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Circularly polarized lattice vibrations carry angular momentum and lead to magnetic responses in applied
magnetic fields or when resonantly driven with ultrashort laser pulses. Recent measurements have found
responses that are orders of magnitude larger than those calculated in prior theoretical studies. Here, we present
a microscopic model for the effective magnetic moments of chiral phonons in magnetic materials that can
reproduce the experimentally measured magnitudes and that allows us to make quantitative predictions for
materials with giant magnetic responses using microscopic parameters. Our model is based on orbit-lattice
couplings that hybridize optical phonons with orbital electronic transitions. First, we test our model by applying
it to 4 f rare-earth halide paramagnets, which are known to exhibit a giant phonon Zeeman effect. Next, we
predict that this effect can also occur for optical phonons in 3d transition-metal oxide magnets. We show that the
nature of low-energy excitations involved in phonon hybridization is remarkably different than that of rare-earth
systems. The temperature trend of phonon magnetic moment in d-orbital magnets also reveals valuable insights
about the magnetic ground state and the unique interplay of spin, orbital, and lattice degree of freedom. In both
cases, we find that chiral phonons can carry giant effective magnetic moments of the order of a Bohr magneton,
orders of magnitude larger than previous predictions.
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I. INTRODUCTION

Circularly polarized lattice vibrations, also called chiral
phonons, lead to orbital motions of the atoms in a crystal,
producing angular momentum [1–5]. In an ionic lattice, the
orbital motions of the ions create atomistic circular charge
currents and therefore produce a collective phonon magnetic
moment [6–9]. Phonon magnetic moments lead to magnetic
responses when an external magnetic field is applied or
when they are resonantly excited with an ultrashort terahertz
pulse. In an applied static magnetic field, the frequencies
between right- and left-handed circular polarizations split,
which is known as the phonon Zeeman effect [7,8,10–13], and
propagating phonons with opposite chirality are deflected in
different directions, which is known as the phonon Hall effect
[14–22]. If the chiral phonons are infrared active, they can be
resonantly excited with an ultrashort terahertz or mid-infrared
pulse, which generates a macroscopic phonon magnetic mo-
ment and therefore effective magnetic field, a phenomena
that has become known as the phonon inverse Faraday or
phonon Barnett effect in recent studies [7,8,23–34]. The angu-
lar momentum carried by chiral phonons can be transferred to
the electrons, leading to different spin-polarized phenomena
without any external magnetic field [35–37].

The phonon magnetic moment produced by an ionic
charge current scales with the gyromagnetic ratio of the ions,
γ = Z∗/(2M ), which depend on the effective ionic charge
Z∗ and the ionic mass M. Previous studies based on density
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functional theory have computed phonon magnetic moments
in various nonmagnetic materials to yield values of up to a
nuclear magneton [7,8,12,27,38,39]. Intriguingly, a number
of early and recent experiments have measured large mag-
nitudes of phonon Zeeman effects in paramagnets [40,41]
and in materials with nontrivial electronic band geometries
[10,11,42,43] that suggest the presence of phonon magnetic
moments ranging from fractions of to a few Bohr magnetons,
several orders of magnitude larger than the nuclear magne-
ton. Furthermore, very recent pump-probe experiments have
shown that coherently driven chiral phonons produce mag-
netizations in nonmagnetic materials [30] and paramagnets
[31,32] that are compatible with phonon magnetic moments
on the Bohr-magneton scale. These findings indicate that the
phonon magnetic moment contains additional contributions
from electron-phonon or spin-phonon coupling that allow it
to reach the order of a Bohr magneton.

Theories based on electron-phonon coupling have so far
involved two types of explanations for materials with nontriv-
ial electronic band topology: First, an adiabatic evolution of
the electronic states alongside the circularly polarized phonon
modes that induces an adiabatic electronic orbital magne-
tization [44–47], and second, a coupling of the cyclotron
motion of electrons close to a Dirac point to the chiral phonon
mode [10]. Theories based on spin-phonon coupling have
focused both on nonmagnetic and paramagnetic materials: In
paramagnets, phonon modes can couple to the electron spin
through modifications of the crystal electric field (CEF) and
subsequently through the spin-orbit coupling [26,48,49]. For
nonmagnetic materials, a recent proposal suggests that the
spin channels of doping-induced conduction electrons couple
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FIG. 1. Orbit-lattice coupling of chiral phonons. A degenerate
chiral phonon mode couples to a degenerate orbital transition and
forms two hybridized branches, one with primarily phonon contribu-
tion and one with primarily orbital contribution. The chiral phonon
mode therefore obtains part of the g factor from the orbital transition,
which is orders of magnitude larger than its own.

to the phonon magnetic moment, resulting in phonon-induced
electronic polarization [29,33]. Despite these developments, a
microscopic theory that can quantitatively predict the experi-
mentally found giant effective magnetic moments of phonons
is still missing.

Here, we develop a microscopic model for effective
phonon magnetic moments in paramagnetic and magnetic
materials. Our model is based on electron-phonon coupling,
and more specifically orbit-lattice coupling, which leads to a
hybridization of degenerate chiral phonon modes and degen-
erate orbital excitations, as illustrated in Fig. 1. We perform
a comprehensive group-theoretical analysis to identify the
possible couplings between chiral phonon modes and orbital
transitions and apply it to two distinct cases: First, to the case
of 4 f paramagnetic rare-earth trihalides, in which the spin-
orbit splitting is much larger than the CEF splitting. In these
materials, a CEF excitation hybridizes with doubly degenerate
phonons, which allows them to obtain a large phonon mag-
netic moment. Here, our model is able to quantitatively predict
the giant phonon Zeeman splittings that were measured al-
ready half a century ago [40,41], using only microscopic
parameters in combination with results from first-principles
calculations. Second, our model predicts that a phonon Zee-
man effect can also occur in 3d magnets, where the CEF
splitting of the eg and t2g orbitals is much larger than the spin-
orbit splitting. In 3d-orbital systems, the hybridization occurs
between doubly degenerate phonons and orbital excitations
connecting multiplets that are split by the spin-orbit coupling
or by lattice distortions. We predict that this mechanism can
lead to large effective phonon magnetic moments and there-
fore phonon Zeeman splittings when the energies of the orbital
transitions and the phonons become comparable.

II. PHONON ZEEMAN SPLITTING AND EFFECTIVE
PHONON MAGNETIC MOMENT

In this section, we discuss a detailed microscopic model
for the Zeeman splitting of doubly degenerate phonon modes
at or near the center of the Brillouin zone. The doubly degen-
erate phonon modes hybridize with orbital transitions between
Kramers doublets on a magnetic ion, and their frequencies
split when the degeneracy of the Kramers doublets is lifted
by an external magnetic field. This model builds on the early
work of Ref. [48] and can be described by the Hamiltonian

H = Hel + Hph + Hel−ph. (1)

Here, Hel describes the electronic states of the magnetic ion,
Hph is the Hamiltonian of a doubly degenerate phonon mode,
and Hel−ph describes the electron-phonon coupling. We con-
sider a magnetic ion with doubly degenerate electronic levels
(Kramers doublets), which are eigenstates of the total elec-
tronic angular momentum J and are split in energy by the
CEF or spin-orbit coupling. The electronic Hamiltonian can
therefore be written as

Hel =
∑

i

εi |ψi〉 〈ψi| , (2)

where εi is the energy of state i. These states are given by the
ground-state and excited-state Kramers doublets, and we will
look at two Kramers doublets at a time. We denote the states
of the ground-state doublet by

|ψ1〉 = ∣∣J = Jα, mj = mα
j

〉
, (3)

|ψ2〉 = ∣∣J = Jα, mj = −mα
j

〉
, (4)

and those of the excited-state doublet by

|ψ3〉 = ∣∣J = Jβ, mj = mβ
j

〉
, (5)

|ψ4〉 = ∣∣J = Jβ, mj = −mβ
j

〉
. (6)

In the absence of a magnetic field, ε1 = ε2 and ε3 = ε4.
The Hamiltonian of a doubly degenerate phonon mode

consisting of the orthogonal components a and b is given by

Hph = ω0(a†a + b†b). (7)

Here, ω0 is the eigenfrequency of the doubly degenerate
phonon mode. We set h̄ = 1 and treat frequencies and energies
equivalently in the following. a†, b† (a, b) are the bosonic
creation (annihilation) operators of the two orthogonal com-
ponents. These phonons can interact with the electronic states
of the magnetic ion and mix different Kramers doublets. The
electron-phonon coupling is therefore given by an orbit-lattice
coupling, originating from the modification of the crystal
electric field by the lattice vibrations. It can be obtained by
expanding the crystal field to first order in the atomic displace-
ments along the eigenvectors of a phonon mode and can be
written as

Hel−ph =
∑
�α

Q�α
Ô�α

, (8)

where Ô�α
is an operator acting on the electronic states and

Q�α
is the displacement associated with phonon mode α with

irreducible representation �. For pure CEF excitations, where
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FIG. 2. Splitting of chiral phonons in a magnetic field through
orbit-lattice coupling. (a) (Left) The two components, a and b (green
spheres), of a doubly degenerate phonon with frequency ω0 couple to
the orbital transition between the ground and excited CEF states, ψ1

and ψ3, with frequency 	1. The coupling strengths are given by ga

and gb. (Right) The time-reversal partners of the states on the left also
couple to the two components of this phonon. When time-reversal
symmetry is preserved, states ψ1 and ψ2 are degenerate, as well as ψ3

and ψ4, and therefore 	1 = 	2. (b) (Left) Energy level diagram of
the coupling between the orbital transitions, 	1 and 	2, and a doubly
degenerate phonon, ω0, forming hybrid orbit-lattice modes, 
ph and

el , with mainly phononic and electronic admixtures respectively.
The phonon frequencies are renormalized, but remain degenerate.
(Right) A magnetic field lifts the degeneracy of the orbital transi-
tions, Eq. (23), and therefore the degeneracy of the hybrid modes.
The hybrid states with mainly phonon admixture can be seen as
circularly polarized phonon states with frequencies ω±

ph.

both doublets belong to the same multiplet, these operators
take the form of Steven’s operators [50], but we keep it more
general here to also include the possibility to describe spin-
orbit excitations. In our microscopic model, these operators
are computed from the changes of the Coulomb potential
around the magnetic ion, where we treat all ions as point
charges. We ignore higher-order corrections in the lattice
displacement, which would lead to higher-order scattering
processes that are not considered here. Within this expansion,
the orbit-lattice coupling term can be written as

Hel−ph = (a† + a)Ôa + (b† + b)Ôb, (9)

where Ôa/b can couple different electronic states. The form of
these operators is determined by time-reversal symmetry and
can be expressed as

Ôa = ga |ψ1〉 〈ψ3| − g∗
a |ψ2〉 〈ψ4| + H.c., (10)

Ôb = gb |ψ1〉 〈ψ3| − g∗
b |ψ2〉 〈ψ4| + H.c. (11)

where the values of ga/b depend on the strength of the
orbit-lattice coupling. The couplings of the phonons to the
electronic states are illustrated in Fig. 2(a).

There are further coupling terms that mix the states ψ1 and
ψ4, as well as ψ2 and ψ3, which in most cases turn out to
be zero, however. Heuristically, this can be understood on the
basis of angular momentum transfer. The chiral superposition
of two components of a doubly degenerate mode possesses
angular momentum ±l h̄ and thus only mixes electronic states
for which the change in angular momentum is given by
|	mj | = l . This restricts the number of terms in Eq. (11), and
it thus suffices to take into consideration only the transitions
between ψ1 and ψ3 as well as ψ2 and ψ4. We will discuss
the explicit form of this mixing for each of the examples in
Secs. III and IV.

The electron-phonon interaction therefore manifests as
orbit-lattice coupling and hybridizes phonons and electronic
excitations, which modifies the phonon frequencies. The mod-
ification of the phonon spectrum can be obtained using a
Green’s-function formalism. For the noninteracting case, de-
scribed by Hph, the bare phonon Green’s function is given by

D0(ω) =
(

Daa
0 (ω) 0
0 Dbb

0 (ω)

)
, (12)

where Daa
0 (ω) = Dbb

0 (ω) = 2ω0

ω2−ω2
0
, and the phonon energies

are trivially retrieved by solving Det(D−1
0 (ω)) = 0. Including

interactions, the full phonon Green’s function is given by

D−1(ω) = D−1
0 (ω) − �(ω), (13)

where the phonon self-energy matrix �(ω) contains cor-
rections from the orbit-lattice coupling. The leading-order
corrections are given by

�aa = 4π |ga|2
(

f13ε13

ω2 − ε2
31

+ f24ε24

ω2 − ε2
42

)
, (14)

�bb = 4π |gb|2
(

f13ε13

ω2 − ε2
31

+ f24ε24

ω2 − ε2
42

)
, (15)

�ab = (�ba)∗ = �ab
Re + i�ab

Im. (16)

The real and imaginary parts of the mixed term �ab are
given by

�ab
Re = 4πRe(gag∗

b)

(
f13ε13

ω2 − ε2
31

+ f24ε24

ω2 − ε2
42

)
, (17)

�ab
Im = 4π Im(gag∗

b)

(
f13ω

ω2 − ε2
31

− f24ω

ω2 − ε2
42

)
, (18)

�ab = 2π

(
gag∗

b f13

ω − ε13
− g∗

agb f13

ω − ε31
+ g∗

agb f24

ω − ε24
− gag∗

b f24

ω − ε42

)
.

(19)

Here, εi j = εi − ε j is the energy difference between
the states i and j and fi j = fi − f j is the difference
in their occupancies, which are given by Fermi-Dirac
distributions.

All of these terms in the self-energy matrix introduce
corrections to the phonon energies. The phonon degeneracy
can be lifted if the two diagonal terms are unequal. Eq. (13)
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therefore becomes

D−1(ω) =

⎛⎜⎝ω2−ω2
0

2ω0
− g̃2

(
f1	1

ω2−	2
1
+ f2	2

ω2−	2
2

)
ig̃2

(
− f1ω

ω2−	2
1
+ f2ω

ω2−	2
2

)
−ig̃2

(
− f1ω

ω2−	2
1
+ f2ω

ω2−	2
2

)
ω2−ω2

0
2ω0

− g̃2
(

f1	1

ω2−	2
1
+ f2	2

ω2−	2
2

)
⎞⎟⎠, (20)

where we redefine g̃2 ≡ 4πg2,	1 ≡ ε31,	2 ≡ ε42, and we
assume the excited-state Kramers doublet to be unoccupied,
f3 = f4 = 0. Please see the Appendix for a detailed derivation
of Eq. (20). The leading-order corrections to the off-diagonal
elements arise from the orbital transitions shown in Fig. 2(a)
and can be understood in terms of the Feynman diagrams
shown in Fig. 3.

With no external magnetic field applied, the occupancies
of states 1 and 2 are equal, f1 = f2 ≡ f0/2, ( f0 being the
occupancy of the ground-state manifold), as well as the en-
ergies of both transitions, 1 → 3 and 2 → 4,	1 = 	2 ≡ 	.
Under these conditions, the two contributions shown in the
two panels of Fig. 2(a) are equal in magnitude and opposite
in sign, and thus the off-diagonal terms of the self-energy
matrix vanish. As a result, phonons and electronic excitations
hybridize to form doubly degenerate states with primarily
electronic character and lower energies, and states with pri-
marily phononic character and higher energies, as illustrated
in Fig. 2(b) for B = 0. We solve Det(D−1(B = 0)) = 0 to
obtain the frequencies of the hybridized states with primarily
phononic and electronic character, 
ph and 
el ,


ph ≡ ωph(B = 0)

=
⎛⎝ω2

0 + 	2

2
+

√(
ω2

0 − 	2

2

)2

+ 2g̃2 f0ω0	

⎞⎠1/2

,

(21)


el ≡ ωel (B = 0)

=
⎛⎝ω2

0 + 	2

2
−

√(
ω2

0 − 	2

2

)2

+ 2g̃2 f0ω0	

⎞⎠1/2

.

(22)

The energy levels are depicted schematically in Fig. 2(b).

FIG. 3. Scattering mechanism of electron-phonon interactions.
(a) Electron-phonon interaction vertices for a doubly degenerate
phonon mode, α = (a, b), as defined by Eqs. (10) and (11). (b) Feyn-
man diagrams representing the off-diagonal contributions to the
phonon self-energy matrix, mixing the two orthogonal components,
a and b, of the doubly degenerate phonon mode.

We next apply an external magnetic field, B = B ẑ, which
lifts the degeneracies of the Kramers doublets, ε12 �= 0 and
ε34 �= 0. This subsequently modifies the electronic transition
energies according to

	1 = 	 − γ B, 	2 = 	 + γ B, (23)

where γ = μel
ex − μel

gs = (gel
ex − gel

gs)μB contains the g factors
of the ground- and excited-state doublets. Lifting the degen-
eracy of the ground-state doublet leads to an asymmetric
population of the ground-state energy levels, f12 �= 0. This
population difference is an odd function of the magnetic field
B, and we will show in the following that it is directly propor-
tional to the magnetization of the system. The energies of the
phononic and electronic excitation branches can be obtained
by solving Det(D−1(B �= 0)) = 0, which yields(

ω2 − 
2
ph

)(
ω2 − 
2

el

) ± 2ω
(
γ B

(
ω2 − ω2

0

) + g̃2ω0 f21
)

+ γ B
(
γ B

(
ω2 − ω2

0

) + 2g̃2ω0 f21
) = 0. (24)

For small magnetic fields, we can assume a solution of the
form

w±
ph = 
ph(1 ∓ η) (25)

and by substituting it in Eq. (24), we get


phη = γ B
(

2

ph − ω2
0

) + g̃2ω0 f21


2
ph − 
2

el + γ 2B2
. (26)

Please see the Appendix for a detailed derivation. Consequen-
tially, we obtain an expression for the splitting of the phonon
frequencies,

ω+
ph − ω−

ph


ph
= 2

γ B
(

2

ph − ω2
0

)
/ω0 + g̃2 f21√(

ω2
0 − 	2

)2 + 8g̃2 f0ω0	 + γ 2B2
. (27)

The complex hybridization of energy levels leading to this
splitting is depicted in Fig. 2(b), and it arises from a combina-
tion of two factors: (1) a Zeeman shift of the electronic energy
levels that is determined by the g factor of the Kramers states
in each manifold, and (2) a population imbalance between the
ground-state energy levels that is directly related to a change
in spin polarization (and subsequently magnetization) of
the ion.

The net spin polarization of the ground state of the system
depends on magnetic field B, temperature T , and also on
the exchange interactions in the system. We will derive an
explicit form for the population asymmetry in Secs. III and IV,
when considering the examples of paramagnets and magnets.
For example, the population difference for the paramagnetic
case is simply given by f21 = tanh (gel

gsB/(kBT )). On the other
hand, for ferromagnetic or antiferromagnetic cases, its form is
more complicated and can be derived by adding the exchange
mean field. In all cases, in the limit B → 0, we can write the
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population difference as linear in the magnetic field,

f21 ≈ χB, (28)

where χ is directly related to the magnetic susceptibility of the
system. As a result, for a small magnetic field, both the terms
in Eq. (26) lead to Zeeman splitting of previously doubly
degenerate phonon mode. We notice that the splitting becomes
more pronounced as the noninteracting phonon energy ω0

comes closer to electronic excitation energy 	. Here, we can
distinguish two different scenarios:

(1) Resonant case: 	 ≈ ω0 such that |ω0 − 	| 
 g̃. In
this case, the relative splitting can be written as

ω+
ph − ω−

ph


ph
≈

γ + g̃√
2
χ

ω0
B, (29)

which depends linearly on the orbit-lattice coupling
strength g̃.

(2) Off-resonant case: |ω0 − 	| � g̃. In this case, 
2
ph −

ω2
0 ≈ g̃2ω0/|ω0 − 	|, and thus the relative splitting can be

written as

ω+
ph − ω−

ph


ph(B = 0)
≈ g̃2

γ

|	−ω0| + χ

(ω0 − 	)(ω0 + 	0)
B, (30)

which depends quadratically on g̃.
In this paper, only the second scenario will become rele-

vant, where higher-order corrections to the self-energy matrix
in Eq. (13) can be neglected. Generally, CEF transition fre-
quencies and phonon frequencies are mismatched enough that
the off-resonant scenario applies. In the off-resonant case, the
splitting diminishes as the energy difference between phonon
and electronic excitations increases, which requires ω0 and
	 to be at least of similar order of magnitude to yield a
significant effect.

So far, we discussed how the phonon energies are shifted
but we have not investigated the consequences of the orbit-
lattice coupling on the displacements associated with the
eigenmodes. Assuming the off-resonant scenario, the phonon-
displacement operators corresponding to the split phonon
modes with frequencies ω+

ph and ω−
ph of the interacting Green’s

function matrix are given by

Q+ = 1√
2

(Qa − iQb), (31)

Q− = 1√
2

(Qa + iQb), (32)

where Qa ∼ (a + a†) and Qb ∼ (b + b†) were the displace-
ment operators corresponding to linearly polarized phonon
modes a and b. This shows that the new modes, Q+ and
Q−, correspond to circular superpositions of the two orthogo-
nal components and have opposite chiralities. We would like
to emphasize at this point that these zone-centered phonon
modes here become chiral as a result of time-reversal break-
ing. On the other hand, inversion symmetry breaking can
allow chiral phonons at other high-symmetry points in the
Brillouin zone, as studied in many two-dimensional hexagonal
lattices [2,51].

The energies of the chiral phonons with opposite helic-
ities split up in an external magnetic field, described by
the general expression in Eq. (27). In the limit B → 0, this

splitting becomes linear in the magnetic field, which al-
lows us to attribute an effective magnetic moment to the
chiral phonons. We denote the effective magnetic moment
of chiral phonons by μph, and the splitting is accordingly
given by

ω±
ph = ω0 ± μphB. (33)

The phonon magnetic moment can therefore be defined as

μph = 1

2

∂ (ω+
ph − ω−

ph)

∂B

∣∣∣∣
B→0

. (34)

The magnitude of phonon Zeeman splitting obtained here
depends on the coupling between orbital excitations and
phonons. In order to have strong coupling between elec-
tronic and phonon degrees of freedom, the energies of these
excitations should be of the same order of magnitude as
the phonon energies. In the following sections, we will
apply this model to rare-earth trihalide paramagnets and
transition-metal oxide magnets to predict the Zeeman splitting
and effective magnetic moments of chiral phonons in these
materials.

III. CHIRAL PHONONS IN 4 f PARAMAGNETS

The splitting of optical phonons in paramagnetic rare-earth
compounds was extensively studied in the 1970s in a series
of experiments [40,41,48,52]. Amongst other compounds, it
was shown that the rare-earth trihalide CeCl3 exhibits a large
splitting of doubly degenerate phonon modes in an exter-
nal magnetic field. Recently, using the early experimental
data on orbit-lattice coupling, it was predicted, in Ref. [26],
that chiral phonons in this material can produce effective
magnetic fields on the order of tens of tesla when coher-
ently excited with ultrashort laser pulses. Subsequently, CeCl3

has emerged as an interesting candidate to study magne-
tophononic and phonomagnetic properties of chiral phonons.
We will determine the microscopic origin of the orbit-lattice
coupling and apply the model derived in the previous sec-
tion to predict the Zeeman splittings and effective magnetic
moments in this material. We stress that this is a quantitative
prediction using only microscopic parameters and ab initio
results, without the need for phenomenological theory or
experimental data.

A. Structural and electronic properties of CeCl3

The rare-earth trihalide CeCl3, shown in Fig. 4(a), crys-
tallizes in the space group no. 176 (point group 6/m) and its
primitive unit cell contains eight atoms. The two Ce3+ ions
are located at the 2c Wyckoff positions (shown as Ce3+

A and
Ce3+

B ) and the six Cl− ions are located at the 6h Wyckoff
positions (shown as Cl−1A, Cl−2A, Cl−3A, Cl−1B, Cl−2B, and Cl−3B).
The eight-atom unit cell hosts 21 optical phonon modes con-
sisting of the irreducible representations 2Ag + 1Au + 2Bg +
2Bu + 1E1g + 3E2g + 2E1u + 1E2u [26]. Each Ce3+ ion has
nine nearest neighbors arranged in three different planes as
shown in Fig. 4(a) for the Ce3+ ion A.

The ground-state configuration of the Ce3+ (4 f 1) ion is
given by a nearly free-ion configuration of a L = 3, S = 1/2
state in accordance with Hund’s rule. The spin-orbit coupling
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FIG. 4. Properties of CeCl3. (a) Hexagonal crystal structure of CeCl3 with point group 6/m and precise ionic labels. (b) Electronic energy
levels of the Ce3+ ion. The energy levels compared to the free ion are split by spin-orbit coupling and by the crystal electric field, resulting in
three Kramers doublets, of which ±5/2 is the ground state.

splits this 14-dimensional space into J = 5/2 and J = 7/2
total angular momentum sectors and the ground state is given
by the six-dimensional J = 5/2 (2F5/2) state. Since there is
only one electron in the 4 f orbitals, the wavefunctions of
different states in this multiplet can be written as

|J = 5/2, mj = ±5/2〉 = −
√

1

7
|ml = ±2, ms = ±1/2〉

+
√

6

7
|ml = ±3, ms = ∓1/2〉 ,

(35)

|J = 5/2, mj = ±3/2〉 = −
√

2

7
|ml = ±1, ms = ±1/2〉

+
√

5

7
|ml = ±2, ms = ∓1/2〉 ,

(36)

|J = 5/2, mj = ±1/2〉 = −
√

3

7
|ml = ±0, ms = ±1/2〉

+
√

4

7
|ml = ±1, ms = ∓1/2〉 ,

(37)

where |ml , ms〉 is a 4 f -orbital state with orbital quantum
number ml and spin quantum number ms. The CEF further
splits the states into three Kramers doublets |±5/2〉 , |±1/2〉,
and |±3/2〉 with energies 0 meV, 5.82 meV, and 14.38 meV,
respectively [41], as shown in Fig. 4(b).

B. Microscopic model for the orbit-lattice coupling

Previous Raman studies have shown that the doubly de-
generate modes E1g and E2g split into left- and right-handed
circularly polarized chiral phonon modes when a magnetic
field is applied along the c axis of the crystal, perpendicular to
the plane of the components of the doubly degenerate phonon
modes [41,48]. In CeCl3, the E1g mode shows the largest
splitting in experiment, and we will therefore first focus our
analysis on this mode, which involves the displacement of Cl−

ions along the c axis. As there is only one E1g phonon, the
displacement pattern for this mode can be obtained directly

from group theory and is given by

E1g(a) = Qa

2
√

6
(0, 0, 2̂z, −̂z, −̂z,−2̂z, ẑ, ẑ), (38)

E1g(b) = Qb

2
√

2
(0, 0, 0, ẑ, −̂z, 0, −̂z, ẑ), (39)

in the basis (Ce3+
A , Ce3+

B , Cl−1A, Cl−2A, Cl−3A, Cl−1B, Cl−2B, Cl−3B)
and Qa/b are the normal mode coordinates (amplitudes) of
the two components a and b in units of Å

√
amu, where amu

is the atomic mass unit. We show the atomic displacements
corresponding to this mode in Fig. 5(a). The displacements
of the Cl− ions modify the Coulomb potential around the
Ce3+ ions, which perturb the electronic Hamiltonian on the
magnetic ion.

We use a point-charge model to describe the crystal elec-
tric field of the system, in which the potential energy of an
electron at position r from Ce3+ nucleus, resulting from the
nth Cl− ion, is given by

V (Rn, r) = e2

4πε0

1

|Rn − r| , (40)

where Rn = R0,n + un is the displacement of the nth ligand
ion from Ce3+ nucleus, which depends on the equilibrium
displacement R0,n and the relative lattice displacement un

arising from the phonon. The perturbation introduced by a
given phonon mode can be obtained by a Taylor expansion
of the potential in the lattice displacement un to linear or-
der, which is done in Mathematica using the built-in series
expansion function (see Appendix B for details). We express
the displacements in terms of the normal coordinates Qa,b

and sum over all nearest-neighbor ligands, which yields the
first-order terms

V (E1g(a)) = [−0.06xz + 0.16yz]Qa
eV

Å3
√

amu
, (41)

V (E1g(b)) = [0.16xz + 0.06yz]Qb
eV

Å3
√

amu
. (42)

In spherical coordinates, xz = r2 cos θ sin θ cos φ and
yz = r2 cos θ sin θ sin φ, and we write the states from
Eqs. (35)–(37) in terms of 4 f -basis states with the wave
functions 〈r|ml , ms〉 = R(r)Y ml

3 (θ, φ), where R(r) is the
radial part and Y ml

3 (θ, φ) is the spherical harmonic, see the
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FIG. 5. Chiral phonons in CeCl3. (a) Atomic displacements for the two components, a and b, of the doubly degenerate E1g mode. Notably,
both components involve only motion of the ions along the c direction of the crystal. (b) Displacement patterns for chiral phonons in the ab
plane of the crystal arise from superpositions of the two components of the doubly degenerate E1g and E2g modes with a π/2 phase difference.
We show the orbital transitions between the Kramers doublets that couple to the respective chiral phonon modes. (i) For E1g, the Cl− ions in
the upper and lower plane around the Ce3+ ion move in opposite directions along the c-direction of the crystal with a relative phase of ±2π/3
between atoms lying in the same plane. [(ii),(iii)] For the E 1

2g and E 2
2g modes, all ions move on circular orbits around their equilibrium position

in the ab plane of the crystal with different phase differences between different atoms.

Appendix for details. We evaluate the matrix elements of the
above perturbations and obtain

H1(xz) = − 2

7
√

5
〈r2〉

×

⎛⎜⎜⎝
∣∣ 5

2 ,± 5
2

〉 ∣∣ 5
2 ,± 3

2

〉∣∣ 5
2 ± 5

2

〉
0 ±1∣∣ 5

2 ,± 3
2

〉 ±1 0

⎞⎟⎟⎠, (43)

H1(yz) = 2

7
√

5
〈r2〉

⎛⎜⎜⎝
∣∣ 5

2 ,± 5
2

〉 ∣∣ 5
2 ,± 3

2

〉∣∣ 5
2 ,± 5

2

〉
0 i∣∣ 5

2 ,± 3
2

〉 −i 0

⎞⎟⎟⎠,

(44)

where 〈r2〉 = ∫ ∞
0 r2|R(r)|2r2dr is the mean-square 4 f -

electron radius. We can write the phonon displacements as

Qa = h̄√
h̄ω0

(a + a†) = 0.06Å
√

eV amu√
h̄ω0

(a + a†), (45)

Qb = h̄√
h̄ω0

(b + b†) = 0.06Å
√

eV amu√
h̄ω0

(b + b†), (46)

where we restored h̄ and h̄ω0 is the energy of phonon
mode.

The orbit-lattice coupling operators connecting the differ-
ent electronic states in Eqs. (10) and (11) then become

Ôa = geiθ
∣∣ + 5

2

〉〈 + 3
2

∣∣ − ge−iθ
∣∣ − 5

2

〉〈 − 3
2

∣∣ + H.c., (47)

Ôb = igeiθ
∣∣ + 5

2

〉〈 + 3
2

∣∣ + ige−iθ
∣∣ − 5

2

〉〈 − 3
2

∣∣ + H.c. (48)

Here, we combined Eqs. (41)–(46) in order to obtain
g = −√

0.162 + 0.062 2
7
√

5
〈r2〉 0.06√

ω0
eV3/2/Å2 and tan(θ ) =

0.16/0.06. From the general expression of the orbit-lattice
coupling in Eqs. (10) and (11), we find that ga = igb = geiθ .
Following our previously derived model, this orbit-lattice
coupling leads to a splitting of the E1g mode into two

circularly polarized phonon modes with opposite chirality.
The split modes have orbital angular momenta of ±h̄,
arising from the superpositions E1g(a) ± iE1g(b) obtained
from Eqs. (38) and (39). This can also be seen by applying
a C3(z) rotation operation around each Ce3+ site, as the
phonon mode is an eigenstate of the C3(z) operator with
the eigenvalue ei2π/3. The displacements associated with
the opposite chiral phonon modes are depicted in the first
panel of Fig. 5(b) alongside the orbital transitions with which
they hybridize. The orbital angular momentum for these
modes arises from the relative phase between neighboring
atoms.

C. Phonon Zeeman splitting and effective
phonon magnetic moment

We now proceed to computing the energy splitting and the
effective phonon magnetic moments that can be associated
with the chiral phonon modes. For the E1g phonon mode, ω0 =
22.75 meV and g = 7 meV/Å2〈r2〉. With a mean-square radius
of 〈r2〉 ∼ 0.1 Å2 [53], we get g ∼ 0.7 meV. The splitting of
the phonon modes is given by Eq. (27), where the relative
contributions of the two additive terms depend on the values of
the orbit-lattice coupling g, the energy difference between the
electronic excitation and the phonon mode ω0 − 	, and the
occupancy difference f21. CeCl3 is a paramagnetic system and
the population difference for the two states in the ground-state
Kramer doublet is given by

f21 = tanh

(
5

2

gel
5/2μBB

kBT

)
, (49)

where gel
5/2 ≈ 4/5 is the electronic g factor for the J = 5/2

states. In the regime μBB 
 kBT , we can approximate the
population difference in linear order, f21 ≈ 2μBB/kBT . We
can safely assume the off-resonant scenario, as the electronic
excitation energy of 	 ≈ 16 meV results in |ω0 − 	| �
g̃. We accordingly can approximate Eq. (27) by Eq. (30),
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FIG. 6. Phonon Zeeman effect and effective phonon magnetic moments in CeCl3. (a) Splitting of the doubly degenerate E1g mode with
frequency ω0 into left- and right-handed circularly polarized chiral phonon modes with frequencies ω±

ph, as a function of the applied magnetic
field, B. For strong magnetic fields, the magnetization and therefore the splitting saturates. The lower the temperature, the lower magnetic field
strengths are required to reach saturation. (b) Phonon Zeeman splitting for the three different Eig phonon modes of CeCl3 at 2 K. (c) Effective
phonon magnetic moments of the three different Eig phonon modes, as a function of temperature.

yielding

γ B
(

2

ph − ω2
0

) + g̃2 f21ω0 ≈ g̃2ω0

(
γ B

ω0 − 	0
+ 2μBB

kBT

)
,

(50)

where γ = (5/2 − 3/2)gel
5/2µB = 2/5 µB. As a result, the rel-

ative contribution of the two terms in Eq. (50) depends on
the temperature. In the present case for the E1g mode, the
second term dominates in the low-temperature regime, but the
two contributions become equal when kBT ≈ 5(ω0 − 	0) =
50 meV, that is at 500 K. We therefore only consider the
contribution from the second term, which depends on the
difference in occupation of two states in the ground-state
Kramers doublet |±5/2〉.

We show the phonon Zeeman splitting according to
Eq. (50) in Fig. 6(a). We obtain a value of 1.24 meV (10 cm−1)
for the saturated phonon splitting, which is reasonably close to
the value of 18 cm−1 observed in Ref. [41]. The relative split-
ting reaches more than 5% at saturation, and the magnitude
of the magnetic fields required to reach saturation increases
with temperature, according to the dependence of tanh(χB)
on f21. The value of the effective phonon magnetic moment
μph is inversely proportional to the temperature, as shown in
Fig. 6(c), and our model predicts μph = 2.9 µB at T = 10 K,
several orders of magnitude higher than those produced by
purely ionic circular charge currents [7,8,12,27]. The values of
the saturation splitting and μph at three different temperatures
are presented in Table I, which range between 0.1 µB at room
temperature and up to 9.3 µB at 2 K.

A similar analysis can be done for the E1
2g (12.1 meV)

and E2
2g (21.5 meV) phonon modes, whose displacements are

depicted in Fig. 5(b). Here, because of the existence of two
phonon modes with the same symmetry, the displacements
cannot be unambiguously determined from group theory, and
we compute the phonon eigenvectors using density func-
tional theory calculations as published in prior study [26].
Using the point-charge model, we calculate the orbit-lattice
coupling for these phonons, please see the Appendix B for de-
tails. These phonons couple with orbital excitations between
the states |mj = ±5/2〉 and |mj = ±1/2〉, as illustrated in
Fig. 5(c), which leads to the phonon Zeeman splitting shown
in Fig. 6(b).

Our model predicts effective phonon magnetic moments of
μph = 0.4 µB and μph = 0.27 µB at T = 10 K and a saturation
splitting of 0.18 meV (1.5 cm−1) and 0.12 meV (1 cm−1) for
E1

2g and E2
2g, respectively as shown in Table I. According to

Ref. [41], the observed saturation splitting of the E1
2g mode

is 0.87 meV (7 cm−1), which is about four times the values
obtained from our microscopic model. On the other hand, no
splitting was observed for E2

2g mode in the same experiment.
Here again, the observed phonon magnetic moment decreases
with temperature as shown in Fig. 6(c). This disagreement
could be attributed either to the crudeness of our point-charge
model or to the resolution of this experiment, which is limited
to 1 cm−1.

IV. CHIRAL PHONONS IN 3d MAGNETS

In the previous section, we discussed the example of rare-
earth trihalides, where the giant magnetic response of chiral
phonons originates from the coupling of CEF-split electronic
levels with doubly degenerate optical phonons. In this section,
we show that chiral phonons in 3d-electron magnets with

TABLE I. Calculated saturation splitting, phonon Zeeman splitting in an applied magnetic field of B = 1 T, as well as effective phonon
magnetic moments at liquid helium, liquid nitrogen, and room temperature, for the different doubly degenerate phonon modes in CeCl3.

Phonon mode Saturation splitting Splitting (1 T, 10 K) μph(2 K) μph(77 K) μph(295 K)

E1g(22.75 meV) 1.24 meV 0.32 meV 9.3 µB 0.37 µB 0.1 µB

E 1
2g(12.1 meV) 0.18 meV 0.05 meV 1.3 µB 0.05 µB 0.01 µB

E 2
2g(21.5 meV) 0.12 meV 0.02 meV 0.88 µB 0.03 µB 0.01 µB
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FIG. 7. Orbital configurations of d electrons in octahedral CEF.
(a) A magnetic transition-metal ion M surrounded by a trigonally
distorted octahedral cage of ligand ions L. The site symmetry of the
magnetic ion is C3. (b) The splitting of d orbitals resulting from a
trigonal crystal field from the ligand arrangement on the left. (c) The
splitting of d orbitals when spin-orbit coupling is stronger than the
effect of the trigonal distortion.

octahedral ligand configuration can yield a similarly strong
response. We begin with a general analysis of 3d-orbital
configurations and then perform calculations for the concrete
example of CoTiO3.

Materials with octahedral ligand configurations around the
magnetic ion generally possess strong CEFs with splittings of
the eg and t2g orbitals on the order of several eV. This renders
the coupling between the eg − t2g electronic excitations and
phonons weak, and thus makes a magnetic response arising
directly from these transitions unfeasible. In many materials,
however, the t2g and eg manifolds are split further either by
lattice distortions or spin-orbit coupling [54,55]. Both cases
host electronic transitions with energies comparable to those
of optical phonon modes, which leads to strong coupling and
hybridization.

For the first case, consider a magnetic transition-metal ion
surrounded by a trigonally distorted octahedron of ligand ions,
as depicted in Fig. 7(a), as is commonly found in face-sharing
octahedral geometries. Here, the site symmetry for a magnetic
ion is reduced from Oh to C3 and the t2g manifold splits ac-
cording to lz, where the z axis is oriented along the C3 rotation
axis, as shown in Fig. 7(b). The energy of the states depends
on the sign of the trigonal distortion, and the t2g orbitals split
into the two manifolds

|lz = ±1〉 = − 1√
3

(dxy ∓ idx2−y2 ) ± i√
6

(dxz ∓ idyz ), (51)

|lz = 0〉 = d3z2−r2 . (52)

In the second case, the spin-orbit splitting is stronger than
the splitting induced by the trigonal distortion, and we need

to consider eigenstates characterized by the total angular mo-
mentum J as shown in Fig. 7(c). In this limit, the trigonal
distortion introduces a perturbation of the form Htri = δJ2

z to
the Hamiltonian of magnetic ion, which splits the J = 3/2
multiplet into two manifolds with mj ± 1/2 and mj = ±3/2,
while the J = 1/2 states remain unaffected.

In both scenarios, there are low-lying electronic transi-
tions that involve a transfer of angular momentum of 	m =
±1, namely the transition from |lz = ±1〉 to |lz = 0〉 in the
case of a trigonal distortion, and |J = 1/2, mj = ±1/2〉 to
|J = 3/2, mj = ±3/2〉 in the case of spin-orbit coupling.
These transitions are similar in nature to transitions from
|mj = ±5/2〉 to |mj = ±3/2〉 in the example of the rare-earth
trihalides in the previous section.

Next, let us consider an optical phonon mode that can be
characterized by the Eg irreducible representation of the C3

point group. There are many basis functions, corresponding
to displacement patterns, that transform according to this ir-
reducible representation for the system, shown in Fig. 7. One
such possibility is the xy in-plane motion of a magnetic ion M
located at the center of the trigonally distorted octahedra. The
two components of the Eg mode are given by simple displace-
ments of the ion M along the x and y directions, respectively,
and result in the following form CEF perturbation,

V (Eg(a)) ∝ xz Qa
eV

Å3
√

amu
, (53)

V (Eg(b)) ∝ yz Qb
eV

Å3
√

amu
, (54)

where Qa/b are the normal mode coordinates associated with
the two components Eg(a/b), similar to Eqs. (41) and (42) in
the case of the rare-earth trihalides discussed in the previous
section. This perturbation results in a coupling similar to the
one discussed in Eqs. (10) and (11) of Sec. II and can therefore
lead to phonon chirality and a phonon Zeeman effect in a
similar fashion.

The magnitude of this effect depends on the phonon ener-
gies, the electronic wave functions of states involved in the
low-energy excitations, as well as their energies. As discussed
in the previous section, the phonon magnetic moment can be
significantly larger if the electronic excitation energy is closer
to phonon energy. The typical energy scale associated with
spin-orbit coupling and trigonal distortions is usually in the
range 10–100 meV for d-electron systems, which puts these
electronic excitations in close proximity with optical phonons
and hence makes the above effect feasible. Additionally, most
transition-metal systems have significant superexchange in-
teractions with neighboring spins originating from the large
spatial extent of the d orbitals. As a result, one should
expect a rather different temperature trend for the phonon
magnetic moment μph below magnetic ordering temperatures,
which can be evaluated by including the exchange mean-field
contributions.

We next perform calculations for the concrete example of
the XY -quantum magnet CoTiO3, which is known to have
spin-orbit excitations with energies comparable to a range of
optical phonons in the system [56–59].
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FIG. 8. Properties of CoTiO3. (a) Crystal structure of transition-metal oxide CoTiO3 in the ilmenite structure with trigonal space group
R3̄. Each of the Co2+ ions is surrounded by a trigonally distorted octahedral cage of O2− ions. (b) Electronic energy levels of the Co2+ ion,
which are split by a combination of the octahedral crystal field caused by the O2− ions, the spin-orbit coupling, and the trigonal distortion
of the octahedral cage. The low-energy manifold shown in the grey box contains two doublets separated by energy 	 = 23.5 meV, which
provide the spin-orbit excitation that can hybridize with the phonons. Below the Néel temperature, the ground-state manifold is further split by
a temperature-dependent exchange mean-field hexc, which lies in a − b plane.

A. Structural and electronic properties of CoTiO3

The transition-metal oxide CoTiO3 crystallizes in an il-
menite structure with the trigonal space group R3 (point
group 3). Each of the Co2+ ions is surrounded by a trig-
onally distorted octahedral cage of O2− ions, as shown in
Fig. 8(a). The rhombohedral unit cell contains two Co2+
ions, which we denote by A and B. The Co2+ ions are
arranged in slightly buckled two-dimensional honeycomb lat-
tices, which are stacked in an ABC sequence along the c axis
of the crystal, with neighboring planes displaced diagonally
by one-third of the unit cell. Below the Néel temperature of
TN = 38 K, the magnetic moments order ferromagnetically
within the ab planes and are coupled antiferromagnetically
along the c axis [56–58]. The rhombohedral unit cell con-
tains 10 ions, and group theory predicts ten Raman-active
phonons, �R = 5Ag ⊕ 5Eg, and eight infrared-active modes,
�IR = 4Au ⊕ 4Eu, where A and E denote nondegenerate and
doubly degenerate modes, respectively [59,60].

The magnetic properties of CoTiO3 are determined by
the three unpaired spins on the magnetic Co2+ ion with 3d7

valence configuration. The spin-orbit coupling and trigonal
distortion have the same energy scale in CoTiO3 [56], and
the ground state of Co2+, S = 3/2, can be described as an
effective S̃ = 1/2 spin state, as shown in Fig. 8(b). The two
low-energy manifolds are predominantly composed of jeff =
1/2 and jeff = 3/2 angular momentum states, respectively,
and their wavefunctions are given by

|ψ1/2〉 =
∣∣∣∣J = 1

2
, mj = ±1

2

〉
= 1√

2

∣∣∣∣ml = ∓1̃, ms = ±3

2

〉
− 1√

3

∣∣∣∣ml = 0̃, ms = ±1

2

〉
+ 1√

6

∣∣∣∣ml = ±1̃, ms = ∓1

2

〉
(55)

and

|ψ3/4〉 =
∣∣∣∣J = 3

2
, mj = ±3

2

〉
=

√
3

5

∣∣∣∣ml = 0̃, ms = ±3

2

〉
−

√
2

5

∣∣∣∣ml = ±1̃, ms = ±1

2

〉
, (56)

where the states |ml = ĩ, ms〉 arise from the effective leff = 1
and S = 3/2 states that are comprised of three holes. ml

and ms denote the magnetic quantum numbers along the
z-direction of the local coordinate system of the two Co2+
ions. Check Fig. 11 in the Appendix B for details.

For T > TN , both manifolds remain doubly degenerate and
the two manifolds are separated in energy by 23.5 meV [56],
as measured in neutron-diffraction experiments. In the mag-
netically ordered phase at T < TN , the ground-state manifold
is split by the exchange mean-field resulting from the in-plane
magnetic ordering of the spins. The low-energy excitations
between these spin-orbit split states are very close in energy
with two optical phonons with Eg symmetry at 26 meV and
33 meV [59]. This close proximity in energy enables the hy-
bridization between phonons and spin-orbit excitations, which
in turn can produce phonon chirality and therefore a phonon
Zeeman effect.

B. Microscopic model for the orbit-lattice coupling

Phonons associated with irreducible representations other
than fully symmetric ones lower the site symmetry of the Co2+

and hence can mix different electronic states. Here, we con-
sider the two Eg modes with energies of 26 meV and 33 meV
that are close to the orbital transitions. As in Sec. III, we
first evaluate the strength of the coupling using a point-charge
model with atomic displacements of phonons obtained from
group theory and first-principles calculations.
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FIG. 9. Chiral phonons in CoTiO3. (a) Atomic displacements for the two components, a and b, of the doubly degenerate E 1
g mode. This

mode involves only the motion of the Co2+ ion in the ab plane in two perpendicular directions. (b) Side and top view of atomic displacements
for the two components, a and b, of the doubly degenerate E 2

g mode. (c) Displacement patterns for chiral phonons in the ab plane of the crystal
arise from superpositions of the two components of the doubly degenerate E 1

g and E 2
g modes with a π/2 phase difference. We further show the

orbital transitions between the Kramers doublets that couple to the respective chiral phonon modes. (i) For the E 1
g mode, the Co2+ ions move

on circular orbits around their equilibrium position in the ab plane of the crystal. (ii) For the E 2
g modes, the O2− ions in the upper and lower

plane around the Co2+ ions move in opposite directions, with a relative phase of ±2π/3 between atoms lying in the same plane.

We first find the basis functions for different phonon modes
by using projection operators for the irreducible representa-
tion Eg. The phonon displacements of two Eg modes under
consideration are a superposition of these basis functions
and cannot be obtained from purely group theoretical tools.
However, first-principal calculations in previous works [59]
allowed us to approximate the lattice displacements in terms
of the basis functions. The E1

g (26 meV) mode is predomi-
nantly associated with the motion of the Co2+ ion in the ab
plane, which, in the basis function of the two components
of the E1

g mode, can be approximated as x and y motion of
the Co2+ ion, as shown in Fig. 9(a), where x̂ and ŷ are two
orthonormal vectors in the a-b plane. We are using the local
coordinate system shown in Fig. 11 of Appendix B.

For the E2
g (33 meV) mode, we used a superposition of

basis functions that matches the displacements, shown in
Fig. 9(b), to the E2

g mode in previous first-principles cal-
culations in Ref. [59]. For the E2

g mode, we tried several
superpositions of different basis functions and have consid-
ered the one that showed displacements, as in Fig. 9(b),
similar to the E2

g mode in the first-principles calculations in
Ref. [59]. The E2

g mode primarily includes the motion of
ligand O2− ions. For the displacements shown in Fig. 9(c),
we find that the modifications of the CEF around the A- and
B-site Co2+ ions for the E1

g mode are given by

V A/B
(
E1

g (a)
)= [−0.56 eVxz− 0.51 eV(x2 − y2) + O(r3)]Qa,

(57)

V A/B
(
E1

g (b)
) = ±[1.0 eVxy − 0.56 eVyz + O(r3)]Qb. (58)

For the E2
g modes, they are given by

V A/B
(
E2

g (a)
) = [−0.04 eVxy − 0.61 eVxz]Qa + [0.72 eVyz

− 0.14 eV(x2 − y2) + O(r3)]Qa (59)

V A/B
(
E2

g (b)
) = ± [0.28 eVxy − 0.72 eVxz − 0.61 eVyz]Qb

± [−0.02 eV(x2 − y2) + O(r3)]Qb, (60)

where Qa/b again denote the normal mode coordinates as-
sociated with the two components of the Eg phonon modes
in a local coordinate system around each Co2+ ion, given in
units of Å

√
amu. The z and x axis for B sites are opposite to

that of A sites (see Fig. 11 in Appendix B for more details),
which explains an extra negative sign in the b component
correction for B sites in Eq. (60). In the basis of |ψ1/2〉 =
|J = 1/2, mj = ±1/2〉 and |ψ3/4〉 = |J = 3/2, mj = ±3/2〉,
the resulting coupling, shown also shown in Fig. 9(c),
takes the following form for the two components of Eg

mode modes:

ÔA/B
Ea

g
= geiφab

∣∣ψA
1

〉 〈
ψA

3

∣∣ − ge−iφab
∣∣ψA

2

〉 〈
ψA

4

∣∣ + H.c., (61)

ÔA/B
Eb

g
= ±igeiφab

∣∣ψA
1

〉 〈
ψA

3

∣∣ ± ige−iφab
∣∣ψA

2

〉 〈
ψA

4

∣∣ + H.c..

(62)

The coupling factors g for the two Eg modes are given by

gE (1)
g

≈ 0.3r2
0/Å2meV and gE (2)

g
≈ 0.4r2

0/Å2meV, (63)

where r2
0 = 〈r2〉 ≈ 1 Å2 for 3d orbitals in Co2+ [61] (see

Appendix C). The phase φab depends on the ratio of the
coefficients of the xz(xy) and yz(x2 − y2) terms, but does not
affect the self-energy terms.

To compute the coupling strength g, we first express the
phonon displacements in terms of the phononic creation
and annihilation operators, a, a†, b, and b†, analogously to
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FIG. 10. Phonon Zeeman effect and effective phonon magnetic moments in CoTiO3. (a) Splitting of the doubly degenerate E 2
g mode with

frequency ω0 into left- and right-handed circularly polarized phonon modes with frequencies ω±
ph, as a function of the applied magnetic field

B along c axis at three different temperatures. (b) Phonon Zeeman splitting for E 1
g and E 2

g mode at 50 K. (c) Phonon magnetic moment, μph,
as a function of temperature for E 1

g and E 2
g mode. The phonon magnetic moment increases with decreasing temperature in the paramagnetic

regime. The E 2
g mode shows very distinct behavior below and above Néel temperature, TN = 38 K shown by the dotted line. The E 1

g mode is
very close in energy to the spin-orbit excitation and both energies are affected by the magnetic transition, which would significantly influence
the hybridization mechanism and is not captured in our model.

Eqs. (45) and (46),

Qa = h̄√
h̄ω0

(a + a†) = 0.06Å
√

eV amu√
h̄ω0

(a + a†). (64)

Qb = h̄√
h̄ω0

(b + b†) = 0.06Å
√

eV amu√
h̄ω0

(b + b†). (65)

where we restored h̄ and h̄ω0 is the phonon energy. Using
Eqs. (57)–(60) and expressing the states in Eqs. (55) and
(56) in terms of three-particle d-orbital states, we evaluate the
matrix elements for the CEF perturbation term between differ-
ent states (see the Appendix for details). This coupling term
maps to Eqs. (10) and (11) in Sec. II, and, accordingly, the Eg

modes will split into circularly polarized modes with opposite
chirality when a magnetic field is applied along the c axis. The

split modes will have angular momenta of ±h̄ along the c axis,
which arises from the orbital angular momentum possessed by
the superpositions Eg(a) ± iEg(b) shown in Fig. 9(c).

C. Phonon Zeeman splitting and effective
phonon magnetic moment

In order to evaluate the phonon Zeeman splitting for both
of these Eg modes, we can apply the model discussed in Sec. II
with slight modifications. For T > TN , the system is in the
paramagnetic phase and the eigenstates of the two manifolds
involved in electronic excitations are identical to |ψ1/2〉 and
|ψ3/4〉 as described by Eqs. (55) and (56), respectively. In
this case, after accounting for the orbit-lattice interaction de-
scribed by Eqs. (61) and (62), the phonon Green’s function
can be written as

D−1(ω) =

⎛⎜⎜⎜⎝
ω2−ω2

0
2ω0

− g̃2

(
f A
1 	A

1

ω2−(	A
1 )2 + f A

2 	A
2

ω2−(	A
2 )2

+ A ⇐⇒ B

)
ig̃2

(
− f A

1 ω

ω2−(	A
1 )2 + f A

2 ω

ω2−(	A
2 )2 − A ⇐⇒ B

)
−ig̃2

(
− f A

1 ω

ω2−(	A
1 )2 + f A

2 ω

ω2−(	A
2 )2 − A ⇐⇒ B

)
ω2−ω2

0
2ω0

− g̃2

(
f A
1 	A

1

ω2−(	A
1 )2 + f A

2 	A
2

ω2−(	A
2 )2 + A ⇐⇒ B

)
⎞⎟⎟⎟⎠, (66)

where again g̃2 = 4πg2.
The correction to the noninteracting phonon Green’s func-

tion here is similar to that in Eq. (20) discussed in Sec. II. The
only difference is that the off-diagonal term has contributions
from two magnetic ions denoted by A and B. The contributions
from the two ions come with opposite signs, but it is also
worth noticing that the orbit-lattice coupling were evaluated
within the local coordinate systems of each of the ions. The
local z coordinates for the two ions point in opposite directions
and thus, for a magnetic field applied along the c axis of the
crystal, the population difference for two states in the lower
Kramers doublet (J = 1/2) are opposite as well, which means
that the two contributions add up.

Following the same procedure as in Sec. II and Sec. III, we
obtain the phonon Zeeman splitting shown in Fig. 10(a). We
have used the values of orbit-lattice coupling from Eq. (63),

	1 = 	2 = 23.5 meV, a magnetic moment of μ
gd
el = 1.9 µB

for the J = 1/2 ground-state manifold of Co2+ on the basis
of the range mentioned in Ref. [56], as well as ωph = 26 meV
and ωph = 33 meV for the E1

g and E2
g modes, respectively. At

a temperature of T = 50 K, this leads to significant splitting
for both modes, as shown in Fig. 10(b), yielding phonon
magnetic moments of μph = 0.2 µB and 0.1 µB for E1

g and E2
g ,

respectively. In the paramagnetic regime, we expect the tem-
perature dependence of μph to be 1/T , according to Eq. (50),
and hence decreases monotonously with increasing T , as
shown in Fig. 10(c). The phonon magnetic moment reduces
to 0.07 µB (0.05 µB) for E1

g (E2
g ) phonon at room temperature

as shown in Table II.
However, this analysis does not work below the Neel tem-

perature. For T < TN , the spins order antiferromagnetically
and develop a finite in-plane magnetic moment. The exchange
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TABLE II. Calculated saturation splitting, phonon Zeeman splitting in an applied magnetic field of B = 1 T at 10 K, as well as effective
phonon magnetic moments at liquid helium, two different temperatures below and above the Neél temperature, and room temperature, for
doubly degenerate E 2

g phonon mode in CoTiO3. The E 1
g mode does not exist in the same form below the Neél temperature, and accordingly

provide values for temperatures above it. The phonon Zeeman splitting of both phonon modes does not saturate for the field strengths
investigated here.

Phonon mode Saturation splitting Zeeman splitting (1 T, 10 K) μph(2 K) μph(40 K) μph(77 K)

E 1
g (33 meV) >0.1 meV 0.2 µB 0.07 µB

E 2
g (33 meV) >0.1 meV 0.02 meV 0.13 µB 0.14 µB 0.04 µB

field arising from the spin ordering alters the single-ion en-
ergy levels and their eigenstates. Without loss of generality,
we can assume that the resulting exchange mean-field points
along the x direction, which splits up the lower ground-state
Kramers doublet even in the absence of the external magnetic
field, as illustrated in Fig. 8(b). The upper manifold is not af-
fected, but new eigenstates are formed for the lower manifold
that are given by⎛⎝μ

gd
el Bα

z hex(T )

hex(T ) −μ
gd
el Bα

z

⎞⎠ ∣∣ψα

1̃/2̃

〉 = E1̃/2̃

∣∣ψα

1̃/2̃

〉
(67)

where the Hamiltonian is written in the basis (|ψα
1 〉 , |ψα

2 〉)
defined in Eq. (55). The index α = A, B denotes the Co2+ ion
site, hex(T ) is the exchange mean field, and Bz is the external
magnetic field. The energy difference is given by E2̃ = −E1̃ =√

(μgd
el Bz )2 + h2

ex(T ).
We can now apply our orbit-lattice coupling model for

these new eigenstates and obtain the phonon energies by solv-
ing Det(D−1(ω)) = 0. The diagonal components are given by

D−1|aa = D−1|bb

= ω2 − ω2
0

2ω0
− 2g̃2

(
f1̃E1̃3

(
cos θ

2

)2

ω2 − E2
1̃3

+ f1̃E1̃4

(
sin θ

2

)2

ω2 − E2
1̃4

)

− 2g̃2

(
f2̃E2̃3

(
sin θ

2

)2

ω2 − E2
2̃3

+ f1E24
(
cos θ

2

)2

ω2 − E2
2̃4

)
, (68)

and the off-diagonal components in turn are given by

D−1|ab = −D−1|ba

= 2ig̃2

(
− f1̃ω

(
cos θ

2

)2

ω2 − E2
1̃3

+ f1̃ω
(
sin θ

2

)2

ω2 − E2
1̃4

)

+ 2ig̃2

(
− f2̃ω

(
sin θ

2

)2

ω2 − E2
2̃3

+ f2̃ω
(
cos θ

2

)2

ω2 − E2
2̃4

)
, (69)

where cos(θ ) = μ
gd
el B

√
(μgd

el B)2 + h2
ex(T ), E1̃3 = E1̃4 =

	0 − E1̃, E2̃3 = E2̃4 = 	0 − E2̃, and where hex(T ) =
h0

√
(1 − T/TN ) is the temperature-dependent exchange

mean field.
Here, the structure of the eigenstates (|ψ1̃〉 , |ψ2̃〉) is such

that the off-diagonal terms come out to be zero when the
states are an equal superposition of |ψ1〉 and |ψ2〉, which is
the case for B = 0, where no phonon energy splitting occurs
as expected. However, once a magnetic field is applied along
the c axis of the crystal, the eigenstates in the ground-state
manifold are no longer an equal superposition of up and down

spins and develop a net magnetic moment along the c direc-
tion. As a result, the off-diagonal terms become proportional
to B, leading to a splitting of the previously degenerate phonon
modes as shown in Figs. 10(a) and 10(b). Interestingly,
the splitting does not saturate even at very low tempera-
tures, which can be understood on the basis of exchange
interactions.

For temperatures below TN , the temperature dependence
therefore enters in two different ways: First, it determines
the thermal population of the two states in the ground-state
manifold, and second, it determines the spin polarization
of each state through the temperature-dependence of the
exchange mean field. This combination makes the problem
analytically untractable, and hence we obtain the phonon
frequencies by numerically evaluating the poles of Green’s
functions. We show the combined temperature dependence
of μph above and below the Néel temperature in Fig. 10(c),
where we have considered a maximum exchange mean field of
h0 = 3 meV on the basis of the values presented in Ref. [56].
We find the phonon magnetic moment μph = 0.13 µB at
liquid helium temperature, which is comparable to the value
obtained at 40 K, T ≈ TN as shown in Table II.

In both cases, T > TN and T < TN , the phonon splitting
is nonzero only if the populations and eigenstates of the
ground-state manifold are such that the magnetic ion carries
a net magnetic moment along the c axis. In the paramagnetic
case, the magnetic moment is directly related to the population
difference of the two states in the lower Kramers doublet, as
the two states have a magnetic moment along the c axis, but
with opposite signs. In contrast, in the antiferromagnetically
ordered state, we further need to take into account the net
magnetic moment of each state in addition to the popula-
tion difference between the two states. The direction of the
net magnetic moment of each state is therefore determined
by the combined effect of the in-plane exchange mean field
and out-of-plane applied magnetic field. As a result, the net
magnetization of the sample increases at a slower rate with
the applied magnetic field in the T < TN case, compared
to the paramagnetic region. This rate keeps on decreasing as
the temperature is decreased further and leads to a maximum
of the phonon magnetic moment below the Néel temperature,
in contrast to the divergence in the pure paramagnetic case
of the rare-earth trihalides. Overall, we can expect that the
temperature trend of the phonon magnetic moment should
be similar to the temperature dependence of the magnetic
susceptibility along the c direction.

Our calculations for CoTiO3 have shown two things:
(1) applying an external magnetic field can produce chiral
phonons with large effective magnetic moments on the order

094401-13



SWATI CHAUDHARY et al. PHYSICAL REVIEW B 110, 094401 (2024)

of 0.1 µB, and (2) the phonon magnetic moment follows the
same trend as the magnetic susceptibility. This intuition can
be extended to ferromagnets, where we expect that the phonon
Zeeman splitting would saturate very quickly near the critical
temperature and chiral phonons would remain split with fixed
energy separation below TC . It also indicates that in some
cases, it is possible to have chirality-dependent phonon energy
splitting even in the absence of an external magnetic field [62].

V. DISCUSSION

In summary, we have developed a microscopic model
that describes the hybridization of doubly degenerate phonon
modes with electronic orbital transitions between doublet
states. An applied magnetic field splits the degeneracy of
the doublets and therefore that of the phonons coupled to it,
resulting in circularly polarized phonon modes with oppo-
site chirality. The splitting is determined by the population
asymmetry between the ground-state doublets, which makes
the mechanism temperature dependent. The splitting of the
phonon frequencies is linear in the limit of small magnetic
fields, which is consistent with the phenomenological notion
of the phonon Zeeman effect [7,8], and allows us to assign
an effective magnetic moment to the chiral phonon modes.
The specific form of the orbit-lattice coupling leading to these
phenomena depends on the point-group symmetry and orbital
configuration of the material. Furthermore, in order for the
mechanism to be significant, the phonon modes and orbital
transitions need to be on similar energy scales. We have
therefore applied the model and computed phonon Zeeman
splittings and effective phonon magnetic moments for the spe-
cific cases of CeCl3, a 4 f -electron paramagnet, in which the
orbital transition between the doublet states are determined by
the crystal electric field, as well as CoTiO3, a 3d-electron an-
tiferromagnet, in which the orbital transitions are determined
by spin-orbit coupling and a trigonal distortion.

In the case of CeCl3, the effective phonon magnetic mo-
ment increases monotonically with decreasing temperature
over the entire investigated temperature spectrum, because
the spins of the Ce3+ ions order only at very low tempera-
tures of <0.1 K [63], not considered here. We predict values
of several μB at cryogenic temperatures that correspond to
phonon frequency splittings of the order of 10 cm−1, cor-
roborating early experimental measurements [40,41]. Even
at room temperature, the effective magnetic moments of the
phonon modes range between 0.01 µB and 0.1 µB, orders of
magnitude larger than those generated by purely ionic charge
currents [7,8,12,27,38,39]. In the case of CoTiO3, we dis-
tinguish between the high-temperature paramagnetic and the
low-temperature antiferromagnetic phases. The paramagnetic
phase behaves similar to the case of CeCl3, with a mono-
tonically increasing effective phonon magnetic moment for
decreasing temperatures down to the Néel temperature. Below
the Néel temperature, however, the value of the magnetic mo-
ment peaks at approximately 0.17 µB, because the exchange
mean field in the ordered state exhibits an additional, compet-
ing temperature dependence that produces a global maximum
of the effective magnetic moment of the phonon. Despite the
decreasing trend of the magnetic moment at high tempera-
tures, even at room temperature, we still obtain μph = 0.07 µB.

Combining both temperature dependencies below and above
TN , the effective phonon magnetic moment follows roughly
the trend of the magnetic susceptibility.

While we have looked at two particular examples in this
paper, the theory developed in Sec. II is general to all ma-
terials that exhibit doubly degenerate phonon modes and
orbital transitions between doublet states with comparable
energy scales. We therefore expect that in particular more
3d transition-metal oxide compounds may show the pro-
posed phenomena, which host a variety of materials with
trigonal point-group symmetries and octahedral coordinations
of ligand ions. Beyond transition-metal oxides, 4d-electron
magnets could be interesting candidates, because they
possess larger spin-orbit couplings and therefore higher
transition energies between doublet states, which allows
hybridizations with high-frequency phonon modes above
10 THz (40 meV). RuCl3, for example, possesses orbital
excitations on the order of 100 meV [64] as well as doubly
degenerate phonon modes with energies around 50 meV.

In magnetically ordered materials, the details of the mech-
anism for phonon Zeeman splitting further depend on the
exchange interactions between the magnetic ions, and an up-
coming challenge will be to investigate how the phenomenon
unfolds when interactions such as superexchange, itinerant
electrons, or ring-exchange interactions [65,66] are present.
Beyond CEF and spin-orbit excitations, the mechanism can
be extended to include hybridizations between doubly de-
generate phonon modes and other electronic or collective
excitations, such as low-energy charge-transfer excitations
or magnons, which show strong magnetic-field dependence
[67–70].

We point out that we have investigated only Raman-
active phonon modes with E(i)g symmetries in this study.
The same evaluation can be done for infrared-active phonon
modes, E(i)u symmetries in our investigated materials, which
can be resonantly driven with ultrashort laser pulses in the
terahertz and mid-infrared spectral range [7,30]. A recent
study proposed that infrared-active phonon modes driven in
paramagnetic CeCl3 can potentially produce giant effective
magnetic fields through the effective magnetic moment of the
phonons [26], and this phenomenon was subsequently experi-
mentally demonstrated in a paramagnetic oxide/ferrimagnetic
garnet heterostructure [31] and in CeF3 [32]. In CoTiO3,
this mechanism should be readily applicable to the infrared-
active E1

u and E2
u modes that can be driven with mid-infrared

light. Coherent chiral phonon driving combined with large
effective phonon magnetic moments provides a route to-
wards generating nonequilibrium spin configurations [71] and
towards unprecedented spin-switching protocols that could
establish a new paradigm in ultrafast spintronics and data
processing.

Finally, a note on the chirality of the phonons: Circularly
polarized phonons directly at the Gamma point are generally
achiral in 3D. Because they carry an angular momentum,
represented by an axial vector, they could hence be considered
axial phonons. In most cases, the phonons are excited or mea-
sured with Raman or infrared spectroscopy, however, which
makes them pick up a tiny, but nonzero, wavevector perpen-
dicular to the plane of circular polarization. Accordingly, the
phonons obtain a helical structure, making them chiral.
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APPENDIX A: DERIVATION OF THE PHONON ZEEMAN SPLITTING AND EFFECTIVE PHONON MAGNETIC MOMENTS

In this section, we provide more details on the derivations of the equations in the main text. We begin by considering a
degenerate phonon mode with two components that is described by the Hamiltonian

Hph = ω0(a†a + b†b). (A1)

We only consider phonon modes near the Brillouin zone center and can accordingly drop the momentum dependence in the
phonon operators and energies. In order to account for the effect of orbital-lattice coupling on the phonon spectrum, we use a
Green’s function formalism. For the noninteracting system, the Green’s function matrix is given by

D0(ω) =
(

Daa
0 (ω) 0

0 Dbb
0 (ω)

)
, (A2)

where the components are given by

Daa
0 (ω) = Dbb

0 (ω) = 2ω0

ω2 − ω2
0

. (A3)

The phonon frequency ω0 can be trivially retrieved by solving Det(D−1
0 (ω)) = 0. We obtain these Green’s functions from the

Fourier transform of time-dependent phonon propagators,

Daa
0 (t − t ′) = −iθ (t − t ′) 〈0| |A(t )A(t ′) |0〉 − iθ (t ′ − t ) 〈0| A(t ′)A(t ) |0〉 , (A4)

Dbb
0 (t − t ′) = −iθ (t − t ′) 〈0| |B(t )B(t ′) |0〉 − iθ (t ′ − t ) 〈0| B(t ′)B(t ) |0〉 , (A5)

where A(t ) = a(t ) + a†(t ) and B(t ) = b(t ) + b†(t ) with a(t ) = ae−iω0t and bk (t ) = be−iω0t .
We next consider the electronic Hamiltonian, which can be expressed in second quantization as

Hel =
4∑

i=1

εic
†
i ci, (A6)

where c†
i and ci are the creation and annihilation operators for electrons in state i on the magnetic ion. Their Green’s functions

read

Gii
0 (t − t ′) = −i〈0|T [ci(t )c†

i (t ′)]|0〉 = −i[θ (t − t ′)〈0|ci(t )c†
i (t ′)|0〉 − θ (t ′ − t )〈0|c†

i (t ′)ci(t )|0〉], (A7)

where the time-dependent operators are given by

ci(t ) = eiεic
†
i cit cie

−iεic
†
i cit = e−iεit ci. (A8)

We can therefore write the Green’s function as

Gii
0 (t − t ′) = −i[θ (t − t ′)(1 − fi ) − θ (t ′ − t ) fi]e

−iεi (t−t ′ ), (A9)

where fi = 〈0|c†
i ci|0〉 is the occupation number for state i, given by the Fermi-Dirac distribution. A Fourier transform of this

expression yields

Gii
0 (ω) = 1 − fi

ω − εi + iη
+ fi

ω − εi − iη
. (A10)

The orbit-lattice interaction of Eqs. (9) and (11) from the main text can therefore be expressed in second quantization as

Hel−ph = V a + V b, (A11)
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where

V a =
∑
i, j

g(a† + a)�a
i j = g(a† + a)(c†

3c1 + c†
1c3) − g(a† + a)(c†

4c2 + c†
2c3), (A12)

V b =
∑
i, j

g(a† + a)�a
i j = ig(b† + b)(c†

3c1 − c†
1c3) + ig(b† + b)(c†

4c2 − c†
4c2). (A13)

Including the orbit-lattice interaction, the interacting phonon propagator D, and electronic propagator G, are given by

D(q, ω) = D0(q, ω) + D0(q, ω)�(q, ω)D(q, ω), (A14)

where �(q, ω) = D−1
0 − D−1 is the phonon self energy (the main quantity of interest for us), as well as

G(q, ω) = G0(q, ω) + G0(q, ω)�(q, ω)G(q, ω). (A15)

In a perturbative treatment, � and � can be calculated from noninteracting Green’s functions. The full expression is given by(
Daa Dab

Dba Dbb

)
=

(
Daa

0 Dab
0

Dba
0 Dbb

0

)
+

(
Daa

0 Dab
0

Dba
0 Dbb

0

)
�

(
Daa Dab

Dba Dbb

)
, (A16)

where the self-energy term is given by

� =
(

�aa
13 + �aa

31 + �aa
24 + �aa

42 �ab
13 + �ab

31 + �ab
24 + �ab

42

�ba
13 + �ba

31 + �ba
24 + �ba

42 �bb
13 + �bb

31 + �bb
24 + �bb

42

)
. (A17)

We now approximate this term with its noninteracting value,

�
αχ
i j (ω) ≈ �

αχ
i j (ω) = i

∫
dω′Gii

0 (ω + ω′)Gj j
0 (ω′)�α

i j�
χ
ji. (A18)

Together with the frequency-dependent electronic Green’s function,

Gii
0 (ω) = 1 − fi

ω − εi + iη
+ fi

ω − εi − iη
, (A19)

and using Eqs. (A12) and (A13) to write down �a
13 = �a

31 = −�a
24 = −�a

42 = g and �b
13 = −�b

31 = �b
24 = −�b

42 = ig,∫
dω′Gii

0 (ω + ω′)Gj j
0 (ω′) =

∫
dω′

(
1 − fi

ω + ω′ − εi + iη
+ fi

ω + ω′ − εi − iη

)(
1 − f j

ω′ − ε j + iη
+ f j

ω′ − ε j − iη

)
(A20)

=
∫

dω′
[(

(1 − fi )(1 − f j )

(ω + ω′ − εi + iη)(ω′ − ε j + iη)

)
+

(
(1 − fi ) f j

(ω + ω′ − εi + iη)(ω′ − ε j − iη)

)]
(A21)

+
∫

dω′
[(

fi(1 − f j )

(ω + ω′ − εi − iη)(ω′ − ε j + iη)

)
+

(
fi f j

(ω + ω′ − εi − iη)(ω′ − ε j − iη)

)]
(A22)

We utilize the relation limη→0
1

x+iη = P( 1
x ) + iπδ(x) and obtain∫

dω′
[(

(1 − fi )(1 − f j )

(ω + ω′ − εi + iη)(ω′ − ε j + iη)

)]
= (1 − fi )(1 − f j )

ω − εi j

∫
dω′

(
1

ω′ − ε j + iη
− 1

ω + ω′ − εi + iη

)
= 0, (A23)∫

dω′
[(

(1 − fi ) f j

(ω + ω′ − εi + iη)(ω′ − ε j − iη)

)]
= (1 − fi ) f j

ω − εi j + 2iη

∫
dω′

(
1

ω′ − ε j − iη
− 1

ω + ω′ − εi + iη

)
= −i2π

(1 − fi ) f j

ω − εi j + 2iη
, (A24)∫

dω′
[(

fi(1 − f j )

(ω + ω′ − εi + iη)(ω′ − ε j + iη)

)]
= fi(1 − f j )

ω − εi j − 2iη

∫
dω′

(
1

ω′ − ε j + iη
− 1

ω + ω′ − εi − iη

)
,

= i2π
fi(1 − f j )

ω − εi j − 2iη
(A25)
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∫
dω′

[(
fi f j

(ω + ω′ − εi − iη)(ω′ − ε j − iη)

)]
= fi f j

ω − εi j

∫
dω′

(
1

ω′ − ε j − iη
− 1

ω + ω′ − εi − iη

)
= 0, (A26)

as well as ∫
dω′Gii

0 (ω + ω′)Gj j
0 (ω′) = −i2π

(1 − fi ) f j

ω − εi j + 2iη
+ i2π

fi(1 − f j )

ω − εi j − 2iη
. (A27)

In the limit η → 0, this expression becomes∫
dω′Gii

0 (ω + ω′)Gj j
0 (ω′) = i2π

fi − f j

ω − εi j
. (A28)

This allows us to obtain closed forms for the components of the self energy,

�aa
13 + �aa

31 = �bb
13 + �bb

31 = 2πg2( f1 − f3)

(
1

ω − ε13
− 1

ω − ε31

)
= 2π

2g2( f1 − f3)ε13

ω2 − ε2
31

, (A29)

�aa
24 + �aa

42 = �bb
24 + �bb

42 = 2πg2( f2 − f4)

(
1

ω − ε24
− 1

ω − ε42

)
= 2π

2g2( f2 − f4)ε24

ω2 − ε2
42

, (A30)

�ab
13 + �ab

31 = −(
�ba

13 + �ba
31

) = −2π ig2( f1 − f3)

(
1

ω − ε13
+ 1

ω − ε31

)
= 2π

−2ig2( f1 − f3)ω

ω2 − ε2
31

, (A31)

�ab
24 + �ab

42 = −(
�ba

24 + �ba
42

) = 2π ig2( f2 − f4)

(
1

ω − ε13
+ 1

ω − ε31

)
= 2π

2ig2( f2 − f4)ω

ω2 − ε2
42

. (A32)

Inserting these expressions into Eq. (A16), we get

D−1 =

⎛⎜⎝ω2−ω2
0

2ω0
− g̃2

(
f1	1

ω2−	2
1
+ f2	2

ω2−	2
2

)
ig̃2

(
− f1ω

ω2−	2
1
+ f2ω

ω2−	2
2

)
−ig̃2

(
− f1ω

ω2−	2
1
+ f2ω

ω2−	2
2

)
ω2−ω2

0
2ω0

− g̃2
(

f1	1

ω2−	2
1
+ f2	2

ω2−	2
2

)
⎞⎟⎠, (A33)

where g̃2 = 4πg2,	1 = ε31,	2 = ε42 and we assume the excited state to be unoccupied, f3 = f4 = 0. The modified energies
can then be obtained by solving Det(D−1) = 0. The result of this equation depends on the application of a magnetic field, and
we consider two cases.

Case 1. B = 0. Here, f1 = f2 = f0/2 and 	1 = 	2 = 	. In this scenario, the off-diagonal term in D−1 is zero and the
evaluation of Det(D−1(ω)) = 0 reduces to (

ω2 − ω2
0

)
(ω2 − 	2) − 2g̃2 f0ω0	 = 0, (A34)(

ω2 − ω2
0

)
(ω2 − 	2) − 2g̃2 f0ω0	 = 0, (A35)

which have identical solutions, indicating the doubly degenerate nature of phonon and electronic excitations. The solutions
corresponding to the phonon and electronic excitation branches are respectively given by


ph ≡ ωph(B = 0) =
⎛⎝ω2

0 + 	2

2
+

√(
ω2

0 − 	2

2

)2

+ 2g̃2 f0ω0	

⎞⎠1/2

, (A36)


el ≡ ωel (B = 0) =
⎛⎝ω2

0 + 	2

2
−

√(
ω2

0 − 	2

2

)2

+ 2g̃2 f0ω0	

⎞⎠1/2

. (A37)

This coupling modifies the phonon and electronic excitation energies but does not lift the degeneracy of two excitations. However,
if the bare frequencies for two excitations are close, then even a weak orbit-lattice coupling term can introduce significant mixing
and the excitations are no longer purely phononic or electronic in nature. We have focused only on the off-resonant case where
these aspects can be safely ignored.

Case 2. B �= 0. We next apply an external magnetic field, B = B ẑ, which lifts the degeneracies of the Kramers doublets,
ε12 �= 0 and ε34 �= 0. This subsequently modifies the electronic transition energies as

	1 = 	 − γ B, 	2 = 	 + γ B, (A38)
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where γ = μel
ex − μel

gs depends on the magnetic moment of the ground- and excited-state doublets. Lifting the degeneracy of
the ground-state doublet leads to asymmetric populations of the ground-state energy levels, f12 �= 0. Accordingly, the secular
equation, Det(D−1(ω)) = 0 for D−1 given by Eq. (A33) becomes(

ω2 − ω2
0

)
(ω2 − 	2) − 2g̃2 f0ω0	 + 2ω

(
Bγ

(
ω2 − ω2

0

) + g̃2ω0 f21
) + γ B

(
γ B

(
ω2 − ω2

0

) + 2g̃2ω0 f21
) = 0, (A39)(

ω2 − ω2
0

)
(ω2 − 	2) − 2g̃2 f0ω0	 − 2ω

(
Bγ

(
ω2 − ω2

0

) + g̃2ω0 f21
) + γ B

(
γ B

(
ω2 − ω2

0

) + 2g̃2ω0 f21
) = 0. (A40)

These two equations are not equivalent and there is a term linear in ω that indicates a frequency splitting
of phonon and electronic excitations. Given that the orbit-lattice coupling is weak and the electronic excitations
are off-resonant from phonons, we can assume that phonon energies are modified only slightly and have the
following form:

w±
ph = 
ph(1 ∓ η), (A41)

w±
el = 
el (1 ∓ ε). (A42)

For the case of a paramagnetic system, the population difference is given by

f21 = − tanh

(
μel

gsB

kBT

)
. (A43)

where μel
gs is the magnetic moment of ground-state manifold. We can plug the above equations into Eq. (A39) and Eq. (24) in

order to obtain


phη = γ B
(

2

+ − ω2
0

) + g̃2ω0 f21


2
ph − 
2

el + γ 2B2
=

γ B
(

2

+ − ω2
0

) + g̃2ω0 tanh
(

μel
gsB

kBT

)
√(

ω2
0 − 	2

)2 + 8g̃2 f0ω0	 + γ 2B2
. (A44)

For the off-resonant case, we can assume |	 − ω0| � γ B and therefore neglect the linear B term in the numerator and
the quadratic one in the denominator. The off-resonant case is a reasonable assumption, as γ B ∼ 0.5 meV in strong mag-
netic fields of B = 10 T, whereas often |	 − ω0| > 10 meV. As a result, the splitting of the phonon frequencies can be
written as

ω+
ph − ω−

ph

ωph(B = 0)
≈ 2g̃2√(

ω2
0 − 	2

)2 + 8g̃2 f0ω0	

tanh

(
μel

gsB

kBT

)
, (A45)

which retrieves the early result by Thalmeier and Fulde [48].

APPENDIX B: ORBIT-LATTICE COUPLING OF THE E2g MODES IN CeCl3

The orbital-lattice coupling is evaluated by expanding the Coulomb potential in lattice displacement un,

V (Rn, r) = e2

4πε0

1

|Rn − r| , (B1)

where Rn = R0,n + un. We use Mathematica to perform a series expansion in un and different components of r. This function
can directly evaluate the following derivatives:

∂uα
n
∂rβ ∂rγ

(
1

|Rn − r|
)∣∣∣∣

Rn=R0,n,r=0

(B2)

when numerical values of R0,n are provided.
As discussed in main text, the phonon lowers the symmetry around the magnetic ion and for the lattice distortion induced by

E1g phonon, the first order term for the change in Coulomb potential is given by

V (E1g(a)) = [−0.06xz + 0.16yz]Qa
eV

Å3
√

amu
, (B3)

V (E1g(b)) = [0.16xz + 0.06yz]Qb
eV

Å3
√

amu
. (B4)
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Now, we can express xz = r2 sin θ cos θ cos φ and yz = r2 sin θ cos θ cos φ in spherical coordinates. The electronic states on
Ce3+ ion can be written in terms of |L = 3, m = ml〉, which have wavefunction 〈r|L = 3, m = ml〉 = R(r)Y ml

3 (θ, φ). This allows
us to calculate the matrix elements between different 4 f states and the only nonzero terms are given by

〈m = ±3|xz|m = ±2〉 = ∓〈r2〉 1

3
√

6
, (B5)

〈m = ±2|xz|m = ±1〉 = ∓〈r2〉 1

3
√

10
, (B6)

〈m = ±1|xz|m = ±0〉 = ∓〈r2〉 1

3
√

75
, (B7)

〈m = ±3|yz|m = ±2〉 = 〈r2〉 i

3
√

6
, (B8)

〈m = ±2|yz|m = ±1〉 = 〈r2〉 i

3
√

10
, (B9)

〈m = ±1|yz|m = 0〉 = 〈r2〉 i

3
√

75
. (B10)

Using these values for states given in Eqs. (35)–(37), we obtain

H1(xz) = − 2

7
√

5
〈r2〉

⎛⎜⎜⎝
∣∣ 5

2 ,± 5
2

〉 ∣∣ 5
2 ,± 3

2

〉∣∣ 5
2 ± 5

2

〉
0 ±1∣∣ 5

2 ,± 3
2

〉 ±1 0

⎞⎟⎟⎠, (B11)

H1(yz) = 2

7
√

5
〈r2〉

⎛⎜⎜⎝
∣∣ 5

2 ,± 5
2

〉 ∣∣ 5
2 ,± 3

2

〉∣∣ 5
2 ,± 5

2

〉
0 i∣∣ 5

2 ,± 3
2

〉 −i 0

⎞⎟⎟⎠. (B12)

Next, we use the same microscopic model to calculate the Zeeman effect for other phonons as well. Here, we consider E1
2g

(12 meV) and E2
2g (21.5 meV) phonons of CeCl3. The phonon eigenvectors are obtained from density functional theory [26].

As mentioned in the main text [Eq. (B1)], these lattice displacements perturb the CEF around the Ce3+ ions, and the resulting
modifications can be described as

V
(
E1

2g(a)
) = [−0.05xy − 0.007(x2 − y2)]Qa eV/(Å2√amu), (B13)

V
(
E1

2g(b)
) = [0.014xy − 0.025(x2 − y2)]Qb eV/(Å2√amu), (B14)

V
(
E2

2g(a)
) = [0.08xy + 0.01(x2 − y2)]Qa eV/(Å2√amu), (B15)

V
(
E2

2g(b)
) = [−0.02xy + 0.04(x2 − y2)]Qb eV/(Å2√amu), (B16)

where Qa,b is the amplitude of the phonon mode. Using spherical harmonics, we express this perturbation in the basis of
electronic states, using

〈m = ±3|xy|m = ±1〉 = ±〈r2〉 i

3
√

15
, (B17)

〈m = ±2|xy|m = ±0〉 = ±〈r2〉
√

2i

3
√

15
, (B18)

〈m = ±1|xy|m = ∓1〉 = ±〈r2〉 2i

15
, (B19)

〈m = ±3|x2 − y2|m = ±1〉 = 〈r2〉 2

3
√

15
, (B20)

〈m = ±2|x2 − y2|m = ±0〉 = 〈r2〉
√

8

3
√

15
, (B21)

〈m = ±1|x2 − y2|m = ∓1〉 = 〈r2〉 4

15
, (B22)
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which results in

H1(x2 − y2) = −2
√

2

7
√

5
〈r2〉

⎛⎜⎜⎝
∣∣ 5

2 , 5
2

〉 ∣∣ 5
2 , 1

2

〉∣∣ 5
2 , 5

2

〉
0 1∣∣ 5

2 , 3
2

〉
1 0

⎞⎟⎟⎠, (B23)

H1(x2 − y2) = −2
√

2

7
√

5
〈r2〉

⎛⎜⎜⎝
∣∣ 5

2 ,− 5
2

〉 ∣∣ 5
2 ,− 1

2

〉∣∣ 5
2 ,− 5

2

〉
0 1∣∣ 5

2 ,− 1
2

〉
1 0

⎞⎟⎟⎠, (B24)

H1(xy) =
√

2

7
√

5
〈r2〉

⎛⎜⎜⎝
∣∣ 5

2 , 5
2

〉 ∣∣ 5
2 , 1

2

〉∣∣ 5
2 , 5

2

〉
0 i∣∣ 5

2 , 1
2

〉 −i 0

⎞⎟⎟⎠, (B25)

H1(xy) =
√

2

7
√

5
〈r2〉

⎛⎜⎜⎝
∣∣ 5

2 ,− 5
2

〉 ∣∣ 5
2 ,− 1

2

〉∣∣ 5
2 ,− 5

2

〉
0 −i∣∣ 5

2 ,− 1
2

〉
i 0

⎞⎟⎟⎠, (B26)

where 〈r2〉 is mean-square radius for 4 f orbitals. The form of the Hamiltonian is similar to what we obtained for the E1g mode
in the main text, except for the fact that the E2g modes couple the electronic orbitals |±5/2〉 with |±1/2〉. This coupling results
in a significant phonon Zeeman effect and leads to chiral phonons as shown in Fig. 5(c).

APPENDIX C: ORBITAL CONFIGURATION AND ORBITAL-LATTICE COUPLING IN CoTiO3

The Co2+ is a 3d3 system with three unpaired spins and for a free ion, Hund’s coupling dictates that the ground-state manifold
has L = 3, S = 3/2 and thus 28 degenerate states. These twenty-eight states can be obtained from linear combinations of the
following seven states (mS = +3/2):

|L = 3, mL = 3〉 = d†
2↑d†

1↑d†
0↑ |0〉 , (C1)

|L = 3, mL = 2〉 = d†
2↑d†

1↑d†
−1↑ |0〉 , (C2)

|L = 3, mL = 1〉 = 1√
5

(√
3d†

2↑d†
0↑d†

−1↑ +
√

2d†
2↑d†

1↑d†
−2↑

) |0〉 , (C3)

|L = 3, mL = 0〉 = 1√
5

(
d†

1↑d†
0↑d†

−1↑ + 2d†
2↑d†

0↑d†
−2↑

) |0〉 , (C4)

|L = 3, mL = −1〉 = − 1√
5

(√
3d†

−2↑d†
0↑d†

1↑ +
√

2d†
−2↑d†

−1↑d†
2↑

) |0〉 , (C5)

|L = 3, mL = −2〉 = −d†
−2↑d†

−1↑d†
1↑ |0〉 , (C6)

|L = 3, mL = −3〉 = −d†
−2↑d†

−1↑d†
0↑ |0〉 , (C7)

where d†
j↑ creates a d-orbital state according to

d†
j↑ |0〉 ≡ ∣∣L = 2, ml = j, S = 1

2 , ms = + 1
2

〉
. (C8)

These seven states are split by the octahedral CEF of the ligand ions. This CEF effect can be incorporated by introducing the
following term to the Hamiltonian:

HOh = 	0
(
PT2g − 3

2PEg

)
, (C9)

where PT2g/Eg is the projection operator on the T2g and Eg d orbitals. In terms of creation and annihilation operators for d orbitals,
this term can be expressed as follows:

HOh = 	0

∑
σ=↑,↓

(
d†

xy,σ dxy,σ + d†
yz,σ dyz,σ + d†

xz,σ dxz,σ − 3

2
d†

x2−y2,σ
dx2−y2,σ − 3

2
d†

z2,σ
dz2,σ

)
, (C10)
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which splits the seven-dimensional Hilbert space into four different manifolds. The ground-state sector is spanned by the
following three states:

|1̃〉 =
√

3

8
|3, 1〉 +

√
5

8
|3,−3〉 , (C11)

|0̃〉 = − |3, 0〉 , (C12)

|−1̃〉 =
√

3

8
|3,−1〉 +

√
5

8
|3, 3〉 , (C13)

which we denote by T1g in Fig. 8(b), and the other three-sectors (irrelevant for our calculations) are given by√
5

8
|3, 1〉 −

√
3

8
|3,−3〉 , (C14)√

5

8
|3,−1〉 −

√
3

8
|3, 3〉 , (C15)√

1

2
|3, 2〉 +

√
1

2
|3,−2〉 , (C16)√

1

2
|3, 2〉 −

√
1

2
|3,−2〉 . (C17)

As the crystal field splitting arising from the octahedral field in this case is of the order of 1 eV, we are going to focus only on
the ground-state sector, which can be represented as an effective angular momentum, leff = 1, sector with �l = − 2

3
�L. Next, we

take into account the effect of spin-orbit coupling,

HSO = 3
2λ�l · �S, (C18)

which splits the leff = 1 manifold further into the following manifolds:
(i) jeff = 5/2: ∣∣∣∣5

2
,

5

2

〉
=

∣∣∣∣ml = 1̃, ms = 3

2

〉
, (C19)∣∣∣∣5

2
,

3

2

〉
=

√
2

5

∣∣∣∣ml = 0̃, ms = 3

2

〉
+

√
3

5

∣∣∣∣ml = 1̃, ms = 1

2

〉
, (C20)∣∣∣∣5

2
,

1

2

〉
= 1√

10

(∣∣∣∣ml = −1̃, ms = 3

2

〉
+

√
6

∣∣∣∣ml = 0̃, ms = 1

2

〉
+

√
3

∣∣∣∣ml = 1̃, ms = −1

2

〉)
, (C21)∣∣∣∣5

2
,−1

2

〉
= 1√

10

(∣∣∣∣ml = 1̃, ms = −3

2

〉
+

√
6

∣∣∣∣ml = 0̃, ms = −1

2

〉
+

√
3

∣∣∣∣ml = −1̃, ms = 1

2

〉)
, (C22)∣∣∣∣5

2
,−3

2

〉
=

√
2

5

∣∣∣∣ml = 0̃, ms = −3

2

〉
+

√
3

5

∣∣∣∣ml = −1̃, ms = −1

2

〉
, (C23)∣∣∣∣5

2
,−5

2

〉
=

∣∣∣∣ml = −1̃, ms = −3

2

〉
. (C24)

(ii) jeff = 3/2: ∣∣∣∣3

2
,

3

2

〉
=

√
3

5

∣∣∣∣ml = 0̃, ms = 3

2

〉
−

√
2

5

∣∣∣∣ml = 1̃, ms = 1

2

〉
, (C25)∣∣∣∣3

2
,

1

2

〉
= 1√

15

(√
6

∣∣∣∣ml = −1̃, ms = 3

2

〉
+

∣∣∣∣ml = 0̃, ms = 1

2

〉
−

√
8

∣∣∣∣ml = 1̃, ms = −1

2

〉)
, (C26)∣∣∣∣3

2
,−1

2

〉
= 1√

15

(√
6

∣∣∣∣ml = 1̃, ms = −3

2

〉
+

∣∣∣∣ml = 0̃, ms = −1

2

〉
−

√
8

∣∣∣∣ml = −1̃, ms = 1

2

〉)
, (C27)∣∣∣∣3

2
,−3

2

〉
=

√
3

5

∣∣∣∣ml = 0̃, ms = −3

2

〉
−

√
2

5

∣∣∣∣ml = −1̃, ms = −1

2

〉
. (C28)

(iii) jeff = 1/2:∣∣∣∣1

2
,

1

2

〉
= 1√

6

(√
3

∣∣∣∣ml = −1̃, ms = 3

2

〉
−

√
2

∣∣∣∣ml = 0̃, ms = 1

2

〉
+

∣∣∣∣ml = 1̃, ms = −1

2

〉)
, (C29)
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∣∣∣∣1

2
,−1

2

〉
= 1√

6

(√
3

∣∣∣∣ml = 1̃, ms = −3

2

〉
−

√
2

∣∣∣∣ml = 0̃, ms = −1

2

〉
+

∣∣∣∣ml = −1̃, ms = 1

2

〉)
. (C30)

Trigonal distortion. In CoTiO3, the octahedral cage is trigonally distorted, which reduces the Co2+ site symmetry from Oh

to C3. This distortion is significant and it introduces a perturbation of the form δL2
z tr along the z direction of the trigonal

coordinate system, which splits the jeff = 3/2 and jeff = 5/2 manifolds further, according to the expectation value of jz, where
z axis is parallel (antiparallel) to c axis for site A (B) of the Co2+ ions, as shown in Fig. 11. The two lower manifolds
can still be characterized by mj = ±1/2 and mj = ±3/2 and are predominantly composed of jeff = 1/2 and jeff = 3/2,
respectively.

FIG. 11. Local coordinate system around each of the two Co2+

sites, A and B, of the rhombohedral unit cell.

Orbital-lattice coupling. In order to calculate the orbital-
lattice coupling for Eqs. (61) and (62), we first express the
electronic states |1/2,±1/2〉 and |3/2,±3/2〉 in terms of
constituent d-orbital states in Eqs. (C1)–(C7), which in turn
are expressed in the form of spherical harmonics and this gives

H1(xz) = r2
0

1

70
√

60

⎛⎜⎜⎝
∣∣ 1

2 ,± 1
2

〉 ∣∣ 3
2 ,± 3

2

〉∣∣ 1
2 ,± 1

2

〉
0 ±1∣∣ 3

2 ,± 3
2

〉 ±1 0

⎞⎟⎟⎠,

(C31)

H1(yz) = r2
0

1

70
√

60

⎛⎜⎜⎝
∣∣ 1

2 ,± 1
2

〉 ∣∣ 3
2 ,± 3

2

〉∣∣ 1
2 ,± 1

2

〉
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for different perturbations in the Coulomb potential.
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