry denoted by G. In
this part, several notations related to invertible topological
phases will be introduced. We denote by I tr

d , where “tr” stands
for “trivial”, a point in the d-dimensional gapped phase in
the parameter space, whose corresponding lattice Hamiltonian
Ed = H(I tr

d ) is “co-1” (defined below) atomic. Here H maps
parameters to the corresponding lattice Hamiltonian.

A. Invertible phases

We first define the concept of “co-1” atomic Hamiltonians
in d-dimensional space: a d-dimensional Hamiltonian Ed is
co-1 atomic if and only if it can be written as a finite stacking
of d-dimensional gapped Hamiltonians each of which is an
infinite stacking, along one of the d dimensions, of decoupled
(d − 1)-dimensional gapped Hamiltonians. A typical case of
co-1 Hamiltonian in d = 2 is shown in Fig. 1.

More generally, we can also define “co-k” atomic Hamil-
tonian in d dimensions (with k � d) as a finite stacking of
d-dimensional Hamiltonians each of which is a stacking of
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(d − k)-dimensional gapped Hamiltonians along k of d di-
mensions. By this definition, co-m atomic Hamiltonian is also
co-n atomic if m � n. Incidentally, the conventional atomic
insulators in d dimensions are just co-d atomic Hamiltonians.
In this work, “an atomic Hamiltonian” without an additional
modifier will always implicitly imply a co-1 atomic Hamilto-
nian to simplify the notations.

(One more additional technical definition is that co-1
atomic zero-dimensional Hamiltonian is defined as a zero-
dimensional Hamiltonian with trivial symmetry charges, if
any, and trivial fermion parity).

Then we can define the concept of “being in the same
phase” as follows: two d-dimensional lattice invertible Hamil-
tonians H1 and H2 are in the same phase, if and only if there
exist two co-1 atomic Ed and E ′

d such that there is an adiabatic
path connecting the stacking of H1 and Ed and the stacking of
H2 and E ′

d , denoted as

H1 − Ed ⇔ H2 − E ′
d , (1)

where “−” is the stacking operation, and ⇔ represents the
existence of an adiabatic path connecting the stacked Hamil-
tonians on the left- and right-hand sides. The “adiabatic path”
in this work always means a path of Hamiltonians on which
the gap is never closed. Ed and E ′

d are used to denote some
co-1 atomic Hamiltonians. The prime of E ′

d just implies that it
is not necessarily the same as Ed . We will use double primes
if a single prime has been already used in the same formula.

More importantly, we will call a d-dimensional Hamilto-
nian H to be trivial if it is in the same phase as some co-1
atomic Hamiltonian Ed .

After the parameters of any H1 and H2 in the same phase
are identified, the parameter space P (InvG

d ) will be reduced
to the set (or equivalence class) called the classification of d-
dimensional invertible phase denoted by [S0,P (InvG

d )]0.
Naively, it seems more natural to define the equivalence (1)

without Ed or E ′
d , namely to regard H1 and H2 as in the same

phase if H1 ⇔ H2. However, we propose Eq. (1) as a more
appropriate definition, for the following reasons.

(1) H1 and H2 can have different lattice structure, so their
underlying local Hilbert space can be significantly different.
Ed and E ′

d are supposed to balance this discrepancy.
(2) Even if H1 and H2 have the same local Hilbert space,

they can belong to different topological phases when put on a
finite-size lattice and seen as lower dimensional systems (see
two examples below).

(3) The global onsite symmetry G of H1 and H2 may have
a normal subgroup K that can be directly taken as a gauge
symmetry (see an example below), such that H1 and H2 belong
to distinct phases under symmetry G/K . Then without Ed and
E ′

d , there cannot be any G-symmetric adiabatic path between
H1 and H2 even though they are in the same phase defined as
in Eq. (1).

The first reason above is natural and does not need fur-
ther explanation. A typical example related to the second
reason is the case of G = U(1) and d = 2, where one of
the relevant topological invariants is the electric Hall con-
ductance. For example, two fermionic models on the square
lattice can have the same electric Hall conductance even if
their charge densities are different (since the electric Hall
conductance is determined by the ratio of charge density and

the magnetic-flux density in the continuous space and up
to an ambiguity on lattice [56,57]). Therefore, when put on
a finite square lattice, there cannot be any U(1)-symmetric
adiabatic path between these two Hamiltonians due to their
different total U(1) charges. In other words, they belong to
distinct U(1)-symmetric topological phases when viewed as
zero-dimensional systems. The role of Ed and E ′

d above is to
fill in this difference of these zero-dimensional topological in-
variants. Another less obvious example is a three-dimensional
co-1 atomic insulator schematically denoted as

· · · − {σH = 1} − {σH = 1} − {σH = 1} − · · · , (2)

which is constructed by infinitely stacking two-dimensional
integer quantum Hall slices with σH = 1. Its ground state is
long-range entangled and cannot be transformed to a conven-
tional (co-d) atomic state. However, this nontrivial property
comes from its lower dimensional slices and encoded in
[S0,P (InvG

2 )]0; regarding (2) as nontrivial would result in
over-counting of nontriviality in [S0,P (InvG

3 )]0 [58]. Another
way to see that it is reasonable to adopt the definition (1)
such that Eq. (2) is trivial is as follows. The co-1 atomic
insulator (2) can be adiabatically transformed to

· · · − {σH = 0} − {σH = 2} − {σH = 0} − {σH = 2} − · · · ,

(3)

and further to

· · · −{σH = 0} − {σH = 0} − {σH = 3} −
−{σH = 0} − {σH = 0} − {σH = 3} − · · · , (4)

by “accumulating” the quantum Hall conductance. We can
repeat this accumulation procedure arbitrarily further, so the
resultant system is σH = 0 almost everywhere (thus trivial),
except on very diluted slices with large σH. With this intu-
itive picture, we can also remark the importance of G to be
purely onsite symmetry, e.g., if G contains translation sym-
metry along the stacking direction, the above accumulations
break G, and indeed Eq. (2) is a nontrivial weak topological
phase [59].

According to the definition (1), the co-1 atomic insula-
tor (2) is trivial as a 3-dimensional phase. Moreover, the Hall
conductance can be eliminated by stacking (2) with the co-1
atomic insulator built of σH = −1 layers that belongs to the
same trivial phase. Of course, a σH �= 0 layer is nontrivial as a
2-dimensional phase, since it cannot be trivialized by stacking
with a co-1 atomic insulator in 2 dimensions.

From the definitions explained above, we can obtain the
following useful corollary for any co-1 atomic Ed :

Ed − E ′
d ⇔ E ′′

d , (5)

where E ′
d is some co-1 atomic Hamiltonian while E ′′

d is a
conventional co-d atomic Hamiltonian. Intuitively, Eq. (5)
can be understood as trivializing the lower-dimensional topo-
logical phases inside Ed , dimension by dimension, down to
zero dimension. Considering the intermediate steps of such a
trivialization, we can make a stronger statement where E ′′

d in
Eq. (5) can be co-(d − k) atomic for arbitrary k < d , but we
will not use this generalization.

We can also show that two arbitrary co-1 atomic Hamilto-
nians E ′

d and E ′′
d share some “terminal” conventional atomic

094410-3



YUAN YAO AND AKIRA FURUSAKI PHYSICAL REVIEW B 110, 094410 (2024)

Hamiltonian Ed in the following sense: for arbitrary co-1 E ′
d

and co-1 E ′′
d , there exists a conventional co-d atomic Ed ,

co-1 E ′′′
d and co-1 E ′′′′

d such that

E ′
d − E ′′′

d ⇔ Ed ⇔ E ′′
d − E ′′′′

d . (6)

This can be proven by using Eq. (5) and the fact that the stack-
ing of co-m and co-n Hamiltonians is co-min{m, n} atomic.

The remaining third reason is much more nontrivial than
the previous two. Let us consider an SO(3)-symmetric spin-
1/2 chain with a unique gapped ground state. We do not
treat this SO(3) = SU(2)/Z2 symmetry as SU(2), since the
Z2 sector in SU(2) behaves as a gauge symmetry; the ac-
tion of Z2 is only to multiply the local Hilbert space by
the Z2 phase factor (±1), but two quantum states describe
the same physical state if they differ only by a phase factor.
Nevertheless, it is also possible to ignore this gauge structure
and consider the global symmetry as SU(2). This amounts
to regarding our lattice spin model as a low-energy effective
theory whose parent ultra-violet theory like a Hubbard-type
model does not have the Z2-gauge structure (and it is also
related to the concept of symmetry extension [15,60,61]).
However, the group-cohomology classification [62,63] tells
us that the one-dimensional SU(2) SPT classification is al-
ways trivial ({0}) while SO(3) SPT classification is nontrivial
({0, 1} = Z2). If we did not include Ed and E ′

d in the definition
above when taking G = SU(2), the resultant classification of
invertible phases would be insensitive to G being whether
SU(2) or SO(3), inconsistently with the group-cohomology
classification. Therefore the essential role of Ed and E ′

d is
to break the Z2 gauge structure of the lattice models H1,2; a
concrete simple example is presented in the Appendix. In gen-
eral, the necessity of Ed and E ′

d is to make our definition (1)
consistent with the group-cohomology approach that studies
ground-state wave functions.

Let “Ad ” be an element in InvG
d . The invertibility of the

lattice Hamiltonian Ad implies the existence of its inverse Ād ;
stacking of Ad and Ād is in the same phase as a co-d atomic
Ed . By the definition (1),

Ad − Ād − E ′′
d ⇔ Ed − E ′

d , (7)

Furthermore, we can further stack an atomic Hamiltonian
E ′′′

d on E ′
d such that all their lower-dimensional (except 0-

dimensional) topological invariants are trivialized by Eq. (5).
Namely, E ′

d − E ′′′
d ⇔ Ed for a conventional co-d atomic Ed .

After redefining (Ād )new ≡ Ād − E ′′
d − E ′′′

d , we have

Ad − Ād ⇔ Ed − Ed . (8)

In particular, Ad − Ād and Ed − Ed now have the same local
Hilbert space and lower-dimensional topological invariants.
Moreover, the classification [S0,P (InvG

d )]0 forms an abelian
group under the group addition defined by stacking “−”.

B. Mappings from hyperspheres Sn to parameter space P (InvG
d )

To characterize the noncontractible loops in P (InvG
d ), we

define equivalence relations and addition operation for loops.
A loop is a mapping J : S1 → P (InvG

d ) from the unit circle
S1 ≡ [0, 2π ]/{0 ∼ 2π} to the parameter space P (InvG

d ). In
other words, J (τ ) for each τ ∈ [0, 2π ] is the parameter corre-
sponding to the lattice Hamiltonian H[J (τ )]. In the following

discussion, we will often denote this lattice Hamiltonian by
J (τ ) for brevity.

We may deform J continuously to obtain a nearby loop
J ′ if there exists a continuous deformation F : [0, 1] × S1 →
P (InvG

d ) such that F (0, τ ) = J (τ ) and F (1, τ ) = J ′(τ ). We
denote this situation by

J ⇔1 J ′, (9)

where the subscript “1” coming from the superscript of S1

is introduced to remind us that we are dealing with loops
rather than points in P (InvG

d ) as in Eq. (1). More generally,
suppose that J and J ′ are mappings Sn → P (InvG

d ), and that
there exists F : [0, 1] × Sn → P (InvG

d ) with F (0, �τ ) = J (�τ )
and F (1, �τ ) = J ′(�τ ), then we write

J ⇔n J ′. (10)

Here our convention is that �τ is used to denote a point on
the unit sphere Sn. Thus LH �τ is a point on a sphere Sn with
radius LH .

Furthermore, there is a stacking operation induced from
the stacking “−” of Hamiltonians in Eq. (1). We will use the
symbol “+” for this operation:

J + J ′ : S1 → P
(
InvG

d

)
with (J + J ′)(τ ) ≡ J (τ ) − J ′(τ ),

where J (τ ) − J ′(τ ) is meant for the stacked Hamiltonian
H[J (τ )] − H[J (τ ′)].

There is a trivial loop JE with JE (τ ) = I tr
d for any τ ; JE

maps the entire circle S1 to a fixed atomic Hamiltonian pa-
rameter I tr

d . Now we can generalize the concept of “being in
the same phase” to these loops as follows: two mappings J
and J ′ from S1 to P (InvG

d ) are in the same 1-phase if and only
if there exist JE and JE ′

J + JE ⇔1 J ′ + JE ′ , (11)

where H[JE (τ )] = Ed and H[JE ′ (τ )] = E ′
d .

Such a definition is directly generalized to the mappings
from Sn to P (InvG

d ) by replacing all the “1”s to “n � 1”:

J + J ′ : Sn → P
(
InvG

d

)
with (J + J ′)(�τ ) ≡ J (�τ ) − J ′(�τ ),

(12)

for J and J ′ mappings Sn → P (InvG
d ), and J and J ′ are in the

same n-phase if and only if there exist constant mappings JE

and JE ′ so that

J + JE ⇔n J ′ + JE ′ . (13)

When a mapping J is in the same n-phase as JE , we will call
J “contractible”.

We will identify two mappings if they are in the same
n-phase and denote the set of distinct mappings (equiva-
lence classes) as [Sn,P (InvG

d )] with n � 1. More importantly,
[Sn,P (InvG

d )] becomes an abelian group when we take the
group addition as the “+” defined in Eq. (12).

For later convenience, we can impose an additional con-
dition on J such that J (�τ0) is a Hamiltonian parameter in
the trivial topological phase with �τ0 the south pole of Sn.
The restricted classification will have an additional subscript
“0”: [Sn,P (InvG

d )]0. Actually, since Sn is a connected man-
ifold when n � 1, the image of such restricted mappings
will be also in the trivial phase. Together with the previous
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FIG. 2. We can pinch the south pole of the loop (J + JE ′ )(�τ0) =
J (�τ0 ) − E ′

d and stretch it to Ed by the known path J (�τ0) − E ′
d ⇔ Ed .

Then the loop after the deformation has its south pole mapped to
Ed . This type of deformation can be naturally generalized to the
mappings from hyperspheres Sn.

notation of [S0,P (InvG
d )]0, we have completed the definition

of [Sn,P (InvG
d )]0 for any non-negative integer n. Similarly,

[Sn,P (InvG
d )]0 is also an abelian group under the addition

defined in Eq. (12).
Another simplification can be made for J : Sn → P (InvG

d )
with J (�τ0) in the trivial atomic phase, i.e., a representative of
an element in [Sn,P (InvG

d )]0. Using Eq. (5), we can trivialize
all the lower-dimensional topological invariants of J (�τ0) by
some atomic E ′

d as J (�τ0) − E ′
d ⇔ Ed to some conventional co-

d atomic Ed . Thus this adiabatic path induces the following
deformation shown in Fig. 2:

J + JE ′ ⇔n J ′, (14)

with J ′(�τ0) = Ed , a conventional co-d atomic insulator.
Based on Eqs. (5) and (6), another useful simplification can

be made for arbitrary J and J ′ which are in the same n-phase
of [Sn,P (InvG

d )]0, i.e., satisfying

J + JE ⇔n J ′ + JE ′ (15)

and J (�τ0) ⇔ J ′(�τ0). Under these conditions, we can also
take J (�τ0) = J ′(�τ0) without loss of generality by employing
“pinching” deformation similar to the one in Fig. 2, and de-
note H[J (�τ0)] by E ′′

d . Then, by considering the two sides of
Eq. (15) evaluated at �τ0, we have

E ′′
d − Ed ⇔ E ′′

d − E ′
d . (16)

We note that

JE ′′ + JE = JE ′′−E , JE ′′ + JE ′ = JE ′′−E ′ (17)

by definition. From Eq. (16), we obtain

JE ′′ + JE ⇔n JE ′′ + JE ′ . (18)

We can add JE ′′ on both sides of Eq. (15) and use Eqs. (17)
and (18) to obtain

J + JE ′′−E ⇔n J ′ + JE ′′−E . (19)

It follows from Eq. (6) that E ′′ − E can be further reduced to a
conventional co-d atomic insulator E ′′′

d by stacking some E ′′′′
d ,

we obtain the following simplification (after adding JE ′′′′ on
both sides of Eq. (19) and renaming E ′′′

d to be Ed ):

J + JE ⇔n J ′ + JE , (20)

FIG. 3. Construction of the loop JA(τ ) (left) and the modulating
Hamiltonian H̃ obtained from JA(τ ) (right). (Left) The Hamiltonian
on the top (22) is connected, within P (InvG

d ), to the Hamiltonian on
the bottom (23) via the two paths indicated by the vertical arrows.
These two paths are combined to form a loop JA : S1 → P (InvG

d )
oriented by the arrows in the middle. (Right) The modulation is along
the real-space direction x̂H along the arrow.

with some JE where Ed = H[JE (�τ )] is a conventional co-d
atomic insulator.

III. NONCONTRACTIBILITY OF LOOPS [S1, · ]0

We begin with the discussion of the noncontractibility
of loops in the parameter space P (InvG

d+1) of (d + 1)-
dimensional invertible phases. Our discussion corresponds to
the domain-wall approach in Refs. [2,13,64]. We will first
prove an inequality:[

S1,P
(
InvG

d+1

)]
0 �

[
S0,P

(
InvG

d

)]
0. (21)

Let “Ad ” be an element in InvG
d . After the procedure above

Eq. (8), stacking Ad and Ād together enables an adiabatic
transformation of this composed system to the stacking of
conventional co-d atomic Hamiltonians in the trivial phase
Ed − Ed . As depicted in the left figure (top and bottom)
in Fig. 3, we build two Hamiltonians in InvG

d+1 by arrang-
ing elements of IndG

d along the (d + 1)-th spatial direction
x̂H (H : “horizontal”): a staggering array of Ad and Ād

· · · − Ad − Ād − Ad − Ād − · · · , (22)

and a uniform array of the trivial Hamiltonian Ed

· · · − Ed − Ed − Ed − Ed − · · · . (23)

The latter is obviously in the (d + 1)-dimensional trivial
phase [Ed+1] represented by Ed+1 = H(I tr

d+1) where I tr
d+1 rep-

resents the trivial system in d + 1 dimensions. Here we
have introduced the notation [X ] for the invertible phase
represented by Hamiltonian X . We connect these two Hamil-
tonians (22) and (23) in InvG

d+1 by the following two adiabatic
paths: one path along which each pair of neighboring (Ad −
Ād ) is transformed to (Ed − Ed ) by adiabatically turning on
the coupling between Ad and Ād , and the other path along
which each pair (Ād − Ad ) is transformed to (Ed − Ed ). The
combination of these two paths defines a closed loop JA(τ ),
with τ ∈ [0, 2π ] and JA(0) = JA(2π ) = I tr

d+1 at the south pole
of S1, along which the Hamiltonians H[JA(τ )] are all invert-
ible, i.e., this loop (modulo “being in the same 1-phase”) is an
element in [S1,P (InvG

d+1)]0.
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Let us examine whether the above loop JA(τ ∈ [0, 2π ])
is contractible in its connected component of P (InvG

d+1). To
do so, we construct an xH -dependent modulating Hamiltonian
(the right panel of Fig. 3):

H̃A =
∑
xH

H̃A(xH ), H̃A(xH ) ≡ H[JA(2πxH/LH )]. (24)

Viewed as a d-dimensional lattice model (where the xH di-
rection is compactified, xH + LH ∼ xH ), H̃A is in the same
topological phase as Ad , since all the neighboring Ad and Ād

except one Ad can be locally trivialized in pair [28].
Suppose that JA can be deformed to JE which is a con-

stant mapping to the conventional co-(d + 1) atomic Ed+1

in Fig. 3. The deformation is given by F : [0, 1] × S1 →
P (InvG

d+1), and the mapping Js : S1 → P (InvG
d+1) defined as

Js(τ ) ≡ F (s, τ ) gives the intermediate loops with J0 = JA

and J1 = JE . Then we can also define intermediate modulat-
ing Hamiltonians as H̃ (s) = ∑

xH
H̃ (s, xH ) with H̃ (s, xH ) ≡

H[Js(2πxH/LH )], which adiabatically connects H̃ (0) = H̃A ∈
[Ad ] and H̃ (1) = H(JE ). Since H(JE ) is topologically triv-
ial, [Ad ] must also be the trivial phase. Thus, if Ad is not
in the trivial phase [Ed ], JA is not contractible and the
(non)contractibility of the loop JA(τ ) depends on [Ad ]. We
can repeat the above argument without significant changes to
prove that JA and JB are not in the same 1-phase if [Ad ] �= [Bd ].
As we discuss in more detail later around Eq. (28), the 1-phase
that JA belongs to is exactly characterized and determined by
[Ad ]; e.g., the exact ways of the local trivializations in Eq. (8)
and in Fig. 3 are irrelevant.

With the above arguments, Eq. (21) is proved as an equal-
ity for the sets; given each element from the smaller set,
we can assign to it a corresponding element from the larger
set. For [S0,P (InvG

d )]0 to be identified as a subgroup of
[S1,P (InvG

d+1)]0 as in Eq. (21), their group operations, the
stacking “−” and the addition “+,” respectively, should be
compatible. We can verify this as follows. We recall that the
group addition [JA + JB](τ ) of two loops JA(τ ) and JB(τ ),
which are constructed individually from two invertible phases
Ad and Bd as in Fig. 3, is defined as stacking JA(τ ) − JB(τ ) for
each τ . It exactly satisfies the definition of JA−B, where JA−B

is the loop constructed from the system obtained by stacking
Ad with Bd , i.e., replacing “Ad ”s in Fig. 3 by “Ad − Bd ”s.
Thus we have proved Eq. (21) by constructing a group-
monomorphism J : Ad 
→ JA.

IV. NONCONTRACTIBILITY OF n-shperes by [Sn, ·]
Now we generalize Eq. (21) to[

Sn,P
(
InvG

d+n

)]
0 �

[
S0,P

(
InvG

d

)]
0. (25)

The group addition of [Sn,P (InvG
d+n)]0 is defined through

stacking of Hamiltonians, as in the n = 1 case above.
Before addressing the general n > 1 case, we consider the

case n = 2 in the following steps for illustration.
Step 1. Given Ad ∈ InvG

d , we construct a (d + 2)-
dimensional invertible system by putting Ad and Ād , respec-
tively, on the two sublattices of a square lattice spanned by
x̂H ;1 and x̂H ;2. We also prepare a Hamiltonian in the trivial
phase [Ed+2] by putting Ed on the above square lattice.

FIG. 4. (Left) Construction of the skeleton of a sphere in the
parameter space. The filled and empty circles surrounded by a dotted
rectangle represents a (relatively) strongly coupled pair of Ad and
Ād . (Right) Filling of one of the four loop holes induced by the
contraction of its bounding loop. The loop can be contracted be-
cause of the triviality of H̃ (xH ;1 ) composed of decoupled wires of
width two.

Step 20. We connect these two (d + 2)-dimensional Hamil-
tonians via four different paths, i.e., four types of pairings as
shown in Fig. 4 (left panel), which are distinguished by the
pattern of dimerization (Ad , Ād ). The four paths form four
loops and can be viewed as a skeleton of a sphere.

Step 21. We complete the sphere by filling in the four
empty loop holes encircled by a pair of neighboring paths.
This filling procedure is possible if each boundary loop is
contractible, since the contraction process naturally fills the
areas. Let us focus on one of the four loops. Each Hamiltonian
on the loop can be decomposed into decoupled wires of width
two as indicated by the red lines in Fig. 4. Thus the modulating
Hamiltonian H̃l (xH ;1), constructed from this loop by Eq. (24),
is also composed of decoupled modulating wires as illustrated
in the bottom right in Fig. 4. Each decoupled width-two wire
in H̃l (xH ;1) is in the trivial phase [Ed+1] since each Ad is
paired uniquely with Ād so that all of them can be locally
trivialized in pairs, in contrast to Fig. 3. Then all the wires
can be trivialized simultaneously, so the corresponding modu-
lating Hamiltonian is in the trivial phase, which means that the
original loop is contractible [cf. the argument around Eq. (28)]
after some addition [if necessary, as done in Eq. (20)] of JE ′

with co-d atomic E ′. In this way the above four loop holes can
be filled completely. The resultant surface JA(�τ ) is an element
in [S2,P (InvG

d+2)]0, where �τ parametrizes the unit sphere.
Step 3. Finally, we examine the contractibility of the

sphere JA(�τ ) by taking the horizontal coordinates �xH =
(xH ;1, xH ;2 ) to span a sphere of radius LH . We construct
an �xH -dependent modulating gapped Hamiltonian H̃ (�xH ) =
H[JA(�xH/LH )], which is in the same phase as the unpaired Ad

at the north pole of the sphere as illustrated in Fig. 5; a sim-
ilar construction was previously considered for noninvertible
phase diagrams [65]. If Ad is not in the trivial phase [Ed ], then
the sphere JA(�τ ) is noncontractible, i.e., a nontrivial element
of [S2,P (InvG

d+2)]0. Furthermore, the same consideration as
in n = 1 allows us to conclude the compatibility of the group
additions, thereby proving Eq. (25) when n = 2. The general-
ization to arbitrary n is straightforward. In step 1, we introduce
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FIG. 5. The modulating Hamiltonian H̃ (�xH ) with the horizontal
coordinate �xH = (xH ;1, xH ;2 ) spanning a sphere: due to the unpaired
Ad at the “north pole,” H̃ (�xH ) is topologically nontrivial which im-
plies the noncontractibility of the sphere JA(�τ ) in the parameter space
P (InvG

d+2).

a (d + n)-dimensional invertible system by putting Ad and
Ād , respectively, on the two sublattices of a n-dimensional
hypercubic lattice spanned by x̂H ;1, . . . , x̂H ;n. We also prepare
an invertible system in the trivial phase [Ed+n] by putting Ed

on the n-dimensional hypercubic lattice.
In step 20, we connect the two systems introduced in step

1 by 2n distinct ways, each of which corresponds to taking
one of the 2n “dimerization” directions ±x̂H,i, i = 1, . . . , n.
In step 21, we fill in the 2n(n − 1) loop holes bounded by
S1 formed by two paths whose dimerization directions �v
and �w are not parallel (�v, �w ∈ {±x̂H ;1, . . . ,±x̂H ;n}), using
the contraction procedure as in Fig. 4. Then we label this
filled area (a 2-disk) D2 by a set A = {�v, �w} and the vector
space Span(A) = {c1�v + c2 �w | c1, c2 ∈ R}. In step 2q (q =
2, . . . , n − 1), we fill in any one “hole” Dq+1 bounded by
(q + 1) of the filled Dq’s constructed in step 2q−1. For any pair
of these selected Dq’s labels, say B and C, their spanned vector
spaces satisfy the following two conditions: dim[Span(B) ∩
Span(C)] = q − 1 and |B ∩ C| = q − 1; see Fig. 6 for q = 2.
The filling uses a higher-dimensional generalization of the
loop contraction procedure in Fig. 4. Then we label this filled
area Dq+1 by the union B ∪ C. Repeat inductively until step
2n−1. This procedure gives JA(�τ ) ∈ [Sn,P (InvG

d+n)]0, where �τ
parametrizes Sn. step 3 can be generalized without substantial
changes from the n = 2 case. Namely, we observe that an
�xH -dependent gapped Hamiltonian has the same anomaly as
Ad , and the group structure is preserved.

It is in order here to discuss the relation between our
isotropic approach and the suspension approach in [23] which
constructs an element of [Sn,P (InvG

d )]0 from an element ϕ

in [Sn−1,P (InvG
d−1)]0. The basic idea in the suspension is

from the observation that the Sn can be constructed from
Sn−1 × S1 as in Fig. 7 in which l ≡ n − 1 and m ≡ 1. The
essential additional data needed in this construction is the
trivializing procedure of ϕ and its (n − 1)-phase inverse ϕ̄

to the trivial (n − 1)-phase. In our approach, we make a
direct connection to [S0,P (InvG

d )]0 from [Sn,P (InvG
d+n)]0,

but in the above inductive procedure, we need to know all

FIG. 6. A typical filling in step 2q=2. We fill the D3 bounded
by three D2 with labels A1 = {x̂H;1, x̂H;3}, A2 = {−x̂H;2, x̂H;3} and
A3 = {x̂H;1, −x̂H;2} and these labels obviously satisfy the requirement
dim[Span(Ai ) ∩ Span(A j )] = q − 1 = 1 and |Ai ∩ A j | = q − 1 =
1 for any i �= j. We assign a new label to this newly filled D3 by
A = A1 ∪ A2 = {x̂H;1,−x̂H;2, x̂H;3}.

(q − 1)-phase trivializations involved in the above step 2q

with q = 1, 2, . . . , n − 1. Therefore the total numbers of triv-
ializations to know in advance match between these two
approaches.

We now show that Eq. (25) can be further refined:[
Sn,P

(
InvG

d+n

)]
0 = [

S0,P
(
InvG

d

)]
0. (26)

This equation implies that our construction is complete and
surjective without losing any generality. We can rephrase
Eq. (26) as a dimension ladder:[

Sn,P
(
InvG

d+n

)]
0 = [

Sn−1,P
(
InvG

d+n−1

)]
0. (27)

Our derivation of Eq. (26) goes as follows. Let us take
any element in [Sn,P (InvG

d+n)]0, which is represented by a
mapping J : Sn → P (InvG

d+n) with a certain point �τ0 (e.g.,
taken as the south pole) on Sn mapped to some atomic Ed+n =
H[I tr

d+n]. We can take Ed+n as conventional co-(d + n) atomic
by the deformation Eq. (14). We construct its correspond-
ing modulating Hamiltonian H̃J (�xH ) = H[J (�xH/LH )], where
�xH is a vector on Sn with radius LH . We first adiabatically
squeeze H̃J (�xH ) such that it is Ed+n for most �xH except in a
small area (e.g., around the north pole) of Sn of size (λξ )n,
where ξ is a finite correlation length and the parameter λ is
chosen as λ  1 to ensure a nonzero gap. Therefore we can
choose a sufficiently large LH  λξ to keep the modulating

FIG. 7. The quotient Sl × Sm/(Sl ∪ Sm ) = Sl+m is done by col-
lapsing to the south pole a certain pair of Sl and Sm which are mapped
by Ja(�τ , �t ) to Em.
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Hamiltonian to be gapped with a unique ground state. Suppose
that this squeezed H̃J (�xH ) have a (d + n − 1)-dimensional
boundary. The anomaly from its boundary modes cannot
match the boundary anomaly of any m-dimensional in-
vertible phase if m > d , because we have squeezed the
variations along n dimensions of Sn. Thus its boundary
anomaly must correspond to some bulk invertible phase [Ad ]
in [S0,P (InvG

d )]0, which is a correspondence from the left-
hand side of Eq. (26) to its right-hand side.

Finally, we argue that, if any two mappings JA and JA′ from
Sn → P (InvG

d+n) give, under the above correspondence, [Ad ]
and [A′

d ], respectively, and if [Ad ] = [A′
d ], then they are in

the same n-phase. Since the above squeezing procedure is an
adiabatic process,

∑
�xH

H̃JA (�xH ) and
∑

�xH
H̃JA′ (�xH ) are both in

the same phase, which is [Ad ]. Thus⎛
⎝∑

�xH

H̃JA (�xH )

⎞
⎠ − Ed+n ⇔

⎛
⎝∑

�xH

H̃JA′ (�xH )

⎞
⎠ − E ′

d+n

through a path F̃s∈[0,1] ∈ P (InvG
d+n). We assume that this path

can be chosen such that each point (that is a modulating
Hamiltonian) on it can be continuously mapped back through:

F (s, �τ ) ≡ H−1(F̃s(�τLH )), (28)

which defines F : [0, 1] × Sn → P (InvG
d+n) that realizes the

connection between JA + JE and JA′ + JE ′ ; they are in the
same n-phase. Together with the result in the last paragraph,
we come to the conclusion of Eq. (26).

However, we should keep in mind that the assumed path F̃s

realizing Eq. (28) can be highly model-dependent in general,
so that the loop contraction at the upper right of Fig. 4 may
depend on the details of the lattice model as well. Moreover,
a Hamiltonian on the contraction path may have coupling
constants that rapidly vary in space on the scale of lattice
constants; such a Hamiltonian will not have a field-theory
description. Nevertheless, for one of the simplest nontrivial
case where d = 0 and n = 2, we will show in the coming
Sec. V that the elements in [S2,P (InvG

2 )]0 can be explicitly
constructed in a model-independent way.

We have constrained �τ0 to be mapped to the trivial phase
on the left-hand side of Eq. (26). When we relax this con-
straint, we have the extra freedom of choosing different phases
to which �τ0 is mapped, and this choice can be precisely
accounted for by [S0,P (InvG

d+n)]0, whose elements are all
the (d + n)-dimensional invertible phases. Let us consider
an arbitrary element 	 : Sn → P (InvG

d+n) in [Sn,P (InvG
d+n)]

with 	(�τ0) = Ad+n. Then (JĀ + 	)(�τ0) = Ed+n, where JĀ
denotes the constant map that maps the whole Sn to Ād+n

and “+” is the group addition defined by pointwise stack-
ing of Hamiltonian as before. Thus such a mapping (J·̄ + ·)
maps [Sn,P (InvG

d+n)] back to [Sn,P (InvG
d+n)]0, and there-

fore [Sn,P (InvG
d+n)] is exactly [S0,P (InvG

d+n)]0 copies of
[Sn,P (InvG

d+n)]0 = [S0,P (InvG
d )]0, as reflected in the follow-

ing direct product of groups[
Sn,P

(
InvG

d+n

)]=[
S0,P

(
InvG

d

)]
0 × [

S0,P
(
InvG

d+n

)]
0. (29)

We note, however, that this equation cannot have a ladder
relation as Eq. (27).

So far we have considered [Sn,P (InvG
m)]0 only when

m � n. In fact, the remaining case l ≡ n − m > 0 is also
accessible by our construction, yielding the following result:[

Sl+m,P
(
InvG

m

)]
0 = [

Sl ,P
(
InvG

0

)]
0 (30)

to be clarified below. Let us take an element of the right-hand
side, which is a mapping Ha(�τ ) : �τ ∈ Sl → P (InvG

0 ). With
its inverse Hā, the combined mapping Ha(�τ ) + Hā(�τ ) is in
the same l-phase as JE , which is a constant mapping from Sl

to a co-1 atomic Hamiltonian E0. For each fixed �τ ∈ Sl , we
define a Hamiltonian Haā(�τ ) ∈ P (InvG

m) by putting Ha(�τ ) and
H̄ā(�τ ), respectively, on the two sublattices of m-dimensional
hypercubic lattice, in analogy with the construction discussed
above [see Fig. 3 for m = 1 and Fig. 4 for m = 2, where
Ad and Ād are used instead of Ha(�τ ) and H̄ā(�τ )]. Varying
�τ ∈ Sl , this gives a mapping Haā : Sl → P (InvG

m). We place
Haā(�τ ) at the north pole of Sm. For a fixed �τ , we can dimerize
the pairs in Haā(�τ ) in 2m directions on Sm and fill the holes
(as in Fig. 4 when m = 2), obtaining a mapping from Sm

to P (InvG
m) for fixed �τ ; we parametrize this Sm by �t . With

varying �τ , we have a mapping Ja(�τ , �t ) where (�τ , �t ) ∈ Sl × Sm.
We note that {the south pole of Sl}×Sm and Sl×{the south
pole of Sm} are mapped by Ja to the same single point Em

in P (InvG
m). It means that we can actually quotient them out

Sl × Sm/(Sl ∪ Sm) ∼= Sl+m, as in Fig. 7, which induces the
resultant mapping J̄a : Sl+m → P (InvG

m). It is the desired el-
ement of the left-hand side of Eq. (30), in which m is any
positive integer.

V. LATTICE CONSTRUCTIONS OF [S2,P (InvG
2 )]0

In this section we will explicitly construct the elements
of [S2,P (InvG

2 )]0, i.e., [S2,P (InvG
2+d )]0 with d = 0. We start

with Fig. 4 with a zero-dimensional system A0 depicted as
solid dots, its inverse Ā0 open dots, and E0 grey dots. A closer
look at the left panel of Fig. 4 shows that every point on the
loop bounding one of the four holes of S2 is composed of
decoupled squares as shown in Fig. 4 (left). Hence, in order
to fill in these holes, we only need to consider contractions of
Hamiltonian loops within each separate square.

This contraction procedure is schematically shown in
Fig. 8. The loop of Hamiltonian for a square is parametrized
by t ∈ [0, 2π ], where the points t = 0 and t = 2π correspond
to the north pole (decoupled A0 and Ā0) and the point t = π

corresponds to the south pole (a square Hamiltonian consist-
ing of four E0’s).

In the first step, the outer loop in Fig. 8 is deformed
to the inner loop by adiabatically changing, for each t , the
ground-state energy to −1 and the energy of all the excited
states to zero. This adiabatic deformation parametrized by
s ∈ [−1, 0] from the outer loop (s = −1) to the inner loop
(s = 0) can be done for any zero-dimensional system using
the one-parameter Hamiltonian:

H (s) = [(−s)EG.S. − (s + 1)]|G.S.〉〈G.S.|
+

∑
i=1

[(−s)Ei]|
i〉〈
i|, (31)

where |G.S.〉 is the ground state with energy EG.S., |
i〉i=1,2,···
are excited states with energy Ei, and we have suppressed the
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FIG. 8. To fill each loop hole in Fig. 4 (left), we only need
to consider the contraction of loops of square Hamiltonians. Here
|G.S.〉t is the ground state of the Hamiltonian on the outer circle.

parameter t for brevity. Note that the Hamiltonian at s = 0 is
simply H (0) = −|G.S.〉〈G.S.|.

In the next step, the inner loop (0 � t � 2π ) is contracted
to the point (t = π ) using the Hamiltonian with the parameter
s ∈ [0, 1]:

Ht (s) ≡ − 1

Nt,s

[
cos

(πs

2

)
|G.S.〉t + sin

(πs

2

)
|G.S.〉π

]

×
[
cos

(πs

2

)
〈G.S.|t + sin

(πs

2

)
〈G.S.|π

]
, (32)

where the normalization constant (Nt,s > 0), defined by

Nt,s ≡ 1 + Re(π 〈G.S.|G.S.〉t ) sin(πs), (33)

keeps the ground-state energy to be −1.
It should be noted that in the above construction we

have assumed a continuously parametrized ground states
|G.S.〉t∈[0,2π], which necessarily requires |G.S.〉0 = |G.S.〉2π .
In fact, this assumption can always be satisfied; for exam-
ple, if |G.S.〉0 = exp(iα)|G.S.〉2π , then we can choose a new
|G.S.〉t to be exp(−iαt/2π )|G.S.〉t , so that the discontinuity
is removed. Furthermore, two neighboring loops may have
|G.S.〉t ’s that differ by a phase factor on the meridian shared
by the two loops, since we only require their parent Hamilto-
nians to be the same.

Unfortunately, the above argument cannot be directly gen-
eralized to [S2,P (InvG

2+d )]0 with d > 0, since the adiabatic
deformations in Eqs. (31) and (32) generically break the local-
ity of higher-dimensional Hamiltonian. In fact, the contraction
procedure appears to be model- and symmetry-dependent al-
ready at d = 1 as constructed in [28]. We also note that the
isotropic constructions of [Sn,P (InvG

n )]0 for n > 2 can be of
future interest.

VI. CRYSTALLINE TOPOLOGICAL PHASES
BY GENERALIZED MAGNETIC TRANSLATIONS

In this section, we will give several applications of the
modulating Hamiltonian approach to possible crystalline
topological phases protected by a generalized magnetic

translation, which is a combination of the lattice translation
and a symmetry that can transform a topological phase to its
inverse.

We will first give a concrete example of a two-dimensional
quantum Hall system as motivation. Later, we will see that
the Lieb-Schultz-Mattis theorem and its magnetic translation
version can be obtained as special cases of our general result.

A. Motivating applications

Let us assume Gonsite = U(1) and d = 2. We consider the
two-dimensional electronic system with

Ad;Gonsite = {σH = 1};
Ād;Gonsite = T (Ad;Gonsite ) = {σH = −1}, (34)

where {σH = 1} is a Chern insulator with the electric Hall con-
ductance σH = 1 in units of e2/h, Ād;Gonsite is obtained by the
time-reversal transformation T of Ad;Gonsite , which can be re-
alized, for instance, in the Haldane’s honeycomb model [66].
Later, we will also take into consideration the integer thermal
quantum Hall conductance for the sake of completeness.

We claim that the following staggering (decoupled)
stacking

Hd+1 ≡ · · · − Ad;Gonsite − Ād;Gonsite − Ad;Gonsite − Ād;Gonsite −· · ·
(35)

is a nontrivial topological phase protected by the symmetry:

G = {Gonsite, MT }, (36)

where MT is the so-called magnetic translation

MT ≡ Tr ◦ T , (37)

defined as the composition of the translation symmetry “Tr”
along the stacking direction in Eq. (35) and the time reversal
T . (We have used Hd+1 for lattice Hamiltonian in Eq. (35),
which has no relation with the Hamiltonian mapping H
before.)

We prove the above claim by contradiction. Let us assume
that Hd+1 is in a G-trivial phase. Then there is a G-symmetric,
thus Gonsite-symmetric, path from Hd+1 to a G-trivial phase
Ed+1;G. This Ed+1;G is necessarily an atomic insulator; we can
choose Ed+1;G to have the form

Ed+1;G = · · · − Ed;Gonsite − E ′
d;Gonsite

− Ed;Gonsite

− E ′
d;Gonsite

− · · · ,

with some Gonsite-trivial Hamiltonian satisfying E ′
d;Gonsite

≡
T Ed;GonsiteT −1 due to the MT symmetry. The G-symmetric
path from Hd+1 to Ed+1;G is denoted as γ . We also consider a
Gonsite-symmetric path involving pairwise trivialization from
Hd+1 to Ed+1;G, which is denoted by η; see Fig. 9. By acting
on η with MT , we obtain another path MT (η) from Hd+1 to
Ed+1;G. In other words, we define the T -symmetry operation
on a path by MT (η)(τ ) ≡ M−1

T [η(τ )]MT to produce the new
path MT (η). The above setting of paths is shown in Fig. 9,
in which the grey dots (with prime) represent Ed;Gonsite (with
prime). For these paths, we construct their modulating Hamil-
tonians as in Eq. (24).
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FIG. 9. The illustration of various paths.

We denote the composition (or connection) of paths a and
b by a ∗ b, which reads “first path a and then path b”:

a ∗ b(τ ) =
{

a(2τ ), τ ∈ [0, 1/2];

b(2τ − 1), τ ∈ (1/2, 1].
(38)

By the definition of a ∗ b, the modulating Hamiltonian H̃JA∗JB

associated with JA ∗ JB is in the same 0-phase as H̃JA − H̃JB

after the modulating direction is compactified (Fig. 10):

[H̃JA∗JB ] = [H̃JA − H̃JB ]. (39)

This implies that the fundamental group has the same Abelian
group structure as the stacking of Hamiltonians, as we explain
below with Fig. 11 showing [H̃JA∗JB ] = [H̃JA -H̃JB ]. Since the
equivalence relation is defined up to the addtion of a trivial
phase in Eq. (11), we can stack a closed loop of (decoupled)
Ed ’s to the H̃JA∗JB . The top and the bottom part of this mod-
ulating Hamiltonian are now decoupled Ed ’s in Fig. 11, and
we imagine the triangles slowly “move” to the gray dots right
below the black/white dots. Such a “move” is realized by
adiabatic deformation of H̃JA∗JB , which becomes eventually
H̃JA − H̃JB . The above argument can also be generalized to
higher homotopies. It should be noted that JA and JB above
must be loops rather than arbitrary paths.

For the sake of clearness, we will suppress the tilde over
the modulating Hamiltonians in the following discussions. We
also denote the inverse of a path α by ᾱ : ᾱ(τ ) ≡ α(1 − τ )
with τ ∈ [0, 1]. Since a ∗ ā is deformable to the constant map,
we can conclude that Ha − Hā and Ed;Gonsite are in the same

FIG. 10. The modulating Hamiltonian H̃JA∗JB (right) of the com-
posite loop JA ∗ JB (left) has the same topological invariant as H̃JA −
H̃JB after the modulating direction is compactified.

FIG. 11. Illustration of the adiabatic deformation of [H̃JA∗JB ] =
[H̃JA∗JB+JE ] to [H̃JA -H̃JB ].

0-phase for any loop a or

[Hā] = [H̄a], (40)

where the bar over the Hamiltonian denotes its inverse in the
classification of the topological phases. From the previous
consideration below Eq. (24), we obtain

[HMT (η)∗η̄] = [Ad;Gonsite ]. (41)

We see from Fig. 9 that the connected path MT (η) ∗ γ̄ is
transformed by the T -operation to η ∗ γ̄ , i.e.,

MT HMT (η)∗γ̄ M−1
T = Hη∗γ̄ , (42)

where we have used that fact that γ is MT -invariant. More-
over, the composition of MT (η) ∗ γ̄ and the inverse path of
η ∗ γ̄ is equivalent to the connected path MT (η) ∗ η̄,

MT (η) ∗ γ̄ ∗ η ∗ γ̄ = MT (η) ∗ η̄, (43)

since γ̄ ∗ γ is deformable to the identity map. It follows from
Eqs. (39), (40), (41) and (43) that

[Ad;Gonsite ] = [HMT (η)∗γ̄ − Hη∗γ̄ ]

= [HMT (η)∗γ̄ − H̄η∗γ̄ ]

= [
HMT (η)∗γ̄ − MT HMT (η)∗γ̄ M−1

T
]
. (44)

Since MT transformation flips the sign of σH of HMT (η)∗γ̄ and
the bar operation inverts its σH back, we have

[HMT (η)∗γ̄ ] = [σH = 1/2], (45)

which is impossible for an invertible Hamiltonian [67]. Hence,
we conclude that Hd+1 in Eq. (35) is in a nontrivial topologi-
cal phase protected by G = {Gonsite, MT }.

On the other hand, if Ad;Gonsite = {σH = 2}, Hd+1 in Eq. (35)
is in a trivial phase, and there is an adiabatic path to Ed+1.
This path can be easily constructed by splitting {σH = 2} into
two {σH = 1} := A′

d and also its inverse {σH = −2} into two
{σH = −1} = Ā′

d ,

Hd+1 = · · · − (A′
d − A′

d ) − (Ā′
d − Ā′

d )

− (A′
d − A′

d ) − (Ā′
d − Ā′

d ) − · · · . (46)

Trivializing the neighboring A′
d − Ā′

d and Ā′
d − A′

d yields
Ed+1;G, as shown in Fig. 12. This trivialization can also
be systematically obtained through lattice homotopy ap-
proach [49,50,52]. Therefore the classification of the G-
symmetric Hamiltonian (35) has a Z2 structure.
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FIG. 12. A G-symmetric trivialization in the case Ad;Gonsite is di-
visible by 2: we have suppressed κH’s and the dashed triangles means
a trivialization of a pair of σH = −1 and σH = +1.

B. Inclusion of thermal Hall conductance

In general, U(1)-symmetric invertible electronic systems
are characterized by two integer-valued topological invariants
under an appropriate unit system (σH; κH) which are con-
strained by [15,68,69]

σH = κH mod 8, (47)

where κH represents thermal Hall conductance. Therefore the
above consideration implies that the classification of invertible
phases under the symmetry G (35) is actually given by

Z2 × Z2 (48a)

generated by

{(σH = 1, κH = 1), (σH = 0, κH = 8)}. (48b)

The Z2 group structures follow from the generalization of the
above discussion that any doubled system is divisible by 2,
thereby resulting in a trivial crystalline topological phase in
the same way as in Fig. 12. Thus we only need to look for the
systems that satisfy the constraint (47) and are indivisible by
2, and they are exactly the two generators of those Z2’s.

For bosonic systems, let us use the convention that the
fundamental charged boson to have charge 2. Combining
the result of integer bosonic quantum Hall states [70] and
Eq. (47), we obtain

σH = 0 mod 8, κH = 0 mod 8. (49)

Thus the classification of the G-symmetric crystalline topo-
logical phases in the form of Eq. (35) is also

Z2 × Z2 generated by

{(σH = 8, κH = 0), (σH = 0, κH = 8)}. (50)

C. Another interesting example: magnetic LSM theorem

We can consider the case with d = 1, Gonsite = Z2 × Z2

or T , and

Ad;Gonsite = {spin-1 antiferromagnetic Heisenberg chain}.
The above argument is also applicable to this case, since the
classification of Gonsite-symmetric invertible phases in d = 1
is Z2, whose generator is the Haldane phase; i.e., there is no
invertible phase whose double is the Haldane phase.

One of the interesting consequences is its boundary LSM
theorem—reproducing the LSM theorem with magnetic trans-
lation [71].

We can also replace T by the identity operator, and then
the traditional LSM theorem follows.

D. A short summary and more examples

So far, in the Gonsite = U(1) case, we have made use of the
following properties:

(i) T flips σH of any invertible phase to its opposite;
(ii) any invertible Hamiltonian with σH = 1 is not in the

same phase as two invertible phases, i.e., σH = 1 is not divis-
ible by 2.

In addition, T can be replaced by a reflection symmetry.
For the spin chains with Gonsite = Z2 × Z2 or T , we have

relied on the fact that
(i) the invertible-phase classification is only Z2,
so the Haldane phase is also indivisible by 2, and T must

also transform one phase to its inverse (which is itself).
In general, for any symmetry transformation K satisfying

KAd;Gonsite K
−1 = Ād;Gonsite (51)

for all Ad;Gonsite , we can conclude that the (d + 1)-dimensional
Hamiltonian

Hd+1 = · · · − Ad;Gonsite − Ād;Gonsite − Ad;Gonsite − Ād;Gonsite − · · ·
(52)

is in a nontrivial G-topological phase with

G = {Gonsite, Tr ◦ K}, (53)

as long as Ad;Gonsite is indivisible by 2. Furthermore, its
boundary mode gives a corresponding generalized G-LSM
theorem as long as the symmetry K is not destroyed by such
a boundary cutting. We call such Tr ◦ K as a generalized
magnetic translation.

It should be noted that the condition of “indivisible by 2”
is necessary, to prevent from the trivialization in Fig. 12.

We list several more examples below:
(i) Gonsite = U(1); A0;Gonsite = {charge = 1}; K = charge

conjugation: one-dimensional crystalline topological
insulators;

(ii) Gonsite = U(1); A2;Gonsite = {σH = 1, κH = 1}; K = Re-
flection with the reflection line within each A2;U(1) and Ā2;U(1):
three-dimensional crystalline topological insulators;

(iii) Gonsite = 1; A2;Gonsite = {p + ip superconductor} [72];
K = time reversal: three-dimensional crystalline topological
superconductors.

VII. DISCUSSIONS

The isomorphisms in Eq. (27) is a direct consequence
of suspension isomorphism if we assume that P (InvG

d ) is
homotopy equivalent to the loop space of P (InvG

d+1), i.e.,
{P (InvG

d )}d=0,1,··· forming an �-spectrum [2]. In this view-
point, two sides of Eqs. (26) and (30) are connected through
an n-fold suspension isomorphism. However, in our opinion,
the lattice construction becomes vague and complicated after
n times of suspension. By comparison, our construction ex-
plained below Eq. (25) is more explicit and isotropic in the
sense that we treat each spatial direction on equal footing as
shown in Fig. 4. This advantage will be useful in designing
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a multi-variable modulating texture in a lattice Hamiltonian
in InvG

d .
The noncontractibility of a mapping in [Sn,P (InvG

m)]0 im-
plies a nontrivial gappability index IG � n + 1 possessed by
at least one of the noninvertible Hamiltonians, e.g., those in
gapless phases [28], which are in the region enclosed by the
image of the noncontractible mapping. However, to pinpoint
these representatives will not be a simple task in practice,
although we expect that they must be surrounded by the
noncontractible Sn in our construction. The numerical investi-
gation of them is left for future work.

Finally, our construction of crystalline topological phases
is expected to be generalizable towards nontrivial family of
Hamiltonians, and its physical consequences will also be of
future interest.
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APPENDIX: Q8-SYMMETRIC PATH BETWEEN DISTINCT
Z2 × Z2 SPT PHASES

The following two spin-1/2 chains

H1 =
∑

n

1

2
[1 + (−1)n]�Sn · �Sn+1, (A1)

H2 =
∑

n

1

2
[1 − (−1)n]�Sn · �Sn+1, (A2)

belong to the two distinct Z2 × Z2 SPT phases, where
the onsite symmetry Z2 × Z2 is generated by π -rotation
symmetries:

Rz ≡
∏

n

iσ z
n ; Rx ≡

∏
n

iσ x
n , (A3)

where �σn represent the Pauli matrices acting on the n-th spin-
1/2. Z2 × Z2 is a subgroup of the conventional SO(3) spin-
rotation symmetry, so it also inherits the Z2-gauge structure
when SO(3) is treated as SU(2) symmetry. On each site, it
becomes the quaternion group Q8:

Q8 = {1,−1, iσ z, iσ x, iσ y,−iσ z,−iσ x,−iσ y} ⊂ SU(2),

and Z2 × Z2 = Q8/Z2 with Z2 = {1,−1} paralleling
SO(3) = SU(2)/Z2. We associate these group elements
with their physical operators denoted as

iσ z ↔ rz; iσ x ↔ rx. (A4)

Our goal in this Appendix is to give an atomic Q8-
symmetric Hamiltonian E which realizes a Q8-symmetric
adiabatic path

H1 − E ⇔ H2 − E , (A5)

while there is no Z2 × Z2-symmetric E to do this job.

To construct E , we first build its local Hilbert space gener-
ated by two-flavor boson b and d:

{|0〉, b†|0〉, d†|0〉, (b†)2|0〉, b†d†|0〉, (d†)2|0〉, · · · }. (A6)

We define an onsite Q8 symmetry on it by

rx|0〉 = |0〉, rz|0〉 = |0〉;(
rzb†(rz )−1

rzd†(rz )−1

)
= iσz

(
b†

d†

)
=

(
ib†

−id†

)
,

(
rxb†(rx )−1

rxd†(rx )−1

)
= iσx

(
b†

d†

)
=

(
id†

ib†

)
, (A7)

i.e., the vacuum state |0〉 forms a singlet, and the one-particle
states form a fundamental representation. It should be noted
that Z2 ∈ Q8, which is generated by (rz )2, can no longer be
regarded as a gauge structure, since, e.g.,

(rz )2[|0〉 + b†|0〉] = |0〉 − b†|0〉 �= eiφ[|0〉 + b†|0〉] (A8)

for any phase factor φ.
Let us consider a four-site b-d bosonic system;

{bn, dn}n=1,2,3,4 and we still use |0〉 to label the empty
state for the entire system. We have the following two states:

|2020〉 ≡ (b†
1d†

1 )(b†
3d†

3 )|0〉;
|(11)(11)〉 ≡ (b†

1d†
2 − d†

1 b†
2)(b†

3d†
4 − d†

3 b†
4)|0〉,

where we have used the particle number to label the states.
The following two Hamiltonians have |2020〉 and |(11)(11)〉
as their unique ground states, respectively:

h2020 = −|2020〉〈2020|; (A9)

h(11)(11) = −|(11)(11)〉〈(11)(11)|. (A10)

It is also clear that these two states have the same eigen-
value +1 for both Q8 generators rx and rz, so there is an
adiabatic path connecting h2020 and h(11)(11), e.g.,

h(s) = −
[
cos

( sπ

2

)
|2020〉 + sin

( sπ

2

)
|(11)(11)〉

]
×

[
cos

( sπ

2

)
〈2020| + sin

( sπ

2

)
〈(11)(11)|

]
(A11)

with s ∈ [0, 1].
Furthermore, the following Hamiltonian has exactly the

same unique ground state as h(11)(11):

h′
(11)(11) = �s1 · �s2 + �s3 · �s4

+ 10000
4∑

n=1

(b†
nbn + d†

n dn − 1)2, (A12)

with

�sn ≡ (b†
n d†

n )
�σ
2

(
bn

dn

)
. (A13)
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There is an adiabatic path from h(11)(11) to h′
(11)(11) by simply

adjusting the energies of the ground state and the excited
states without closing the gap between the ground state and
the lowest excited state; see Eq. (31).

Similarly, the Q8-symmetric Hamiltonian

h′
2020 ≡ 10000

4∑
n=1

{[b†
nbn + (−1)n]2 + [d†

n dn + (−1)n]2}

also has the same unique gapped ground state as h2020, so there
is an adiabatic path from h′

2020 to h2020.
Therefore, together with h(s), we have obtained an adia-

batic path from h′
2020 to h′

(11)(11).
Repeating the same argument, we also have an adiabatic

path connecting h′
(11)(11) and h′

0202 defined by

h′
0202 ≡ 10000

4∑
n=1

{[b†
nbn − (−1)n]2 + [d†

n dn − (−1)n]2},

which is equivalent to relabelling the sites backward in the
earlier path from h′

2020 to h′
(11)(11).

Then we generalize them to a chain of b-d bosons:

E ≡ 10000
∑
n∈Z

{[b†
nbn + (−1)n]2 + [d†

n dn + (−1)n]2},

which is to be shown as the atomic Hamiltonian to realize
Eq. (A5) as follows.

We also define

E ′ ≡
∑

n

1

2
[1 + (−1)n]�sn · �sn+1

+ 10000
∑

n

(b†
nbn + d†

n dn − 1)2, (A14)

E ′′ ≡
∑

n

1

2
[1 − (−1)n]�sn · �sn+1

+ 10000
∑

n

(b†
nbn + d†

n dn − 1)2. (A15)

By the above four-site paths, we obtain a path from E to E ′
and a path from E to E ′′, thereby trivially

H1 − E ⇔ H1 − E ′; (A16)

H2 − E ⇔ H2 − E ′′. (A17)

Now H1 − E ′ can be seen as two decoupled dimerized spin-
1/2 chains at the energy scale below 1000, so there is an
SU(2)-symmetric adiabatic path from it to a ladder Hamil-
tonian Hladder through an intermediate plaquette Hamiltonian
Hplaq, and H2 − E ′′ is also adiabatically connected to the same
Hladder through the other plaquette Hamiltonian H ′

plaq (which
differs from the earlier Hplaq by a lattice translation). These
are adiabatic paths along which the many-body gap does not
close [73–76]. Consequently, we have proven Eq. (A5) by
explicitly constructing the Q8-symmetric path,

H1 − E ⇔ H1 − E ′ ⇔ Hplaq ⇔ Hladder ⇔ H ′
plaq

⇔ H2 − E ′′ ⇔ H2 − E . (A18)
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