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The Heisenberg quantum antiferromagnet on the maple leaf lattice has been shown to feature highly exotic
phases, and therefore material realizations are intensely sought after. We determine the magnetic Hamiltonian
of the copper mineral bluebellite using density-functional theory based energy mapping. Due to significant
distortion of the spin-1/2 maple leaf lattice, we find two of the five distinct nearest-neighbor couplings to be
ferromagnetic. The solution of this Hamiltonian with density matrix renormalization group calculations points
us to the surprising insight that this particular imperfect maple leaf lattice, due to the strongly ferromagnetic
Cu2+ dimer, realizes an effective S = 1 breathing kagome Hamiltonian. In fact, this is another highly interesting
Hamiltonian that has rarely been realized in materials. Analysis of the effective model within a bond-operator
formalism then allows us to identify a valence bond solid ground state and extract thermodynamic quantities
using a low-energy bosonic mean-field theory. We resolve the puzzle of the apparent one-dimensional character
of bluebellite as our calculated specific heat has a Bonner-Fisher-like shape, in good agreement with the
experiment.
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I. INTRODUCTION

Triangular motifs in quantum antiferromagnets are a
source of geometric frustration that lead to highly nontriv-
ial emergent phenomena like residual entropy, algebraic or
dipolar correlations, spin liquids, spin nematics, etc. [1–4].
Starting from the triangular lattice (highest packing density
in two dimensions), site depletion creates new lattices with
potentially more frustration [5,6]. For example, the kagome
lattice is obtained by a 1/4 site depletion of the triangular
lattice; it also hosts some of the most intensively studied
spin liquid candidates [7]. Similarly, the maple leaf lattice
is a one-seventh site-depleted (one-sixth bond depleted) tri-
angular lattice and has a coordination number of five [8].
The uniform nearest-neighbor Heisenberg antiferromagnetic
model on this lattice was addressed numerically [9–14], and
presumably, it has a magnetically ordered ground state. In
their analytical work on a related model, Ghosh et al. estab-
lished an exact dimer ground state [15], making it the only
other two-dimensional lattice with uniform tiling that can host
an exact dimer ground state, besides the celebrated Shastry-
Sutherland model [16–20]. While SrCu2(BO3)2 exemplifies
the Shastry-Sutherland Hamiltonian [21], a realization of the
maple leaf model proposed in Ref. [15] is yet to be identified.
Candidates involving quantum spins are the copper minerals
[22,23] spangolite Cu6Al(SO4)(OH)12Cl · 3H2O [24], sabel-
liite Cu2ZnAsO4(OH)3 [25], mojaveite Cu6TeO4(OH)9Cl
[26], fuettererite Pb3Cu6TeO6(OH)7Cl5 [27], and finally

bluebellite Cu6IO3(OH)10Cl [26]. Magnetic properties
have been characterized experimentally for spangolite [28]
and bluebellite [29], but their magnetic Hamiltonians remain
to be established.

Here, we focus on bluebellite and attempt to resolve some
of the pressing issues for this layered maple leaf antiferro-
magnet: first, we determine all relevant exchange interactions
of the system. The resulting Hamiltonian is dominated by
the intralayer couplings. We then focus on the Hamilto-
nian corresponding to a single layer and employ numerical
and semianalytical techniques. We also address the ques-
tion raised by the experiment: why does bluebellite appear
to have a Bonner-Fisher type behavior, suggestive of one-
dimensional systems? An answer based on order-by-disorder
was attempted without a knowledge of the Hamiltonian [30].
Methodologically, we apply the energy mapping technique
which has proved valuable in extracting the Hamiltonian for
many quantum spin systems [31–34]. By virtue of a statistical
approach and by extracting more than the seemingly impor-
tant exchange interactions, this method has led to valuable
insights for many materials [35–41]. Using density matrix
renormalization group (DMRG) calculations [42], we find that
the resulting maple leaf Hamiltonian for bluebellite (in the
absence of inter-layer couplings) results in a gapped valence
bond solid (VBS) ground state. Furthermore, we develop
an effective low-energy bosonic theory via bond operator
formalism [43], obtain static and dynamical spin structure
factors, and assess thermodynamic properties. We find that
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FIG. 1. (a) First eight exchange interactions of bluebellite as a function of on-site interaction strength U , at fixed Hund’s rule coupling
JH = 1 eV. The vertical line indicates the U value at which the Heisenberg Hamiltonian parameters yield the experimentally observed Curie-
Weiss temperature [29]. (b) Illustration of the first ten exchange paths, including the interlayer paths J6 to J10. (c) Bluebellite structure with
the five “nearest-neighbor” exchange paths defining the maple leaf lattice. The lattice vectors are given by a1 and a2. (d) Effective S = 1
breathing kagome model with renormalized interactions. (e) Ground state energy per site found in DMRG for system sizes N = 48, 108, 192.
The ground state energy in the thermodynamic limit is estimated (via finite size scaling) to be E0/J̃ ≈ −0.217(1) per site using the energy
scale of J̃ = √

J2
1 + J2

2 + J2
3 + J2

4 + J2
5 = 238 K. (f) Scaling of the spin-gap � in units of J̃ . (g) Spin-spin correlations on a ten site cluster in

the bulk obtained from DMRG on a 108 site maple leaf system. The thickness of the bonds indicates the strength of the correlation and the
color red (blue) indicates positive (negative) correlation. Note the clear dimerization in the ground state.

the bluebellite intralayer magnetic interactions emulate an
effective S = 1 kagome Hamiltonian with a strong breathing
anisotropy, which is known to have a magnetically disordered
ground state [44]. Bluebellite, however, shows a magnetic
ordering at low temperatures [29]. This magnetic order, can,
in principle, be linked to the weak intra- and interlayer cou-
plings. Nonetheless, our interest here is the highly frustrated
in-layer physics of bluebellite, the ground state of which
relates to the strongly fluctuating state above the ordering
temperature, and, possibly, to an effective spin-1 breathing
kagome antiferromagnet. So far, the S = 1 kagome candi-
dates, e.g., KV3Ge2O9 [45], NaV6O11 [46], m–MPYNN · BF4

[47], all undergo lattice distortions at low temperatures. By
establishing the connection between maple leaf and kagome,
we pave the way to possible realizations and synthesis of
new effective S = 1 kagome compounds emerging out of
S = 1/2 maple leaf systems. As an experimental outlook, this
enables the study of integer-spin kagome antiferromagnets,
notably their magnetization plateaus, excitations, and topolog-
ical properties.

II. MODEL HAMILTONIAN

To extract the parameters of the Heisenberg Hamiltonian
Ĥ = ∑

i< j Ji jSi · S j for bluebellite, we relax the internal posi-
tions of H, O and Cl while keeping Cu and I positions and the
lattice parameters fixed; this is necessary to sort out obvious
distortions in the experimentally determined room tempera-
ture structure [29] (see Appendix A). Note that the maple
leaf lattice structure in synthetic bluebellite is more regular
compared to the structure of the mineral [26]. In the energy
mapping technique, we make no assumptions about the im-
portant exchange paths. Rather, we determine 20 couplings up
to Cu-Cu distances of 5.9 Å (about twice the nearest-neighbor
distance). In Fig. 1(a), we show how the first eight Heisenberg
Hamiltonian parameters evolve with on-site Coulomb interac-
tion U applied to the strongly correlated Cu2+ 3d orbitals. The
relevant U value is determined by calculating the Curie-Weiss
temperature as θCW = − 1

3 S(S + 1)
∑

i ziJi where zi are the
coordination numbers of Ji and demanding that it matches the
experimentally observed value θCW = −34.7 K [29].
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The result for the five most dominant couplings in
Fig. 1(a) is J1 = −120.8(1.3) K, J2 = 88.6(1.2) K, J3 =
−93.7(1.0) K, J4 = 147.6(1.3) K, and J5 = 61.3(7) K con-
structing the maple leaf layers in Fig. 1(c). The rest of the
couplings, both intra- and interlayer, e.g., J6 = 15.4 K, J7 =
−1.6 K, J8 = 14.7 K, J18 = 14.6 K, and J20 = 12.6 K are sig-
nificantly weaker than the intra-layer couplings mentioned
above (see Appendix A for more details), and are not included
in our analyses. At first glance, it seems disappointing that
the ferromagnetic interactions distance this two-dimensional
(2D) Hamiltonian from the maple leaf model [15,48]. But, as
we will reveal, these mixed ferro- and antiferromagnetic (FM
and AFM) couplings engender enticing features. To begin
with, the strongest AFM J4 coupling would try to enforce
a 120◦ order on the J4 triangles, however, it might prove
insufficient in establishing full magnetic order since the J5

bonds, which form the other set of triangles, are the weak-
est. Furthermore, the second strongest AFM J2 bonds and
the FM J3 bonds form hexagons, a structure of alternating
interactions that is likely to promote dimerization. Finally, the
strong FM J1 bonds might try to project effective spin-1 onto
them and reduce the quantum fluctuations. We now attempt
to understand these intricacies that make the properties of
bluebellite intriguing.

III. GROUND STATE

First, we study the ground state of the bluebellite Hamil-
tonian consisting of the intralayer magnetic interactions with
DMRG using the iTENSOR library [49]. Based on finite-
size-scaling of results from 48, 108, and 192 site clusters
with 24 − 30 sweeps and a maximum bond dimension of
2048 [U (1)], we find a magnetically disordered ground state
with an energy per site E0/J̃ = −0.217(1), and a spin-gap
of �/J̃ = 0.107(1) with J̃ =

√
J2

1 + J2
2 + J2

3 + J2
4 + J2

5 =
238 K [please refer to Figs. 1(e) and 1(f)]. The spin-spin
correlations, 〈Si · S j〉, for nearest-neighbor spin pairs Si and
S j , show strong singlet formation on the AFM J2 bonds [see
Figs. 1(g) and 6 in Appendix B]. This propensity to form
dimers on the J2 bonds is indicative of a VBS ground state.

For a dimerized system, crucial insights can be obtained
from the bond operator formalism [43], where one uses a
dimer basis and writes the singlet and three triplets on a bond
(here the J2 bond) as bosons. We assume a singlet background
(a product state of singlets on the J2 bonds) as a mean field,
and the triplon (dispersing triplet) excitations on the singlet
are treated systematically while ignoring triplon-triplon inter-
action (details in Appendix C). This approach successfully
describes several magnetic materials [50–54]. The results
from this theory corroborate the DMRG calculations, it finds
a stable VBS ground state with energy E0/J̃ = −0.22494 and
a spin-gap �/J̃ = 0.13474 in the thermodynamic limit. The
spin-spin correlations also agree with the DMRG results; the
strongest, for example, is found to be −0.57570 on the J2

bonds [compare with Fig. 1(g)].
Besides the strong singlets on the AFM J2 bonds, the

spins connected by FM J1 interactions develop strong FM
correlations. The total spin moment on the J1 bonds is
found to be ∼1.8 in both methods, signaling the system’s

tendency to form triplets on them and project onto an
effective S = 1 (for full S = 1 projection, the total spin mo-
ment S(S + 1) = 2 on a bond). Thus, we discover that the
bluebellite Hamiltonian mimics an effective S = 1 kagome
system with breathing anisotropy (broken inversion symme-
try) [55], with Jeff ≈ J2 + J5 for smaller triangles, and J ′

eff ≈
J3 + J4 for larger triangles [see Fig. 1(d)]. We have evaluated
the interactions in the effective S = 1 breathing kagome by
repeating the energy mapping with S = 1/2 moments con-
nected by J1 bonds constrained to S = 1 (see Appendix A).
We find AFM couplings Jeff = 49(2) K and J ′

eff = 18(2) K,
and the breathing anisotropy is Jeff/J ′

eff ≈ 2.7 [Fig. 1(d)].
Reference [44] furnishes an understanding of the ground

state of the S = 1 breathing kagome AFM. For isolated Jeff

triangles (J ′
eff → 0) the ground state is a product of singlets

on each Jeff triangle. With J ′
eff 
= 0, triplet fluctuations de-

velop, which, for J ′
eff � Jeff , remain insufficient to close the

spin gap, and thus, a trimerized singlet ground state stabilizes
[44,56,57]. In our case, a similar trimerized state is also re-
alized, which materializes continuously from the dimerized
state when J1 → ∞, i.e., the spin-1/2’s across the J1 bond get
exactly projected to spin-1. The dimerized state here is akin to
the VBS state (Haldane state [58]) for the AFM spin-1 chain
due to Affleck, Kennedy, Lieb, and Tasaki [59]. In both cases,
one sees the spin-1 as a combination of two spin-1/2, tries
to satisfy the AFM interactions locally, and then projects a
spin-1 out of two spin-1/2. Starting from the J1-J2 only limit,
the ground state of bluebellite can be interpreted as a product
state of three spin Haldane states with J2 coupling, which gets
renormalized by other interactions. Such an effective spin-1
resulting out of a pair of spin-1/2 leading to a spin-gapped
ground state was also seen in Ref. [53], where spin-1 kagome
emerges out of a S = 1/2 honeycomb system.

IV. STATIC AND DYNAMICAL STRUCTURE FACTORS

We calculate the static structure factor,

S(q) = 1

N

∑
i j

eıq·(ri−r j )〈Si · S j〉, (1)

using DMRG and bosonic theory. The DMRG result
[Fig. 2(a)] shows diffused peaks at the M points of the fourth
Brillouin zone (BZ). In contrast, the peaks from the bosonic
theory [Fig. 2(b)] are shifted from the M points. To understand
this, we exploit the relation between the kagome and the
maple leaf lattice [see Fig. 2(c)], to transform the Sq of the
kagome q = 0 order state into the Sq for maple leaf via a basis
expansion. The static structure factor for a non-Bravais system
like kagome and maple leaf can be written as

S(q) = 1

N

∑
i j

∑
kk′

eiq·[(Ri−R j )+(vk −vk′ )]

× 〈Sk′ (R j ) · Sk (Ri )〉, (2)

where Ri are the positions of the unit cells, and vk are the basis
vectors. To transform the kagome unit cell into the maple leaf
unit cell one needs to expand each basis site of kagome into
two sites [see Fig. 2(c)]. For the kth basis site of kagome, this
is achieved by creating two sites at vk ± �δk . The �δk’s are given
in Fig. 2(c). Thereafter, the static structure factor for the maple
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FIG. 2. Static spin structure factor, Sq, obtained from (a) DMRG on a 192 site maple leaf cluster, (b) bond operator theory. (c) The Sq for
the maple leaf lattice obtained via a basis expansion [see Eq. (2)] of the kagome q = 0 order. We also introduce a relative canting between the
spins across the FM J1 bonds as shown in the spin configuration. The Bragg peaks at the M points of the fourth BZ remains unchanged by the
relative canting. (d) The Sq for a product state of pure singlets on the J2 bonds (see Fig. 8 in Appendix C). The soft maxima of Sq now appear
shifted away from the M points.

leaf lattice is derived from the spin-spin correlations of the
kagome system as

S(q) = 1

N

∑
i j

∑
kk′

eiq·[(Ri−R j )+(vk −vk′ )+(±�δk ∓�δk′ )]

× 〈Sk′ (R j ) · Sk (Ri )〉. (3)

Figure 2(c) shows a result for classical spins for which the
ground state is known to be degenerate with both q = 0 and√

3 × √
3 coplanar orders. For a

√
3 × √

3 order, the peaks
occur at the K points, while for q = 0 order, they occur at
the M points of the extended BZ of the kagome lattice. Here
the maple leaf spins that are across the FM J1 bonds, i.e., the
ones that emerged from the same kagome spin in the basis
transformation, are assumed parallel to each other, however,
even with a relative canting, the Bragg peaks remain at the
M points [see Fig. 2(c)]. As the shifted peaks in Fig. 2(b)
cannot be explained classically, they must have a quantum
mechanical origin. We see that a product state of singlets
on the J2 bonds (the bare mean-field wave function for our
bosonic theory) reproduces the shift in question [Fig. 2(d)]
signaling the relevance of the stabilization of singlets on the J2

bonds. The other modifications seen in Fig. 2(b) are ascribed
to triplet fluctuations.

The shift in the peaks results in an enlargement of the BZ of
the Sq [Figs. 2(b) and 3(b)]. The form factor, fG, for a maple
leaf system is given by fG ∝ ∑

j exp(iG · v j ) where v j are the
six basis vectors of the lattice, G = ν1b1 + ν2b2 with recipro-
cal vectors b1 and b2 (ν1 and ν2 are integers). The maxima
of | fG|2 occur for mod (ν1 + 2ν2, 7) = 0, i.e., by traversing
along b1 or b2, the structure factor is only periodic in seven
reciprocal lattice spacings. Therefore, the extended BZ of the
structure factor is seven times larger than the actual BZ of the
lattice [see Fig. 2(b)]. This significantly enlarged extended BZ
is the reason behind the disagreement between the S(q) from
finite-size DMRG and the one from bond-operator mean-field
theory in the thermodynamic limit.

We further calculate the powder averaged static spin struc-
ture factor, S(Q) = 1

4π

∫
d�q̂S(q), with Q = |q|, from both

DMRG and bond operator mean-field theory. We show the
magnetic form factor, F (Q), modulated S(Q) in Fig. 3(a).
Here,

F (Q) = 0.0232e−34.969( Q
4π

)2 + 0.4023e−11.564( Q
4π

)2

+ 0.5882e−3.843( Q
4π

)2 − 0.0137 (4)

for Cu2+ ions [60]. Apart from the static spin structure fac-
tor, we also compute the dynamical spin structure factor,
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FIG. 3. (a) Form factor modulated powder averaged static struc-
ture factor obtained from DMRG and bond-operator mean-field
theory. (b) Dynamical spin structure factor from bond-operator
mean-field theory. S(q, ω) shows the typical behavior of a magneti-
cally disorder system with gapped and dispersive triplet excitation.

S(q, ω) = 1
N

∑
i j eıq·(ri−r j )

∫ ∞
−∞ dteıωt 〈S j (t ) · Si(0)〉, for this

system using the bosonic mean-field theory. We use the
extended BZ of the system and plot S(q, ω) along the high-
symmetry lines in Fig. 3(b).

V. THERMODYNAMIC PROPERTIES

Capturing finite temperature behavior precisely down
to low temperatures is a hard problem, but we ob-
tain qualitative information from bond operator the-
ory. The calculated specific heat (see Appendix C and
Refs. [50,61,62] for more details) is presented in Fig. 4
together with the experimental result for the magnetic
contribution to specific heat [29]. It shows a broad peak
around 22 K and matches the overall behavior of the exper-
imental data. The specific heat shape that was interpreted via
the Bonner-Fisher fit for the 1D Heisenberg chain [29] is cap-
tured well by our 2D wavefunction. This may be rationalized
by the fact [63] that zero-, one- and two-dimensional magnets
can all have the same overall shape of specific heat (and mag-
netic susceptibility). The magnetic entropy calculation further
validates the effective spin-1 kagome behavior of the system
by approaching 1

2 ln 3 at high temperature (the factor of 1/2
is due to two spin-1/2 combining to form a spin 1), instead
of ln 2 which would be the case for a fully AFM system.
The residual entropy comes from the interlocking of the spins
across the J1 bonds at low temperatures.

Our approximate 2D Hamiltonian, however, does not ex-
hibit any magnetic ordering, as indicated in experiments by
a distinct peak in susceptibility at 17 K [29]. The onset of
a magnetic order can be attributed to additional inter- and
intralayer couplings. The interlayer couplings J6, J8, J18, and
J20 are all comparable to the spin gap estimated for the

FIG. 4. Thermodynamic properties obtained from bond-operator
mean-field theory. Magnetic specific heat Cmag(T ) obtained from
bond-operator mean-field theory overlaid with the experimental data
presented by Haraguchi et al. in Ref. [29]. Inset: Magnetic entropy
Smag(T ).

approximate 2D Hamiltonian and do not introduce any frus-
tration between the layers. Moreover, J6 and J18 connect the
J4 and J5 triangles in two neighboring layers. The tendency of
the J4 (strongest interaction in the system) triangles to form
a 120◦ order will also significantly force the formation of a
magnetic order on the J5 triangles across the layers. There-
fore, as also seen in other Haldane gapped systems [64,65],
these interactions are more than enough to induce a magnetic
ordering at 17 K, the inverse of which scales as the logarithm
of interlayer couplings, at least, for the unfrustrated case [66].
Another crucial element behind the magnetic ordering might
be the strengthening of further-neighbor intralayer couplings
upon the lowering of temperature. For instance, in our current
estimation, the intralayer second-neighbor interactions in the
effective spin-1 kagome picture are found to be 1–3 K (see
Appendix A), where a magnetic order can be induced in that
system for second-neighbor interactions of strength ∼10 K
[44]. Therefore, the magnetic ordering at low-T might also
be indicative of small structural changes upon temperature
lowering. Interestingly, an anomalous behavior of the specific
heat, however, was also seen in our approximate DMRG-
based calculations (see Appendix B) which is related to the
thermal activation of other excited states which live above the
triplet excitations [67,68].

VI. CONCLUSIONS

We have determined the Heisenberg Hamiltonian for blue-
bellite by density functional theory (DFT) energy mapping
and found that two of the five dominant couplings (all
intralayer) in the slightly distorted maple leaf lattice are fer-
romagnetic. Based on the DMRG result indicating that the
second largest antiferromagnetic exchange leads to strong an-
tiferromagnetic spin correlations, we have developed a bond
operator mean-field theory for bluebellite which gives us
access to thermodynamic properties. Our calculated specific
heat does not show a sharp ordering peak as the ground
state for the 2D approximate Hamiltonian is magnetically
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disordered. However, there is excellent agreement in the
overall shape of the specific heat, and we obtain the ap-
parent Bonner-Fisher-type curve, which was interpreted as
1D physics [29], from our fully 2D maple leaf Hamiltonian.
Furthermore, focusing on strong ferromagnetic spin corre-
lations in our calculations, we find that bluebellite realizes
an effective spin-1 breathing kagome system. We predict
both static and dynamic spin structure factors and understand
them based on the classical order of the effective kagome
model. As the maple leaf Hamiltonian and the effective spin-
1 kagome model are determined from a room temperature
crystal structure, they are both expected to show a 1/3 mag-
netization plateau which, however, was not observed in the
T = 4.2 K magnetization process [29]. Therefore, it will be
very interesting future work to experimentally determine a
low-temperature crystal structure of bluebellite and to study
its Hamiltonian.

Note added. Recently, one of us has predicted a close
connection between bluebellite and quantum spin liquid in
maple leaf systems [69,70].
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APPENDIX A: DETAILS OF ELECTRONIC STRUCTURE
CALCULATIONS AND ENERGY MAPPING

Preparation of crystal structure. The crystal structure of
bluebellite Cu6IO3(OH)10Cl has been determined from min-
eral samples [26] and from synthetic polycrystals [29]. In
the latter case, hydrogen positions were not determined. As
the magnetic measurements were performed for synthetic
bluebellite, it is necessary to prepare the crystal structure
for electronic structure calculations and energy mapping by

adding and optimizing hydrogen positions. Furthermore, Cl,
O2, and H2 all have coordinates (0,0,z), restricting their po-
sition by symmetry to an axis, and H2 needs to be placed
between Cl and O2, in accordance with the Mills et al. struc-
ture [26]. At a distance dCl−O2 = 2.205 Å, there is insufficient
space for an O2-H2 bond and a Cl-H hydrogen bond. There-
fore, Cl and O2 positions need to be optimized as well. For
consistency, we optimize all O positions as well. The resulting
structure is given in Table II.

DFT energy mapping. We determine the Heisenberg
Hamiltonian parameters of bluebellite by DFT energy map-
ping. For this purpose, we create a

√
2 × √

2 × 1 supercell of
the structure given in Table II with 12 symmetry inequivalent
Cu2+ sites. This provides 948 distinct energies of spin config-
urations and allows us to resolve the first 20 nearest-neighbor
exchange paths which we name J1 to J20. We calculate 40 of
these energies for five different values of the on-site inter-
action strength U ; this provides us the five sets of exchange
interactions given in Table I with statistical errors given in
brackets. Slight extrapolation leads to the line in boldface that
matches the experimental value of the Curie-Weiss tempera-
ture which we calculate according to

θCW = − 1
3 S(S + 1)(J1 + J2 + J3 + J4 + J5 + J6 + J7

+ J8 + J9 + J10 + J11 + J12 + J13 + J14

+ J15 + J16 + J17 + J18 + J19 + J20). (A1)

The couplings J1 to J5 are the nearest-neighbor couplings
making up the maple leaf lattice; they are by far the largest
couplings in the model, and they are the main focus of our
analysis. Couplings J6 to J10 [for an illustration see Fig. 1(b)]
as well as J15, J16 and J18 to J20 are interlayer couplings. They
are at most 10% of the dominant coupling J4. The couplings
J11 to J14 and J17 are second-neighbor couplings in the maple
leaf lattice. They are at most 4% of the dominant coupling J4.

Effective model. As explained above, the large ferromag-
netic J1 bonds of bluebellite lead to an effective spin-1
breathing kagome lattice behavior. In order to determine the
exchange interactions of this effective model, we performed
energy mapping in a 3 × 1 × 1 supercell with 18 Cu sites
where we constrained moments adjacent to the J1 bond to
be parallel. In this way, we determine the effective exchange
interaction for the spin-1 breathing kagome lattice. As shown
in Fig. 5, we perform the energy mapping for five different U
values. We use the same U value that is relevant for the orig-
inal maple leaf lattice (see Fig. 1) to determine the effective
Hamiltonian parameters. The result is Jeff = 49(2) K, J ′

eff =
18(2) K, J⊥

1,eff = −2(3) K, J⊥
3,eff = 1(2) K, J2,eff = −3(2) K,

J ′
2,eff = 1(2) K. Due to the error bars, not so much information

about the subleading couplings can be obtained. It is clear that
the effective kagome lattice has only very small interlayer
couplings J⊥

i,eff . The in-plane second- neighbor couplings on
average appear to be slightly ferromagnetic.

APPENDIX B: DMRG METHODS AND RESULTS

The ground state energy of the bluebellite Hamiltonian,
introduced above, is calculated via DMRG using the ITENSOR

[49] package. For the calculations, we use three different
sized spin tubes with N = 2, 3, and 4 unit cells along the
circumference of the tube. Along the length of the tube we
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TABLE I. Exchange interactions of bluebellite obtained by DFT energy mapping as described above. The line in boldface corresponds to
the set of couplings that match the experimental Curie-Weiss temperature [29]. The distances d given in the last line are the Cu-Cu distances
that identify the exchange paths.

U eV J1 (K) J2 (K) J3 (K) J4 (K) J5 (K) J6 (K) J7 (K) J8 (K) J9 (K) J10 (K)

3.9 −120.8(1.3) 88.6(1.2) −93.7(1.0) 147.6(1.3) 61.3(7) 15.4(1.4) −1.6(7) 14.7(1.9) −0.4(1.3)−12.3(6)
4 −120.1(1.3) 84.0(1.2) −92.1(1.0) 145.9(1.3) 60.2(7) 15.0(1.4) −1.5(7) 14.4(1.9) −0.1(1.3)−12.1(6)
5 −112.0(9) 41.2(8) −76.2(7) 127.5(9) 49.9(5) 11.6(9) −0.4(5) 10.7(1.2) 1.8(8) −10.2(4)
6 −103.6(6) 11.2(5) −63.9(5) 111.3(6) 42.0(3) 8.9(7) 0.2(3) 8.0(8) 2.6(6) −8.6(3)
7 −95.2(4) −10.0(4) −54.0(4) 97.1(4) 35.9(2) 6.9(5) 0.6(2) 6.0(6) 2.8(4) −7.3(2)
8 −87.1(3) −24.9(3) −46.1(3) 84.5(3) 31.0(2) 5.3(4) 0.7(2) 4.5(5) 2.7(3) −6.1(2)
d (Å) 2.992 3.000 3.165 3.287 3.453 4.567 4.673 4.674 4.700 4.968

U eVJ11 (K) J12 (K) J13 (K) J14 (K) J15 (K) J16 (K) J17 (K) J18 (K) J19 (K) J20 θCW (K)

3.9 −3.8(7) 6.4(1.1) −0.6(1.2) 3.0(2.0) −1.4(1.3) −5.4(7) −5.1(6) 14.6(6) 6.9(1.9) 12.6(1.1) −34.7
4 −3.8(7) 6.3(1.1) −0.7(1.2) 3.0(2.0) −1.3(1.3) −5.3(7) −5.0(6) 14.4(6) 6.8(1.9) 12.4(1.1) −33.2
5 −3.5(5) 4.9(7) −1.1(8) 3.0(1.3) −0.7(9) −4.1(4) −3.8(4) 12.5(4) 5.4(1.2) 10.4(7) −19.3
6 −3.0(3) 3.8(5) −1.1(6) 2.8(9) −0.3(6) −3.2(3) −2.9(3) 10.7(3) 4.3(8) 8.8(5) −9.2
7 −2.4(2) 3.0(4) −1.0(4) 2.5(6) −0.1(4) −2.5(2) −2.1(2) 9.2(2) 3.4(6) 7.4(4) −1.8
8 −1.9(2) 2.4(3) −0.8(3) 2.2(5) 0.0(3) −1.9(2) −1.6(2) 7.8(2) 2.8(5) 6.2(3) 3.5
d (Å) 5.161 5.434 5.444 5.480 5.691 5.707 5.715 5.725 5.877 5.902

always take 2N unit cells. Thus we do our calculations on
L = 2N2 = 48, 108, 192 site clusters. For L = 48 and 108,
we perform 30 sweeps with a maximum bond dimension
2048. For L = 192 the number of sweeps was reduced to
24. Figures 6(a) and 6(b) shows the scaling of ground state
energy and spin-gap. We calculate the spin-spin correlations,
〈Si · S j〉, for all nearest-neighbor spin pairs Si and S j , and find
strong singlet formation on the AFM J2 bonds. Figure 6(c)
shows an example at the center of a 108-site cluster. This
propensity to form dimers on the J2 bonds is indicative of a
VBS ground state. We perform a linear fitting of the energies
to obtain a finite size scaling. The spin-spin correlations from
two central sites are shown in Fig. 7(b). A fast decay of the
long range spin-spin correlations is apparent there.

Next, to access the thermodynamic properties of the sys-
tem, we calculate the magnetic specific heat by using the

TABLE II. Crystal structure of bluebellite Cu6IO3(OH)10Cl with
DFT optimized Cl, O and H positions. The lattice parameters of
space group R3 (No. 146) were kept fixed at experimental values
a = 8.3056 Å and c = 13.2194 Å [29].

Atom x y z

Cu1 0.4578 0.3867 0.2901
Cu2 0.0261 0.2404 0.2747
I 0.0000 0.0000 0.6050
O1 −0.244716 −0.154414 −0.120656
O2 0.000000 0.000000 0.249551
O3 0.190821 0.445737 0.171976
O4 −0.444508 −0.062377 0.031739
O5 0.412671 0.135042 0.022041
Cl 0.000000 0.000000 0.049719
H1 −0.260301 −0.167341 −0.197392
H2 0.000000 0.000000 0.172600
H3 −0.114255 −0.306030 −0.254043
H4 −0.454172 −0.185148 0.109447

fundamental relation

Cmag ∝ 1

LT 2

[〈Ĥ2〉th − 〈Ĥ〉2
th

]
, (B1)

where, T is the temperature of the system and 〈Q̂〉 is the
thermal average of an observable Q̂, i.e.,

〈Q̂〉th =
∑

j exp(−βEj )〈 j|Q̂| j〉∑
j exp(−βEj )

,

where β is the inverse temperature. This relation is easily
derivable by taking the second derivative of the partition
function

Z (β ) =
∑

j

exp(−βEj ),

where the j sum runs over all the eigenenergies of the system.
For practical calculations, we have to restrict ourselves to a
finite number of lowest lying states | j〉 and their energies Ej

known from DMRG. The corresponding expectation values
〈 j|Ĥ | j〉 and 〈 j|Ĥ2| j〉 are Ej and E2

j , respectively. For this
part of the calculation we choose the 48 site cluster. We
perform 24 sweeps with a maximum bond dimension of 512
and calculate the energies (Ej) of 481 lowest lying states. We
estimate that for a L site cluster there will be L/2 strong sin-
glets forming on the J2 bonds. Each such singlet would have
three excited triplet states. Therefore, we need more than 3L/2
excited states to capture the finite temperature physics which
will be missed by the bond-operator calculations. Thus it is
an extremely costly calculation and also prone to numerical
errors, and thus we only perform it on a small cluster to get an
idea of the thermodynamic properties of the system which we
show in Fig. 7(c). We see an anomalous behavior occurring
at ∼10 K which becomes exceedingly pronounced with in-
creasing number of excited states considered. We believe this
comes from the thermal activation of the excited states that
live above the triplets. This might also have a connection to
the anomalous behavior seen in the experiments at 17 K.
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FIG. 5. Energy mapping calculation for the effective spin-1
kagome lattice Hamiltonian. (a) Exchange interactions for five dif-
ferent values of on-site interaction U at fixed Hund’s rule coupling
strength JH. (b) Exchange paths of the effective S = 1 lattice of blue-
bellite. Balls represent the Cu dimers of bluebellite with the strongest
ferromagnetic coupling. Jeff and J ′

eff correspond to small and large
triangles in the breathing kagome network. Couplings marked “⊥”
indicate interlayer couplings.

FIG. 6. Spin-spin correlations for all nearest-neighbor bonds ob-
tained from DMRG on a 108 site maple leaf cluster. The thickness
of the bonds indicates the strength of the correlation and the color
red (blue) indicates positive (negative) correlation. Note the clear
dimerization in the ground state.

APPENDIX C: DETAILS OF BOND-OPERATOR
MEAN-FIELD THEORY

Based on our findings from the DMRG calculations of
the Hamiltonian for bluebellite, we now develop an effective
low-energy bosonic theory for various reasons. First we want
to obtain a better understanding of the system at the thermo-
dynamic limit. Secondly, such an approximate theory allows
us to calculate static and dynamic spin structure factors of the
system very easily. Additionally, we can gain some insight
into the thermodynamic properties of the system as well.

Upon carefully observing the NN spin-spin correlations
obtained from DMRG (see Fig. 1), we propose that a minimal
low-energy physics of the system can be well described by
assuming that the ground state of the system is a dimerized
singlet with strong singlet weights on the J2 bonds. To under-
stand the effective low-energy physics of the system, we start
with a J2 − J3 hexagon as our unit cell, and only consider the

three J2 bonds as our elementary block, , described by the
Hamiltonian

(C1)

= J2(�S1 · �S2 + �S3 · �S4 + �S5 · �S6), (C2)

where b = 1, 2, 3 is the bond index (see Fig. 8). The ground
state of this Hamiltonian is a product state of singlets forming
on the 1-2, 3-4, and 5-6 spin pairs, which allows us to use the
bond-operator formalism [43] to represent the spin operators
as

Sα
2b−1 = − 1

2

(
ŝbt̂α†

b + ŝ†
bt̂α

b

)
, (C3a)

Sα
2b = 1

2

(
ŝbt̂α†

b + ŝ†
bt̂α

b

)
. (C3b)

In writing the above representation, one makes use of the
basis of the singlet, |sb〉, and three triplets, |t±1,0

b 〉, defined on
the bond b. On a Fock space with vacuum, |∅〉b, the singlet
and the triplet operators are defined as

|sb〉 = ŝ†
b|∅〉b, (C4a)∣∣tm

b

〉 = t̂ m†
b |∅〉b, (C4b)

with ŝb and t̂ m
b being bosonic operators. A boson number

constraint

ŝ†
bŝb +

∑
m=−1,0,1

t̂ m†
b t̂m

b = 1 (C5)

must also be satisfied on every bond. In terms of the singlet

and the triplet operators defined above reads as

(C6)

where

t̂ x† = 1√
2

(
t̂−1†
b − t̂1†

b

)
, (C7a)

t̂ y† = i√
2

(
t̂−1†
b + t̂1†

b

)
, (C7b)

t̂ z† = t̂0†
b . (C7c)
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FIG. 7. (a) The spin-spin correlation 〈�Sj · �Sr〉 obtained from DMRG on a 108 site maple leaf cluster. �Sr is our reference spin which is
marked in black. For the top panel we set r = 63 and for the bottom panel r = 62. The radius of the disks indicates the strength of the
correlation and the color red (blue) indicates positive (negative) correlation. In both cases we see that in the bulk the spin-spin correlation
decays very quickly, signaling a spin disordered ground state. (b) The CmagT 2 vs T calculated via DMRG on a 48-site cluster. The calculations
are done with 24 sweeps with a maximum bond dimension of 1024. Apart from the ground state, we also calculate 480 exited states to calculate
the finite temperature properties. The dashed line is a guide for the eye. One can see an anomalous behavior occurring at ∼0.04J̃ = 10 K which
might be seen in the experiments.

Next, we rewrite our full Hamiltonian and recast it in terms
of the “coordinate” operator

Q̂α
b = 1√

2

(
t̂α†
i + t̂α

i

)
(C8)

FIG. 8. The singlet product state used in our bond-operator
mean-field calculation. The singlets are forming on the J2 bonds. We
use the dashed green hexagon as our unit cell, which contains three
symmetry related dimers. The indexing of the bonds and the sites in
the unit cell are also marked.

and its conjugate momentum operator

P̂α
b = i√

2

(
t̂α†
i − t̂α

i

)
. (C9)

Thus, the final form of the full Hamiltonian, H, on Nuc unit
cells reads as

H ≈ HMF = e0Nuc + 1

2

∑
k

∑
α

[
λP̂α†

k P̂α
k + Q̂α†

k Vα
k Q̂α

k

]
.

(C10)
Here, e0 = −3J2s2 + 3

4 J2 + 3λs2 − 15
2 λ, with s being the

mean singlet amplitude on all the J2 bonds. λ is the Lagrange
multiplier used to satisfy the boson number constraint in (C5)
on average.

P̂α†
k = [

P̂α†
1k P̂α†

2k P̂α†
3k

]
, (C11)

Q̂α†
k = [

Q̂α†
1k Q̂α†

2k Q̂α†
3k

]
, (C12)

and

Vα
k =

⎡⎢⎣ λ η12 η∗
31

η∗
12 λ η23

η31 η∗
23 λ

⎤⎥⎦ (C13)

with

η12 = s2

2
[−J3 + (J5 − J1)eik·a2 + J4eik·a1 ], (C14a)
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η23 = s2

2
[−J3 + (J5 − J1)e−ik·a1 + J4e−ik·(a1−a2 )],

(C14b)

η31 = s2

2
[−J3 + (J5 − J1)eik·(a1−a2 ) + J4e−ik·a2 ] (C14c)

(the lattice vectors a1 = √
7/2(x̂ + √

3ŷ) and a2 =√
7x̂). Moreover, P̂α†

bk ’s and Q̂α†
bk ’s are the Fourier com-

ponents of P̂α†
b (r)’s and Q̂α†

b (r)’s, respectively, i.e., P̂α†
bk =

1/
√

Nuc
∑

k eik·rP̂α†
b (r) and Q̂α†

bk = 1/
√

Nuc
∑

k eik·rQ̂α†
b (r).

HMF now is a problem of three coupled differential equa-
tions, which one diagonalizes to obtain

HMF = e0Nuc +
∑

m

∑
k

∑
α

ωα
k,m

(
γ

α†
k,mγ α

k,m + 1

2

)
, (C15)

where γ α
k,m are renormalized triplon operators, and

ωα
k,m =

√
λ

(
λ − 1

2
s2ξα

k,m

)
(C16)

with

ξα
k,m = 2

√
− pk

3
cos

⎡⎣1

3
cos−1

⎛⎝ 3qk

2pk

√
− 3

pk
− 2π

3
m

⎞⎠⎤⎦,

(C17)

and

pk = −(|η12|2 + |η23|2 + |η31|2), (C18)

qk = 2Re(η12η23η31). (C19)

The ground state of the system is given by the vacuum of the
quasiparticles, γ α

k,m, i.e., the ground state energy per site of the
system is given by

eg = e0

6
+ 1

12Nuc

∑
m

∑
k

∑
α

ωα
k,m. (C20)

The unknown mean-field parameters, λ and s2 are determined
by minimizing eg, which leads to the following self-consistent
equations:

λ = J2 + 1

12Nuc

∑
m

∑
k

∑
α

λξα
k,m

2ωα
k,m,

(C21a)

s2 = 5

2
− 1

12Nuc

∑
m

∑
k

∑
α

4λ − s2ξα
k,m

2ωα
k,m

. (C21b)

To access finite temperature properties from the bond-
operator mean-field theory we employ the methodology used
by Normand et al. [50]. First of all, a full thermal occu-
pation function of hard-core bosons is impossible to obtain
because of the exclusion constraint of Eq. (C5). It can, how-
ever, be approximated via a statistical reweighting of the
free-boson numbers [61], i.e., suppressing the magnon den-
sity of states for all magnon sectors, the more magnons in a
sector, the stronger the suppression. This leads to the effective

FIG. 9. Luttinger-Tisza band-structure of the full bluebellite
model Hamiltonian. The lowest band has a width of of 4% of J̃
with soft minima along the �−M direction within an almost flat area
around the origin in reciprocal space.

single-dimer free energy

f = − 1

β
ln

⎡⎣1 +
∑
m,α

zm,α (β )

⎤⎦, (C22)

where

zm,α (β ) = 1

Nuc

∑
k

exp
(− βωα

k,m

)
is the partition function of the triplet tα

m. The effective statistics
obtained from such a statistical ansatz are given by

n
(
ωα

k,m, β
) = exp

(− βωα
k,m

)
1 + ∑

m,α zm,α (β )
, (C23)

where β is the inverse temperature [62]. The magnetic specific
heat, hereafter, is easily derived by taking a second derivative
of the free-energy with respect to temperature. The magnetic
specific heat thus obtained reads as

Cmag(β ) =
∑

m,k,α

[ (
βωα

k,m

)2
exp

(− βωα
k,m

)
1 + 1

Nuc

∑
m,k,α exp

(− βωα
k,m

)
−

{
βωα

k,m exp
(− βωα

k,m

)
1 + 1

Nuc

∑
m,k,α exp

(− βωα
k,m

)}2]
. (C24)

The results obtained from the finite temperature calculations
are depicted in Fig. 3.

APPENDIX D: LUTTINGER-TISZA ANALYSIS
OF THE BLUEBELLITE

The full model Hamiltonian of bluebellite is not amenable
to a solution in the classical, i.e., S → ∞ limit, where spin
operators are replaced by vector spins. Therefore, we resort
to the Luttinger-Tisza approximation [71,72], where the nor-
malization of the spins is enforced only on average, allowing
for analytical solution of the model. The corresponding band
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structure in Fig. 9 shows a flat lowest band with a bandwidth
of 4% of J̃ , and an almost degenerate area around the � point,
featuring soft minima along the �−M direction. While in the
classical limit, even in the Luttinger-Tisza approximation, this
energy landscape implies an ordered ground state, quantum

fluctuations can access these low-lying states by allowing
for variations in the spin expectation values. Therefore, the
flatness of the lowest Luttinger-Tisza band indicates the prob-
ability for the quantum model to avoid long-range order, as
we find for bluebellite.
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