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Entanglement in quantum many-body systems can exhibit universal phenomena governed by long-distance
properties. We study universality and phase transitions of the entanglement inherent to open many-body
systems, namely, the entanglement between a system of interest and its environment. Specifically, we consider
the Tomonaga-Luttinger liquid (TLL) under a local measurement and analyze its unconditioned nonunitary
evolution, where the measurement outcomes are averaged over. We quantify the system-environment entan-
glement by the Rényi entropy of the post-measurement density matrix, whose size-independent term encodes
the universal low-energy physics. We develop a field-theoretical description to relate the universal term to the
effective ground-state degeneracy known as the g function in a boundary conformal field theory, and use the
renormalization group method to determine its value. We show that the universal contribution is determined
by the TLL parameter K and can exhibit singularity signifying an entanglement phase transition. Surprisingly,
in certain cases the size-independent contribution can increase as a function of the measurement strength in
contrast to what is naïvely expected from the g-theorem. We argue that this unconventional behavior could be
attributed to the dangerously irrelevant term which has been found in studies of the resistively shunted Josephson
junction. We also check these results by numerical calculations in the spin- 1

2 XXZ chain subject to a site-resolved
measurement. Possible experimental realization in ultracold gases, which requires no postselections, is discussed.

DOI: 10.1103/PhysRevB.110.094404

I. INTRODUCTION

Understanding universal aspects of entanglement in quan-
tum many-body systems has been a subject of great interest
in both condensed matter physics and quantum informa-
tion science [1–3]. A prime example is an entanglement
entropy of an interval in a one-dimensional (1D) critical
state, which exhibits a universal logarithmic scaling with the
coefficient given by the central charge c of the correspond-
ing conformal field theory (CFT) [4–6]. Another example
is a topologically ordered state, in which the underlying
long-range entanglement leads to a universal subleading con-
tribution to the entanglement entropy [7–9]. More recently,
there has been growing interest in rich and potentially new
behaviors of many-body entanglement which are induced by
projection measurement [10–34] or continuous monitoring,
i.e., weak nonunitary backaction due to an external environ-
ment [35–53]. All these developments have so far concerned
entanglement properties within a system of interest, where
one partitions a system into a few parts and then considers
entanglement between those subsystems.

*Contact author: ashida@phys.s.u-tokyo.ac.jp

The aim of this paper is to reveal yet another universal
aspect of entanglement which is inherent to open many-body
systems. Specifically, we focus on the entanglement between
an entire system and its environment (see Fig. 1), and ask the
following questions.

(i) Are there phase transitions in the system-environment
entanglement, and if so, can they exhibit universal behavior?

(ii) How can one develop a field-theoretical description of
the system-environment entanglement?

(iii) Is it possible to analytically calculate the universal
contribution to the system-environment entanglement?

Quantum critical states are of particular interest in this
context since they are highly entangled states susceptible
to external perturbations and expected to exhibit nontrivial
long-distance behavior when coupled to the environment.
Motivated by this, we address the above questions by
considering a class of 1D critical states described as the
Tomonaga-Luttinger liquid (TLL) [54,55]. The concept of
the TLL provides a unified framework to analyze low-energy
physics of various 1D interacting systems ranging from
fermionic and bosonic many-body systems to spin chains
[56–58]. The long-distance correlation, for instance, is char-
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FIG. 1. Schematic figure illustrating the setup. The total Hilbert
space consists of an environment E and a one-dimensional many-
body system S whose low-energy behavior is described by the
Tomonaga-Luttinger liquid. We study universality and phase transi-
tions of the entanglement between S and E , which can be diagnosed
by the Rényi entanglement entropy SSE .

acterized by just a single parameter K known as the TLL
parameter.

Our main interest lies in the unconditioned nonunitary
evolution of the TLL, where the measurement outcomes are
averaged over. We answer question (i) in the affirmative way
by demonstrating that the TLL subject to a local measure-
ment exhibits a universal entanglement phase transition as
a function of the measurement strength. Here, the system-
environment entanglement is quantified by the Rényi entropy
of the post-measurement density matrix. One of the key find-
ings is that the system-environment entanglement acquires a
size-independent universal term s0 that is in general irrational
and can exhibit singular changes as the values of K and/or the
measurement strength are varied.

We develop a field-theoretical formalism to analyze uni-
versality and phase transitions of the system-environment
entanglement. Namely, we express the post-measurement
density matrix as a vector in a doubled Hilbert space
[59,60] and employ the Euclidean path-integral representation
[61,62]. The resulting field theory is described by the copies
of the original theory which corresponds to a c = 1 CFT in
the case of the TLL. The nonunitary evolution due to the
environment is represented as the boundary term acting on the
multicomponent (1+1)-dimensional fields. In this description,
the universal contribution to the system-environment entan-
glement can be obtained as the Affleck-Ludwig boundary
entropy [63]. As such, entanglement phase transitions are
described as boundary phase transitions in the corresponding
statistical field theory. While the emphasis of our analy-
sis is on the TLL under a local measurement, the present
formulation is general and can be used to study the system-
environment entanglement in a variety of setups, thereby
addressing question (ii).

To analytically obtain the universal contribution as raised
in question (iii), we have to approach the problem in two
steps. First, we perform renormalization group (RG) analysis
to figure out whether or not the boundary action is relevant to
long-distance properties. In this way, one can determine which
conformal boundary conditions must be imposed on the effec-

tive field theory in the infrared (IR) limit. In particular, when
we consider local decoherence, the corresponding boundary
action is written as local perturbations and can naturally lead
to the conformal boundary conditions. One of the key chal-
lenges in this RG analysis is that one must go beyond the
perturbative treatment. This is because the boundary action
can have a dangerously irrelevant term, which can be relevant
in nonperturbative regions despite being perturbatively irrel-
evant [64–66]. As detailed later, neglect of this term would
lead to a result that is at odds with the earlier study [67].
Second, we construct conformal boundary states consistent
with the boundary conditions determined by the RG analysis.
To this end, we need a careful treatment of the compactifica-
tion conditions of the multicomponent fields. Once the correct
conditions are identified, the universal constant contribution
to the partition function can be obtained by invoking the
boundary CFT techniques [68–73]. These results are checked
by our numerical calculations in the spin- 1

2 XXZ chain under
a site-resolved measurement.

Before getting into our concrete analyses, let us put the
present work in a broader context. First, as discussed later,
the universal contribution s0 to the system-environment en-
tanglement can be directly related to the g function in a
boundary CFT, which has an interpretation as an effective
ground-state degeneracy [63,74–77]. It is commonly believed
that the g function monotonically decreases under RG flows
between boundary fixed points, which is often referred to as
the g theorem. In other words, when measurement acts as a
relevant perturbation, the boundary entropy s0 converges in
the thermodynamic limit to a universal value that is less than
the initial value of the ultraviolet (UV) theory; as such, one
would expect that s0 decreases as the measurement strength
is increased. Surprisingly, we find that in certain cases the
size-independent contribution s0 can increase as a function of
the measurement strength [see Figs. 3(a) and 6 below]. We
speculate that this unconventional behavior originates from
nonmonotonic RG flows due to the dangerously irrelevant
term that has been discussed in the context of the dissipative
quantum phase transition [64–66].

Second, the present study sharply contrasts with previous
studies that have analyzed the TLL influenced by measure-
ment backaction at a single-trajectory level [78–86]. In the
latter, nonunitary dynamics is conditioned on the measure-
ment outcomes, and nontrivial effects can appear even in a
linear function of the system density matrix such as an expec-
tation value of local observables. This fact has its origin in
the nonlocality inherent to quantum measurement [22,36,87].
Meanwhile, the price one must pay is the need of postselect-
ing measurement outcomes, which currently remains a major
challenge despite recent efforts [26,27,29,32–34]. In contrast,
our setup requires no postselections while nontrivial effects
can be encoded only in a nonlinear function such as the Rényi
entropy. Notably, recent experimental developments have al-
lowed one to measure such a nonlinear quantity (see, e.g.,
Ref. [88]); below we will propose a concrete protocol to test
our theoretical predictions in ultracold atomic experiments.

Third, the present work also has close connections with the
earlier studies in the areas of quantum nanotransport [89–93]
and dissipative systems [94–99]. There, a quantum impurity
is typically coupled to a bath represented as a collection of
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bosonic modes. When a bath can be modeled as the Ohmic
bath, a canonical transformation can be used to express the
oscillator bath in terms of the TLL [100], i.e., a 1D free
massless quantum bosonic field. One can use, for instance,
precisely the same boundary action as considered in our study
to describe the resistively shunted Josephson junction [101].
Naturally, the boundary CFT techniques have found applica-
tions to various quantum impurity problems and dissipative
systems. The present study demonstrates that these techniques
are also useful to study the system-environment entanglement.
In particular, our study can provide further insight into the
recent discussions about the dissipative quantum phase transi-
tion as detailed later.

The remainder of the paper is organized as follows. In
Sec. II, we present a general formulation to describe the
system-environment entanglement within the field-theoretical
framework. In Sec. III, we introduce a model of the TLL under
a local measurement. In Sec. IV, we perform both nonpertur-
bative and perturbative RG analyses of the boundary action
and identify the conformal boundary conditions in the IR limit
that will be necessary in the boundary CFT analysis. In Sec. V,
we employ the boundary CFT techniques to determine the
value of the universal contribution to the system-environment
entanglement. In Sec. VI, we present the numerical analysis of
the spin- 1

2 XXZ chain under a site-resolved measurement and
demonstrate a consistency with the analytical results obtained
in the preceding sections. In Sec. VII, we briefly discuss a
possible way to test our theoretical predictions in ultracold
atomic experiments. In Sec. VIII, we give a summary of our
results and suggest several directions for future investigations.

II. GENERAL FORMULATION

A. System-environment entanglement

We consider the Hilbert space that consists of a system
S and its environment E . Suppose that the initial state is
prepared in the product state ρ̂S ⊗ ρ̂E . The unitary operator Û
is acted on the total Hilbert space to generate the entanglement
between S and E :

ρ̂SE = Û (ρ̂S ⊗ ρ̂E )Û †. (1)

The system-environment entanglement can then be evaluated
by the Rényi entanglement entropy,

S(n)
SE = 1

1 − n
ln tr

[
ρ̂n
E
]
, (2)

where we introduce the reduced system density matrix by

ρ̂E = E (ρ̂S ) ≡ trE [ρ̂SE ]. (3)

Here, we take the partial trace over E , and E denotes the cor-
responding completely positive and trace preserving (CPTP)
map that describes an effective evolution of the system, which
is in general nonunitary. From now on we focus on the case
of n = 2, which corresponds to the purity of the system, and
abbreviate the label n for the sake of notational simplicity:

SSE = − ln tr
[
ρ̂2
E
]
. (4)

We consider the situation in which the initial state of the
system is given by ρ̂S = |�0〉〈�0| with |�0〉 being a 1D crit-
ical ground state. When S and E locally interact with each

other and exhibit only short-range correlations, the leading
contribution to SSE is simply given by the term that scales with
the size of the system L (cf. Fig. 1). Consequently, we expect
the relation

SSE = s1L − s0 + o(1). (5)

As discussed later, the coefficient s1 is nonuniversal since it
depends on microscopic details and is sensitive to a choice
of the UV cutoff �0 in the effective field theory. Namely,
the leading contribution originates from high-energy fluctu-
ations and does not reflect low-energy universal properties.
In fact, it is the size-independent term s0 that characterizes
universal long-distance properties of the system-environment
entanglement.

The universal contribution s0 allows us to diagnose whether
or not the nonunitary mapping E is a relevant perturbation to
the long-distance behavior of ρ̂S . When s0 vanishes, E is irrel-
evant in the RG sense and the low-energy degrees of freedom
are effectively decoupled from the environment. In contrast,
nonzero s0 indicates that E is a relevant perturbation; in this
case, the system-environment coupling typically flows to the
strong-coupling limit. Consequently, the system gets strongly
entangled with the environment in the IR limit. Interestingly,
when the initial critical state ρ̂S is the TLL as discussed below,
we find that s0 can continuously vary depending on the TLL
parameter K and exhibit singularity signifying an entangle-
ment phase transition as a function of the system-environment
coupling strength.

We note that these nontrivial phenomena can be detected
only by a quantity that is nonlinear in ρ̂E . To illustrate this, it
is useful to express the CPTP map by the product of the local
maps and employ the Kraus representation [102],

E =
∏

j

E j, E j (·) =
∑

m

K̂m, j (·)K̂†
m, j . (6)

Here, the Kraus operators K̂m, j act on site j and satisfy∑
m K̂†

m, j K̂m, j = Î with Î being the identity operator. Using

the dual mapping E∗ = ∏
j E∗

j with E∗
j (·) ≡ ∑

m K̂†
m, j (·)K̂m, j ,

the expectation value of a local observable Ô with respect to
ρ̂E can be expressed by tr[Ôρ̂E ] = tr[E∗(Ô)ρ̂S]. The latter is
nothing but an expectation value of another local observable
E∗(Ô) with respect to ρ̂S , which is not expected to exhibit
singular behavior as the Kraus operators are continuously
varied. Thus a linear function of ρ̂E cannot be used to detect
the entanglement phase transitions described above.

B. Effective field theory in a doubled Hilbert space

To develop a field-theoretical approach to analyzing the
system-environment entanglement, we first employ the Choi-
Jamiolkowski isomorphism [59,60]. Specifically, we rewrite
the reduced system density matrix ρ̂E as a vector |ρE ) in a
doubled Hilbert space,

|ρE ) =
∏

j

(∑
m

K̂m, j ⊗ K̂∗
m, j

)
|ρS ), (7)

where a CPTP map E is expressed as an operator acting on the
doubled initial pure state |ρS ) = |�0〉 ⊗ |�∗

0 〉. The positivity
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of E allows one to write |ρE ) in the exponential form,

|ρE ) = exp

⎛
⎝−μ

∑
ja

k̂ ja ⊗ ˆ̃k ja

⎞
⎠|ρS ), (8)

where k̂ ja and ˆ̃k ja are certain local operators and μ > 0
is a dimensionless coefficient that characterizes the system-
environment coupling strength or the measurement strength.

We next employ the path-integral representation and for-
mulate the problem in terms of an effective field theory. To this
end, we describe the matrix elements of the doubled density
matrix |ρE )(ρE | by using the Euclidean path integral of the
two (1+1)-dimensional scalar fields φ and φ̃,1

(φ′(x), φ̃′(x)|ρE )(ρE |φ′′(x), φ̃′′(x))

= 1

ZI

∫ (φ,φ̃)τ=0−=(φ′,φ̃′ )

(φ,φ̃)τ=0+=(φ′′,φ̃′′ )
DφDφ̃ e−SE

tot [φ,φ̃]. (9)

The total action SE
tot is given by

SE
tot[φ, φ̃] ≡ S0[φ] + S0[φ̃] + SE [φ, φ̃], (10)

where S0 is the bulk action of the ground state |�0〉 de-
fined as an integral over the spatial coordinate x and the
imaginary time τ , and ZI is the partition function of the
two decoupled copies of scalar fields, i.e., ZI = (Z0)2 with
Z0 = ∫

Dφ e−S0[φ]. For instance, in the TLL considered later,
S0 will be given by a c = 1 CFT. Meanwhile, SE represents
the effect of the state changes due to the environment. For
the sake of simplicity, we assume that the Kraus operators are
diagonal in terms of the field variables. Thus, from Eq. (8), SE
can be written as a boundary term acting on the τ = 0 line,2

SE [φ, φ̃] = μ

∫
dxdτδ(τ )

∑
ja

(k ja[φ]k̃ ja[φ̃] + c.c.), (11)

which induces the interaction between the two copies of scalar
fields at the boundary.

We note that the boundary action SE should satisfy sev-
eral conditions and cannot be chosen arbitrarily. First, SE
should be non-negative because of the positivity of E . Sec-
ond, the normalization condition of the Kraus operators leads
to
∫

dφ
∑

ja k ja[φ]k̃ ja[φ] = 0, which is necessary to ensure
the normalization condition in the weak-measurement limit
μ → 0. Third, if the diagonal elements of

∑
ja k̂ ja ⊗ ˆ̃k ja van-

ish, the boundary action is subject to an additional constraint
SE [φ, φ] = 0, which will be the case in our examples below.

1Here, the fields live on a surface of size L × β, where L is the
spatial length and the inverse temperature β will eventually be taken
to infinity to reach the zero-temperature limit. In discussing the
transition amplitude in Eq. (9), the fields are fixed on the two edges at
τ = 0 and β. We express the locations of these edges by τ = 0+ and
0−, respectively, as we later glue these edges together to calculate the
trace in Eq. (12); see also Fig. 5.

2Precisely speaking, when Eq. (11) is to be used in the transition
amplitude in Eq. (9), it must be understood that the term k jak̃ ja acts
on the τ = 0− edge while its complex conjugate acts on the τ = 0+

edge. These edges are glued together and turn into the single τ = 0
line when discussing the trace in Eq. (12).

The nonunitary evolution represented by the temporal
defect SE can induce a boundary phase transition, which man-
ifests itself as a singular change of the universal contribution
s0 in the system-environment entanglement SSE in Eq. (5). In
the path-integral representation, SSE can be obtained by the
ratio between the two partition functions

SSE = − ln tr[|ρE )(ρE |] = − ln
ZE
ZI

. (12)

We note that the fields in ZI obey the following constraint:

(φ, φ̃)τ=0− = (φ, φ̃)τ=0+ . (13)

Meanwhile, ZE = ∫
DφDφ̃ e−SE

tot [φ,φ̃] is the partition function
of the two copies subject to Eq. (13) and possible additional
constraints due to the boundary action SE . As shown below,
when these constraints lead to certain conformally invariant
boundary conditions, the boundary CFT techniques allow us
to explicitly calculate each of the partition functions as3

ln Zξ = bξ L + ln gξ + o(1), ξ ∈ {I, E}, (14)

where bξ is a cutoff-dependent nonuniversal coefficient, and
gξ is a UV-independent universal contribution known as the
g function [63]. The latter can be interpreted as the effective
ground-state degeneracy, which in general takes a noninteger
value determined from the conformal boundary states [cf.
Eq. (78) and the related discussions in Sec. V]. Comparing
Eq. (5) with Eqs. (12) and (14), the size-independent universal
contribution s0 can be directly related to the g functions via

es0 = gE
gI

. (15)

A nonzero value of s0 then indicates that SE is a relevant
perturbation, which imposes nontrivial conformal boundary
conditions and alters the value of the g function. Physically,
this means that the system-environment interaction is relevant
in the sense that its influence on the entanglement survives
even in the IR limit. We have thus mapped the problem of
characterizing the universality of the system-environment en-
tanglement to the problem of identifying conformal boundary
conditions in the IR limit.

We note that the g function is known to play a similar role
in boundary RG flows as the central charge c does in bulk
RG flows. Namely, the g-theorem states that the g function
should monotonically decrease under RG flows, leading to
gE < gI provided that the boundary perturbation is relevant
[63,75,76]. As such, one might be tempted to conclude that
s0 must be less than or equal to zero. We find, however, that
this is not always the case. Below we will present a simple

3In fact, both the linear and the constant term vanish for ξ = I in
Eq. (14) since the partition function ZI is defined for two decoupled
tori, which have no boundary; see Fig. 5. We explicitly show these
vanishing terms to emphasize the relative change due to the boundary
action. Specifically, as seen in Eq. (15), the constant contribution
to the system-environment entanglement is related to the relative
change in the boundary entropy. We also note that, in general, a term
proportional to the spacetime area βL, i.e., a bulk contribution, adds
to Eq. (14). This bulk term is insensitive to the boundary condition
and cancels between ξ = E and ξ = I in Eq. (12).

094404-4



SYSTEM-ENVIRONMENT ENTANGLEMENT PHASE … PHYSICAL REVIEW B 110, 094404 (2024)

example where s0 can take a strictly positive value due to
the dangerously irrelevant term, while we will argue that this
behavior can be still consistent with the g theorem.

III. TOMONAGA-LUTTINGER LIQUID INFLUENCED
BY A LOCAL MEASUREMENT

As a concrete example, we study the case when a critical
state |�0〉 is described by the TLL realized as the ground state
of the Hamiltonian,

Ĥ

h̄
=
∫

dx
v

2π

[
1

K
(∂xφ̂)2 + K (∂x θ̂ )2

]
, (16)

where v is the velocity, K is the TLL parameter, and φ̂(x)
and θ̂ (x) are the bosonic field operators satisfying the com-
mutation relation [φ̂(x), ∂x′ θ̂ (x′)] = iπδ(x − x′). A smaller K
means stronger correlations in density fluctuations ∂xφ̂ and
weaker correlations in phase fluctuations ∂x θ̂ . We choose the
unit h̄ = v = 1 below and impose the periodic boundary con-
ditions throughout this paper.

When the TLL is realized in a gapless spin- 1
2 antiferro-

magnetic XXZ chain, each Pauli operator at lattice site j
can be related to the field operators through the bosonization
relations [56],

σ̂ z
j 
 2a

π
∂xφ̂ + c1(−1) j cos(2φ̂), (17)

σ̂+
j 
 eiθ̂ [c2(−1) j + c3 cos(2φ̂)], (18)

where a is the lattice spacing, and c1,2,3 are nonuniversal
coefficients. We here note that the spin quantization axis is
chosen such that the total z magnetization Sz

tot = ∑
j σ̂

z
j /2

corresponds to the conserved charge of the TLL. The Eu-
clidean action can be expressed in terms of either φ or θ

representations as

S0[φ] =
∫

dxdτ
1

2πK
[(∂xφ)2 + (∂τφ)2], (19)

S0[θ ] =
∫

dxdτ
K

2π
[(∂xθ )2 + (∂τ θ )2], (20)

where each field is compactified on a circle as

φ ∼ φ + πn, θ ∼ θ + 2πm, n, m ∈ Z. (21)

Here, the condition on φ reflects the quantization of the to-
tal magnetization, Sz

tot ∈ Z, while the condition on θ can be
inferred from the bosonized expression of σ̂+

j in Eq. (18).
We consider a local measurement process defined by the

following Kraus operators:

K̂0, j = cos ζ Î, K̂±, j = sin ζ
1 ± σ̂ α

j

2
(22)

with 0 < ζ � π/2 and α ∈ {x, y, z}. At each site, this pro-
cess corresponds to performing the site-resolved projection
measurement along axis α with probability sin2 ζ and doing
nothing otherwise. The resulting CPTP map E in Eq. (6) has
the interpretation as the unconditioned evolution, which corre-
sponds to taking the ensemble average over the measurement
outcomes, i.e., throwing away all the information acquired by
the measurements (see, e.g., Ref. [103]). Alternatively, the un-
conditioned evolution E can be also regarded as the finite-time

evolution of the Markovian master equation E = eLt , which is
generated by

L(ρ̂) = −1

2

∑
j

(L̂†
j L̂ j ρ̂ + ρ̂L̂†

j L̂ j − 2L̂ j ρ̂L̂†
j ). (23)

Here, the jump operators are given by

L̂ j = √
γ σ̂ α

j (24)

with γ being the measurement rate. This simply means that
the nonunitary evolution E corresponds to local decoherence
or dephasing along axis α due to the Markovian environment.

From Eqs. (7) and (8), the post-measurement density ma-
trix in the doubled Hilbert space can be obtained as

|ρE ) = exp

⎧⎨
⎩−μ

⎡
⎣∑

j

(
1 − σ̂ α

j ⊗ σ̂ α
j

)⎤⎦
⎫⎬
⎭|�0〉 ⊗ |�0〉, (25)

which corresponds to Eq. (8) with k̂ j1 = ˆ̃k j1 = Î and k̂ j2 =
ˆ̃k j2 = iσ̂ α

j . Here, the measurement strength μ > 0 can be
related to the parameters in Eqs. (22) and (24) via μ =
− ln cos ζ and μ = γ t , respectively. Thus the strong cou-
pling limit μ → ∞ corresponds to the limit ζ → π/2 of
performing the projection measurement at all the sites [67]
or, equivalently, the long-time limit t → ∞ of the Markovian
evolution induced by Eq. (23). We note that in this limit the
coherence is completely lost, and the density matrix reduces
to a classical diagonal ensemble. Below we shall refer to the
nonunitary evolution (25) along the symmetry axis α = z as
density measurement and that on the easy plane α = x, y as
phase measurement. This is because the spin- 1

2 operator σ̂ z

(σ̂ x,y) has the interpretation as density (phase) fluctuations of
1D interacting particles as inferred from Eq. (17) [Eq. (18)].

IV. RENORMALIZATION GROUP ANALYSIS

Our main goal is to demonstrate that the TLL influenced
by a local measurement (25) can exhibit entanglement phase
transitions in the system-environment Hilbert space. In the
field-theoretical formalism, these transitions correspond to the
boundary phase transitions of the doubled fields in Eq. (10).
To this end, we first need to perform a RG analysis to assess
whether or not the boundary perturbation is relevant and de-
termine which conformal boundary conditions are imposed in
the IR limit.

A. Density measurement

We first consider the case of density measurement in which
decoherence along the symmetry axis α = z occurs. Using
Eq. (25) and the bosonized expression (17), we can obtain the
boundary action (11) as4

SE [φ, φ̃] = μ

∫
dxdτ δ(τ )

[
2a

π2
(∂xφ − ∂xφ̃)2

+ c2
1

2a
(cos(2φ) − cos(2φ̃))2

]
, (26)

4Equation (26) can be inferred from the following relation:∑
j (1 − σ̂ z

j ⊗ σ̂ z
j ) = ∑

j

(1⊗σ̂ z
j −σ̂ z

j ⊗1)2

2 
 ∫
dx
2a [ 4a2

π2 (∂xφ̂ − ∂x
ˆ̃φ)2 +

c2
1(cos(2φ̂) − cos(2 ˆ̃φ))2].
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where we use the path-integral formalism in the φ representa-
tion, and φ and φ̃ are the two copies of the scalar fields.

It is useful to introduce the symmetric and antisymmetric
combinations of the bosonic fields by

φ+ = 2(φ + φ̃), φ− = 2(φ − φ̃). (27)

As a result, the total action (10) can be rewritten as

Stot[φ+, φ−] = S0[φ+] + S0[φ−] + SE [φ+, φ−], (28)

where the bulk action is a c = 1 CFT,

S0[φ±] =
∫

dxdτ
1

16πK
[(∂xφ±)2 + (∂τφ±)2]. (29)

The boundary term acting on the τ = 0 line is given by

SE [φ+, φ−] = μ

∫
dxdτ δ(τ )

[
a

2π2
(∂xφ−)2

+ c2
1

2a
(1 − cos (φ+))(1 − cos (φ−))

]
, (30)

which is non-negative and satisfies SE [φ+, φ− = 0] = 0 as
discussed before in Sec. II B. The nonunitary evolution thus
acts as the boundary interaction that tends to lock the phase
difference φ−. Physically, this phase locking has an interpreta-
tion as wave-function collapse due to measurement [104]. To
see this, one can unravel the CPTP map E into an individual
quantum trajectory, that is, a stochastic nonunitary evolu-
tion conditioned on the measurement outcomes [cf. Eq. (6)].
There, the Kraus operators (22) effectively act as a quantum
nondemolition measurement of φ operators. As such, quan-
tum jumps in each trajectory tend to stochastically localize
the many-body wave function represented in the φ basis [105].
Such wave-function collapse results in the suppression of off-
diagonal elements in the density matrix, which is captured by
the locking of φ−.

After integrating out the bulk parts, we can obtain the
(1+0)-dimensional action for boundary degrees of freedom.
Specifically, we express the τ = 0 components and their
Fourier transforms by

ϕ±(x) ≡ φ±(x, τ = 0), ϕk± =
∫

dx ϕ±(x)eikx, (31)

respectively, and integrate out the τ �= 0 components by per-
forming the Gaussian integrations. The resulting action is

S = 1

2

∫ �0

−�0

dk

2π

[ |k|
4πK

|ϕk+|2 +
( |k|

4πK
+ γ k2

�0

)
|ϕk−|2

]

+ u�0

∫ ∞

−∞
dx(1 − cos (ϕ+(x)))(1 − cos (ϕ−(x))),

(32)

where �0 = 2π/a is the UV momentum cutoff and we intro-
duce the dimensionless parameters by

γ = 2μ

π
, u = μc2

1

4π
. (33)

The scaling dimensions of perturbations in Eq. (32) are

dim[(∂xϕ−)2] = 2, dim[cos(ϕ±)] = 2K. (34)

When K > 1/2, one may argue from the perturbative RG
analysis that all the perturbations in Eq. (32), which are pro-
portional to γ or u, are irrelevant, and this should lead to the
trivial value gE/gI = 1. Such prediction, however, is at odds
with Ref. [67] that has found a nonzero value of s0 in the limit
of the projection measurement μ → ∞ even when K > 1/2.
This fact indicates that we must carefully analyze the action S
by going beyond a perturbative treatment.

For this purpose, we employ a nonperturbative approach
known as the functional RG (fRG). While we present techni-
cal details in Appendix, here we summarize the key points.
First of all, we neglect the cross coupling cos(ϕ+) cos(ϕ−)
in the action as it has the scaling dimension 4K and should
be less relevant compared to the other potential terms. As a
result, the action can be decoupled into the two sectors that
include either ϕ+ or ϕ−. On the one hand, the + sector is
equivalent to the action discussed in the earlier studies of
quantum impurity problems [89,90]. In this case, one can
make the duality argument in the strong corrugation limit, and
it is well-established that the potential denoted by cos(ϕ+) is
relevant (irrelevant) when K < 1/2 (K > 1/2) at any u+.

On the other hand, the - sector requires a careful analysis
because of the k2 kinetic term in Eq. (32), which is propor-
tional to γ . It has been found in the context of the resistively
shunted Josephson junction that the γ term is dangerously
irrelevant in the sense that it can be relevant in nonpertur-
bative regions despite being perturbatively irrelevant [64].
As demonstrated below, such anomalous enhancement of γ

can lead to the grow of the potential denoted by cos(ϕ−)
even when K > 1/2, for which the potential is perturbatively
irrelevant. Intuitively, this point can be understood by ob-
serving that adding the k2 kinetic term effectively decreases
the value of K for φ− close to the boundary as inferred
from Eq. (32). As such, one can expect that the γ term ef-
fectively makes the boundary state more susceptible to the
cosine potential. To show this more explicitly, in Fig. 2(a),
we plot the crossover behavior of the correlation function
C(x) = 〈cos(ϕ−(x)) cos(ϕ−(0))〉, whose analytical expression
is provided in Appendix. Its slow decay up to the crossover
scale xc/a ∼ 2γ K indicates that the scaling dimension of
cos(ϕ−) is indeed effectively close to zero at short distances.

We can derive the nonperturbative RG flow equations by

du−
dl

= βu(u−, γ ),
dγ

dl
= βγ (u−, γ ), (35)

where l = ln(�0/�) is the logarithmic RG scale, u− denotes
the depth of the potential cos(ϕ−), and βu,γ are the beta
functions whose full expressions are given in Appendix. The
initial conditions at a UV scale � = �0 are set by Eq. (33).
In the perturbative limit γ , u− � 1, we have the asymptotes,
βu 
 (1 − 2K )u− and βγ 
 −γ , which are consistent with
the scaling dimensions. In nonperturbative regions, however,
both βu,γ can be positive as shown in Figs. 2(b) and 2(c). The
resulting RG flow diagrams are shown in Fig. 3(a). Notably,
when K > 1/2, there is a critical value μc in the measure-
ment strength μ, above which the dangerously irrelevant term
γ leads to the nonmonotonic RG flows toward the strong
coupling limit (top panel). This transition manifests itself
as a singular change of the universal contribution s0 in the
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FIG. 2. (a) Correlation function C(x) plotted at the TLL param-
eter K = 1 and the potential depth u = 0. We set the normalization
constants such that the correlation functions with different γ take
the same value at a UV scale x/a = 0.05. (b,c) Beta functions βu in
(b) and βγ in (c) plotted at K = 1, where u− denotes the potential
depth in the “−” sector. Both of them are negatively valued in
the perturbative limit γ , u− → 0, while they can acquire positive
contributions in nonpertubrative regimes.

system-environment entanglement SSE as we demonstrate
later both analytically and numerically.

To determine the value of s0 or, equivalently, the g function,
we need to identify conformal boundary conditions that are
realized in the IR limit of boundary RG flows. In the present
case, the grow of a potential term u± leads to the phase
locking ϕ± = 0, which acts as the Dirichlet boundary condi-
tion (D.b.c.) of φ±, respectively. Accordingly, when K > 1/2,
there must exist a threshold value μ = μc below which the
boundaries of both φ± remain free, i.e., obey the Neumann
boundary condition (N.b.c.), and above which the boundary
condition for only φ− changes to the D.b.c. Meanwhile, when
K < 1/2, the D.b.c.’s should be imposed on both of φ± at
any μ > 0, which means that an arbitrarily weak coupling to
the environment can generate a nontrivial contribution to the
system-environment entanglement. Corresponding to these
boundary conditions, we obtain the value of the g function

as follows:

gE
gI

=

⎧⎪⎨
⎪⎩

2K ∀μ > 0, K < 1/2
1 μ < μc, K > 1/2√

2K μ > μc, K > 1/2
, (36)

whose derivations by boundary CFT will be given in Sec. V.
Additionally, in Sec. VI A, we will numerically verify these
results by the exact diagonalization of the spin- 1

2 XXZ chain.
This agreement between the field-theoretical and numerical
results would also serve as a further support for the validity
of the fRG analysis for the resistively shunted Josephson
junction, which is described by the same effective field theory.

Interestingly, since the ratio gE/gI in Eq. (36) can exceed
unity, the present system might appear to violate the g theorem
[63,75,76]. We speculate that this unconventional behavior
originates from the nonmonotonic boundary RG flows pre-
dicted by our nonperturbative analysis [see the top panel of
Fig. 3(a)]. Namely, it is likely that the theory reached in the
UV limit, which is the source of the flows represented by
the red curves, will be given by the boundary fixed point at
γ → ∞ and u− → 0. Indeed, in the limit γ −1, u− � 1, we
have βu 
 u− and βγ 
 −γ , which implies the asymptote
u− ∝ γ −1 near the UV theory. The diverging γ should favor
the D.b.c., ϕ− = ϕ0, while its localization position ϕ0 remains
undetermined due to the vanishing potential terms. As such,
there formally exist infinitely many possible boundary states,
which we expect to lead to the diverging g function. If so, we
may argue that the g theorem still remains valid in the RG
flows of Fig. 3(a) in the sense that the g function monotoni-
cally decreases from the infinite value to some finite constant.

Before closing this section, let us comment on the value
of K in Eq. (36). Since the critical ground state of a standard
spin- 1

2 XXZ chain corresponds to the TLL having K � 1/2,
one might wonder how the result in Eq. (36) for K < 1/2 can
be tested in actual spin systems. Indeed, when K < 1/2, a
cosine potential in the bulk action is expected to be relevant,
leading to doubly degenerate ground states associated with the
translational symmetry breaking. If |�0〉 is chosen to be the
translationally symmetric ground state of a finite-size system,
the “cat state”-like feature of this state leads to a positive con-
tribution −s0 = ln 2 to the system-environment entanglement
[67]. A possible way to avoid this and realize the TLL having
K < 1/2 is to consider, for instance, a spin- 1

2 chain at the
transitions between the Néel and dimer ordered states, where
the bulk cosine term disappears [106–108].

B. Phase measurement

We next discuss the case of the TLL subject to phase
measurement. We choose α = x in Eq. (25) without loss of
generality. To begin with, we use the bosonization formula
(18) to express the boundary action as5

SE [θ, θ̃ ] = μ

∫
dxdτ δ(τ )

2c2
2

a
(cos(θ ) − cos(θ̃ ))2. (37)

5Equation (37) can be obtained from the following bosonization

relation:
∑

j (1 − σ̂ x
j ⊗ σ̂ x

j ) = ∑
j

(1⊗σ̂ x
j −σ̂ x

j ⊗1)2

2 
 ∫
dx
a 2c2

2(cos(θ̂ ) −
cos( ˆ̃θ ))2.

094404-7



ASHIDA, FURUKAWA, AND OSHIKAWA PHYSICAL REVIEW B 110, 094404 (2024)

FIG. 3. RG flow diagrams of the TLL under density measure-
ment in (a) and phase measurement in (b) at different values of the
TLL parameter K . In (a), the dashed line corresponds to varying the
measurement strength μ, and the crossing point indicates the critical
value μc at which the transition occurs.

We then follow the same procedure as before, but in the θ rep-
resentation this time. Specifically, we introduce the symmetric
and antisymmetric combinations of θ and θ̃ as

θ+ = θ + θ̃ , θ− = θ − θ̃ , (38)

leading to the total action

Stot[θ+, θ−] = S0[θ+] + S0[θ−] + SE [θ+, θ−]. (39)

Here, the bulk action is given by

S0[θ±] =
∫

dxdτ
K

4π
[(∂xθ±)2 + (∂τ θ±)2], (40)

and the boundary action at τ = 0 is

SE [θ+, θ−] = μ

∫
dxdτδ(τ )

2c2
2

a

× (1 − cos (θ+))(1 − cos (θ−)). (41)

After integrating out the bulk degrees of freedom, we obtain
the effective action as

S =
∑
s=±

1

2

∫ �0

−�0

dk

2π

K|k|
π

|ϑks|2

+w�0

∫
dx(1 − cos (ϑ+))(1 − cos (ϑ−)), (42)

where w = μc2
2

π
and ϑ± are the boundary components defined

by

ϑ±(x) ≡ θ±(x, τ = 0), ϑk± =
∫

dx ϑ±(x)eikx. (43)

Again, we may neglect the cross coupling cos(ϑ+) cos(ϑ−)
which is less relevant than the leading terms w± cos(ϑ±) ac-
cording to the scaling dimensions. We can then decompose
the action into the two sectors that include either ϑ+ or ϑ−. A
key difference from the case of density measurement above is
that here the actions in both sectors are completely equivalent
due to the absence of the k2 kinetic term [compare Eq. (32)
with Eq. (42)]. As such, the flow equations of the couplings
can be simply written as

dw±
dl

=
(

1 − 1

2K

)
w±, (44)

which indicate that w± are relevant (irrelevant) when K > 1/2
(K < 1/2). The lack of the dangerously irrelevant term γ also
allows us to recover the duality argument [89], from which
no intermediate fixed points are expected during the RG flows
[cf. Fig. 3(b)]. Consequently, both fields ϑ+ and ϑ− should
obey the D.b.c.’s (N.b.c.’s) at an arbitrarily weak μ when K >

1/2 (K < 1/2). The value of the corresponding g function is
given by

gE
gI

=
{

1 ∀μ > 0, K < 1/2
1

2K ∀μ > 0, K > 1/2
, (45)

which will be derived in the next section by using the bound-
ary CFT techniques. We note that Eq. (45) is consistent with
the g theorem.

V. BOUNDARY CFT ANALYSIS

The boundary perturbations discussed above should lead
to certain conformal boundary conditions in the IR limit.
On the one hand, the conformal boundary conditions for
minimal models, such as the c = 1/2 Ising CFT, have been
well-understood owing to the finiteness of the conformal
towers [109]. Also, in a single-component TLL correspond-
ing to a c = 1 CFT, the Dirichlet and Neumann boundary
conditions are believed to be the only possible conformal
boundary conditions. On the other hand, there is a large
variety of possible boundary conditions in the case of mul-
ticomponent TLLs described by a c > 1 CFT, and their full
understanding still remains open. Accordingly, to derive the
g function of the present model, we need a careful treat-
ment of conformal boundary states [68–73,93,100,110,111].
In particular, it is necessary to identify the precise compact-
ification conditions imposed on the multiple bosonic fields.
Below we provide the construction of a class of conformal
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FIG. 4. Conformal field theory of multicomponent free bosons
(46) is defined on the cylinder with circumference L and length β/2.
A boundary condition � is imposed at both ends τ = 0, β/2.

boundary states for multicomponent TLLs and use it to de-
termine the universal contribution to the system-environment
entanglement.

A. Conformal boundary states with mixed Dirichlet-Neumann
boundary conditions

We consider N-component bosonic fields � governed by
the Euclidean action

S0[�] =
∫

dxdτ

2π
[(∂x�)2 + (∂τ�)2]. (46)

As shown in Fig. 4, the theory is defined on the (1+1)-
dimensional sheet where the periodic boundary conditions
are imposed on the spatial direction x ∈ [0, L), while a cer-
tain boundary condition � is imposed at both ends of the
imaginary-time axis τ ∈ [0, β/2]. We aim to calculate the cor-
responding partition function by expressing it as the transition
amplitude between the boundary states |�〉,

Z�� =
∫

D� e−S0[�] = 〈�|e− β

2 ĤCFT |�〉. (47)

Here, ĤCFT is a Gaussian Hamiltonian of multicomponent
fields

ĤCFT =
∫ L

0

dx

2π
[(∂x�̂)2 + (∂x�̂)2], (48)

where the fields satisfy the commutation relation
[(�̂(x))i, ∂x′ (�̂(x′)) j] = iπδi jδ(x − x′) and obey the periodic
boundary conditions along the x direction. We here assume
that the bosonic fields � are compactified as

� ∼ � + 2πT , T ∈ T , (49)

T =
{

T | T =
N∑

i=1

niai, ni ∈ Z

}
, (50)

while the dual fields � obey

� ∼ � + 2πT ∗, T ∗ ∈ T ∗/2, (51)

T ∗/2 =
{

T ∗ | T ∗ =
N∑

i=1

mibi, mi ∈ Z

}
, (52)

where T ∗ is the reciprocal lattice of T . The primitive vectors
of T and T ∗/2 satisfy the relations ai · b j = 1

2δi j .
We can expand these fields in terms of the oscillator modes

and the zero modes generated by the windings along the
spatial or temporal directions as follows:

�̂(x, t ) = �0 + 2π

L
(T̂x + T̂

∗
t )

+
∞∑

n=1

1√
4n

[ân,Le−ikn (x+t ) + ân,Reikn (x−t ) + H.c.],

(53)

�̂(x, t ) = �0 + 2π

L
(T̂

∗
x + T̂ t )

+
∞∑

n=1

1√
4n

[ân,Le−ikn (x+t ) − ân,Reikn (x−t ) + H.c.],

(54)

where �0 and �0 are the zero-mode angular variables, T̂
∗

and T̂ are their conjugates, ân,L(R) is a vector of annihilation
operators of left- (right-) moving oscillator modes having
quantum number n, and kn = 2πn/L. These operators satisfy
the commutation relations

[(�0)i, (T̂
∗
) j] = i

2
δi j, [(�0)i, (T̂ ) j] = i

2
δi j, (55)

[(ân,α )i, (â†
m,β ) j] = δnmδαβδi j, (56)

where i, j ∈ {1, 2, . . . , N}, α, β ∈ {L, R}, and n, m ∈ N. Us-
ing these mode expansions, the Hamiltonian (48) can be
expressed by

ĤCFT = 2π

L

⎛
⎝T̂

2 + T̂
∗2 +

∑
n,α,i

n â†
n,α,iân,α,i − N

12

⎞
⎠, (57)

where the last term originates from the Casimir energy due to
the vacuum fluctuations of the oscillators.

We now suppose that the boundary condition � is char-
acterized by the condition that the fields obey the D.b.c.’s
within certain subspace V� in the N-dimensional vector space.
Specifically, denoting the projection matrix onto V� by P� , the
fields satisfy

P��̂|�〉 = const. ∀x ∈ [0, L), (58)

which implies

P� ∂x�̂|�〉 = 0 ∀x ∈ [0, L). (59)

We further assume that the remaining parts of � obey the
N.b.c.’s

(1 − P� )∂t�̂|�〉 = 0 ∀x ∈ [0, L). (60)

Using ∂x�̂ = ∂t�̂, we can rewrite Eq. (60) as the following
constraint on the dual fields:

(1 − P� ) ∂x�̂|�〉 = 0 ∀x ∈ [0, L). (61)

We aim to construct a conformal boundary state |�〉 that
is consistent with the above boundary conditions (59) and
(61). To this end, we first introduce the Ishibashi states
Ŝ�|T , T ∗〉, which consist of squeezed vacuum of oscillator
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modes and have zero-mode quantum numbers T and T ∗.
Here, the squeezing operator is defined by

Ŝ� = exp

(
−

∞∑
n=1

â†
n,LOâ†

n,R

)
(62)

with O being an orthogonal matrix, and the zero-mode states
|T , T ∗〉 satisfy the relations

T̂ |T , T ∗〉 = T |T , T ∗〉, (63)

T̂
∗|T , T ∗〉 = T ∗|T , T ∗〉, (64)

ân,α,i|T , T ∗〉 = 0. (65)

Thus the states Ŝ�|T , T ∗〉 satisfy the boundary conditions (59)
and (61) by setting

T ∈ T� = T ∩ V⊥
� , T ∗ ∈ T ∗

� = T ∗/2 ∩ V�, (66)

O = 2P� − I, (67)

where V⊥
� is the orthogonal complement of V� .

This construction, however, is not enough to define phys-
ical conformal boundary states, which must satisfy both the
conformal invariance and Cardy’s consistency condition. On
the one hand, a sufficient condition to ensure the conformal
invariance of a candidate boundary state |�〉 can be written as
[100]

(α̂n,L − Oα̂−n,R )|�〉 = 0 ∀n ∈ Z (68)

for some orthogonal matrix O and the vectors

α̂n,L =

⎧⎪⎨
⎪⎩

ân,L n > 0

T̂ + T̂
∗

n = 0

−â†
−n,L n < 0

,

α̂n,R =

⎧⎪⎨
⎪⎩

ân,R n > 0

−T̂ + T̂
∗

n = 0

−â†
−n,R n < 0

. (69)

One can readily check that the Ishibashi states Ŝ�|T , T ∗〉
satisfy the condition (68), meaning that they are conformally
invariant. On the other hand, they do not satisfy the Cardy’s
condition that is imposed on the partition function after the
modular transformation [70]. In fact, it is the linear combi-
nation of them that satisfies this condition and thus acts as a
legitimate conformal boundary state [93,100]:

|�〉 = g�

∑
T∈T�

∑
T ∗∈T ∗

�

Ŝ�|T , T ∗〉, (70)

where we introduce the coefficient g� , which plays the role
of the g function as shown below. While Eq. (70) defines
only a subclass of boundary states among all the possible
conformally invariant boundary states, this is enough for our
purpose of identifying the g function in the TLL under a local
measurement.

To determine the value of g� , we consider the modu-
lar transformation of the partition function. Namely, we use

Eqs. (47), (57), and (70) to get

Z�� = g2
�

(η(q))N

∑
T∈T�

∑
T ∗∈T ∗

�

q
1
2 (T 2+T ∗2 ), (71)

where q = e−2πβ/L and η(q) = q
1

24
∏∞

n=1(1 − qn) is the
Dedekind η function [112]. After performing the modular
transformation, where the roles of space and time are ex-
changed, we can express the partition function as

Z�� = g2
�

v0(T� )v0(T ∗
� )(η(q̃))N

∑
T̃∈T̃�

∑
T̃

∗∈T̃ ∗
�

q̃
1
2 (T̃

2+T̃
∗2

). (72)

Here, we use the multidimensional Poisson formula to derive
the right-hand side, v0(·) denotes the unit-cell volume of the
concerned compactification lattice, and q̃ = e−2πL/β . We re-
call that the unit-cell volume can be obtained as v0(W ) =√

det(W ), where Wi j = si · s j is the Gram matrix of the prim-
itive vectors si of a lattice W . The leading contribution to
Eq. (72) in the limit L � β is given by

Z�� 
 g2
�

v0(T� )v0(T ∗
� )

e
πNL
12β . (73)

Meanwhile, it should be also possible to interpret Z�� as the
partition function of a 1D quantum system of finite length β/2
and the inverse temperature L with the boundary conditions �

at the two ends τ = 0, β/2 of the “spatial axis” τ . Namely, we
should be able to express the partition function as

Z�� = tr e−LĤ��
CFT , (74)

where Ĥ��
CFT is the CFT Hamiltonian subject to the boundary

conditions � at both ends. When the ground state of Ĥ��
CFT is

unique, we get in the “zero-temperature” limit L � β

Z�� 
 e
πNL
12β , (75)

where we use the fact that the zero-point energy of a CFT
Hamiltonian on a finite chain of length l with edges is given
by −πc/(24l ) [112]. Comparing the coefficients of Eqs. (73)
and (75), we obtain the formula of the g function by

g� = √
v0(T� )v0(T ∗

� ). (76)

We now explain the interpretation of g� as an effective
ground-state degeneracy as follows [63]. In the language of
Eq. (74), where the roles of space and time are exchanged, the
above limit corresponds to taking the zero-temperature limit
1/L → 0 first, before taking the infinite-size limit β → ∞.
Since any finite-size quantum system has a discrete spectrum,
the degeneracy of ground states must be integer valued in
this case. The interpretation of the g function as a noninteger
ground-state degeneracy becomes evident if we take the limits
in the opposite order. Namely, taking the infinite-size limit
β → ∞ first, a quantum Hamiltonian can exhibit a continuous
spectrum, and the system can have a noninteger “ground-
state degeneracy.” In the zero-temperature limit 1/L → 0,
this degeneracy gives rise to a temperature-independent con-
stant in thermal entropy. Such contribution is nothing but a
L-independent multiplicative factor of the partition function
which is introduced as the g function in Eq. (14). We note that
the term linear in L in Eq. (14) originates from the unregulated
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FIG. 5. The upper figure shows the two copies of the free bosonic
fields φ, φ̃ defined on the torus of size L × β. The periodic boundary
condition is imposed on the spatial direction x. At low energies,
a boundary interaction at τ = 0 gives rise to a certain conformal
boundary condition as indicated by the red line. In the lower fig-
ure, the system is folded into the theory of the four-component
fields φ1, φ̃1, φ2, φ̃2 defined on the cylinder with circumference L
and length β/2. Boundary conditions denoted by �1 and �2 are
imposed at the ends τ = 0, β/2 as indicated by the red and blue lines,
respectively.

part of the partition function, which explicitly depends on the
short-distance cutoff through the ratio L/a; as a result, this
term is nonuniversal.

For the sake of later convenience, we discuss the case in
which one imposes two different boundary conditions �1,2 at
τ = 0, β/2, respectively. The partition function can be repre-
sented by the amplitude between the two boundary states

Z�1�2 = 〈�1|e− β

2 ĤCFT |�2〉. (77)

Its leading contribution in the limit β � L is then given by

Z�1�2 
 〈�1|GS〉〈GS|�2〉e
πNβ

12L = g�1 g�2 e
πNβ

12L , (78)

where we use Eqs. (57) and (70), and the fact that the ground
state of ĤCFT is a vacuum state having the vanishing zero-
mode numbers T = T ∗ = 0, i.e., |GS〉 = |0, 0〉. One can see
that the coefficient introduced in Eq. (70) indeed appears
as the L-independent contribution to the partition function,
which has an interpretation as the ground-state degeneracy in
the sense explained above.

B. Boundary CFT in the doubled Hilbert space

We now derive the g function of the TLL under a local
measurement by using the boundary CFT results above. To
do so, we recall that in the doubled Hilbert space formalism
the low-energy theory contains the two copies of the bosonic
fields φ, φ̃ defined on the torus of size L × β. A nonunitary
evolution is then represented as the boundary interaction SE
acting on the τ = 0 line. To calculate the universal contribu-
tion, it is useful to fold the system by doubling the number
of fields as shown in Fig. 5, where the space-time geometry

becomes topologically equivalent to a cylinder after the fold-
ing. In this way, we can map the problem to the theory of the
four-component fields φ1, φ̃1, φ2, φ̃2 defined on the cylinder
with circumference L and length β/2. Boundary conditions
satisfied at the ends τ = 0, β/2 of the cylinder are denoted by
�1,2, respectively.

To apply the boundary CFT results to the present system,
we identify the fields in Eq. (48) as

� = 1√
K

(φ1, φ2, φ̃1, φ̃2)T, (79)

� =
√

K
(
θ1, θ2, θ̃1, θ̃2

)T
, (80)

where the TLL parameter K is included in the definitions. The
original fields are compactified as [cf. Eq. (21)]

φi ∼ φi + πni, φ̃i ∼ φ̃i + π ñi, (81)

θi ∼ θi + 2πmi, θ̃i ∼ θ̃i + 2πm̃i, (82)

where i ∈ {1, 2} and ni, ñi, mi, m̃i ∈ Z. The corresponding
compactification conditions on the fields � and � are de-
scribed by

� ∼ � + 2πT , T ∈ T , (83)

T =
{

T | T =
4∑

l=1

nlal , nl ∈ Z, al = 1

2
√

K
el

}
, (84)

and

� ∼ � + 2πT ∗, T ∗ ∈ T ∗/2, (85)

T ∗/2 =
{

T ∗ | T ∗ =
4∑

l=1

mlbl , ml ∈ Z, bl =
√

Kel

}
, (86)

respectively, where el with l ∈ {1, 2, 3, 4} are the unit vectors.
The g function of the present multicomponent field theory,
which is denoted by gE , is then given by the products of g�1

and g�2 that are defined as the coefficients in the boundary
states |�1,2〉 at each end [see Eq. (78)]. When necessary,
we also have to include an additional integer degeneracy d
that accounts for multiplicity of possible boundary conditions
[113]. Taken together, we have

gE = g�1 g�2 d. (87)

Below we determine a value of the universal contribution (15)
to the system-environment entanglement on the basis of this
formalism.

C. Density measurement

1. Calculation of g�2

We first discuss the case of the TLL under density measure-
ment. We start by considering the g function of the boundary
�2 at τ = β/2 which is created by the folding procedure.
Since there were merely two bosonic fields φ, φ̃ on the torus
before the folding, the boundary conditions at �2 are simply
given by

φ1 = φ2, φ̃1 = φ̃2. (88)
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Accordingly, the subspace V�2 defining the D.b.c.’s is

V�2 = span

⎛
⎜⎜⎝
⎛
⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠
⎞
⎟⎟⎠. (89)

From Eq. (86), the unit-cell volume of T ∗
�2

= T ∗/2 ∩ V�2

is then given by |b1 − b2| · |b3 − b4| = 2K . Meanwhile, the
fields belonging to its orthogonal complement V⊥

�2
remain free

at the boundary, i.e., they obey the N.b.c.’s. From Eq. (84), the
unit-cell volume of T�2 = T ∩ V⊥

�2
is |a1 + a2| · |a3 + a4| =

1/(2K ). Thus the formula (76) allows us to get

g�2 =
√√√√(2K )−1︸ ︷︷ ︸

v0

(
T�2

) × 2K︸︷︷︸
v0

(
T ∗

�2

) = 1. (90)

This result is consistent with the fact that boundary �2 is
nothing more than an artificial boundary created by the folding
procedure, where no boundary entropy is expected.

We note that the conditions (88) must be satisfied also at
the other edge �1 because the fields obey the periodic bound-
ary conditions along the imaginary-time τ axis. In particular,
when all the boundary interactions in SE are irrelevant and the
fields obey only Eq. (88), the same result holds true as follows:

g�1 = 1, (91)

which also implies gI = 1. This simply means that in this
case the system is decoupled tori in the IR limit, which should
not have any boundary entropy. In contrast, when a boundary
interaction is relevant, the edge �1 is subject to a nontrivial
boundary condition in addition to Eq. (88). Our RG analyses
suggest that there are several possible boundary conditions
depending on the measurement procedures and the values of
K and μ, leading to distinct values of the g function.

2. Case of K > 1/2

In the case of the K > 1/2 TLL under density measure-
ment, the RG analysis in Sec. IV A predicts that there is a
threshold μc in the measurement strength μ, below which the
boundary perturbation is irrelevant, i.e., gE = 1. Meanwhile,
when μ > μc, the boundary interaction cos(ϕ−) becomes rel-
evant and localizes the field φ− at τ = 0, which gives rise to
the following boundary conditions imposed on �1:

φi = φ̃i mod π, i ∈ {1, 2}. (92)

Together with the boundary conditions (88), the correspond-
ing Dirichlet subspace V�1 is given by

V�1 = span

⎛
⎜⎜⎝
⎛
⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠
⎞
⎟⎟⎠. (93)

Accordingly, its orthogonal complement V⊥
�1

is the one-
dimensional vector space spanned by (1, 1, 1, 1)T, in which
the field obeys the N.b.c.’s. In a similar manner as described
above, we can use Eqs. (66), (76), (84), and (86) to obtain the

g function of the boundary state at �1 as

g�1 =
√√√√K−1/2︸ ︷︷ ︸

v0

(
T�1

)× 2K3/2︸ ︷︷ ︸
v0

(
T ∗

�1

) =
√

2K . (94)

We recall that the boundary �2 is an artificial boundary created
by the folding and should have g�2 = 1. Since there is no
additional degeneracy in the present case, we get

gE =
√

2K︸ ︷︷ ︸
g�1

× 1︸︷︷︸
g�2

× 1︸︷︷︸
d

=
√

2K . (95)

We note that the value is consistent with the previous re-
sult obtained in the case of the projection measurement
[67,110,111].

3. Case of K < 1/2

We next consider the case of K < 1/2 where the boundary
interactions cos(ϕ±) in both sectors ± are relevant at any μ >

0. In this case, both of φ± are locked at τ = 0, and we have
the following boundary conditions at �1:

φi = φ̃i mod π, φi = −φ̃i mod π, i ∈ {1, 2}. (96)

These conditions together with Eq. (88) fully localize the
field �. As such, the Dirichlet subspace V�1 corresponds to
the entire four-dimensional vector space in this case. Using
Eqs. (66), (76), and (86), we get

g�1 =
√

v0(T ∗/2) = K. (97)

Meanwhile, we note that the conditions (88) and (96) allow
for the two possible D.b.c.’s associated with φ1 = φ2 = φ̃1 =
φ̃2 = 0 or φ1 = φ2 = φ̃1 = φ̃2 = π

2 , which correspond to the
degenerate potential minima in the boundary interactions. In-
cluding this additional two-fold degeneracy d = 2, we have

gE = K︸︷︷︸
g�1

× 1︸︷︷︸
g�2

× 2︸︷︷︸
d

= 2K. (98)

The results are summarized in Eq. (36).

D. Phase measurement

We next discuss the g function of the K > 1/2 TLL under
phase measurement. As described in Sec. IV B, the perturba-
tive RG analysis together with the duality argument suggests
that the boundary interactions cos(ϑ±) in both sectors ± are
relevant at ∀μ > 0 in this case. The relevant boundary pertur-
bations thus lead to the following constraints at �1:

θi = θ̃i mod 2π, θi = −θ̃i mod 2π, i ∈ {1, 2}, (99)

in addition to the periodic boundary conditions

θ1 = θ2, θ̃1 = θ̃2. (100)

The conditions (99) and (100) fully localize the field �. Said
differently, its dual � obeys the N.b.c.’s because of the relation
∂x� = ∂τ�, which means that the orthogonal complement
V⊥

�1
spans the whole vector space. Using Eqs. (66), (76), and

(84), we have

g�1 =
√

v0(T ) = 1

4K
. (101)
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FIG. 6. Universal contribution es0 = gE/gI to the system-environment entanglement in the TLL under density measurement. The nu-
merical values are extracted from the second-order Rényi entropy fitted to s1L − s0 + s−1

L with L ∈ {L0 − 3, L0 − 1, L0 + 1, L0 + 3} and
L0 = 7, 9, 11, 13. [(a)–(c)] Numerical results of the universal contribution at different system sizes and various �. [(d)–(f)] Plots of the
corresponding data collapses. The dashed horizontal lines in all the panels indicate the analytical values obtained by combining the boundary
CFT results with Eq. (104) that relates the TLL parameter K to the anisotropy �.

Similar to the above case, the fully localized field has two
possible solutions corresponding to θ1 = θ2 = θ̃1 = θ̃2 = 0 or
θ1 = θ2 = θ̃1 = θ̃2 = π . We thus have the additional degen-
eracy d = 2. Taken together, we obtain the g function of the
K > 1/2 TLL under phase measurement by

gE = (4K )−1︸ ︷︷ ︸
g�1

× 1︸︷︷︸
g�2

× 2︸︷︷︸
d

= 1

2K
, (102)

which provides Eq. (45).

VI. NUMERICAL RESULTS

Below we numerically test the field-theoretical results ob-
tained above. Specifically, we consider the spin- 1

2 XXZ chain
described by the following Hamiltonian:

ĤXXZ = J
L∑

i=1

(
σ̂ x

i σ̂ x
i+1 + σ̂

y
i σ̂

y
i+1 + �σ̂ z

i σ̂ z
i+1

)
, (103)

where J > 0 and the periodic boundary condition is imposed
on the spatial direction. When |�| < 1, it is well-known that
its ground state is gapless and described by the TLL with K �
1/2. In particular, the relation between the TLL parameter K
and the anisotropy � has been obtained from the Bethe ansatz
as follows:

K = π

2(π − cos−1 �)
. (104)

We perform the exact diagonalization of ĤXXZ by using Lanc-
zos algorithm and calculate the ground-state wave function
|�0〉. To obtain the vector representation |ρE ) of the reduced
system density matrix in the doubled Hilbert space as in
Eq. (25), we first construct the tensor product |�0〉 ⊗ |�0〉. An
imaginary-time evolution e−μ[

∑
j (1−σ̂ α

j ⊗σ̂ α
j )] is then acted on it,

where α is chosen to be either z or x depending on whether
we consider density or phase measurement. We numerically

evaluate the Rényi entropy SSE in Eq. (12) by calculating the
norm of |ρE ). Finally, we determine the universal contribution
s0 by fitting SSE to a scaling form

SSE = s1L − s0 + s−1

L
. (105)

Despite relatively small system sizes available in the exact di-
agonalization, our numerical analysis confirms the analytical
predictions with high accuracy as we discuss now.

A. Density measurement

We first present the results in the case of the K > 1/2 TLL
under density measurement, for which the nonperturbative
RG analysis predicts the transition occurring at a nonzero
measurement strength μc. As discussed in Sec. IV A, this
boundary phase transition originates from the anomalous en-
hancement of the k2 kinetic term in the boundary action SE ,
which effectively reduces the value of K near the boundary
and tends to render the boundary state more susceptible to
the perturbations. The resulting RG flows exhibit the non-
monotonic behavior leading to the locking of ϕ− in the IR
limit [cf. Fig. 3(a)]. From the boundary CFT analysis, we find
that the universal contribution es0 = gE/gI should discontin-
uously change from 1 to

√
2K across the transition.

These results are numerically checked in Fig. 6, where the
estimated universal contributions at different system sizes and
various � are plotted against the measurement strength μ in
(a)–(c). Interestingly, the g function grows as the coupling
μ is increased and then eventually converges to a value of√

2K as predicted by the boundary CFT analysis in Eq. (95).
The corresponding data collapses are shown in Figs. 6(d)–6(f)
which are obtained by assuming the scaling form

gE
gI

= f
(
(μ − μc)L1/ν

0

)
, (106)
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FIG. 7. Universal contribution es0 = gE/gI and the phase dia-
gram of the TLL under density measurement. (a) Numerical values
of the g functions at different �. The measurement strength is chosen
to be μ = 3, at which the values of the g functions are converged.
The system sizes used for the fitting are L = 10, 12, 14, 16. The
solid curve shows the analytical prediction

√
2K with K given by

Eq. (104). (b) Phase diagram in the space of the TLL parameter K
and the measurement strength μ. Numerical values of the critical
strengths μc are extracted from the data collapses in Figs. 6(d)–6(f).
We note that only the case of K � 1/2 can be investigated in the
spin- 1

2 XXZ chain (103).

where we find that the exponent ν ≈ 6.0 fits well the
numerical data.

Figure 7(a) shows the converged values of the universal
contribution as a function of the anisotropy �. These results
show remarkable agreement over a broad range with the
analytical prediction

√
2K . Figure 7(b) plots the phase

diagram in the space of the TLL parameter K and the
measurement strength μ, where the transition points in
K > 1/2 are extracted from the data collapses as done in
Figs. 6(d)–6(f). We find that a threshold value μc monoton-
ically increases as a function of K , which is qualitatively
consistent with our RG analysis. These results suggest that,
contrary to what is expected from a perturbative analysis, the
system-environment entanglement can exhibit the universal
phase transitions as a function of the measurement strength μ.

B. Phase measurement

We next present the numerical results for the K > 1/2
TLL under phase measurement. Figure 8(a) shows the univer-
sal contribution es0 = gE/gI plotted against the measurement
strength μ at � = 0 and different system sizes. The g func-
tion monotonically decreases as a function of μ this time
and eventually converges to a value close to the analytical
prediction 1/(2K ) indicated by the dashed horizontal line. The

FIG. 8. Universal contribution es0 = gE/gI and phase diagram
of the TLL under phase measurement. (a) Numerical values of the
g function extracted from the second-order Rényi entropy fitted to
s1L − s0 + s−1

L with L ∈ {L0 − 3, L0 − 1, L0 + 1, L0 + 3} and L0 =
7, 9, 11, 13 at � = 0, and (b) the corresponding data collapse which
yields ν ≈ 1.6. (c) Converged values of the g function at μ = 3
compared with the analytical prediction 1/(2K ) indicated by the
solid curve. (d) Phase diagram in the space of the TLL parameter
K and the measurement strength μ.

corresponding data collapse is shown in Fig. 8(b), where we
assume the scaling form

gE
gI

= f
(
μL1/ν

0

)
. (107)

The positivity of the exponent ν indicates that the phase mea-
surement acts as a relevant perturbation to the TLL at μ > 0.
The monotonic decrease of the universal contribution implies
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that the g function behaves as the RG monotone as expected
from the g theorem.

Figure 8(c) compares the converged values of the g func-
tion at different � with the analytical prediction 1/(2K ) in
Eq. (102). We again find the agreement between the two
results with an error below ∼5% over a broad range of the
parameter. The phase diagram of the TLL under phase mea-
surement is shown in Fig. 8(d), in which the phase boundary
is described by the vertical line independent of the measure-
ment strength μ [89,99]. We note that the difference between
Figs. 7(b) and 8(d) is due to the lack of the dangerously
irrelevant term in the latter.

VII. POSSIBLE EXPERIMENTAL REALIZATION

We briefly discuss a possible way to experimentally test
our theoretical predictions. To be concrete, we propose an
ultracold atomic experiment on the lines of previous studies
[88,114]. Our main interest lies in measuring the second-order
Rényi entropy for the post-measurement density matrix of the
entire system [see Eq. (4)]. We emphasize that, in contrast
to the entanglement measures in studies of measurement-
induced phase transitions, the quantity of interest to us
requires no postselections since it is defined for the uncondi-
tioned nonunitary evolution. The following is our proposal for
measuring the system-environment entanglement in the TLL
under density measurement.

(i) Prepare the two identical copies of a 1D critical Bose
gas described by the TLL. This can be naturally realized in
ultracold atomic experiments [88,115,116]. After the prepara-
tion, the unitary dynamics is frozen by, e.g., rapidly increasing
the depth of an optical lattice and switching off interactions by
Feshbach resonances.

(ii) Perform a weak density measurement while discard-
ing the outcomes. This induces a controlled decoherence on
the two copies. In practice, such process can be realized by
shining a probe light on ultracold gases which leads to light
scattering in a similar manner as, for instance, routinely done
in quantum gas microscopes [117,118]. Technically, such pro-
cess can be described by the Markovian master equation (23)
whose jump operator is given by a site-resolved occupation
number L̂ j = √

γ n̂ j [105,119]. The measurement strength
μ = γ t can be controlled by changing either the exposure
time t or the intensity of the probe light that determines the
scattering rate γ [120,121].

(iii) Perform a beam-splitter operation between the two
copies. This can be achieved by lowering the potential barrier
between the chains and letting the atoms tunnel between the
two copies for a certain duration of time.

(iv) Perform the projection measurement on the two
copies to determine the site-resolved occupation number
{n j,α} in each copy α ∈ {1, 2}. In practice, this can be realized
again by quantum gas microscopes. The second-order Rényi
entropy of the entire system in Eq. (4) can then be obtained
by evaluating the expectation value of the swap operator
(−1)

∑
j n j,2 after repeating the whole procedures.

While measurements performed in steps (i) and (iii) are
technically the same type of processes corresponding to light
scattering, the key point in our proposal is that the mea-
surement strengths of them can be quite different. In step

(iii), one typically requires the use of near-resonant probe
light to realize high scattering rate and a clear fluorescence
image, allowing one to determine the occupation number
with almost unit fidelity [117,118]. In step (i), however, there
is no such need since the measurement outcomes will be
discarded anyway; to realize a less destructive controlled de-
coherence, one can use an off-resonant or low-intensity probe
light whose wavelength does not even need to be compara-
ble to the lattice constant [105,122,123]. Also, the periodic
boundary conditions might be realized by a ring-shape opti-
cal potential [124] or by utilizing a programmable platform
such as a Rydberg atom array [125]. Our numerical results
suggest that a relatively small system with tens of lattice
sites should be enough to test the universal behavior of the
system-environment entanglement. As such, we expect that
our theoretical predictions are within reach of current experi-
mental techniques.

We note that, under the open boundary conditions, the sub-
leading contribution to SSE is given by the logarithmic term
−s′ ln(L) whose coefficient s′ can exhibit a universal behavior
depending on the TLL parameter K [126,127]. We expect that
the entanglement phase transition, which occurs as a function
of the coupling strength μ [cf. Fig. 7(b)], can be observed also
in such open-boundary systems as a singular change of the
universal coefficient s′; we will address this issue in detail in
a future work.

From a broader perspective, we also mention that a circuit
QED setup might give another route toward testing some
of our predictions [128]. The TLL has been experimentally
realized in, for instance, the long superconducting waveguide
consisting of Josephson junctions, where the TLL parameter
can be controlled by changing the wave impedance [129].
When coupled to an impurity Josephson junction, the low-
energy physics can be described by the same type of the
effective action analyzed in Sec. IV. Notably, the correspond-
ing boundary behavior has been experimentally studied by
measuring phase shifts in microwave photon scatterings [130].
Further developments of these techniques might allow one to
directly confirm a variety of the conformal boundary condi-
tions discussed in this paper.

VIII. SUMMARY AND DISCUSSIONS

We have studied the universal aspects of the entanglement
inherent to open many-body systems, i.e., the entanglement
between a system of interest and its environment. We have
demonstrated that a TLL under a local measurement can
exhibit a universal entanglement phase transition when the
measurement strength is varied. We emphasize that this oc-
curs in the unconditioned evolution, where the outcomes are
averaged over and no postselections are necessary. The uni-
versality of the system-environment entanglement is encoded
in the size-independent contribution to the Rényi entropy of
the post-measurement density matrix. We have determined the
value of the universal term by developing the field-theoretical
formalism in the doubled Hilbert space and applying the
boundary CFT techniques to the multicomponent field theory.
The results have been verified by the numerical calculations in
the spin- 1

2 XXZ chain. Finally, we have discussed a possible
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way to test our theoretical predictions in ultracold atomic
experiments.

Several interesting directions remain for future studies.
First, our field-theoretical formalism is not specific to the
problem considered in this paper but can be applied to a
variety of settings. One natural direction, for instance, is to
analyze the entanglement between subregions within a sys-
tem subject to the influence of the environment. This might
provide realization of a many-body analog of the so-called
environment-induced sudden death of entanglement [131], in
which a highly entangled many-body state would become a
product state at a nonzero but finite strength of the system-
environment coupling. One can also consider a situation in
which only a subregion of the system is influenced by the
environment [10].

Second, it merits further study to extend the present analy-
sis to the case in which the Kraus operators cannot be diagonal
in a field basis. We recall that in the present work the Kraus
operators can be treated as diagonal variables in either φ or
θ representation, leading to the boundary action localized at
τ = 0 in the Euclidean path integral. In contrast, the effect of
nondiagonal Kraus operators should be expressed as an action
that is not strictly localized in the imaginary-time direction
τ . Similarly, while the unitary dynamics is assumed to be
frozen during the measurement process in the present work,
its inclusion might further enrich entanglement structures. It
remains open how one could generalize boundary CFT tech-
niques to those situations if at all possible. It would also merit
further study to identify which type of measurement leads to
conformally invariant boundary conditions; it has been found
that some measurements can impose nonconformally invari-
ant boundary conditions [11,31,77].

Finally, it is intriguing to ask how one could experimen-
tally test our theoretical predictions. In the present work,
we have proposed a concrete protocol for this, which we
believe to be within reach of current ultracold atomic ex-
periments. It merits further study to explore the possibility
of studying the system-environment entanglement in another
quantum platform, especially in view of recent developments
of programmable quantum devices. The spin- 1

2 XXZ chain,
for instance, has been realized in superconducting quantum
processors [132], and its entanglement structure should be di-
agnosed by performing local random measurements followed
by a certain classical postprocessing [133]. One possible
challenge here is an implementation of a well-controlled de-
coherence on programmable quantum platforms. We hope that
our work stimulates further studies in these directions.
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APPENDIX: DETAILS ABOUT
THE NONPERTURBATIVE RG ANALYSIS

We provide technical details about the fRG analysis per-
formed in Sec. IV A. We consider the theory described by the
action S in Eq. (32) and aim to determine its low-energy be-
havior. In fRG, we use the effective action �� at energy scale
� that interpolates the bare action at a UV scale ��0 = S and
the effective action �0 = � in the IR limit with � being the
generating functional of one-particle irreducible correlation
functions. The flow equation of �� is given by the exact
RG equation, which is hard to solve without making any
approximations [134].

To make the calculations tractable, we make several simpli-
fications. First of all, as discussed in the main text, we neglect
the cross coupling term cos(ϕ+) cos(ϕ)− which is less relevant
compared to the other potential perturbations. The action can
then be decoupled into the two sectors including only either
of ϕ+ or ϕ−. The ground-state properties in the + sector have
been well-understood from the perturbative RG analysis and
the duality argument [89]. We here focus on the fRG analysis
of the - sector. Specifically, we assume the following LPA’
ansatz:

��[ϕ] = 1

2

∫ ∞

−∞

dk

2π

( |k|
4πK

+ γ k2

�

)
|ϕk|2

− u�

∫ ∞

−∞
dx cos (ϕ(x)), (A1)

where we abbreviate the subscript - in ϕ and u for the sake
of notational simplicity. We then consider the following exact
RG equation within this functional ansatz:

�∂��� = 1
2 Tr[∂�R�G�], (A2)

where we choose the regulator to be R� = �
k/�

ek/�−1 , which
allows for relatively simple expressions of the beta functions
as shown below. The propagator G� is defined as

G�(y) = 1
|y|

4πK + γ y2 + u cos(ϕ) + y
ey−1

, y = k

�
. (A3)

The flow equations of the parameters u and γ can be obtained
by projecting Eq. (A2) onto the ansatz (A1). The results are

(1 + �d�)u = − 1

2π2

∫ 2π

0
dϕ cos (ϕ)

∫ ∞

0
dy

y2G�(y)

4 sinh2 (y/2)
,

(A4)

(−1 + �d�)γ = u2

4π2

∫ 2π

0
sin2(ϕ)

∫ ∞

0
dy

y2G2
�(y)

4 sinh2 (y/2)

× lim
y′→0

∂2
y′G�(y + y′). (A5)

Finally, after performing the integrations over the phase
variable ϕ, we can derive the beta functions for each
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parameter by

βu(u, γ ) = u −
∫ ∞

0
dy

y2

4πu sinh2 (y/2)

(
ζ√

ζ 2 − u2
− 1

)
, ζ (y) ≡ y

4πK
+ γ y + y

ey − 1
, (A6)

βγ (u, γ ) = −γ + u2
∫ ∞

0
dy

y2
[((

∂2
y ζ
)
ζ − 2(∂yζ )2

)
(u2 + 4ζ 2) − 5u2ζ∂2

y ζ
]

64π sinh2 (y/2)[ζ 2 − u2]7/2 , (A7)

which give the full expressions of Eq. (35) in the main text.
We note that the correlation function C(x) plotted in Fig. 2(a) can be obtained by the Fourier transform of the quadratic part

of the propagator, G0
�(y) = [|y|/(4πK ) + γ y2]−1, leading to the following expression:

ln C(x) = 2K

(
2Ci

( |x|
2aγ K

)
cos

( |x|
2aγ K

)
+ 2Si

( |x|
2aγ K

)
sin

( |x|
2aγ K

)
− π sin

( |x|
2aγ K

)
− 2 ln(|x|)

)
+ const., (A8)

where Ci and Si are cosine and sine integral, respectively. In the absence of the boundary term γ , Eq. (A8) reproduces the
well-known critical decay C(x) ∝ 1/|x|4K .
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