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In this manuscript, after discussing in detail the internals of our recently developed method, the dynamical
projective operatorial approach (DPOA), we provide the framework to apply this method to pumped semi-
conductor lattice systems and, in particular, to study and analyze their electronic excitations and TR-ARPES
signal. The expressions for relevant out-of-equilibrium Green’s functions and TR-ARPES signal are given
within the DPOA framework and, defining a retarded TR-ARPES signal, it is shown that it is possible to obtain
an out-of-equilibrium version of the fluctuation-dissipation theorem. We clarify how single- and multiphoton
resonances, rigid shifts, band dressings, and different types of sidebands emerge in the TR-ARPES signal.
We also propose protocols for evaluating the strength of single- and multiphoton resonances and for assigning
the residual excited electronic population at each crystal momentum and band to a specific excitation process.
Hamiltonians, where intra- and interband transitions are selectively inhibited, are defined and used to analyze
the effects on the TR-ARPES signal and the residual electronic excited population. Three relevant cases of
light-matter coupling are examined within the dipole gauge: only a local dipole, only the Peierls substitution
in the hopping term, and both terms at once. The transient and residual pump effects are studied in detail,
including the consequences of the lattice symmetries at different crystal momenta on the TR-ARPES signal. A
detailed study of the dependence of the TR-ARPES signal on the probe-pulse characteristics is also reported.
To provide a guideline for understanding the complex effects and interplays and the variety of possible physical
phenomena without being limited by the characteristics of a single particular real material, we have chosen to
study a prototypical pumped two-band semiconductor lattice system.
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I. INTRODUCTION

The modern developments in technology made it possible
to study condensed matter systems in the attosecond regime
and investigate their real-time dynamics upon perturbation by
ultrashort and intense electromagnetic pulses, the so called
pump-probe setups [1–6]. Investigating the real-time behavior
of electronic excitations induced by the laser pulse reveals the
fundamental processes that govern the physics of the system
under study [7–11]. One avenue is to investigate the response
of the solid by reading out the high-harmonic generation upon
irradiation [12–21]. In other pump-probe setups, the system is
pumped with an intense laser pulse, usually in the IR regime
and with a duration ranging from few to hundreds of fs,
and analyzed using a positively or negatively delayed probe
pulse by measuring either the transient change in the optical
properties [7,8,18,22–32] or the time-resolved angle-resolved
photoemission spectroscopy (TR-ARPES) signal [11,33–40].
Even though the theoretical method we introduce in this
manuscript is in principle capable of dealing with any time-
dependent system response, as optical properties [41], in this
paper, we will mainly focus on its description of the TR-
ARPES signal.

ARPES investigates the electronic band structure of ma-
terials by analyzing the energy and momentum distribution

of the electrons ejected from a solid via photoelectric ef-
fect [42–48]. Instead, in pump-probe setups, TR-ARPES is
exploited to determine the out-of-equilibrium electronic prop-
erties of materials by measuring the signal as a function of the
time delay between the pump and probe pulses [48–52]. TR-
ARPES measurements in pump-probe setups can reveal the
different dynamical processes taking place in the system [48],
which are of fundamental importance for understanding the
underlying physics and eventually engineering materials for
practical purposes. Thanks to the capability of monitoring the
dynamics of the electronic excitations, TR-ARPES can give
valuable information about the bands above the Fermi energy,
well beyond what one can achieve by measuring thermal ex-
citations at equilibrium [53–55]. Moreover, TR-ARPES can
measure and study the dressing of the main bands and the
emergence of sidebands due to the pump pulse [37,56], open-
ing a pathway to novel applications in ultrafast engineering of
materials. TR-ARPES measurements can be used to investi-
gate many other complex effects induced by the pump pulse
such as the perturbation (melting, switching, emergence, etc.)
of ordered states in materials [11,33,34] and the dynamical
excitation of collective modes [36,57,58], just to give a few
examples.

To understand the underlying physical phenomena and
microscopic processes induced by the pumping of materials,
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such advanced experimental studies require their theoretical
description and numerical simulation. The standard approach
to the numerical study of the out-of-equilibrium behavior of
a material pumped with an intense laser pulse is the time-
dependent density functional theory (TD-DFT) [27,32,59–
65], which is unfortunately rather time-consuming and com-
putationally expensive [66]. Moreover, it is not easy to get
deep insights into the underlying physics through TD-DFT
simulations just using (without tampering) currently available
software packages, while, in a model-Hamiltonian approach,
it is possible to switch on and off terms and investigate their
relative relevance and interplay [66].

Model-Hamiltonian approaches, for both matter and light-
matter interaction terms, rely on parameters supplied by
DFT calculations at equilibrium for real materials [67]. If
the material is strongly correlated, one can use the dy-
namical mean-field theory to compute its out-of-equilibrium
properties if the number of degrees of freedom involved
(spin, bands, atoms in the basis, etc.) is limited [6,68–70].
However, for weakly correlated materials, such as most of
the semiconductors, the Hamiltonian can be mapped to an
effective quadratic form, for which one can in principle com-
pute the time-dependent single-particle density-matrix and/or
higher-order correlation functions according to the probing
scheme [56,71]. Another approach that is suitable for effective
few-band models is the so called Houston method in which
one expands electronic single-particle wave functions in terms
of the instantaneous eigenstates of the time-dependent Hamil-
tonian and solves the equations of motion for the expansion
coefficients within some approximations [27,72]. The rel-
evance of Houston method is to provide a framework to
disentangle the effects of different processes, in particular
those related to the interband and to the intraband transitions,
and their interplay.

At any rate, model-Hamiltonian approaches cannot be ap-
plied so easily to real materials as one either run the risk
to use oversimplified models that could lose some important
features or has to find an efficient way to deal with the ac-
tual very complicated Hamiltonians describing many degrees
of freedom at once [66]. Even for quadratic Hamiltonians,
one needs to numerically solve the equations of motion of
the multiparticle density matrices or multitime correlation
functions, which are needed to describe response functions,
such as the optical conductivity, or for computing the TR-
ARPES signal. Unfortunately, without a proper framework,
such calculations can be computationally quite heavy and
eventually unaffordable. Recently, we designed and developed
a novel method, the dynamical projective operatorial approach
(DPOA), and used it to analyze the transient and residual
electronic photoexcitations in ultrafast (attosecond) pumped
germanium [30,31]. We benchmarked our results with those
obtained through TD-DFT calculations, which were in turn
validated by direct comparison to the experimental results
for the differential transient reflectivity. Moreover, DPOA al-
lowed us to use much finer momentum grids than the ones
affordable by TD-DFT, and unravel the actual relevant pump-
ing processes, as well as the individual roles of different
mechanisms and their interplay.

DPOA is a quite versatile model-Hamiltonian approach
that deals with the time evolution of composite opera-

tors [73–78] and is capable of simulating real materials, and
the time-dependent transitions among their actual numerous
bands [30,31]. DPOA is, in principle, capable of tackling
strongly correlated systems as well [79]. In this paper, we
delve into DPOA by reporting its detailed derivation and its
quadratic-Hamiltonian version, which is particularly fast and
efficient. Such a version is very useful for semiconductors
where one can usually safely discard the dynamical Coloumb
interaction. We also report how to compute all single- and
multiparticle single- and multitime observables and correla-
tion functions within this approach. Moreover, we provide an
efficient way to implement the Peierls substitution through a
numerically exact expansion and to compute the mth partial
derivative in momentum space of the hopping and of the
dipole terms appearing in such expansion. This allows to ana-
lyze and characterize the terms in such an expansion defining
the related characteristic frequencies, timescales, bandwidths,
and relative phases that explain the emergence and the features
of different kinds of sidebands (multiphoton resonant, non
resonant, envelope,...) considering also the effects of the finite
width of the envelope of the pump pulse. The presence of
the envelope modifies and generalizes also the Rabi-like phe-
nomenology that takes place when some of the band gaps are
in resonance with integer multiples of the central frequency
of the pump pulse. Such single- and multiphoton resonances
determine the accumulation of (residual) electronic excited
populations after the pump pulse turns off. Then, we pro-
pose a procedure to determine the strength of a multiphoton
nonexact resonance and through this to assign residual elec-
tronic excited populations per momentum and band to specific
single- and multiphoton resonant processes. Furthermore, we
use our approach to reproduce the Houston method, generalize
it to second quantization, and to obtain numerically exact
expectation values of the Houston coefficients overcoming its
limitations and drawbacks. We also show that the separation
of interband and intraband transition effects can be obtained in
DPOA without any ambiguity, while such separation is ques-
tionable within the Houston approach. Moreover, we show
how to compute Green’s functions (GFs) using DPOA, and
hence the TR-ARPES signal. As the standard spectral func-
tions can become negative out of equilibrium, there is no
out-of-equilibrium counter-part of the fluctuation-dissipation
theorem [70]. Indeed, by defining the retarded TR-ARPES
signal, we generalize the fluctuation-dissipation theorem and
find its equivalent out of equilibrium for TR-ARPES signal,
which can be useful to better understand and compute the
out-of-equilibrium energy bands of pumped systems.

As already mentioned above, very recently, we exploited
DPOA to unveil the various charge-injection mechanisms ac-
tive in germanium [30,31]. In this work, to analyze and discuss
a larger variety of fundamental physical processes without
the limitations imposed by the peculiarities of a specific real
material, we apply DPOA to a nontrivial toy model. We an-
alyze a two-band (valence-conduction) model and consider
three relevant cases by switching on and off the Peierls sub-
stitution in the hopping term (relevant to bulk systems) and a
local dipole term (relevant to systems such as quantum dots
and molecules and low-dimensional systems with transverse
pumps). We discuss the main effects of the two terms sepa-
rately as well as the relevance of their interplay. In particular,
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we analyze how the first-order (in the pumping field) terms
of the two types of light-matter couplings assist the higher-
order ones and how their decomposition in terms of intra-
and interband components can help understanding the actual
phenomenology. We compute and analyze, in connection to
the symmetries of the system, the lesser and the retarded TR-
ARPES signals as well as the residual excited population. We
discuss the broadening of the out-of-equilibrium TR-ARPES
bands and their relationship to the equilibrium bands (the
rigid shift due to the even terms starting from the inverse-
mass one) and the instantaneous eigenstates. Moreover, we
discuss the suppression of the different kinds of sidebands
and, in particular, of the resonant ones in connection to the
vanishing of velocity (one-photon sideband) and inverse-mass
(two-photon sideband) terms due to band symmetries and how
such symmetry protection is lost in the presence of the dipole
term. We also introduce another type of side bands induced
by the envelope and even-terms. Additionally, we investigate
the accumulation of residual electronic excited population
(clearly visible also in the lesser TR-ARPES signal) induced
by Rabi-like oscillations at single- and multiphoton resonant
non-symmetry-protected k points and the characteristics of
such oscillations in terms of the pump-pulse features. The
effects of inhibiting selectively intra- and interband transitions
are also studied on the TR-ARPES signal and on the residual
electronic excited population. Moreover, we study the changes
in the characteristics of TR-ARPES signal on varying the
pump-probe delay and the width of the probe pulse.

In addition, we report a detailed derivation of the dipole-
gauge second-quantization Hamiltonian for light-matter inter-
action from the velocity-gauge first-quantization one within
the minimal coupling. The expressions of Hamiltonian,
electronic current, and charge density operators are derived re-
questing charge conservation and cast in real and momentum
space and in Bloch and Wannier basis. Such expressions are
fundamental for the current study (residual excited electronic
population and TR-ARPES signal) and for the determination
of optical response functions.

The manuscript is organized as follow. In Sec. II, we in-
troduce DPOA and its quadratic-Hamiltonian version for a
pumped lattice system within the dipole gauge as well as
its relation to the single-particle density-matrix and Houston
approaches, and discuss in detail how to analyze different phe-
nomena and their emergent effects. Moreover, we provide the
formulation to obtain the out-of-equilibrium Green’s function
of a system within DPOA as well as the TR-ARPES signal and
an out-of-equilibrium version of the fluctuation-dissipation
theorem. In Sec. III, to show how DPOA works in a funda-
mental and prototypical case, we present and discuss in detail
the DPOA results for the TR-ARPES signal and the residual
electronic excited population of a pumped two-band (valence-
conduction) system considering different cases of the case
of light-matter interaction, and conclude with a study of the
TR-ARPES signal dependence on the probe-pulse character-
istics. Sec. IV, summarizes this work and gives an outlook.
Finally, we included four appendices regarding the derivation
of the velocity and the dipole gauges in second quantization
(Appendix A), the effects of the oscillations of the diagonal
elements on the multiphoton resonances (Appendix B), the
Houston approach in first quantization (Appendix C) and the
out-of-equilibrium spectral functions (Appendix D).

II. THEORY

A. Dynamical projective operatorial approach (DPOA)

For any system at equilibrium, described by a general
time-independent Hamiltonian H in second quantization and
Heisenberg picture, one can find as many sets of compos-
ite operators C†

α = (C†
α,1, . . . , C†

α,a, . . .), as many degrees of
freedom characterizing the system (spin, orbital, momen-
tum, etc.), which close their hierarchy of the equations of
motion [73–78]. A very effective measure of the degree of
correlation in the system is the ratio between the number
of independent (disjoint) sets and the number of degrees of
freedom: for a noncorrelated system this ratio is 1, and it
tends to 0 (1) according to how much the system is strongly
(weakly) correlated.

To study the properties of a solid-state system and its linear
response, two types of sets are essential. One is the set stem-
ming from the canonical electronic (fermionic) operators of
the system under study, cν (r, t ), where, for instance, r can be
the site in a Bravais lattice and ν collects all possible degrees
of freedom (spin, orbital, atom in a basis, etc.). The other is
the set stemming from the canonical charge, spin, orbital,...
number and ladder (bosoniclike) operators of the system un-
der study that allow to obtain the related susceptibilities.

Now, let us consider a general time-dependent external
perturbation applied to the system: H → H(t ). For instance,
it can be an electromagnetic pump pulse whose interaction
with the system is usually described via the minimal coupling.
Such a perturbation preserves the closure of the hierarchy of
the equations of motion of Cα as it usually changes only the
single-particle term of the Hamiltonian [67]; therefore,

ih̄∂tCα (t ) = [Cα (t ),H(t )] = �α (t ) � Cα (t ), (1)

where � is the matrix product in the space of the operators in a
specific set α, while �α (t ) and Cα,a(t ) are the time-dependent
energy matrix and eigenoperators in the Heisenberg picture,
respectively. These considerations guided us to design and
devise the dynamical projective operatorial approach (DPOA)
according to which we have

Cα (t ) = Pα (t, t0) � Cα (t0) ∀t � t0, (2)

where Pα (t, t0) are called dynamical projection matrices.
Equation (2) can be verified using mathematical induction as
follows. Basis: At time t = t0, Eq. (2) obviously holds with
Pα (t0, t0) = 1. Induction step: Let us discretize the time axis
in terms of an infinitesimal time step �t → 0 (tn = n �t + t0)
and let us assume that Eq. (2) holds for time tn, i.e.,

Cα (tn) = Pα (tn, t0) � Cα (t0), (3)

Then, for time tn+1 = tn + �t , we have

Cα (tn+1) = Cα (tn) + �t∂tCα (tn)

=
[

Pα (tn, t0)− �t
i

h̄
�α (tn) � Pα (tn, t0)

]
� Cα (t0),

(4)

that closes the proof and suggests the following relation:

Pα (tn+1, t0) = Pα (tn, t0) − �t
i

h̄
�α (tn) � Pα (tn, t0). (5)
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In the following, we choose as initial time t0 any time before
the application of the pump pulse (e.g., t0 → −∞) and, for the
sake of simplicity, we indicate the dynamical projection ma-
trices using just one time argument Pα (t, t0) → Pα (t ). Then,
Cα (t0) simply stands for the operatorial basis describing the
system at equilibrium.

Applying the limit �t → 0 to Eq. (5), one obtains the
equation of motion for the dynamical projection matrix as

ih̄∂t Pα (t ) = �α (t ) � Pα (t ), (6)

with initial condition Pα (t0) = 1. For stationary Hamiltonians,
i.e., when �α (t ) → �(0)

α , the solution of Eq. (6) is simply
P(0)

α (t ) = e− i
h̄ (t−t0 )�(0)

α . However, for a general perturbed sys-
tem, where �α (t ) = �(0)

α + �(1)
α (t ), one needs to numerically

compute the dynamical projection matrix Pα (t ) from which
it is possible to obtain all out-of-equilibrium properties and
response functions of the system.

Finally, it is worth noting that rewriting Pα (t ) = P(0)
α (t ) �

Pint
α (t ) = e− i

h̄ (t−t0 )�(0)
α � Pint

α (t ), we can deduce the following
reduced equation of motion

ih̄∂t P
int
α (t ) = �(1)int

α (t ) � Pint
α (t ), (7)

where �(1)int
α (t ) = e

i
h̄ (t−t0 )�(0)

α � �(1)
α (t ) � e− i

h̄ (t−t0 )�(0)
α . Equa-

tion (7) can be helpful (i) to stabilize the numerical solution
when high frequencies are involved and (ii) to apply any
approximation only to the time-dependent component of
the Hamiltonian and preserve intact the equilibrium dynam-
ics. The equivalent (iterative) integro-differential equation
reads as

Pint
α (t ) = 1 − i

h̄

∫ t

t0

dt1 �(1)int
α (t1) � Pint

α (t1). (8)

B. Quadratic Hamiltonians

Quadratic Hamiltonians play a fundamental role in many
fields of physics as they retain the full complexity of a system
in terms of its degrees of freedom as well as the possibility
to describe to full extent the effects of applying a (time-
dependent) external field or gradient to the system. Obviously,
one cannot describe strong correlations, that is a deep and
intense interplay between degrees of freedom, but this is not
essential in many cases.

As it specifically regards solid-state systems, the most rel-
evant quadratic Hamiltonians are the tight-binding ones that
can be built for real materials through wannierization (for
example, by exploiting Wannier90 code [80]) of the basic
standard results of almost any DFT code available. This pro-
cedure preserves the static Coloumb interaction among the
electrons (appearing in the exchange integral within DFT),
which usually results in the opening of gaps and in band
repulsion. In presence of a time-dependent perturbation, e.g.,
a pump pulse, TD-DFT is usually applied although it results
in very lengthy and very resource-consuming calculations.
DPOA for time-dependent quadratic Hamiltonians is instead
very fast and efficient although it neglects the dynamical
Coloumb interaction, which can be safely discarded in many
cases. Even excitonic effects can be easily described in DPOA
by choosing the proper effective terms in the Hamiltonian
under analysis and working with effective excitonic creation

and annihilation operators. It is worth noticing that DPOA
allows to retain and to catch the physics of all time-dependent
complications and all transitions among the actual, although
very numerous, bands of real materials [30].

Let us consider a system described by the following
completely general time-dependent quadratic Hamiltonian in
second quantization and Heisenberg picture

H(t ) = a†(t ) � �(t ) � a(t ), (9)

where a†(t ) = (a†
1(t ), . . . , a†

n(t ), . . .) is the creation operator
of a general quasiparticle (either fermionic or bosonic includ-
ing free electrons, electrons in lattice, electrons in molecules,
phonons, magnons, photons, excitons, plasmons, polarons,
polaritons, etc.) in Heisenberg picture and we use a vectorial
notation with respect to the set of quantum numbers n =
(n1, n2, . . .) that label all degrees of freedom of the system
under analysis. �(t ) = �(0) + �(1)(t ) is the energy matrix
in which �(0) gives the equilibrium Hamiltonian, H(0), and
matrix �(1)(t ) describes the coupling of the system to the
time-dependent external pump pulse and gives H(1)(t ) . As
the main simplification comes from the Hamiltonian being
quadratic, the eigenoperators of the system are just the an(t ),
and according to the general theory discussed above, we have

a(t ) = P(t ) � a(t0), (10)

ih̄∂t P(t ) = �(t ) � P(t ), (11)

with the initial condition P(t0) = 1. At each instant of time,
the canonical commutation relations obeyed by an(t ) lead to
P(t ) � P†(t ) = 1, which is a useful relation to check the sta-
bility and the precision over time of any numerical approach
used to compute P(t ).

C. Single-particle density matrix (SPDM)

To show how to obtain the dynamical properties of the
system using the dynamical projection matrices P(t ), we con-
sider first the single-particle density matrix (SPDM) ρ(t ) =
〈a(t ) ⊗ a†(t )〉, whose equation of motion reads as

ih̄∂tρ(t ) = [�(t ), ρ(t )]. (12)

Once the time evolution of ρ(t ) is known, it is possible
to compute the average of any single-particle single-time
operator X (t ) = a†(t ) � X (t ) � a(t ) and, therefore, of the
corresponding physical quantity as follows:

〈X (t )〉 = Tr(X (t ) � [1 − ρ(t )]). (13)

Given that ρ(t ) = P(t ) � 〈a(t0) ⊗ a†(t0)〉 � P†(t ) =
P(t ) � ρ(t0) � P†(t ), we have

〈X (t )〉 = Tr[P†(t ) � X (t ) � P(t ) � [1 − ρ(t0)]]. (14)

If we choose the quantum numbers n such that the corre-
sponding operators diagonalize the equilibrium Hamiltonian
H (0), that is �(0)

nm = δnmεn, we simply have ρnm(t0) = δnm(1 −
η fη(εn)) where η = ±1 correspond to fermionic (bosonic)
system and fη(ε) = 1

eβε+η
is the related equilibrium distribu-

tion function. Once the dynamical projection matrices P(t ) are
known at all times, it is possible to recover all the results of
the SPDM approach, and more importantly, go beyond them.
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Indeed, we are not limited to single-particle properties
and even within these latter not to single-time ones. For
instance, given a general single-particle two-time operator
Y (t, t ′) = a†(t ) � Y (t, t ′) � a(t ′), the time evolution of its
average 〈Y (t, t ′)〉 is simply given by

〈Y (t, t ′)〉 = Tr[P†(t ) � Y (t, t ′) � P(t ′) � [1 − ρ(t0)]].
(15)

The extension to multiparticle multitime operators is straight-
forward and requires only the knowledge of equilibrium
averages, which for quadratic Hamiltonians can be easily cal-
culated thanks to the Wick’s theorem.

D. Pumped lattice systems, Peierls expansion,
and multiphoton resonances

Let us consider an electromagnetic pump pulse applied
to a lattice system after time t0, and described by the
vector potential A(t ) and the electric field E(t ) = −∂t A(t )
in the Coulomb gauge. Accordingly, in the dipole gauge,
the dynamics is governed by the Hamiltonian H(t ) =∑

k,ν,ν ′ c̃†
k,ν (t )�̃k,ν,ν ′ (t )c̃k,ν ′ (t ), where c̃k,ν (t ) is the annihi-

lation operator of an electron with momentum k (in the
first Brillouin zone) in the localized state ν (e.g., a maxi-
mally localized Wannier state) and [67] (see Appendix A for
derivation)

�̃k,ν,ν ′ (t ) = T̃k+ e
h̄ A(t ),ν,ν ′ + eE(t ) • D̃k+ e

h̄ A(t ),ν,ν ′ . (16)

T̃k,ν,ν ′ and D̃k,ν,ν ′ are the hopping and dipole matrix elements
in the reciprocal space, respectively, and the over-script ∼
indicates that they are expressed in the basis of the localized
states, e > 0 is the value of electronic charge, and • is the
scalar product between two vectors in the Cartesian space. The
momentum shift by the vector potential, k + e

h̄ A(t ), resembles
the Peierls substitution [81,82] and Eq. (16) can be considered
as its generalization to multiband systems [67]. Equation (16)
shows that the coupling to the pump pulse is two fold: the
Peierls substitution (in both T̃k,ν,ν ′ and D̃k,ν,ν ′ ) and the dipole
term E(t ) • D. It is worth noting that, for (d < 3)-dimensional
systems with transverse pump-pulse polarization there is no
coupling through the Peierls substitution and the dipole term
is the only coupling to the external field.

The equilibrium Hamiltonian reduces to �̃k,ν,ν ′ (t � t0) =
T̃k,ν,ν ′ , which can be diagonalized through the matrix �k,ν,n as
follows:

δn,n′εk,n =
∑
ν,ν ′

�
†
k,n,ν

T̃k,ν,ν ′�k,ν ′,n′ , (17)

where n indicates the energy band. Being diagonal at
equilibrium, the band basis provides a great advantage in com-
putations. The transformation to the band basis is performed
as

Dk,n,n′ =
∑
ν,ν ′

�
†
k,n,νD̃k,ν,ν ′�k,ν ′,n′ , (18)

�k,n,n′ (t ) =
∑
ν,ν ′

�
†
k,n,ν�̃k,ν,ν ′ (t )�k,ν ′,n′ , (19)

and

ck,n(t ) =
∑

ν

�
†
k,n,ν c̃k,ν (t ). (20)

It is worth recalling that ck(t ) = Pk(t ) � ck(t0), where
Pk(t0) = 1 and ih̄∂t Pk(t ) = �k(t ) � Pk(t ). Moreover,
Nk,n(t ) = 〈c†

k,n(t )ck,n(t )〉, the time-dependent number of
electrons in band n with momentum k, is given by

Nk,n(t ) =
∑

n′
Pk,n,n′ (t ) f+(εk,n′ )P†

k,n′,n(t ). (21)

For real materials (our recent work on germanium being an
example [30]), with many bands involved in the dynamics and
hopping and dipole parameters obtained in real space through
wannerization, the presence of the Peierls substitution, k +
e
h̄ A(t ), in Eq. (16) makes any time-dependent measure ex-
tremely time-consuming, as it is necessary, at each time step
in the numerical time grid, to Fourier transform again and
again, because of the shift, the hopping and dipole matrices
to momentum space on the numerical momentum grid and,
finally, perform the rotation to the band space. A very efficient
way to deal with this problem, which makes it possible to
study systems with many bands without overheads in terms
of time consumption and numerical precision, exploits the
expansion of the hopping matrix and of the dipole matrix
with respect to the vector potential, to sufficiently high order
(determined by the maximum strength of the vector potential
and the bandwidth of the system) and uses the expansion
coefficients, computed once for all, at all times:

Tk+ e
h̄ A(t )(t ) =

∞∑
m=0

1

m!
�

†
k � [

∂
(m)
kA

T̃k
] � �k

( e

h̄
A(t )

)m
, (22)

Dk+ e
h̄ A(t ) =

∞∑
m=0

1

m!
�

†
k � [

∂
(m)
kA

D̃k
] � �k

( e

h̄
A(t )

)m
, (23)

where ∂
(m)
kA

is the mth partial derivative in momentum space
in the direction of the pump-pulse polarization, Â, and A(t ) is
the magnitude of the vector potential: A(t ) = A(t )Â. We call
this procedure Peierls expansion hereafter. It is noteworthy
that Tk and Dk are, by construction, analytic functions of
the momentum k [see Eqs. (A49) and (A50)], and, therefore,
the Peierls expansion always converges. The expansion co-
efficients, that is, the mth partial derivatives, tend to zero by
increasing m since the hopping and dipole matrices in direct
space are not infinitely long range thanks to the localization
of the Wannier states. These coefficients can be efficiently
computed by means of the Fourier transformation as

∂
(m)
kA

T̃k =
∑

i

(−iÂ • Ri)
me−ik•Ri T̃Ri , (24)

∂
(m)
kA

D̃k =
∑

i

(−iÂ • Ri)
me−ik•Ri D̃Ri , (25)

where T̃Ri and D̃Ri are the hopping and dipole matrices,
respectively, in the direct space, as outputted, for example,
by the wannierization procedure. Another important point to
mention is that even for very high intensities of the pump
pulse, e

h̄ A(t ) is at maximum just a few percent of the extension
of the Brillouin zone in real materials [30]. This fixes an upper
bound for the maximum value of m to be actually used in the
numerical evaluation of the Peierls expansions.

Such an expansion, even if not used in the actual numerical
calculations, is of fundamental relevance as it gives insight
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into the actual excitation processes active in the system and
connects them to the symmetries of the band structure and of
the dipole couplings. According to a well-established practice,
we call the coefficient of the first-order (second-order) term of
the Peierls expansion, Eq. (22), of the hopping term T as the
velocity (inverse-mass) term.

The pump pulse A(t ) can be usually represented as A(t ) =
A0S(t ) cos(ωput + φ) where ωpu is the central frequency of the
pulse, φ is its phase, and S(t ) is an envelope function that
vanishes at t → ±∞. A usual expression for the envelope
function is a Gaussian, S(t ) = e−4 ln 2t2/τ 2

pu , where τpu is its
full-width at half maximum (FWHM) and, for the sake of
simplicity, its center is just at t = 0. Such an envelope gives
a finite bandwidth to the pulse of the order 2π h̄τ−1

pu , where
τ−1

pu is FWHM of the corresponding Gaussian in frequency
domain.

Given the above expression for the pump pulse, A(t ), we
can expand its mth power, Am(t ), and get

�k+ e
h̄ A(t )(t ) = �

†
k � �̃k � �k +

∞∑
m=1

�0,m(t )

+ 2
∞∑

l=1

[ ∞∑
m=0

�l,m(t )

]
cos(lωput + lφ), (26)

�l,m(t ) =
( eA0S(t )

2h̄

)2m+l

m!(m + l )!
�

†
k � [

∂
(2m+l )
kA

�̃k
] � �k, (27)

where � can be either the hopping matrix T or the dipole
matrix D. Such an expression allows us to understand the
excitation processes. The first term on the right-hand side is
just the pristine (time-independent) hopping or dipole matrix.
The second term would result in a k-dependent energy shift
coming from the even derivatives (mainly from the inverse-
mass coefficient of the hopping term) if there would be no
envelope function S(t ). Actually, it is time-dependent because
of the envelope function S(t ), but not periodic, and will lead
to the emergence of nonresonant side bands, as we will show
in Sec. III, on a timescale of the order τpu√

2
around the enve-

lope center provided that the energy-band symmetries do not
require the inverse-mass term (and higher-order even terms)
to be zero. The third term leads to Rabi-like l-photon reso-
nances whenever the energy gap between any two bands in
the system, not both empty or full at a certain instant of time,
is close to l h̄ωpu within a bandwidth of order 2π h̄

√
lτ−1

pu .
In realistic pump-probe setups, given the bandwidths of the
valence and conduction portion of the band structure involved
in the dynamical processes, usually the maximum number
of relevant l (i.e., the maximum relevant number of photon
processes) is low, which is connected to the fact that only the
first few terms of the Peierls expansions are needed in actual
numerical calculations, as discussed above. Each l-component
of this term is active on a timescale of the order τpu√

l
around

the envelope center and has a phase shift of (l − 1)φ with
respect to the l = 1 component. For very short values of τpu

with respect to 2πω−1
pu , that is, when we have so few cycles

of the pump pulse within the envelope to hardly recognize
any oscillation, we end up in an impulsive regime. Actually,
given that the oscillation period decreases with l−1 while the

FWHM decreases with l− 1
2 , even in the case where lower-l

terms are impulsive, sufficiently higher-l terms are anyway
oscillatory, although these latter can have a negligible effect
on the dynamics.

Consequently, in lattice systems, one origin of multiphoton
resonances are the nonlinear terms in the Peierls expansion.
Another origin is the oscillatory behavior of the diagonal
terms of the coupling Hamiltonian. This is discussed in Ap-
pendix B where we consider a simple two-level system and
show the emergence of multiphoton resonances.

E. Resonances and residual electronic excited population

At resonance, the dynamics of the electronic population
has a Rabi-like behavior which is completely different from
the off-resonance behavior. In particular, the residual elec-
tronic population N res

k,n = Nk,n(t → ∞), that is the electronic
population in band n at momentum k after the application of
the pump pulse, becomes a very relevant quantity to measure
and analyze. For a perfectly periodic pump pulse, that is,
with infinite extension in time and no envelope, checking the
l-photon resonance condition requires just the comparison of
the energy gaps to l h̄ωpu. Instead, the presence of an envelope
broadens the range of frequencies appearing in the Fourier
transform of the pump pulse and hence increases the range
of resonant energy gaps. To quantify this occurrence and on
the basis of what reported in the previous section, we define
the normalized strength of a l-photon resonance with respect
to an energy gap εgap, wl (εgap) as

wl (εgap) = e− τ2
pu

8 ln 2h̄2 l
(εgap−l h̄ωpu )2

, (28)

where ωpu is the pump-pulse frequency and τpu is the FWHM
of its Gaussian envelope. The expression resembles the square
of the amplitude of the εgap/h̄ component in the spectrum of
the nphth power of the pump pulse centered at nphωpu. Then,
to measure the total number of effective l-photon resonant
energy gaps, Wl , it is sufficient to sum up all normalized
strengths over all points k of the numerical momentum grid
for all possible pairs of valence-conduction bands

Wl =
∑

k,nC ,nV

wl
(
εk,nC − εk,nV

)
, (29)

where nC (nV ) runs over all conduction(valence) bands.
N res

k,nC
, the residual electronic population in one specific

conduction band nC at momentum k, is the result of resonant
processes originating in different valence bands at the same
momentum k. Each of these valence bands will contribute to
N res

k,nC
with an undetermined portion of its residual hole popu-

lation N (h)res
k,nV

= 1 − N res
k,nV

:
∑

nV
N (h)res

k,nV
= ∑

nC
N res

k,nC
. Here, we

suggest a procedure that allows to determine the contribu-
tion N res(l )

k,nC ,nV
of the residual hole population of the valence

band nV due to a l-photon resonant process to N res
k,nC

: N res
k,nC

=∑
l,nV

N res(l )
k,nC ,nV

. The rationale is to assign to each valence band

nV such a contribution, N res(l )
k,nC ,nV

, according to the strength of
the l-photon resonant process involved, wl (εk,nC − εk,nV ), and
to the actual value of N (h)res

k,nV
with respect to those of all other
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valence bands:

N res(l )
k,nC ,nV

= N (h)res
k,nV

wl
(
εk,nC − εk,nV

)
∑

n′
V

N (h)res
k,n′

V

∑
l ′ wl ′

(
εk,nC − εk,n′

V

)N res
k,nC

. (30)

Given these ingredients, it is now possible to compute (i)
the contribution to N res

k,nC
coming from all l-photon resonant

processes, N res(l )
k,nC

,

N res(l )
k,nC

=
∑
nV

N res(l )
k,nC ,nV

, (31)

(ii) the contribution to N res
k,nC

coming from each valence band
nV , N res

k,nC ,nV
,

N res
k,nC ,nV

=
∑

l

N res(l )
k,nC ,nV

, (32)

(iii) the total residual electronic population at momentum k
coming from all l-photon resonant processes, N res(l )

k ,

N res(l )
k =

∑
nV ,nC

N res(l )
k,nC ,nV

, (33)

(iv) the average residual electronic population per momentum
point coming from all l-photon resonant processes, N res(l ),

N res(l ) = 1

Mgrid

∑
k,nV ,nC

N res(l )
k,nC ,nV

, (34)

where Mgrid is the total number of momentum points in the
numerical grid, and, finally, we can be interested in (v) the
average residual excited electronic population per momentum
point, N res, which is actually the residual excitation population
per unit cell,

N res = 1

Mgrid

∑
k,nC

N res
k,nC

. (35)

F. Generalized Houston approach

One of the model-Hamiltonian methods to simulate the
behavior of pumped semiconductors is the Houston ap-
proach [27,72], which has been formulated and is generally
used in first quantization and in the velocity gauge (see Ap-
pendix C). Here, we reformulate this approach in second
quantization within the DPOA framework, highlighting its
limitations and drawbacks.

We have seen that the Hamiltonian of a pumped
quadratic lattice system has the general form H (t ) =∑

k Hk(t ) where Hk(t ) = c†
k(t ) � �k(t ) � ck(t ) and ck(t0) =

(ck,1(t0), . . . , ck,ν (t0), . . .) is the canonical operatorial basis at
equilibrium in vectorial notation for an electron with momen-
tum k and with ν denoting all possible degrees of freedom
of the system. Let us consider the time-dependent transforma-
tion matrix Uk(t ) that diagonalizes �k(t ) at each instant of
time, i.e., �S

k(t ) = U †
k (t ) � �k(t ) � Uk(t ) has only diagonal

elements that are usually called instantaneous bands. Then, we
can define a new operatorial basis for the system, the Houston
basis cS

k(t ), given by cS
k(t ) = U †

k (t ) � ck(t ). Within the DPOA
framework, we can write cS

k(t ) = PS
k (t ) � ck(t0) where PS

k (t )
is the Houston projection matrix that satisfies the following

equation of motion:

ih̄∂t P
S
k (t ) = [

�S
k(t ) + �k(t )

] � PS
k (t ), (36)

where �k(t ) = ih̄∂tU
†
k (t ) � Uk(t ). Another variant of the

Houston method can be obtained, within second quantization,
by the following transformation

P′S
k (t ) = e

i
h̄

∫ t
t0

dt ′�S
k (t ′ ) � PS

k (t ), (37)

which results in the following equation of motion

ih̄∂t P
′S
k (t ) = �′

k(t ) � P′S
k (t ), (38)

where

�′
k(t ) = e

i
h̄

∫ t
t0

dt ′�S
k (t ′ ) � �k(t ) � e− i

h̄

∫ t
t0

dt ′�S
k (t ′ )

. (39)

Computing �S
k(t ) and �k(t ), or equivalently �′

k(t ), is not
only more time-consuming when many bands are involved as
in real materials than just using �k(t ), as in DPOA, because of
the numerical diagonalizations necessary to obtain Uk(t ) and
∂tU

†
k (t ) at each instant of time, but it can be extremely difficult

to calculate it numerically, because of the well-known diffi-
culty of tracking the phase of eigenvectors between different
instants of time in particular in the presence of instantaneous-
band crossing (dynamical degeneracy) [83]. This usually
leads to implementing the Houston method only for very few
effective bands and to use approximate k-independent matrix
elements. Actually, DPOA can yield, if ever needed, the exact
Houston-method results just computing PS

k (t ) as

PS
k (t ) = U †

k (t ) � Pk(t ), (40)

where Pk(t ) is the usual DPOA dynamical projection matrix.

G. Inter- and intraband transitions

Within DPOA, it is straightforward to separate the effects
of the so-called inter- and intraband transitions. To have only
intraband transitions in the dynamics, in the basis of equilib-
rium bands, those indexed by n, one needs to keep only the
diagonal elements of �k(t ) and remove all off-diagonal ones
which cause transitions among the bands:

ih̄∂t P
intra
k,n,n′ (t ) = εintra

k,n (t )Pintra
k,n,n′ (t ), (41)

where εintra
k,n (t ) = �k,n,n(t ) = ∑

ν,ν ′ �
†
k,n,ν�̃k,ν,ν ′ (t )�k,ν ′,n.

Equation (41) has the formal solution Pintra
k,n,n′ (t ) =

δn,n′e− i
h̄

∫ t
t0

εintra
k,n (t ′ )dt ′

. Even though here we use the standard
term intraband transition, one should keep in mind that
performing the calculation for a specific k point, one does not
need to take into account the equilibrium band structure or
electronic distribution at any other adjacent k point.

However, to keep only interband transitions, it is needed
to keep the off-diagonal elements of �k(t ) and discard the
Peierls substitution in its diagonal elements: εinter

k,n (t ) = εk,n +
eE(t ) • Dk,n,n. Accordingly, we have

ih̄∂t P
inter
k,n,n′ (t ) = εinter

k,n (t )Pinter
k,n,n′ (t ) +

∑
n̄ �=n

�k,n,n̄(t )Pinter
k,n̄,n′ (t ).

(42)
Usually, the diagonal elements of the dipole matrix are negli-
gible, Dk,n,n 
 0, and therefore εinter

k,n (t ) is almost equal to the
equilibrium band energy εk,n.
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The Houston method is often used to perform the same
kind of analysis. Within the velocity gauge, to remove the
intraband dynamics and define an only interband one, one sets
k + e

h̄ A(t ) → k in the instantaneous eigenenergies and eigen-
vectors reducing them to the equilibrium ones, but one still
computes the projection coefficients [see Eq. (C3)] through
the full equation of motion whose interband term just comes
from the differentiation of the very same Peierls-like term.
This is somehow questionable and ambiguous. Moreover,
defining inter- and intraband dynamics in the Houston basis
is ambiguous as the instantaneous bands are superpositions of
equilibrium bands and therefore any interpretation becomes
very cumbersome.

H. Green’s functions and TR-ARPES signal

Green’s functions (GFs) are extremely important tools as
they allow to compute many interesting properties of a system.
The most relevant single-particle two-time electronic GFs are
the retarded, GR, and the lesser, G<, GFs, defined in the
vectorial notation as follows:

GR
k,n,n′ (t, t ′) = −iθ (t − t ′)〈{ck,n(t ), c†

k,n′ (t ′)}〉, (43)

G<
k,n,n′ (t, t ′) = i〈c†

k,n′ (t ′)ck,n(t )〉. (44)

Even for a quadratic Hamiltonian, the GFs cannot be com-
puted within the SPDM approach (unless one defines a
two-time SPDM [56], which is computationally very heavy),
but they can be straightforwardly obtained within DPOA in
terms of the dynamical projection matrices P as

GR
k,n,n′ (t, t ′) = −iθ (t − t ′)

∑
m

Pk,n,m(t )P�
k,n′,m(t ′), (45)

G<
k,n,n′ (t, t ′) = i

∑
m,m′

(δm,m′ − ρk,m,m′ (t0))Pk,n,m(t )P�
k,n′,m′ (t ′),

(46)

where, in the band basis in which the equilibrium Hamiltonian
is diagonal, δn,n′ − ρk,n,n′ (t0) = δn,n′ f+(εk,n).

At equilibrium, the usual way to study the energy bands
of the system, εk,n, and their corresponding occupations, is to
compute the spectral functions through the imaginary com-
ponents of the retarded and of the lesser GFs, respectively.
However, out-of-equilibrium, the spectral functions are not
necessarily nonnegative quantities [70] (see Appendix D).
This occurrence invalidates their physical interpretation of
availability and occupation of the corresponding energies per
momentum. Nevertheless, such an information is of crucial
importance to describe and understand the response of the
system to external probes.

Indeed, out of equilibrium, one investigates the TR-ARPES
signal [84–87], which individuates the occupation of the en-
ergy ω at momentum k for a probe pulse centered at time tpr.
The TR-ARPES signal is proportional to

I<
k (ω, tpr ) = τpr√

8π ln 2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2Spr (t1 − tpr )

Spr (t2 − tpr )Im[eiω(t1−t2 )Tr[G<
k (t1, t2)]], (47)

where Spr (t − tpr ) = 2
√

ln 2√
πτpr

e−4 ln 2(t−tpr )2/τ 2
pr is the probe-pulse

envelope which is assumed to be Gaussian with a FWHM τpr.

Here we assumed that the TR-ARPES matrix elements are just
constant numerical factors and removed them from the expres-
sion. Moreover, we assumed that the ejected photoelectrons
outside of the sample, originating from orthogonal electronic
states inside of the solid, are described by orthogonal wave
functions. This assumption leads to the presence of the trace
(Tr) in Eq. (47). At any rate, Tr[G<

k (t1, t2)] is invariant with
respect to the chosen basis as it is desirable. Without such
assumptions, one would need to carry on a detailed modeling
to get the actual matrix elements [86,87]. We have chosen the
normalization factor in such a way that I<(ω, tpr ) is normal-
ized to the total number of particles at momentum k,∫ +∞

−∞
dωI<

k (ω, tpr ) =
∑

n

Nk,n. (48)

I<
k (ω, tpr ) gives information about the occupied states. In-

stead, to identify the available states (ω, k), that is the bands
out-of-equilibrium or TR-ARPES bands, we use the retarded
GF in place of the lesser one and define

IR
k (ω, tpr ) = − τpr√

2π ln 2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2Spr (t1 − tpr )

Spr (t2 − tpr )Im
[
eiω(t1−t2 )Tr

[
GR

k (t1, t2)
]]

. (49)

It is straightforward to show that, in the band basis (see
Appendix E),

I<
k (ω, tpr ) =

∑
n,n′

Lk,n;n′ (ω, tpr ) f+(εk,n′ ), (50)

IR
k (ω, tpr ) =

∑
n,n′

Lk,n;n′ (ω, tpr ), (51)

where

Lk,n;n′ (ω, tpr )

= τpr

2
√

2π ln 2

∣∣∣∣
∫ +∞

−∞
dt1Spr (t1 − tpr )e

iωt1 Pk,nn′ (t1)

∣∣∣∣
2

, (52)

which guarantees that the TR-ARPES signal is always non-
negative.

Equations (50) and (51) provide a generalized fluctuation-
dissipation theorem for TR-ARPES signal.

III. TWO-BAND LATTICE SYSTEM: A NOTEWORTHY
APPLICATION

Very recently, we have proved the capabilities of DPOA
in investigating real materials by exploiting it to analyze
the actual photoinjection mechanisms in germanium within
an ultrafast (attosecond) pump-probe setup [30]. To discuss
the variety of possible physical phenomena without being
limited by the characteristics of a single particular real ma-
terial, here we choose to study a toy model. This study will
be a guideline for understanding the complex effects and
interplays in realistic setups. We consider a cubic lattice sys-
tem, of lattice constant a, with two bands corresponding to
the main valence and conduction bands in a semiconductor.
We consider two localized states with the onsite energies
T̃R=0,1,1 = −1.65� and T̃R=0,2,2 = 1.35�, respectively, diag-
onal first-neighbor hoppings T̃R=a,1,1 = 0.2� and T̃R=a,2,2 =
−0.15�, and off-diagonal first-neighbor hoppings T̃R=a,1,2 =
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FIG. 1. (Top) High-symmetry points in the first Brillouin zone.
(Bottom) Equilibrium energy bands, ε̄k,val and ε̄k,cond, along the main
path.

T̃R=a,2,1 = −0.1�, where T̃R,ν,ν ′ is the hopping matrix be-
tween two sites at distance R and states ν and ν ′, respectively,
a ∈ {a(±1, 0, 0), a(0,±1, 0), a(0, 0,±1)} and � is the unit
of energy that can be adjusted to obtain the desired band gap
energy at � = (0, 0, 0). With our parameters, the band gap at
� is 1.5�, so that to have a gap of 0.75 eV for instance, one
should set � = 0.5 eV. For the cases that we analyze with a
finite dipole, we consider an on-site (local) and off-diagonal
dipole moment: D̃R=0,1,2 = D̃∗

R=0,2,1 = i0.05aĵ, which will
lead only to a zeroth term in its Peierls expansion.

In Fig. 1, top panel, we show the high-symmetry points of
the first Brillouin zone, while in the bottom panel we show
the equilibrium energy bands, ε̄k,val = εk,1/� and ε̄k,cond =
εk,2/�, for a path which connects these high-symmetry points
(the main path hereafter). All energies denoted with a bar on
top are divided by � and hence dimensionless. Having � as
the unit of energy, the unit of time is simply chosen to be

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

(A
/A
0)
2

t

FIG. 2. (Top) The square of the pumping vector potential as a
function of time. (Bottom) The energy gaps, ε̄k,gap, along the main
path. The colored map shows wl=1,2(ε̄k,gap) for one- and two-photon
resonances.

h̄/�, which results in the dimensionless time t̄ = t�/h̄ for
each time t .

We apply a pump pulse in the form A(t̄ ) = A(t̄ )ĵ where
A(t̄ ) is a wave packet given by

A(t̄ ) = 2π h̄

ae
Ā0e−(4 ln 2)t̄2/τ̄ 2

pu cos(ω̄put̄ ), (53)

in which the center of the pump pulse is taken as the origin
of the time axis. The dimensionless frequency of the pump
pulse is chosen to be ω̄pu = ωpu h̄/� = 2.33 and, unless oth-
erwise explicitly stated, the FWHM is chosen to be τ̄pu = 7
and the dimensionless pump-pulse amplitude is chosen to be
Ā0 = 0.2.

The square of the pumping vector potential as a func-
tion of time is plotted in Fig. 2, top panel. Figure 2 bottom
panel shows the energy gaps, ε̄k,gap = ε̄k,cond − ε̄k,val, at the
k points along the main path, while the colored map shows
wl=1,2(ε̄k,gap), which indicates the strength of l-photon reso-
nance for each energy gap.
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FIG. 3. TR-ARPES signals at equilibrium, (top) Īeq,R
k (ω̄) and

(bottom) Īeq,<

k (ω̄). The solid black curves show the equilibrium en-
ergy bands.

For TR-ARPES signal, we apply a probe pulse with
FWHM of τ̄pr = τ̄pu = 7, unless otherwise explicitly stated.
We study the dimensionless signals that are obtained as ĪR,<

k =
�/h̄IR,<

k . In Fig. 3, we show Īeq,R
k (ω̄) and Īeq,<

k (ω̄) at equilib-
rium, that is when no pump pulse is applied to the system.
The finite width of the probe pulse results in a broadening
of the levels, which is intrinsic to quantum mechanics and
unavoidable. Increasing the FWHM of the probe pulse, one
can decrease this broadening, but we are not interested in
probe pulses much wider than the pump-pulse envelope. The
retarded signal, Īeq,R

k (ω̄), is peaked around both valence and
conduction band energies and shows the spectrum of the
system, while the lesser signal, Īeq,<

k (ω̄), shows the occupied
valence-band levels only, which is the signal measured in
experiments.

A. Local dipole coupling (no Peierls substitution)

As first case, we consider a Hamiltonian in which the
coupling to the pumping field comes only through a local

dipole moment, i.e., we neglect the Peierls substitution in
the hopping term and in the dipole one [in Eq. (16) we set
k + e

h̄ A(t ) → k], to focus only on the effects of such a cou-
pling on the system and analyze them in detail. This case is
relevant to systems such as quantum dots and molecules, and
low-dimensional systems with transverse pumps.

In Fig. 4, we show the maps of TR-ARPES signals along
the main path. The left panel shows the retarded signal,
ĪR
k (ω̄, t̄pr = 0), for the case where the center of the probe pulse

coincides with the center of the pump pulse. The valence and
conduction bands are more broad than at equilibrium (Fig. 3)
because the electrons get excited to the conduction band and
cannot be assigned to a specific band anymore, inducing a
quantum-mechanical uncertainty in the energy of the bands
themselves.

The photon sidebands (PSBs) emerge at energies that dif-
fer from the main-band energies of integer multiples of the
(dressed) pump-pulse photon energy. Some PSBs overlap in
energy with the conduction and the valence bands and, there-
fore, are not distinguishable in the map of the retarded signal.

On top of the maps, we reported both the equilibrium band
energies (black solid curves) and the local maxima in energy
of the signals at each k (green dots), that indicate the (out-
of-equilibrium) bands of TR-ARPES. As the retarded signal
shows, the equilibrium valence and conduction bands coincide
with TR-ARPES ones: a local dipole, for realistic intensities,
has negligible effects on the TR-ARPES bands of the system.

Since in equilibrium only the valence band is occupied, the
lesser signal, Ī<

k (ω̄, t̄pr = 0), which is reported in the middle
panel of Fig. 4, shows only the valence band and its corre-
sponding PSBs. Wherever (in k space) we have a one-photon
resonance, the related resonant one-photon PSB is definitely
stronger than other PSBs as it coincides with the conduction
band in this case. The two-photon PSBs are some orders of
magnitude weaker than the one-photon ones and, in the scale
we have chosen for the maps, it is not possible to see them.

If we probe the system after the pump pulse is turned
off, i.e., by setting a large t̄pr → +∞, but still much shorter
than the timescale of other decoherence and recombina-
tion processes like spontaneous emission or electron-phonon
interaction, the spectrum of the system goes back to equilib-
rium, so that we have ĪR

k (ω̄, t̄pr → +∞) = ĪR
k (ω̄, t̄pr → −∞),

which is already shown in Fig. 3 and we do not repeat here.
In Fig. 4, right panel, we report Ī<

k (ω̄, t̄pr → +∞): con-
trarily to what happens for the retarded signal, the lesser
signal shows residual effects at the k points for which the
pump-pulse frequency is in one-photon resonance with the
equilibrium gap energy. The multiphoton PSBs do not show
any residual signal even though at t̄pr = 0 they are nonvan-
ishing. This is because we have only a local dipole in the
interaction Hamiltonian and such a term have no cos(lω̄put̄ )
term for l > 1, hence no multiphoton Rabi-like resonances.
Moreover, the local dipole term we considered is completely
off-diagonal, and we have no oscillating diagonal term to re-
sult in multiphoton resonances (see Appendix B). According
to our experience, this can be overcome having more than two
bands in the system (not shown).

In Fig. 5, top panel, we plot the residual excited elec-
tronic population in the conduction band, N res

k,cond, for the k
points along the main path as a function of the pump-pulse
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FIG. 4. TR-ARPES signals for the case of local dipole coupling. (Left) ĪR
k (ω̄, t̄pr = 0) and (middle) Ī<

k (ω̄, t̄pr = 0): the center of the probe
pulse coincides with the center of the pump pulse. (right) Ī<

k (ω̄, t̄pr → ∞): after the pump pulse is turned off. The black solid curves mark
the equilibrium band energies. The green dots indicate the local maxima in energy of the signals for each k: the (out-of-equilibrium) bands of
TR-ARPES.

amplitude. Rabi-like oscillations induce residual excited pop-
ulations at the k points for which a one-photon resonance

FIG. 5. Local dipole coupling case: (top) Residual excited elec-
tronic population along the main path as a function of the pump-pulse
amplitude. (bottom) Residual excited electronic population at S as a
function of the amplitude and of the FWHM of the pump pulse.

condition is realized. The finite width of the pump pulse
broadens the resonant energies so that, in addition to the exact
resonances, also the k points in the proximity of resonant ones
have some residual excited population (compare with Fig. 2).

In Fig. 5, bottom panel, we plot the residual excited popula-
tion in the conduction band at S as a function of the amplitude
and of the FWHM of the pump pulse. Being (i) the Rabi
frequency, ωR, proportional to the pump-pulse amplitude and
(ii) the overall oscillation time roughly proportional to the
FWHM of the pump pulse, the residual excited population
is almost constant wherever Ā0τ̄pu is constant, that yields the
hyperbolic shape of the color contours in the figure. For the
very same reason, on both cuts at fixed Ā0 and at fixed τ̄pu,
one clearly sees the signature of the Rabi-like oscillations.
For instance, at fixed Ā0, that is at fixed ωR, the end tail
(in time) of the pump-pulse envelope determines the resid-
ual excited population and on changing τ̄pu one can scan
the Rabi-like oscillating behavior of the population [roughly
N res

k;cond ∝ sin2(ωRτpu)]. It is worth reminding that, for small
ωRτpu, which is usually the more relevant case in ultrafast
experiments, one can approximate sin(ωRτpu) 
 ωRτpu, which
results in N res

k;cond ∝ Ā2
0τ̄

2
pu.

B. Peierls substitution in hopping (no dipole)

In this case, we consider an interaction with the pump pulse
via the Peierls substitution in the hopping term and set the
dipole to zero. This is very relevant as the dipole term is often
negligible in many realistic cases. Moreover, neglecting the
dipole we can focus on the effects of band symmetries on TR-
ARPES signal and electronic excitations and analyze them in
detail.

In Fig. 6 top-left (top-right), we show the map of
ĪR
k (ω̄, t̄pr = 0) [Ī<

k (ω̄, t̄pr = 0)]. The higher local maxima of
the TR-ARPES signal, that one can consider the main
TR-ARPES bands, are slightly shifted with respect to the
equilibrium valence and conduction bands and show almost
no correspondence to the instantaneous eigenenergies at time
zero. This is expected since TR-ARPES measures the system
over a time period and not at a specific instant of time. We
will shed more light on this issue later on (Fig. 14 and related
discussion). For the retarded signal, which shows the full TR-
ARPES spectrum of the system, we can see both valence and
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FIG. 6. TR-ARPES signals along the main path for Peierls substitution in the hopping term and no dipole, with the center of probe
pulse coinciding with the one of pump pulse (t̄pr = 0). (top-left) ĪR

k (ω̄, t̄pr = 0) and (top-right) Ī<
k (ω̄, t̄pr = 0) for the full dynamics, (bottom-

left) Ī<
k (ω̄, t̄pr = 0) for the dynamics with interband-only transitions, and (bottom-right) Ī<

k (ω̄, t̄pr = 0) for the dynamics with intraband-only
transitions. The black-solid curves show the equilibrium band energies while the green dots indicate the local maxima of the signals for each
k point, which are the (out-of-equilibrium) bands of TR-ARPES. The red-solid curves show the instantaneous eigenenergies at time zero.

conduction bands and all of their sidebands. Because of the
finite broadening of the bands, they overlap and distinguish-
ing them in the case of retarded signal can be very difficult.
Obviously, in the lesser signal, we see only the valence band
and its sidebands.

The one-photon PSBs originate from the velocity term in
the Peierls expansion, which is proportional to sin(aky) and,
therefore, identically vanishes on the planes �-X-A-Z and
Y-M-B-D, yielding no one-photon PSB there. Instead, on S,
C, middle points of the lines X-M, A-B, Z-D and �-Y, the
second order (inverse-mass) term—as well as all other even
terms—of the Peierls expansion vanishes as it is proportional
to cos(aky). Recall that the polarization of the pump-pulse has
been chosen along the y direction.

However, even though at some of these points the two-
photon PSBs are very weak, at some others (such as S), where
we have a strong one-photon PSB, the two-photon PSB is also
strong, which shows that the second order signal is assisted
by multiple actions of the first order terms of the Hamiltonian

(as in the case of Floquet staircase). At the k points where
the band gap is at either one- or two-photon resonance with
the pump pulse, the corresponding PSB is much stronger than
non resonant ones, provided that it is not zero by symmetry.

At the k points where the inverse-mass vanishes, we have
practically no shift of the TR-ARPES bands with respect to
the equilibrium ones. The shift in the bands is mainly due to
the nonoscillating components that appear in the even order
terms of Peierls expansion [

∑∞
m=1 �0,m(t ) in Eq. (26)], which

identically vanish when the inverse-mass term vanishes by
symmetry. Moreover, the higher order effects of the same term
result in some weak sidebands near the main bands as it is
more clear in the map of Ī<

k (ω̄, t̄pr = 0) (top-right panel). It
is worth noting that if we had an infinitely oscillating pump
pulse without an envelope (that is, a pump-pulse FWHM
extremely longer than the probe-pulse FWHM), there would
have been no higher order effects and the nonoscillating com-
ponents would have just resulted in rigid shifts of the bands.
Therefore, we dub these new sidebands as envelope-Peierls
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sidebands (EPSBs): they are due to both the envelope and the
even terms of Peierls expansion. However, according to our
experience, EPSBs can also result from the odd terms of the
Peierls expansion in multiband systems.

In Fig. 6, bottom-left (bottom-right) panel, we show the
map of Ī<

k (ω̄, t̄pr = 0) for the dynamics with interband-
only (intraband-only) transitions. Interestingly, the main
TR-ARPES bands are practically on top of the equilibrium
ones in the case of interband-only dynamics. However, for
the case of intraband-only dynamics, we see the same shift
as for the full dynamics. This is consistent with the interband
transitions governing the electronic transitions between the
bands and not altering the bands noticeably, while the intra-
band transitions change the band energies dynamically. As we
already mentioned above, the shift in the main bands have the
same origin as the EPSBs and since we do not have band shifts
for interband-only transitions, the EPSBs disappear as well.

PSBs have different behaviors depending on being one-
photon or two-photon, and in resonance or off resonance. The
resonant PSBs are much stronger in the interband-only case
(bottom-left panel) than in the intraband-only case (bottom-
right panel), because to differentiate between in resonance
and off resonance, one needs the interband transitions. On
the contrary, the off-resonant one-photon PSBs are stronger in
the intraband-only case than in the interband-only one, which
shows that for the system parameters that we have chosen, out
of resonance, the interband transitions have very negligible
effects on the system, while intraband transitions obviously
still induce one-photon PSBs. In fact, in the intraband-only
case, our system is equivalent to a single-band (the valence
band) Floquet one as the conduction band is obviously empty
and not coupled to the valence band. However, in our system,
in the interband-only case (bottom-left panel), two-photon
off-resonance PSBs can be noticeable in comparison to the
case of full dynamics (top-right panel).

The resonant one-photon (two-photon) PSBs are stronger
(weaker) in the case of interband-only dynamics than in the
case of the full dynamics. This can be understood by noticing
that removing intraband transitions pins down the electrons
at one-photon resonant k points and helps them to get more
and more excited, while lack of the assistance provided by
the intraband motions to the interband transitions, reduces the
two-photon resonant PSBs. In Appendix B, it is shown that
oscillating diagonal terms in a Hamiltonian, which are the
origin of intraband transitions, yield another mechanism for
multiphoton resonant transitions.

Another important property to be studied is the residual
signal of TR-ARPES. As we already mentioned, after the
action of pump pulse, the spectrum which is given by the
retarded signal is exactly the one of equilibrium (Fig. 3), while
the lesser signal is different. As shown in Fig. 7 top panel,
where we plot Ī<

k (ω̄, t̄pr → ∞), at the one- or two-photon
resonant k points we have the corresponding residual signals
at PSBs, unless the PSB is prohibited by symmetry. For in-
stance, this condition realizes for one-photon PSBs at X, Y,
and Z, where we have exact one-photon resonances, and for
two-photon PSBs at the middle of A-B and at C, where we
have nonexact two-photon resonances.

Figure 7 bottom panel, shows the residual lesser signal for
the dynamics given by interband-only transitions. The one-

FIG. 7. Residual lesser TR-ARPES signal along the main path
for only Peierls substitution with zero dipole, considering (top) full
dynamics, and (bottom) interband-only dynamics. The black-solid
curves show the equilibrium band energies while the green dots show
the local maximum of the signals for a fixed k point.

photon (two-photon) residual PSBs are stronger (weaker) for
the interband-only dynamics than for the full one according
to the very same reasoning reported above. It is notewor-
thy that even though the intraband-only transitions induce
PSBs within the pump-pulse envelope (see Fig. 6, bottom-
right panel), they yield no residual in the TR-ARPES signal,
which return to equilibrium after the pump pulse is turned off
(Fig. 3).

In Fig. 8, top panel, we plot the residual excited popula-
tions along the main path as a function of the pump-pulse
amplitude. One- and two-photon resonances have residual ex-
cited populations that show Rabi-like oscillations with respect
to changing the pump-pulse amplitude. Moreover, unlike in
the former case (only local dipole), k points with the same
gap energies (for example those along the path Y-S-X) have
different behaviors as their velocities and inverse-masses are
different, which yields different couplings to the pumping
field. In particular, at the k points where we have one-photon
(two-photon) resonances, but the velocity (inverse mass) van-
ishes (see the related discussion above on the TR-ARPES
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FIG. 8. Residual excitations along the main path as a function of
the pump-pulse amplitude for the case of Peierls substitution in the
hopping term and zero dipole. (Top) The full dynamics. (Bottom)
The dynamics considering interband transitions only.

signal regarding the relevant regions of first Brillouin zone),
there are no residual excitations. However, the points at
their immediate proximities with nonexact resonant gaps, but
nonzero velocities (inverse masses), host some residual ex-
cited populations.

In Fig. 8, bottom panel, we see that for the case of a dy-
namics with just the interband transitions, the residual excited
population coming from one-photon resonances gets larger
(on the contrary, if one keeps only the intraband transitions,
then there would be no excitations at all). In this case, one-
photon resonances get stronger because we have removed
the intraband transitions that drive them transiently out of
resonance and leads to a smaller residual excited population.
However, there are some weak one-photon resonances that
benefit from intraband transitions since they are far from the
exact resonant points and by the intraband transitions they
can get transiently closer to resonance. The net effect for
them is to gain some residual excited population so that the
related resonant region in k-space appears wider compared
to the case of interband-only transitions. An example can be

FIG. 9. Residual excited population per unit cell as a function
of the pump-pulse amplitude for an 8 × 8 × 8 k grid over the
first Brillouin zone, considering Peierls substitution in the hopping
term and no dipole. (top) all (any-photon) resonant contributions,
(middle) only one-photon resonant contributions and (bottom) only
two-photon resonant contributions. In all panels, we report the two
cases of the full original Hamiltonian (solid) and interband-only
Hamiltonians (dots).

the proximities of the S point on the path M-S-�. However,
for the two-photon resonances considering only the interband
transitions results in smaller residual excited populations. The
two-photon resonances are assisted by the intraband transi-
tions, similar to TR-ARPES signal (see above).

In Fig. 9, top panel, we plot the total residual excited
population per unit cell, Eq. (35), as a function of the pump-
pulse amplitude. We have considered an 8 × 8 × 8 k-grid to
sample the first Brillouin zone, even though we checked the
robustness of the results with respect to the size of the grid
by using also 16 × 16 × 16 and 32 × 32 × 32 k-grids for a
larger step in the pump-pulse amplitude (not shown). We
compare the two cases: the full Hamiltonian and the one with
interband transitions only. For all values of the pump-pulse
amplitude, the total residual excited population with only
interband transitions is larger. The middle (bottom) panel of
Fig. 9, shows the contribution from one-photon (two-photon)
resonances, i.e., Eq. (34) with l = 1 (l = 2). In our system, the
largest contribution comes from the one-photon resonances
(middle panel). Computing the relative multiphoton resonance
strengths [see Eq. (29)] in our grid, we find out that the relative
strength of one-photon (l = 1) resonances is 64%, while for
two-photon (l = 2) resonances is 36% [Wl/(W1 + W2), see
Eq. (29)]. Clearly, these numbers do not take into account
the actual strength of the system-pump couplings at these
resonant k points and that the second order transitions are
generally weaker than the first order ones.

As we already explained above in detail, for the one-
photon resonances (middle panel), the removal of intraband
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FIG. 10. The TR-ARPES signal considering both Peierls substitution and local dipole in the Hamiltonian, with the probe and pump pulses
having the same center, i.e., t̄pr = 0. (right) The retarded signal, (middle) the lesser signal, and (left) the lesser signal for interband-only
transitions. The black-solid curves show the equilibrium band energies while the green dots show the local maxima of the signals for a fixed k
point. The red-solid curves show the instantaneous eigenenergies at time zero.

transitions increases the residual excited populations, while
for the two-photon resonances (bottom panel), the residual
excited populations get reduced by removal of the intraband
transitions. In the latter case, increasing the pump-pulse am-
plitude to high values, the behavior changes and the results
of interband-only Hamiltonian overcome the full Hamiltonian
ones. This can be understood by noting that, upon removing
intraband transitions, the Rabi-like oscillations become in av-
erage slower over all of the two-photon resonant k points and
of the sinlike shape we see only the monotonously increas-
ing behavior that eventually manages to overcome the usual
bending-over sinlike behavior in the case of the full Hamil-
tonian. This results in a higher residual excitation for very
high amplitudes of the pump pulse in the case of interband-
only and two-photon resonances. It is noteworthy that such
very high pump-pulse intensities are not affordable in realistic
setups as they would damage the sample.

C. Both Peierls substitution and local dipole

In this section, we consider both local dipole and Peierls
substitution with the related Hamiltonian parameter values
given in the former two cases. In this case, even though some
of the effects can be explained by simply considering the
mere addition of the effects yielded by the individual coupling
terms, we see that the interplay between the two interaction
terms is also relevant.

The retarded TR-ARPES signal along the main path at
t̄pr = 0 is shown in Fig. 10, left panel, while the lesser TR-
ARPES signal is shown in the middle panel. The local dipole
strengthens both one-photon and two-photon PSBs. In this
case, the k points with zero velocity do have one-photon
PSBs, because of the local dipole which does not follow the
symmetry of the bands. The TR-ARPES bands are definitely
closer to the equilibrium bands rather than to the instantaneous
eigenenergies. The presence of both coupling terms augments
the broadening of the signals as it increases the excited pop-
ulation overall and, in particular, at the main resonant k
point, S.

Looking at the interband-only lesser TR-ARPES signal,
which is shown in the right panel, we see similar behaviors
to the case of zero dipole, except for one main difference: the
reduction in the two-photon resonant signal is much stronger.

As explained above (see also Appendix B), the intraband
transition term assists the two-photon interband resonances.
The addition of the local dipole term to the Peierls substi-
tution strengthens the interband transition (stemming from
off-diagonal terms in the Hamiltonian) and, in turn, makes
even more effective the assistance mechanism.

It is worth noticing that we considered the local dipole to
be just of interband form, therefore, the intraband-only results
are exactly the same as the case of zero dipole, which were
presented in Fig. 6, bottom-right panel.

In Fig. 11 top panel, we plot the residual excited population
along the main path versus the pump-pulse amplitude. The
first important change with respect to the zero dipole case
is that the one-photon resonant k points with zero velocity
(X, Y, and Z) do have residual excited population now: the
symmetry protection is lost in the presence of the dipole term
(as discussed for the TR-ARPES signal). Moreover, having
both local dipole and Peierls substitution increases the Rabi
frequency on the line X-S-Y which yields the residual excited
population at S to have a maximum at around the pump-pulse
peak amplitude of Ā0 
 0.19, showing more clearly the Rabi-
like behavior.

In Fig. 11 bottom panel, we plot the residual excited pop-
ulation keeping only interband transitions in the dynamics.
Removing the intraband transitions, noticeably increases the
residual excited population at the resonance points near X and
Y, so that they can also reach the maximum of full population
inversion. Moreover, for the two-photon resonant k points,
the difference between full and interband-only dynamics is
much larger than in the case of zero dipole (as discussed for
TR-ARPES signal).

After investigating the residual excitation on the main path,
we discuss the excitation per unit cell, which is obtained
using an 8 × 8 × 8 k grid to sample the first Brillouin zone
and plotted in the top panel of Fig. 12. Comparison with
the two former cases of considering no Peierls substitution
and having zero dipole (both shown in the same panel), we
see the maximum occurs at a smaller pump-pulse amplitude,
as the local dipole adds up to the Peierls substitution which
increases the Rabi frequencies. Another relevant feature is
related to only-interband transitions in the dynamics that seem
to reduce the residual excited population, which is apparently
in contradiction with the result of Fig. 9. However, the behav-
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FIG. 11. Residual excitation along the main path as a function
of the pump-pulse amplitude for the case of both Peierls substitu-
tion and local dipole. (Top) Full dynamics, (bottom) dynamics with
interband transitions only.

ior of one-photon and two-photon resonance contributions, as
plotted in the middle and bottom panels of Fig. 12, reveals
that similar to the case of zero dipole, the interband-only
dynamics gives more (less) residual excited population for
the one-photon (two-photon) resonance contributions, but the
difference between the interband-only and full dynamics of
the two-photon resonances are much larger in this case, as we
explained in the discussion of Fig. 10.

D. More on the characteristics of the TR-ARPES signal

In this section, we get more insights about the behavior
of the system out of equilibrium by changing the probe-pulse
parameters. For the coupling Hamiltonian, we consider both
local dipole and Peierls substitution, but the general conclu-
sions we will draw are independent of this choice.

First, we study how the TR-ARPES signal changes on
varying the center of probe pulse, t̄pr, from before to after
the pump-pulse envelope. The retarded and lesser TR-ARPES
signals for two high-symmetry k points, � and S, are reported

FIG. 12. Residual excitation per unit cell as a function of the
pump-pulse amplitude for an 8 × 8 × 8 k grid over the first Brillouin
zone, considering both Peierls substitution and local dipole. (Top)
All (any-photon) resonant contributions, (middle) one-photon, and
(bottom) two-photon resonance contributions. In all panels, we report
the two cases of the full original Hamiltonian (solid) and interband-
only Hamiltonians (dots). In the top panel, the results of zero dipole
(red dashed) and Peierls-substitution-only (blue dashed) cases are
also reported.

in Fig. 13, top panels. For both k points, the PSBs are detected
as soon as the probe-pulse center enters the pump-pulse en-
velope, that is when the instantaneous eigenenergies become
different from the equilibrium band energies.

At equilibrium, as expected, the lesser signal (bottom pan-
els) shows that the electrons reside in the valence band, while
they get excited into the conduction band during the pump-
pulse application. At S, which is exactly one-photon resonant,
we register an almost complete population inversion.

After the pump pulse is turned off, the residual signal
at � is very weak (� is not in resonance), while at S we
have a very strong residual signal because of the resonance
condition. Having both local dipole and Peierls substitution,
yields slightly more residual signal compared to the cases of
removing one of the two coupling terms.

Moreover, at S that is a resonant point, we have the splitting
of the valence band. Such a splitting is not visible at time
t̄pr = 0, because the two wide split bands overlap with each
other. Increasing either the local dipole or the pump-pulse
amplitude one can see the splitting even at time t̄pr = 0 (not
shown).

So far, the FWHM of the probe pulse was kept constant
and equal to the one of the pump pulse, τ̄pu = τ̄pr = 7. Now,
we study the effect of varying τ̄pu while keeping t̄pr = 0. In
Fig. 14, the lesser signal is reported at an off-resonant k point
(0.375, 0.125, 0.5) (top panel) and at the resonant k point S
(bottom panel). The former point is chosen to have an energy
difference between the instantaneous eigenenergies at time
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FIG. 13. (Top) The retarded and (bottom) the lesser TR-ARPES signals vs the center of probe-pulse envelope, t̄pr, for the high-symmetry
points (left) � and (right) S. The vertical dashed gray lines determine ±τ̄pu. The black-solid lines show the equilibrium band energies while
the green dots show the local maxima of the signals for a fixed k point. The red-solid curves show the instantaneous eigenenergies as functions
of t̄pr.

zero and the equilibrium-band energies quite noticeable to
better illustrate the phenomenology we are going to discuss.

First, we analyze the behavior at the off-resonant k point
(top panel). For very narrow probes, that is small τ̄pr with
respect to τ̄pu, by decreasingτ̄pr, the signal gets wider and its
peaks tend to the instantaneous eigenenergies. This indicates
that the system is practically in the lower eigenstate, which is
predominantly valence-band-like as there is no excitation to
the higher eigenstate. At any rate, the peaks will never exactly
coincide with the instantaneous eigenenergies (even though
they are very close to them) as the process is not adiabatic.
We expect this also in real semiconductors and insulators as
there the off-diagonal terms of the coupling Hamiltonian are
usually much smaller than the energy gaps determined by the
total Hamiltonian.

Instead, increasing the width of the probe-pulse envelope,
τ̄pr, corresponds to measuring the system over a finite time in-
terval and, practically, to performing a time average over such
an interval. This averaging process results in the emergence of
sidebands while the main peaks tend to the equilibrium bands.
The shifts of the bands are due to the high nonlinearity of the
processes and to the nonzero average of the oscillating pump
pulse. The PSBs remain at almost fixed energies after they
emerge because they are related to the oscillating component
of the pumping field, and if the probe pulse is wide enough to
see the oscillations, then it does not matter how much wider it
becomes. However, EPSBs change their energies by changing
the width of the probe-pulse envelope, because they are driven
by the nonoscillating component of the pumping field.

By increasing the width of the probe pulse to very high val-
ues, the resolution in energy increases and the peaks become
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FIG. 14. The lesser TR-ARPES signals vs the FWHM of probe-
pulse envelope, τ̄pr, while the center of probe pulse is kept at t̄pr = 0,
for (top) the k point k = (0.375, 0.125, 0.5) and (bottom) the high-
symmetry point S. The vertical dashed gray lines determine τ̄pu. The
black-solid lines show the equilibrium band energies while the green
dots show the local maximum of the signals for a fixed k point. The
red-solid lines show the instantaneous eigenenergies at time zero.

very sharp. However, having such a large probe-pulse FWHM
corresponds to (i) reducing more and more the time resolu-
tion of the measurement and (ii) including more and more
equilibrium behavior (before pump-pulse envelope) and resid-
ual effects (after pump-pulse envelope) into the measurement.
Therefore, we cannot obtain enough information about the
transient out-of-equilibrium dynamics of the system. How-
ever, on decreasing the width of the probe pulse, the signals
become very wide in energy. This requires more and more
experimental resolution in energy to determine the position
of the peaks and understand the physics. Consequently, one
needs to choose some intermediate value to cope with the
unavoidable intrinsic time-energy uncertainty relationship of
the underlying quantum mechanical system.

The situation at resonance is quite different. As it is shown
in the bottom panel of Fig. 14, even for the smallest values
of τ̄pu, the peak of lesser TR-ARPES signal does not coincide
with the lower eigenenergy as the resonant dynamics forces
the electrons to evolve in a superposition of valence and
conduction band states. The superposition of two eigenstates
results in the overlap of the TR-ARPES signals and, conse-
quently, gives a peak somewhere in the middle of the two
eigenenergies. Increasing the width of probe pulse, again the
PSBs emerge and the one-photon PSB is highly populated.
It is noteworthy that the inverse mass at S is zero and this is
why we do not have any shifting of the bands and no EPSB
emerges.

IV. SUMMARY AND PERSPECTIVES

In this manuscript, we have reported on a novel model-
Hamiltonian approach that we have recently devised and
developed to study out-of-equilibrium real materials [30],
the dynamical projective operatorial approach (DPOA). Its
internals have been illustrated in detail and the theory is ex-
tended to the calculations of TR-ARPES signal in pumped
lattice systems. As a noteworthy prototypical application, a
pumped two-band (valence-conduction) system, is discussed
extensively. DPOA relies on many-body second-quantization
formalism and composite operators to be capable of handling
both weakly and strongly correlated systems. DPOA exploits
the tight-binding approach and the wannierization of DFT
band structures to cope with the complexity and the very many
degrees of freedom of real materials [30]. We have devised an
ad hoc Peierls expansion to increase the efficiency of numeri-
cal calculations. This expansion makes clear how multiphoton
resonances, rigid shifts, band dressings and different types of
sidebands naturally emerge and allows to understand deeply
the related phenomenologies. We also reported another mech-
anism to explain the emergence of multiphoton resonances
relaying on the intraband motion (oscillating diagonal terms
in the Hamiltonian).

We have defined a protocol for evaluating the strength
of single- and multiphoton resonances and for assigning the
residual excited electronic population at each k point and
band to a specific single- and multiphoton process. Com-
paring DPOA to the single-particle density-matrix approach
and the Houston method, which we have generalized to
second-quantization formalism and rephrased in the DPOA
framework to compute exactly its dynamics, we have shown
that DPOA goes much beyond both of them in terms of
computing capabilities (multiparticle multitime correlators)
and complexity handling. To study the injection processes
and the out-of-equilibrium electronic dynamics, we have ex-
pressed the relevant out-of-equilibrium Green’s functions and
the (lesser) TR-ARPES signal within the DPOA framework.
Then, defining a retarded TR-ARPES signal, which allows to
analyze the behavior of the dynamical bands independently
from their occupation, we have shown that it is possible
to obtain an out-of-equilibrium version of the fluctuation-
dissipation theorem. Another relevant aspect that we have
thoroughly considered resides in the possibility to analyze
intra- and interband transitions in the TR-ARPES signal and
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in the residual electronic excited population by selectively
inhibiting them in the model Hamiltonian.

We have studied the three most relevant cases of light-
matter coupling within the dipole gauge, which has been
derived in the second-quantization formalism: only a lo-
cal dipole (relevant to systems such as quantum dots and
molecules, and low-dimensional systems with transverse
pumps), only the Peierls substitution in the hopping term (rel-
evant to many real materials), and both terms at once. Within
the framework of a pumped two-band lattice system, we have
analyzed in detail the TR-ARPES signal and the residual
electronic excited population with respect to the band energies
and their symmetries as well as their dependence on the pump-
and probe-pulse characteristics. We have studied: (i) how the
first-order (in the pump-pulse amplitude) terms of the two
types of light-matter couplings assist the higher-order ones;
(ii) how their decomposition in terms of intra- and interband
components can allow to understand the actual photoinjec-
tion process; (iii) how the symmetries of the system rule the
actual behavior of the lesser and the retarded TR-ARPES
signals as well as of the residual excited populations; (iv)
how the (dynamical) bands broaden out-of-equilibrium and
shift with respect to the equilibrium ones; (v) how different
kinds of photon (resonant, non resonant) and envelope-Peierls
sidebands emerge and vanish in relation to band symmetries
and how dipole term breaks this symmetry protection; (vi)
how residual electronic excited population accumulate in the
conduction band induced by Rabi-like oscillations at the mul-
tiphoton resonant non-symmetry-protectedk points and the
characteristics of such oscillations in terms of the pump-pulse
features; (vi) how the width and the delay of the probe pulse
affect the TR-ARPES signal.

Recently, we applied DPOA to unveil the different
charge-injection mechanisms in ultrafast (attosecond) pumped
germanium proving its efficiency and relevance to real ex-
perimental setups [30]. Moreover, we have obtained, within
DPOA, the expressions for the time-dependent optical re-
sponse (transient reflectivity and absorption) in pump-probe
setups [41]. This kind of analyses is fundamental to advance
the physical understanding of complex materials and the capa-
bility to eventually turn this knowledge into actual industrial
and commercial applications, such as the recently proposed
novel types of electronics.
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APPENDIX A: VELOCITY AND DIPOLE GAUGES:
HAMILTONIAN, DENSITY, AND CURRENT OPERATORS

1. System

Let us start from the single-particle Hamiltonian operator
in first quantization, Ĥ0, for an electron of charge −e and
mass m in the periodic potential V (r + Ri) = V (r) generated
by the Bravais lattice {Ri} of ions of a solid state system
[Ri = ∑3

λ=1 iλaλ where i = (i1, i2, i3), iλ ∈ Z and aλ are the

lattice vectors]:

Ĥ0 = p̂2

2m
+ V (r̂), (A1)

where p̂ and r̂ are the momentum and the position operators of
the electron, respectively, that satisfy the canonical commuta-
tion relation [r̂η, p̂η′ ] = ih̄δηη′ , where η, η′ ∈ {x, y, z}. In this
Appendix, we denote the operators in first-quantization for-
mulation by the hat (ˆ) over-script. The Bloch theorem states
that we can find a solution |φk,n〉 = eik•r̂|uk,n〉, parametrized
by the band index n and the momentum k, of the Schrödinger
equation, Ĥ0|φk,n〉 = εk,n|φk,n〉, where uk,n(r) = 〈r|uk,n〉 has
the periodicity of the Bravais lattice and εk,n is the nth
band-energy dispersion. We also have Ĥ0,k|uk,n〉 = εk,n|uk,n〉,
where Ĥ0,k = e−ik•r̂Ĥ0eik•r̂ and φk,n(r) = 〈r|φk,n〉.

2. Velocity gauge

In the dipole approximation (i.e., for wavelengths much
larger than the unit cell extent in the direction of propaga-
tion), an electromagnetic wave interacting with the system
(the electrons) can be described by a homogeneous vector po-
tential A(t ). Then, according to the minimal coupling protocol
p̂ → π̂ = p̂ + eA(t ), the Hamiltonian operator reads as

Ĥ = π̂2

2m
+ V (r̂) = Ĥ0 + e

m
A(t ) • p̂ + e2

2m
A2(t ), (A2)

where • is the scalar product in direct space. This scenario
is known as velocity gauge after the electron-field interaction
term in the Hamiltonian: eA(r̂, t ) • p̂

m . Let us suppose that |ψ〉
is the solution of the time-dependent Schrödinger equation,
ih̄ ∂

∂t |ψ〉 = Ĥ |ψ〉. Then, the dynamics of the charge density
operator ρ̂ = −e|r〉〈r| and, in particular, of its average 〈ρ̂〉 =
〈ψ |ρ̂|ψ〉 = −e|ψ (r, t )|2 (recall that ψ (r, t ) = 〈r|ψ〉) is given
by

∂

∂t
〈ρ̂〉 = − i

h̄
〈[ρ̂, Ĥ ]〉 = − 1

2m

∑
η=x,y,z

∇η〈[ρ̂π̂η + π̂ηρ̂]〉.
(A3)

Next, the continuity equation, ∂
∂t 〈ρ̂〉 + ∇ • 〈Ĵ〉 = 0, calls for

the following definition for the current operator

Ĵ = 1

2m
(ρ̂π̂ + π̂ρ̂ ) = 1

2m
(ρ̂p̂ + p̂ρ̂) + e

m
A(t )ρ̂, (A4)

where we can distinguish the paramagnetic (first) and the
diamagnetic (second) terms. It is worth noticing that the con-
tinuity equation can be equivalently written as follows:

∂

∂t
〈ρ̂〉 = i

h̄

∑
η=x,y,z

〈[π̂η, Ĵη]〉. (A5)

To move to second quantization in the Bloch basis, we need

vn,n′ (k) = 1

m
〈φk,n|p̂|φk,n′ 〉

= 1

h̄
〈uk,n|∇kĤ0,k|uk,n′ 〉

= δnn′
1

h̄
∇kεk,n − i

h̄
(εk,n′ − εk,n)Bn,n′ (k), (A6)

where we have used the relation p̂ = −i m
h̄ [r̂, Ĥ0] and

Bn,n′ (k) = 〈uk,n|∇kuk,n′ 〉 is the Berry connection. It is worth
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noticing that the last expression requires that the Bloch basis
used in the actual numerical calculations is complete. Then,
we have

H =
∑
k,n,n′

〈φk,n|Ĥ |φk,n′ 〉c†
k,nck,n′ =

∑
k,n

εk,nc†
k,nck,n

+
∑
k,n,n′

(
eA(t ) • vn,n′ (k) + δnn′

e2

2m
A2(t )

)
c†

k,nck,n′ ,

(A7)

where ck,n is the annihilation operator related to the single-
particle state |φk,n〉. We also have, in second quantization,

ρ(r) = −e
∑
k,n

|φk,n(r)|2c†
k,nck,n, (A8)

J(r, t ) = 1

2

∑
k,n,n′

|φk,n(r)|2vn,n′ (k)c†
k,nck,n′

+ 1

2

∑
k,n,n′

|φk,n′ (r)|2vn,n′ (k)c†
k,nck,n′

+ e

m
A(t )ρ(r). (A9)

It is worth noting that, in principle, for any real material,
vn,n′ (k) can be obtained through the outputs of the majority
of the available DFT codes.

3. Dipole gauge

Now, we can move from computing the average of the
velocity operator 1

m p̂ and, consequently, the Berry connection,
to computing the average of the operator r̂ and, therefore, the
dipole operator D̂. To do that, one can apply the following
unitary transformation:

Û = e−iŜ, where Ŝ = − e

h̄
A(t ) • r̂. (A10)

Let us recall the following general relations:

Ô = Û ÔÛ † (A11)

=
∞∑

n=0

(−i)n

n!
[Ŝ, [Ŝ, . . . , [Ŝ, [Ô]0]1 . . .]n−1]n, (A12)

|ψ〉 = Û |ψ〉, ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉, (A13)

Ĥ = Ĥ +
(

ih̄
∂

∂t
Û

)
Û †, (A14)

where any first-quantization operator Ô transformed by Û
is denoted by Ô, and |ψ〉 is the transformation of the wave
function by Û . The time-evolution of |ψ〉 is given by the

effective Hamiltonian Ĥ , as given in Eq. (A14), rather than
Ĥ . It is straightforward to show that

r̂ = r̂, (A15)

p̂ = p̂ − eA(t ), (A16)

π̂ = π̂ − eA(t ) = p̂, (A17)

Ĥ = Ĥ0, (A18)

∂

∂t
Û = −i

e

h̄
(E(t ) • r̂)Û , (A19)

Ĥ = Ĥ0 + eE(t ) • r̂, (A20)

ρ̂ = ρ̂, (A21)

Ĵ = Ĵ − e

m
A(t )ρ̂ = 1

2m
(ρ̂p̂ + p̂ρ̂ ), (A22)

∂

∂t
〈ρ̂〉 = − i

h̄
〈[ρ̂, Ĥ ]〉 = −∇ • 〈Ĵ〉 (A23)

= i

h̄

∑
η=x,y,z

〈[π̂η, Ĵη]〉, (A24)

where E(t ) = − ∂
∂t A(t ) is the electric field applied to the sys-

tem. It is just Eq. (A18), as sought outcome, that inspired
the transformation. This scenario is known as dipole gauge
after the electron-field interaction term in the Hamiltonian:
eE(t ) • r̂.

Moving from the Bloch states to the localized Wannier
ones,

|ϕi,ν〉 = 1√
N

∑
k,n

ak,ν,ne−ik•Ri |φk,n〉, (A25)

where N is generically the number of lattice sites and ak,ν,n

can be chosen to refer to a localized state (for instance, a max-
imally localized Wannier functions), ϕi,ν (r − Ri) = 〈r|ϕi,ν〉,
around the specific Bravais lattice site Ri. Hereafter, this is
the choice that has been made to properly compute the dipole
term of the Hamiltonian as we will see in the following. It
is easy to demonstrate that the r̂ operator has an ill-defined
average on a Bravais lattice,

〈ϕi,ν |r̂|ϕi,ν〉 =
∫

drr|ϕi,ν (r − Ri)|2 →
|Ri|→∞

∞, (A26)

implying that the Hamiltonian is also ill defined. 〈ϕi,ν |r̂ −
R̂|ϕi,ν〉 can be instead always finite if the states |ϕi,ν〉 are
localized enough; actually, if it is not so, then the follow-
ing procedure cannot be adopted. Here, we have defined the
operator R̂ as follows: R̂|ϕi,ν〉 = Ri|ϕi,ν〉. Accordingly, the el-
ements of the localized basis, |ϕi,ν〉, are its eigenfunctions and
the Bravais lattice sites, Ri, are the corresponding eigenvalues.

This problem calls for the application of one more unitary
transformation,

Û ′ = e−iŜ′
, where Ŝ′ = + e

h̄
A(t ) • R̂. (A27)

We can exploit the following relation to apply this transfor-
mation to the relevant operators and write them in the dipole
gauge,

Ô
i,ν;j,ν ′ = 〈ϕi,ν |Ô|ϕj,ν ′ 〉 = e−i e

h̄ A(t )•Rij Ôi,ν;j,ν ′ , (A28)

and get their first-quantization form in the dipole gauge as
follows:

r
i,ν;j,ν ′ = e−i e

h̄ A(t )•Rij ri,ν;j,ν ′ , (A29)

p
i,ν;j,ν ′

= e−i e
h̄ A(t )•Rij [pi,ν;j,ν ′ − eA(t )δi,ν;j,ν ′ ], (A30)

π
i,ν;j,ν ′ = e−i e

h̄ A(t )•Rij pi,ν;j,ν ′ , (A31)
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Ĥ i,ν;j,ν ′ = e−i e
h̄ A(t )•Rij [Ĥ0 + eE(t ) • r̂]i,ν;j,ν ′ , (A32)

∂

∂t
Û ′ = +i

e

h̄
(E(t ) • R̂)Û ′, (A33)

Ĥ = Ĥ + i
e

h̄
E(t ) • R̂, (A34)

Ĥ i,ν;j,ν ′ = e−i e
h̄ A(t )•Rij [Ĥ0 + eE(t ) • D̂]i,ν;j,ν ′ , (A35)

ρ
i,ν;j,ν ′

= e−i e
h̄ A(t )•Rijρi,ν;j,ν ′ , (A36)

J
i,ν;j,ν ′ = e−i e

h̄ A(t )•Rij Ji,ν;j,ν ′ , (A37)

∂

∂t
〈ρ̂〉 = − i

h̄
〈[ρ̂, Ĥ ]〉 = −∇ • 〈J〉 (A38)

= i

h̄

〈 ∑
η=x,y,z

[πη, Jη]

〉
, (A39)

where Rij = Ri − Rj and D̂ = r̂ − R̂, and any first-
quantization operator Ô transformed by Û ′ is denoted by

Ô. The transformation of the Hamiltonian Ĥ is denoted

by Ĥ . The true effective Hamiltonian is Ĥ , as given in
Eqs. (A34) and (A35). The consecutive action of Û and Û ′
gives the operators in the dipole gauge. Moving to the second
quantization, the effective Hamiltonian in the dipole gauge is
written as

H = 1

M

∑
i,ν;j,ν ′

Ĥ i,ν;j,ν ′ c̃†
i,ν c̃j,ν ′ . (A40)

Substituting Eq. (A35), one obtains

H = 1

M

∑
i,ν;j,ν ′

e−i e
h̄ A(t )•Rij T̃Rij,ν,ν ′ c̃†

i,ν c̃j,ν ′

+ 1

M

∑
i,ν;j,ν ′

e−i e
h̄ A(t )•Rij eE(t ) • D̃Rij,ν,ν ′ c̃†

i,ν c̃j,ν ′ . (A41)

And similarly, for the density and current operators in the
dipole gauge, it is straightforward to show

ρ̂(q = 0) = −e
1

M

∑
i,ν

c†
i,νci,ν = −e

N

M
, (A42)

Ĵ(q = 0, t ) = i
e

h̄

1

M

∑
i,ν;j,ν ′

e−i e
h̄ A(t )•Rij RijT̃Rij,ν,ν ′ c̃†

i,ν c̃j,ν ′

+ i
e

h̄

1

M

∑
i,ν;j,ν ′

e−i e
h̄ A(t )•Rij [D̂, Ĥ0]i,ν;j,ν ′ c̃†

i,ν c̃j,ν ′ ,

(A43)

where

[D̂, Ĥ0]i,ν;j,ν ′ =
∑
i′,ν ′′

D̃Rii′ ,ν,ν ′′ T̃Ri′ j,ν ′′,ν ′ −
∑
i′,ν ′′

T̃Rii′ ,ν,ν ′′D̃Ri′ j,ν ′′,ν ′ ,

(A44)

T̃Rij,ν,ν ′ = (Ĥ0)i,ν;j,ν ′ is known as the hopping matrix, and
D̃Rij,ν,ν ′ = (D̂)i,ν;j,ν ′ is the dipole matrix. We have considered
a homogeneous lattice so that both the hoping and the dipole
matrices depend on the difference Rij. c̃i,ν is the annihilation

operator related to the single-particle state |ϕi,ν〉, M is the
number of lattice sites, N is the total number of electrons in
the system, and we have used the relations p̂ = −i m

h̄ [r̂, Ĥ0]
and 〈ϕi,ν |[R̂, Ô]|ϕj,ν ′ 〉 = RijÔi,ν;j,ν ′ .

Then, we move to the momentum space using Fourier
transformation,

c̃k,ν = 1√
M

∑
i

eik•Ri c̃i,ν , (A45)

and we obtain

H =
∑
k,ν,ν ′

T̃k+ e
h̄ A(t ),ν,ν ′ c̃†

k,ν
c̃k,ν ′

+ eE(t ) •
∑
k,ν,ν ′

D̃k+ e
h̄ A(t ),ν,ν ′ c̃†

k,ν c̃k,ν ′ , (A46)

ρ(q = 0) = −e
1

M

∑
k,ν

c̃†
k,ν

c̃k,ν ′ = −e
N

M
, (A47)

J(q = 0, t )

= − e

h̄

∑
k,ν ′,ν

[∇kT̃k+ e
h̄ A(t ),ν,ν ′

]
c̃†

k,ν c̃k,ν ′

+ i
e

h̄

∑
k,ν,ν ′,ν ′′

[
D̃k+ e

h̄ A(t ),ν,ν ′′ T̃k+ e
h̄ A(t ),ν ′′,ν ′

]
c̃†

k,ν c̃k,ν ′

− i
e

h̄

∑
k,ν,ν ′,ν ′′

[
T̃k+ e

h̄ A(t ),ν,ν ′′D̃k+ e
h̄ A(t ),ν ′′,ν ′

]
c̃†

k,ν c̃k,ν ′ ,

(A48)

where

T̃k,ν,ν ′ = 1

M

∑
i,j

e−ik•Rij T̃Rij,ν,ν ′ , (A49)

D̃k,ν,ν ′ = 1

M

∑
i,j

e−ik•Rij D̃Rij,ν,ν ′ , (A50)

or equivalently

T̃k,ν,ν ′ =
∑

i

e−ik•Ri T̃Ri,ν,ν ′ , (A51)

D̃k,ν,ν ′ =
∑

i

e−ik•Ri D̃Ri,ν,ν ′ . (A52)

Again, it is worth noting that, in principle, for any real
material, T̃Rij,ν,ν ′ and D̃Rij,ν,ν ′ can be obtained as standard out-
puts of Wannier90 code [80], given its interfaces to a certain
number of available DFT codes.

APPENDIX B: OSCILLATIONS OF THE DIAGONAL
ELEMENTS AND MULTIPHOTON RESONANCES

Let us study a simple two-level system with the equilibrium
eigenstates |1〉, |2〉 and eigenenergies ε1, ε2, respectively. The
gap frequency is ωg = (ε2 − ε1)/h̄ > 0. The Hamiltonian of
such a system under the application of a pump pulse, has the
following generic form:

H(t ) =
(

ε1(t ) λ12(t )
λ21(t ) ε2(t )

)
. (B1)
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The time-dependent state of the system, |ψ (t )〉, can be
spanned in the basis of equilibrium eigenstates:

|ψ (t )〉 = a1(t )|1〉 + a2(t )|2〉, (B2)

and it is straightforward to show that

ih̄ȧα (t ) = εα (t )aα (t ) + λαᾱ (t )aᾱ (t ), (B3)

where α, ᾱ ∈ {1, 2} and ᾱ = (α mod 2) + 1.
In this Appendix, we consider a perfectly periodic pump,

and for simplicity, real off-diagonal terms, hence, λαᾱ (t ) =
λ0 sin(ωt ).

1. Standard Rabi oscillation

For the case of standard Rabi oscillations, one considers
constant diagonal terms in time, i.e., εα (t ) = εα . As it is
quite well known, one can obtain the dynamics by simply
defining aα (t ) = a0,α (t )e−iεαt/h̄. Considering the one photon
resonant condition, ω = ωg, and the rotating wave approxi-
mation (RWA), one obtains the following EOM for a0,α (t ):

ä0,α (t ) ≈ −
(

λ0

2h̄

)2

a0,α (t ), (B4)

which results in a Rabi oscillation with the Rabi frequency
ωR = λ0

h̄ . It is worth noticing that in this case, there is no way
of getting a multiphoton resonance.

2. Oscillations of the diagonal elements

In a more general case, which is very common in realistic
setups (e.g., in lattice systems), the diagonal terms of the out-
of-equilibrium Hamiltonian also oscillate. One can write

εα (t ) = εα + δα sin (ωt + φα ), (B5)

where δα is the amplitude of the diagonal oscillation and φα is
its phase. Let us define

a0,α (t ) = aα (t )e
i
h̄ (εαt− δα

ω
cos (ωt+φα )). (B6)

One can straightforwardly show that

ih̄ȧ0,α (t ) = λ0 sin (ωt )ei(εα−εᾱ )t/h̄

e
i

h̄ω
(δᾱ cos (ωt+φᾱ )−δα cos (ωt+φα ))a0,ᾱ (t ).

(B7)

Given that our aim is to understand the general effect of
the oscillating diagonal terms, we consider δ1 = δ2 = δ, φ1 =
π and φ2 = 0, so that ε1/2(t ) = ε1/2 ∓ δ sin(ωt ). The EOM
reduces to

ih̄ȧ0,1/2(t ) = λ0 sin (ωt )e∓iωgt e±2i δ
h̄ω

cos (ωt )a0,2/1(t ). (B8)

Expanding the term e±2i δ
h̄ω

cos(ωt ) and performing some alge-
bra, one can show that

ih̄ȧ0,1/2(t ) = a0,2/1(t )
λ0

2i
e∓iωgt

∞∑
n=−∞

(bn−1,±δ− bn+1,±δ )einωt ,

where

bn,δ =
∞∑

r=0

1

(2r + |n|)!
(

i
δ

h̄ω

)2r+|n|(
2r + |n|

r

)
. (B9)

In this case, one can verify the emergence of Rabi-like os-
cillations also at multiphoton resonances. Consider a n-photon
resonance condition: ωg = nω, and apply RWA to remove all
of the fast oscillating terms. We remind the reader that here
we do not want to give an analytical solution to the EOM,
but our goal is to investigate the resonance conditions and the
situations in which Rabi-like oscillations emerge. The EOM
reduces to

ih̄ȧ0,1/2(t ) ≈ λ0

2i
(b±n−1,±δ − b±n+1,±δ )a0,2/1(t ). (B10)

Differentiating Eq. (B10) with respect to time, we get

ä0,α (t ) ≈ −
(

λ0

2h̄

)2

|bn−1,δ − bn+1,δ|2a0,α (t ), (B11)

which has the same form of Eq. (B4). This shows the emer-
gence of a Rabi-like oscillatory behavior for a multiphoton
resonant case, with the Rabi frequency of ω

(n)
R = λ0

h̄ |bn−1,δ −
bn+1,δ| where n � 1. As a conclusion, oscillating diagonal
terms in the Hamiltonian are a possible source of multiphoton
resonances.

APPENDIX C: THE HOUSTON APPROACH

One of the methods used to simulate the behavior of
pumped semiconductors is the Houston approach [27,72].
Such an approach is usually formulated in the velocity gauge
and first quantization, just for the reason that will become
clear in the following. Let us start from the time-independent
single-particle Hamiltonian of the Bloch system under
analysis,

Ĥ0 = p̂2

2m
+ V (r̂), (C1)

where p̂ and r̂ are the momentum and position operators,
respectively, m is the electron mass, and V (r̂) is the pe-
riodic potential of the system under analysis. The related
time-independent Schrödinger equation Ĥ0|ψk,n〉 = εk,n|ψk,n〉
is solved in terms of the Bloch bands εk,n and of the Bloch
functions |ψk,n〉 = e−ik•r̂|uk,n〉 where |uk,n〉 displays the same
periodicity of the potential. Accordingly, we have the fol-
lowing reduced equation Ĥ0,k|uk,n〉 = εk,n|uk,n〉 where Ĥ0,k =
eik•r̂Ĥ0e−ik•r̂ = (p̂−h̄k)2

2m + V (r̂). Now, if we have a pump pulse
described by the vector potential A(t ) impinging on the
system, then the related time-dependent minimal-coupling
Hamiltonian in the velocity gauge reads as

Ĥ (t ) = (p̂ + eA(t ))2

2m
+ V (r̂), (C2)

where e > 0 is the electronic charge. It is straightforward
to demonstrate that the eigenfunctions and the eigenvalues
of this Hamiltonian are simply |ϕk,n(t )〉 = e−ik•r̂|uk+ e

h̄ A(t ),n〉
and εk+ e

h̄ A(t ),n, respectively. The set of such eigenfunctions
is usually named the instantaneous or the adiabatic basis
because these states would exactly describe the behavior of
the system only if the pump pulse would be so slowly vary-
ing on the characteristic timescales (energies) of the system
to allow it to adjust to the pump pulse at each instant of
time (i.e., adiabatically). Accordingly, they do not solve the
general time-dependent Schrödinger equation Ĥ (t )|φk(t )〉 =
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ih̄ ∂
∂t |φk(t )〉, but they can be used as a basis for expand-

ing |φk(t )〉 = ∑
n λk,n(t )|ϕk,n(t )〉. The projection coefficients

λk,n(t ) are determined via the following equation of motion:

ih̄
∂

∂t
λk,n(t ) = (εk+ e

h̄ A(t ),n − θk,n(t ))λk,n(t )

+ ih̄
e

m

∑
n′( �=n)

E(t ) • pk,n,n′ (t )

�εk,n,n′ (t )
λk,n′ (t ), (C3)

where θk,n(t ) = 〈ϕk,n(t )|ih̄ ∂
∂t |ϕk,n(t )〉 is connected to the

Berry phase of the system and can be neglected if there
is no degeneracy, pk,n,n′ (t ) = 〈ϕk,n(t )|p̂|ϕk,n′ (t )〉 is the ma-
trix element of the momentum in the instantaneous basis,
�εk,n,n′ (t ) = εk+ e

h̄ A(t ),n − εk+ e
h̄ A(t ),n′ and E(t ) = − ∂

∂t A(t ) is
the applied electric field. Defining new coefficients βk,n(t )

such that λk,n(t ) = βk,n(t )e− i
h̄

∫ t
−∞ εk+ e

h̄ A(t ′ ),ndt ′
, the projection-

coefficient equation further simplifies to

ih̄
∂

∂t
βk,n(t ) = −θk,n(t )βk,n(t )+ ih̄

e

m

∑
n′( �=n)

E(t ) • pk,n,n′ (t )

�εk,n,n′ (t )

× e
i
h̄

∫ t
−∞ �εk,n,n′ (t ′ )dt ′

βk,n′ (t ), (C4)

and the corresponding basis {e− i
h̄

∫ t
−∞ εk+ e

h̄ A(t ′ ),ndt ′ |ϕk,n(t )〉} is the
Houston basis, which differs just by a time-dependent phase
factor from the instantaneous basis (actually, both basis are
often dubbed in the literature as Houston basis).

The main appeal of such a procedure resides in the pos-
sibility of obtaining sensible results even if one: (i) focuses
only on few bands (e.g., one valence, one conduction and,
if needed, one core band), (ii) supposes that pk,n,n′ (t ) is ap-
proximately k-independent so that pk,n,n′ (t ) ≈ pn,n′ (the time
dependence gets canceled as well), and (iii) uses the parabolic
approximation εk,n ≈ εn + h̄2k2

2mn
, that is, retains only relevant

gaps |εn − εn′ | and effective masses mn in the proximity of
few selected k points.

APPENDIX D: OUT-OF-EQUILIBRIUM
SPECTRAL FUNCTIONS

To obtain the spectral functions, we need the Fourier trans-
formation of the GFs with respect to time, which we perform
as follows:

GR,<
k (ω, t ) =

∫ +∞

−∞
dτeiωτ−0+|τ |GR,<

k

(
t + τ

2
, t − τ

2

)
, (D1)

where 0+ is an infinitesimal convergence factor. Then, the
(retarded) spectral function is given by

AR
k (ω, t ) = − 1

π
Im

[
TrGR

k (ω, t )
]
, (D2)

while the lesser spectral function is defined as

A<
k (ω, t ) = 1

2π
Im

[
TrG<

k (ω, t )
]
. (D3)

In Fig. 15, top and bottom panels, we report the dimensionless
retarded and lesser functions, ĀR,<

k (ω̄, t ) = AR,<
k (ω̄, t )�/h̄,

respectively, as function of ω̄ along the main path, for the
same pump-pulse and system parameters as the ones of Fig. 6.
In the left, middle, and right panels, the time t is chosen to be
well before the application of the pump pulse, in the center of
the pump pulse (t = 0), and well after the application of pump
pulse, respectively. Clearly, during the application of the pump
pulse, the spectral functions, ĀR,<

k (ω̄, t ), become negative and
lose their original physical interpretations.

Obviously, in the absence of the pump pulse (both before
and after its application), the spectral function gives correct
information about the energy bands of the system. The left
panel of Fig. 15 can be directly compared to Fig. 3 and the
only difference to be acknowledged is that, in the former, the
band broadening originates from the finite numerical value of
0+, while, in the latter, it originates from the finite FWHM
of the probe pulse. After the application of the pump pulse,
the bands recover their equilibrium shape as it can be seen
by comparing the top-right panel of Fig. 15 to its top-left
panel. However, the lesser spectral function (see bottom-right
panel of Fig. 15) shows that at some k points we have residual
excitations similarly to what is reported in the top panel of
Fig. 7.

APPENDIX E: TR-ARPES SIGNAL IN THE BAND BASIS

In this Appendix, we derive Eqs. (50) and (51) in the
equilibrium band basis. Substituting Eq. (46) into Eq. (47) and
using Im[z] = 1

2i (z − z�), the lesser signal can be written as

I<
k (ω, tpr ) = τpr

4
√

2π ln 2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

Spr (t1 − tpr )Spr (t2 − tpr )

×
⎡
⎣eiω(t1−t2 )

∑
n,n′

f+(εk,n′ )Pk,n,n′ (t1)P�
k,n,n′ (t2)

+e−iω(t1−t2 )
∑
n,n′

f+(εk,n′ )P�
k,n,n′ (t1)Pk,n,n′ (t2)

⎤
⎦.

(E1)

Changing the dummy variable t1 ←→ t2, one can verify that
the fourth and third lines of Eq. (E1) are equal to each other.
Rearranging the terms, one can simply show that

I<
k (ω, tpr ) = τpr

2
√

2π ln 2

∑
n,n′

f+(εk,n′ )|Qk,n,n′ (ω, tpr )|2, (E2)

where

Qk,n,n′ (ω, tpr ) =
∫ +∞

−∞
dteiωt Spr (t − tpr )Pk,n,n′ (t ). (E3)
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FIG. 15. Top and bottom panels: the dimensionless spectral function, ĀR
k (ω̄, t ), and lesser spectral function, Ā<

k (ω̄, t ), respectively, as
function of ω along the main path, for the same pump-pulse and system parameters as the one of Fig. 6. In the left, middle, and right panels,
the time t is chosen to be well before the application of pump pulse, in the center of the pump pulse (t = 0), and well after the application of
pump pulse, respectively. The black solid curves show the equilibrium bands. The numerical value of 0+ has been chosen to be 0.2�/h̄.

Defining Lk,n;n′ (ω, tpr ) = τpr

2
√

2π ln 2
|Qk,n,n′ (ω, tpr )|2 one obtains

Eq. (50).
For the retarded signal, substituting Eq. (45) into Eq. (49)

and using Im[z] = 1
2i (z − z�), we have

IR
k (ω, tpr )

= τpr

2
√

2π ln 2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2Spr (t1 − tpr )S(t2 − tpr )

×
⎡
⎣θ (t1 − t2)eiω(t1−t2 )

∑
n,n′

Pk,n,n′ (t1)P�
k,n,n′ (t2)

+ θ (t1 − t2)e−iω(t1−t2 )
∑
n,n′

P�
k,n,n′ (t1)Pk,n,n′ (t2)

⎤
⎦. (E4)

Changing the dummy variable t1 ↔ t2 in the last line of this
align and using θ (t1 − t2) + θ (t2 − t1) = 1, we get

IR
k (ω, tpr ) = τpr

2
√

2π ln 2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

Spr (t1 − tpr )S(t2 − tpr )

× eiω(t1−t2 )
∑
n,n′

Pk,n,n′ (t1)P�
k,n,n′ (t2), (E5)

which simply results in

IR
k (ω, tpr ) = τpr

2
√

2π ln 2

∑
n,n′

|Qk,n,n′ (ω, tpr )|2 (E6)

and proves Eq. (51).
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