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Mechanism of skyrmionium stability in quasi-two-dimensional chiral magnets
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We reexamine the internal structure of skyrmioniums stabilized in quasi-two-dimensional chiral magnets
with easy-axis uniaxial anisotropy. Skyrmioniums are particlelike states of two nested skyrmions with opposite
polarities contributing to zero topological charge. The physical principles of skyrmionium stability are drawn
from both the analytical analysis with a trial function and from numerical simulations within the framework
of micromagnetism. We deduce that the radii of the internal skyrmion with the positive polarity and the
ring-shaped external skyrmion with the negative polarity are mutually dependent, which constitutes the paradigm
of communicating skyrmions. For large central skyrmions, the skyrmionium transforms into a narrow circular
domain wall, whereas for small internal radii, the ring expands, which occurs at the verge of collapsing into
an ordinary isolated skyrmion. We show that skyrmioniums may form lattices of two varieties depending on the
polarity of the internal skyrmion. At the phase diagram (magnetic field)-(uniaxial anisotropy), both skyrmionium
lattices share the same area with one-dimensional spiral states and remain metastable solutions for the whole
range of control parameters. By expanding at the critical line, skyrmionium lattices do not release isolated
skyrmioniums. Isolated skyrmioniums of just one type exist apart from the corresponding lattice in a narrow
field region restricted by the critical line of expansion from below and by the line of collapse above.
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I. INTRODUCTION

Chiral magnetic skyrmions [1,2] are topological solitons
surrounded by the homogeneously magnetized states and sta-
bilized by Dzyaloshinskii-Moriya interaction (DMI) [3,4].
Their characteristic length scale [5–7] results from the com-
petition between exchange interaction and DMI and ranges
from few atomic spacings up to μm [8]. Skyrmions were first
experimentally observed in bulk cubic helimagnets (MnSi [9]
and FeGe [10], and the Mott insulator, Cu2OSeO3 [11]) where
they represent three-dimensional (3D) tubes along the field
direction [12,13]. Subsequently, 3D isolated skyrmions (IS)
[14,15] have been microscopically studied in thin layers of
cubic helimagnets (Fe,Co)Si [16] and FeGe [17] where they
gain stability in a broad range of temperatures and magnetic
fields [18].

Essentially two-dimensional (2D) skyrmions are stabilized,
e.g., in bulk polar magnets with Cnv symmetry, such as
GaV4S8 and GaV4Se8 [19,20], in which skyrmions propagate
into the third direction without modifying their 2D pattern.
In these Néel skyrmions, the magnetization rotates along the
radius vector from the skyrmion center to the outskirts.

On the other hand, thin-film multilayer structures open
up prospects of manipulating skyrmions on a 2D arena. The
inversion symmetry breaking and the induced DMI originate
from the interfaces between a heavy metal layer and the
skyrmion-hosting magnetic layer as occurs, e.g., in PdFe/Ir
(111) bilayers [21]. Such systems are extremely versatile as
for the choice of the magnetic, nonmagnetic, and capping
layers in addition to the possibility to be stacked.

*Contact author: leonov@hiroshima-u.ac.jp

Nowadays, skyrmions attract enormous interest due to the
perspectives of their applications in information storage and
processing devices [22–24]. Indeed, skyrmions are topologi-
cally stable [25], they have the nanometer size, [8] and can
be manipulated by electric currents [26,27] of small densities.
In particular, in the skyrmion racetrack [28,29], information
flow is encoded in isolated skyrmions driven along a narrow
strip. At the same time, there is an obvious obstacle towards
the practical use of skyrmion-based devices—the skyrmion
Hall effect (SHE), which leads to the curved trajectory of
moving skyrmions [30,31]. The main strategy to overcome
this obstacle is to consider skyrmion-based solitons with zero
topological charge, which would be able to cancel the Magnus
force. Among such skyrmion varieties are antiferromagnetic
skyrmions [32], states of coupled merons with the opposite
topological charges [33] and/or target skyrmions [34].

Originally, 2D target skyrmions were introduced in Ref. [6]
under the name kπ skyrmions. They consist of a central
skyrmion with either polarity and a number of concentric
helicoidal undulations: the magnetization rotates by an angle
kπ between the center and the surrounding ferromagnetic
state (with k integer >0). The topological charge alternates
between 1 or 0 depending whether k is odd or even. Skyrmio-
nium (2π skyrmion) represents a second member of the
kπ -skyrmion family [35], which has a topological charge Q =
0 and is thus bound to avert SHE. Among other advantages of
skyrmioniums over ordinary π skyrmions is higher mobility
[36], which makes them a good alternative for spintronic
devices [37]. So far, the crucial question of skyrmionium
stability was addressed by computing the energy barrier with
respect to the ordinary skyrmion through the geodesic nudged
elastic band method [38]. Thermal annihilation of skyrmion-
iums and their transformation into a skyrmion was studied in
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Ref. [39] by analytical and numerical methods of micromag-
netism.

High-symmetry nanostructured objects (such as magnetic
nanowires [40], nanodisks [41], or nanorings [42]) are com-
monly used systems to host target skyrmions since they
provide the stabilization effect of surfaces and supplement
the target skyrmions with additional negative energy from the
edge states, which may even favor them over other solitons
[34]. Recently, target skyrmions were generated by weakly
coupling 30 nm thin Permalloy (Ni80Fe20) disks with a 1 µm
diameter to asymmetric (Ir 1 nm/Co 1.5 nm/Pt 1 nm) ×7 mul-
tilayers that exhibit Dzyaloshinskii-Moriya interaction [43].
Off-axis electron holography was used to record images of
target skyrmions in a 160-nm-diameter nanodisk of the chiral
magnet FeGe [44]. Skyrmioniums have also been experimen-
tally spotted in thin-film geometries lacking the stabilization
support from the side boundaries. The observation of skyrmio-
niums in thin ferromagnetic films coupled to a magnetic
topological insulator was reported in Ref. [45]. Skyrmioniums
have also been investigated in a frustrated Kagome mag-
net Fe3Sn2 [46] and in flakes of the van der Waals magnet
Fe3−xGeTe2 [47].

In the present paper, to address the problem of skyrmio-
nium stability with the simultaneous effect of an applied
magnetic field and an easy-axis anisotropy, we reexamine the
internal structure of skyrmioniums by using the linear Ansatz
and numerically rigorous solutions. We show that skyrmion-
ium represents a pair of communicating skyrmions: whereas
the central skyrmion aspires to adapt the magnetization rota-
tion based on the same energy arguments as for an ordinary
skyrmion, the ring-shaped external skyrmion contracts in an
attempt to reduce its own surface area. The ratio of radii
of communicating skyrmions is balanced to reach a local
energy minimum: for large radii of the central skyrmion, the
skyrmionium transforms into a circular domain wall with the
comparable radius of the surrounding ring; for small radii of
the central skyrmion, the skyrmionium increases the radius
of the external skyrmion but still inevitably transforms into a
skyrmion as was discussed in Refs. [38,39].

We also address the field- and anisotropy-driven trans-
formations of skyrmionium lattices (SkmL) of two varieties
depending on the polarity of the central skyrmion. At the
phase diagram of states in coordinates (magnetic field)-
(uniaxial anisotropy), the skyrmionium lattices were found
to occupy the same region as spiral states but with higher
energy, which makes them only metastable solutions. On the
contrary to skyrmion lattices, no isolated skyrmioniums were
released during the transition of skyrmionium lattices into the
homogeneous state. Isolated skyrmioniums exist as a separate
branch of solutions within the narrow area on the phase dia-
gram restricted by the lines of their collapse or expansion.

II. PHENOMENOLOGICAL THEORY
OF SKYRMIONIUMS IN TWO-DIMENSIONAL

HELIMAGNETS

A. Micromagnetic energy functional

The magnetic energy density of a chiral magnet with Cnv

symmetry can be written as the sum of the exchange, the

DMI, Zeeman, and the anisotropy energy densities, corre-
spondingly:

w(m) =
∑
i, j

(∂im j )
2 + wDMI − m · h − kum2

z . (1)

Spatial coordinates x are measured in units of the character-
istic length of modulated states LD = Aex/DDMI. Aex > 0 is
the exchange stiffness, DDMI is the Dzyaloshinskii constant.
ku = KuM2Aex/D2

DMI is the nondimensional anisotropy con-
stant. We restrict ourselves by the easy-axis case, i.e., ku > 0.
If one needs to use the results of the forthcoming numerical
simulations for a specific material system, one can easily
calculate these nondimensional units and find a correspond-
ing skyrmionium solution. As an instructive example, we use
the material parameters corresponding to Co/Pt films. DMI,
D = 3 mJ/m2, the saturation magnetization, Ms = 580 kA/m,
the exchange stiffness, A = 15 × 10−12 J/m, Ku = 0.8 MA/m
[39]. These give LD = 5 nm and ku = 1.33. Thus, the unit
length in the forthcoming graphs corresponds to 5 nm.

In the following, we consider a thin film of a ferromagnetic
material on the xy plane using periodic boundary conditions.
h = H/H0 is the magnetic field applied along z axis, H0 =
D2

DMI/Aex|M|. The magnetization vector m(x, y) = M/|M|
has a fixed length normalized to unity. The DMI energy den-
sity has the following form specific for magnets with the Cnv

symmetry:

wDMI = mx∂xmz − mz∂xmx + my∂ymz − mz∂ymy, (2)

where ∂x = ∂/∂x, ∂y = ∂/∂y.
The phase diagram of states for model (1) on the plane

of control parameters h and ku was plotted, e.g., in Ref. [33]
and features only modulated 1D (spirals) and 2D (skyrmions)
phases with the propagation directions perpendicular to the
polar axis. A vast area of the phase diagram is occupied
by the field-polarized homogeneous state, which may host
isolated solitons such as kinks, skyrmions, and/or skyrmio-
niums. 1D kinks and 2D skyrmions in this area can be an
outcome of a gradual expansion of the spiral state and/or
the skyrmion lattice. And vice versa, isolated entities may
condense into extended modulated states when the eigenen-
ergy of an isolated soliton becomes negative with respect to
the surrounding homogeneous state and the solitons tend to
fill the whole space with some equilibrium intersoliton dis-
tance. The mechanism of modulated phase formation through
nucleation and condensation of isolated solitons follows a
classification introduced by de Gennes [48] for (continuous)
transitions into incommensurate modulated phases. The trans-
formation of skyrmions during the formation of the lattice
was first investigated in Ref. [5]. In the present paper, how-
ever, it will be shown that this scenario is not the case for
skyrmioniums.

As a primary numerical tool to minimize the func-
tional (1), we use MUMAX3 software package (version 3.10),
which calculates magnetization dynamics by solving the
Landau-Lifshitz equation using finite difference discretiza-
tion technique [49]. To double-check the validity of obtained
solutions, we also use our own numerical routines, which
are explicitly described in, e.g., Ref. [50] and hence will be
omitted here.

094403-2



MECHANISM OF SKYRMIONIUM STABILITY IN … PHYSICAL REVIEW B 110, 094403 (2024)

FIG. 1. (a), (b) Schematics of isolated Néel skyrmions and skyrmioniums in polar magnets with Cnv symmetry (or in multilayers with the
induced DMI). As trial functions for angular skyrmion/skyrmionium profiles, linear Ansätze are used (blue lines in the bottom panels). (c) The
simplified diagram on the plane (ku, h) constructed for the trial functions. In the red- and blue-shaded regions, skyrmioniums and skyrmions
acquire the negative eigenenergy with respect to the homogeneous state, which signifies the stability of the corresponding lattice. The inset
shows an example of an arrow-like angular profile for a skyrmion with h = 0.7, ku = 0, which justifies the used linear Ansätze.

Since isolated skyrmions and skyrmioniums are axisym-
metric particlelike states, we will use the spherical coordinates
for the magnetization:

m = [sin θ (ρ) cos ψ (ϕ), sin θ (ρ) sin ψ (ϕ), cos θ (ρ)], (3)

and cylindrical coordinates for the spatial variables [5,6]

r = (ρ cos ϕ, ρ sin ϕ, z), (4)

where ψ (ϕ) = ϕ is adapted for the Néel-like magnetization
rotation.

The total energy of an isolated skyrmionium with respect
to the homogeneous state can be written as

E =
∫ ∞

0
ε(θ, ρ)2πρdρ,

ε(θ, ρ) =
[(

dθ

dρ

)2

+ sin2 θ

ρ2
+ h (1 − cos θ ) + dθ

dρ

+ sin 2θ

2ρ
+ ku(1 − cos2 θ )

]
, (5)

where ε(θ, ρ) is an energy density.

III. ANALYTICAL RESULTS FOR THE LINEAR ANSATZ

A. Isolated skyrmions

In a wide range of control parameters ku and h, skyrmion
profiles θ (ρ) are known to bear strongly localized character
[see, e.g., an inset in Fig. 1(c) plotted for h = 0.7, ku = 0].
According to the conventions of Refs. [5,6,51] such arrowlike
solutions can be decomposed into skyrmionic cores with lin-
ear dependence

θ (ρ) = π

(
1 − ρ

R0

)
, ρ � LD (6)

and exponential tails with

θ ∝ exp [−αρ], ρ � LD. (7)

Therefore, a nucleus with a diameter 2R0 can be consid-
ered as a two-dimensional particlelike state as it accumulates

almost all energy of the isolated skyrmion. At the same time
the asymptotic exponential tails are viewed as the field gener-
ated by the particle [52].

In the following, we focus on the physical principles drawn
from the linear Ansatz (6) with ρ � R0 and the condition
θ (ρ) = 0, ρ > R0 [Fig. 1(a)]. Equilibrium radius R0 of the
skyrmion core can be found from substituting the linear
Ansatz into (5), integrating, and then minimizing with respect
to R0. Thus, the skyrmion energy (5) is reduced to a quadratic
potential

E (R0) = D0 − 2A0R0 + (B0h + C0ku)R2
0, (8)

with parameters

A0 =
∫ R0

0

[
dθ

dρ
+ sin 2θ

2ρ

]
2πρdρ = 4.9348,

B0 =
∫ R0

0
[(1 − cos θ )]2πρdρ = 1.86835,

C0 =
∫ R0

0
[(1 − cos2 θ )]2πρdρ = π/2,

D0 =
∫ R0

0

[(
dθ

dρ

)2

+ sin2 θ

ρ2

]
2πρdρ = 38.6644. (9)

The equilibrium value of the skyrmion radius

Rmin
0 = A0

(B0h + C0ku)
(10)

arises as a result of the competition between chiral and
Zeeman/anisotropy energies.

The exchange energy D0 does not depend on the skyrmion
size and presents an amount of positive energy trapped within
the skyrmion. Moreover, the size of IS diverges by approach-
ing the critical point (0,0) at the phase diagram.

In centrosymmetric systems without DMI, localized solu-
tions are radially unstable and collapse spontaneously under
the influence of applied magnetic field and anisotropy [5].
Thus, already such a simplified model offers an important
insight into physical mechanisms underlying the formation of
the chiral skyrmions.
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At the phase diagram [Fig. 1(c)], the energy of an isolated
skyrmion (8) acquires the negative values with respect to the
homogeneous state within the triangular region a − b − 0. Re-
markably, a small fraction of this region (a − d − c) oversteps
the line c − d − e, at which the spiral state turns into a system
of isolated kinks. Based on this observation, in Ref. [1], it
was concluded that a skyrmion lattice would represent a ther-
modynamically stable state within some region of this phase
diagram. Subsequent numerically rigorous calculations found
a vast area of the SkL stability with the simultaneous effect of
the applied magnetic field and the uniaxial anisotropy [5,33].

We remark that other Ansätze, e.g., which approximate
the cross section of an isolated skyrmion using a standard
360◦ domain wall profile (see Ref. [53] for details), are much
closer to real skyrmion solutions and include several fitting
parameters besides the skyrmion radius. Such an analytical
expression for the description of skyrmions is usually applied
to connect the experimental data to the original theoretical
model describing chiral skyrmions. Very good approximations
through almost the entire range of skyrmion radii were re-
cently obtained in Ref. [54] by the use of fitting techniques.
Such approximations provide separate formulas for the core
and the far field of the skyrmion.

B. Isolated skyrmioniums

In accordance with the paradigm developed for ISs, we use
the following trial function for skyrmioniums:

θ (ρ) = π
ρ

Rin
, ρ � Rin,

θ (ρ) = π − π

(
ρ − Rin

Rex − Rin

)
, Rin < ρ � Rex,

θ = 0, ρ > Rex, (11)

where Rin and Rex are the radii of the nested internal and the
external ring-shaped skyrmions with the opposite polarities
[Fig. 1(b)].

By substituting this Ansatz into (5), the equilibrium radii
can be determined as:

Rin = A(η)

B(η)h + C(η)ku
, Rex = ηRin, (12)

where the parameter η denotes the ratio between two radii.
The total energy

E (η) = D(η) − 2A(η)Rin(η) + [B(η)h + C(η)ku]R2
in(η)

becomes an involved function of η. Each of the parameters
A(η), B(η),C(η), D(η) can be represented as a sum of the
contributions from the internal (ρ � Rin) and the external
(Rin < ρ � Rex) skyrmions, e.g., A(η) = Ain + Aex(η):

Ain = A0, Aex(η) = A0(1 + η),

Bin = 4.4148, Bex(η) = (B0η
2 + 2.547η − 4.4148),

Cin = π/2,Cex(η) = πη2/2 − π/2,

Din = D0, Dex(η) = 36.74η + 21.28

η − 1
. (13)

The parameters for the internal skyrmion are constants and
equal the corresponding values for the isolated skyrmion (9),

except the Zeeman energy Bin. The integration occurs from 0
to Rin for the internal skyrmion, and from Rin to ηRin for the
external one.

As an instructive example, we consider the skyrmion-
ium solutions for fixed control parameters, h = 0, ku = 0.7.
Figure 2(a) shows the energies of the internal (blue line) and
the external (red line) skyrmions as well as the total energy of
a skyrmionium (green line) in this case.

First of all, we notice that all energies represent paramet-
ric curves of the ratio η, i.e., for a given radius Rin of an
internal skyrmion, the radius Rex of the external skyrmion
is uniquely specified. Figure 2(b) shows the corresponding
projection onto the plane (Rin, Rex) to additionally highlight
the two-dimensional character of the energy dependence.

In other words, both skyrmions communicate to reach the
energy minimum for a fixed Rin: for small values of Rin (close
to the collapse of skyrmionium), the parameter η acquires
larger values [at the left side of the depicted energy curves
in Fig. 2(a), 2(b) η = 4.9]; for large values of Rin, the param-
eter η tends to unity, which transforms a skyrmionium into a
narrow circular domain wall (at the right side of the depicted
energy curves η = 1.3).

Second, only the energy of the internal skyrmion exhibits
a minimum for some ratio η∗, which represents straight lines
on the plane (ku, h) [Fig. 2(d)]. We notice that η∗ > 2, i.e., the
internal skyrmion prefers longer rotation within the external
skyrmion. For zero magnetic field, η∗ = 2, and the radius
of the internal skyrmion equals the radius of the skyrmion,
Rin = R0 = 4.488, i.e., the internal skyrmion exhibits the
magnetization rotation according to the principles drawn in
the previous section. For an applied magnetic field, however,
the situation is different since the ordinary skyrmion has the
negative polarity, whereas the internal skyrmion within the
skyrmionium—the positive one.

The positive energy of the external ringlike skyrmion does
not have any energy minimum [red curve in Fig. 1(a)]. How-
ever, it can be reduced by decreasing Rin and by increasing
η, i.e., the external skyrmion squeezes the internal one in an
attempt to reduce its own surface area.

The resulting skyrmionium is thus shaped as a compro-
mise between these tendencies of communicating skyrmions:
the equilibrium internal radius in this case Rin = 3.1762 is
slightly smaller as compared with the skyrmion radius R0;
η = 2.53.

Third, the metastability of skyrmionium can also be con-
sidered from the energetic point of view. Figure 2(c) shows
each energy contribution depending on the parameter η. The
exchange energy diverges for η → 1 and tends to 75.4 for
η → ∞. The exchange energy outweighs the DMI for small
and large η. For moderate values of η, the DMI energy dom-
inates and leads to some equilibrium characteristic size. Inset
of Fig. 2(c) shows that for small ku the energy of a skyrmio-
nium may become negative, which facilitates condensation
into a skyrmionium lattice. According to the phase diagram
[Fig. 1(c)], the hexagonal SkmL is formed below the line
f -g, which is located deep inside the region of the spiral
stability. One can provisionally conclude that a skyrmionium
lattice will remain a metastable state for the whole range
of the control parameters. For larger anisotropy values [in-
set of Fig. 2(c)], the energy minimum shallows and with
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FIG. 2. (a) The total energy of an isolated skyrmionium plotted in dependence on the radii of the internal Rin and the external Rex skyrmions
(green curve). For the fixed radius Rin, the radius Rex is defined by the ratio η, which changes along the energy curve from the high value at
the right to unity at the left. The total energies of the internal and the external skyrmions are shown by blue and red curves, correspondingly.
The energy minimum is reached at Rin = 3.17 and η = 2.53 for h = 0, ku = 0.7. (b) The corresponding energy curve viewed from above.
(c) The separate energy contributions depending on the ratio η: black curve: the exchange energy; red curve: the DMI energy; blue curve: the
anisotropy energy. The energy minimum at the green curve is highlighted by the circle. The inset shows the total energy of a skyrmionium for
different values of the uniaxial anisotropy, which may become negative or may loose its minimum. (d) The lines on the plane (ku, h), along
which the energy minimum is reached for an internal skyrmion only.

the condition η → ∞ disappears, which is equivalent to the
skyrmionium collapse.

Figure 3 shows the equilibrium parameters Rin [Fig. 3(a)],
Rex [Fig. 3(c)], and η [Fig. 3(e)] on the plane (ku, h). These
parameters are constant along almost straight lines. Both the
increasing magnetic field and the uniaxial anisotropy lead
to the skyrmionium collapse, which is accompanied by the
shrinking radii Rin and Rex, but the drastically increasing ratio
η. Figures 3(b), 3(d) and 3(f) show two-dimensional crosscuts
either for zero anisotropy (blue curves) or zero magnetic field
(red curves). The linear Ansatz (11) enables skyrmioniums
with infinitely small internal radii (12), which precludes from
plotting the exact line of skyrmionium collapse. Indeed, only
for η → ∞, Rin → 0.

IV. NUMERICAL SOLUTIONS FOR ISOLATED
SKYRMIONIUMS

In the present section, we validate the principles of
skyrmionium internal stability drawn from the linear Ansatz.
We obtain numerically rigorous solutions for isolated
skyrmioniums by minimizing the functional (1) with nondi-
mensional units in MUMAX3 [49], i.e., the exchange and DMI
constants are Aex = 1, DDMI = 1. The size of the numerical
grid is 1024 × 1024; the cell sizes are 0.1 along all spatial
directions. We construct the initial states for skyrmioniums by
pinning the magnetization, mz = −1, along the circle with the
radius Rin (we refer to this radius as Rpinned

in ) and let MUMAX3
relax the spin configuration. Otherwise, the magnetization
vectors point along z axis, mz = 1. As it was argued in the
previous section, no pinning is needed for the external radius
Rex.

The energies of the internal skyrmion (the area within the
circle with the radius Rin), external skyrmion (the area with

ρ > Rin) and the skyrmionium are plotted in dependence on
Rpinned

in in Fig. 4(a) with the same color coding as in Fig. 2(a)
and for the same control parameters, h = 0, ku = 0.7. The
behavior is qualitatively the same as for the linear Ansatz,
but with some nuances, which call for some additional ex-
planation. First of all, we notice that for some critical radius
Rpinned

in , a skyrmionium collapses into an ordinary skyrmion
(the transition is highlighted by the dotted red line and the
red arrow), i.e., the internal skyrmion becomes small within
the given discretization scheme, and thus cell sizes must be
reduced to address this type of skyrmionium solutions. The
color plot for the mz component of the magnetization is shown
in Fig. 5(a). The problem of skyrmionium collapse into a
skyrmion was recently addressed in Refs. [38,39] and thus
will be omitted here.

For relatively large radii Rpinned
in , on the contrary, a skyrmio-

nium transforms into a circular domain wall with comparable
radii Rin and Rex, i.e., η → 1 as was predicted by the linear
Ansatz. The corresponding color plot is shown in Fig. 5(b).

The energy of the external ring-shaped skyrmion [red curve
in Fig. 4(a)] gradually increases in dependence on Rpinned

in ,
and the total energy [green curve in Fig. 4(a)] possesses a
minimum for Rin = 5.4. The internal skyrmion, however, ex-
hibits an interesting evolution with the increasing Rpinned

in : once
the energy of the internal skyrmion reaches the minimum, its
size stops growing, which is an artifact imposed by pinning.
To address this behavior, we introduce other characteristic
radii RLilley

in and RLilley
ex , which are defined according to the

Lilley rule [Fig. 4(b)]: we plot the second derivative d2mz/dρ2

(black curve), find its zero values and construct the tangent
lines (green lines) to the profiles mz(ρ) (blue lines). Then,
the intersection points with the magnetization levels mz = ±1
constitute the required radii. All the scaffolding shown by the

094403-5



KAITO NAKAMURA AND ANDREY O. LEONOV PHYSICAL REVIEW B 110, 094403 (2024)

3

3

4

4

5

5

6

6

7

7

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0.7

0.7

0.7

0.8

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

1.43

5.72

2.65

9.35

3.86

13.0

13.0

5.08
6.30

16.63

7.52

0

1

2

3

4

5

6

7

8

R i
n

0

0

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

250

250

250

250

0

0

0

0.2

0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.6

0.8

0.8

0.8

1.0

1.0

1.0

0

0

0

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.3

0.4

0.4

0.4

0.5

0.5

0.5

0.6

0.6

0.6

0

0

h

h

h

h

h

h

R
in

R
in

ku

ku

ku

ku

ku

ku

R e
x

R
ex

R
ex

8

8

9

9

10

10

300

300

350

2 1 2 3 4 5 6 7 8 9 10

6

5

4

3

2

(a) (b)

(d)(c)

(e) (f)
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green lines in Fig. 4(b) was done for the magnetization profile
corresponding to the energy minimum. Dependences of both
Lilley radii are plotted in Fig. 4(c). After the plateau with the
constant RLilley

in , both radii continue to grow simultaneously,
which is marked by discontinuities at all graphs. The color
plots for the mz component of the magnetization, DMI, and
exchange energy densities as well as the total energy density
are plotted in Fig. 5(c) for the skyrmionium with the minimal

total energy. All graphs exhibit characteristic targetlike pat-
terns and, e.g., allow us to allocate three rings with the
negative energy density and two rings with the positive one.

The ratio between two radii η can be defined using both
RLilley

in,ex and Rpinned
in [Fig. 4(d)]. Although the ratio RLilley

ex /RLilley
in

(blue curve) exhibits discontinuity, both curves are consistent
with the behavior of the linear Ansatz: for small radii Rin, the
ratio η increases; for large Rin, η → 1.
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V. HEXAGONAL LATTICES

In the present section, we contrast the field-driven evo-
lution of skyrmion and skyrmionium lattices. To make the
explanation self-consistent, we first reproduce the known re-
sults for SkLs.

A. Skyrmion lattices

Isolated skyrmions may condense into an extended
skyrmion lattice, which occurs for the value of an applied
magnetic field smaller than the critical value 0.400659 for
zero anisotropy [point m in Fig. 6(a)] or below the line m-e in
general. The skyrmionic pattern is then specified by the stabil-
ity of the circular cores and their geometrical incompatibility,
which frustrates regular space filling. In other words, the pro-
cess of condensation is ruled by two competing mechanisms:
low-energy skyrmion cores trying to fill the whole space, and a
high-energy edge area responsible for the repulsion of isolated
skyrmions [33,55].

At the critical field, the negative energy density associated
with DMI outweighs the positive exchange contribution, and
the energy of an isolated skyrmion becomes negative with
respect to the surrounding homogeneous state. As a result,
skyrmions tend to fill the whole space with some equilibrium
interskyrmion distance and form a hexagonal SkL. In the
same way, when one considers a hexagonal skyrmion lattice
and increases the field, the lattice expands and releases free
isolated skyrmions. The radius of the skyrmion core changes
continuously through the phase transition point. Thus, isolated
skyrmions may be considered as building blocks for construct-
ing the extended skyrmion textures.

B. Skyrmionium lattices

Similar to SkLs, which can exhibit both polarities, two
varieties of hexagonal SkmLs can be formed depending on
the polarity of the central skyrmion. In the forthcoming sim-
ulations, we will consider just one type of SkmL, but will
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change the direction of the field. As foreseen by the linear
Ansatz, both SkmLs represent metastable solutions, but with
the metastability regions, which extend up to the critical line
e-c of the spiral state [red-shaded region in Fig. 6(a)], i.e.,
both SkmLs exist for the same control parameters as the spiral
states, but bear slightly higher energy. Skyrmion lattices with
the negative polarity of skyrmion cores demonstrate higher
stability, whereas SkLs with the positive polarity easily elon-
gate into spirals.

The lattice periods p of both SkmLs (defined as the
distances between the centers of two adjacent skyrmioni-
ums) tend to infinity with approaching the critical line e-c.
Figure 6(b) shows the period of the SkmL for the positive
magnetic field and different values of the uniaxial anisotropy.
The critical value of the field is essentially the same as for
the spiral state. Indeed, such a SkmL transforms into a system
of circular domain walls with the inflating radius [Fig. 6(f),
top panel], and, on the contrary to the ordinary SkLs, the
SkmL is not able to set free isolated skyrmioniums. For the
negative magnetic field, the SkmL turns into a system of
isolated skyrmions separated by the hexagonal web of narrow
domain walls [Fig. 6(f), bottom panel]. The saturation field is
slightly lower due to the small positive energy of the central
skyrmions. Two-dimensional crosscuts for both SkmLs are
shown in Fig. 6(d), 6(e) for different values of the applied
magnetic field: for low fields, the profiles are essentially ar-
rowlike, whereas for higher fields they become bell shaped.

In addition, we plot the characteristic sizes of the SkmL
at some particular levels of the magnetization [Fig. 6(c)]:
θ = 3π/2 (dark-blue curve), θ = π (green curve), and θ =
π/2 (light-blue curve), which also expand at the critical field
values. The green curve signifies the width of the domain wall
region, which is defined as W = Rθ=3π/2 − Rθ=π/2.

Interestingly, the characteristic sizes of isolated skyrmioni-
ums also diverge while approaching the critical field from the
side of higher fields [Fig. 6(c)], i.e., isolated skyrmioniums
do not assemble into a lattice, which presumably impedes
the experimental observation of SkmLs in chiral magnets.
To overcome this limitation, one should probably start from
the spiral state and sculpt a SkmL by controlled creation of
bimerons [33].

Within the used discretization scheme, isolated skyrmio-
niums were found to exist in the green-shaded region of the
phase diagram [Fig. 6(a)], and collapse above the line k-l . As
was mentioned in Sec. III B, smaller cell size of the numerical
grids may lead to slightly higher values of the critical control
parameters, which, however, are restricted by the physical ar-
guments that the internal skyrmion cannot be infinitely small.
Thus, the phenomenon of skyrmionium collapse stems from

its internal structure, whereas ordinary skyrmions are believed
to be topologically protected and sustain up to much larger
magnetic fields.

For small anisotropy values, some part of the area with iso-
lated skyrmioniums is covered by the stable SkL [55], which
stabilizes below the line m-e [dotted blue line in Fig. 6(a)].
For large anisotropy values, isolated skyrmioniums may exist
alongside with the isolated skyrmions (to the right from the
point n). To the right from the point o, the SkmL is energet-
ically more favorable than SkL as was found for the spiral
states.

VI. CONCLUSIONS

In the present paper, we scrutinized the internal structure
of skyrmioniums from the perspective of two communicat-
ing skyrmions (magnetic analog of communicating water
vessels). Within the central skyrmion, the magnetization per-
forms its rotation according to the energy balance of the
DMI and Zeeman/anisotropy contributions, which stipulates
the energy minimum and resembles the behavior of an ordi-
nary isolated skyrmion. The central skyrmion would dictate
the same rotational algorithm within the surrounding ring-
shaped skyrmion with the opposite polarity. This external
skyrmion, however, does not exhibit any energy minimum,
and would rather prefer to squeeze the central skyrmion
to reduce its own positive energy. Thus, two constituent
skyrmions within a skyrmionium communicate to establish
an optimal ratio of their radii rather than each of the radii
separately.

For large values of the applied magnetic field and/or uni-
axial anisotropy, skyrmioniums were shown to collapse. This
process is accompanied by simultaneous shrinkage of both
radii, but with the growth of their ratio, the process, which
tries to prevent the skyrmionium destruction. Along another
critical line at the phase diagram, both isolated skyrmioniums
and skyrmionium lattices expand and transform into circu-
lar domain walls. Both skyrmionium realizations, however,
exist as separate branches of solutions on the opposite sides
from the critical line. Besides, skyrmionium lattices are over-
powered by the 1D cycloids, which are energetically more
preferable states and thus impede experimental realization of
SkmLs in the whole parameters region.
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