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Quantum walks of correlated photons in non-Hermitian photonic lattices

Mingyuan Gao ,1,* Chong Sheng ,1,4,*,† Yule Zhao ,1,* Runqiu He,1 Liangliang Lu,2 Wei Chen,1 Kun Ding,3,‡

Shining Zhu,1 and Hui Liu1,§

1National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures,
Nanjing University, Nanjing, Jiangsu 210093, China

2Key Laboratory of Optoelectronic Technology of Jiangsu Province, School of Physical Science and Technology, Nanjing Normal University,
Nanjing 210023, China

3Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures
(Ministry of Education), Fudan University, Shanghai 200438, China

4Key Laboratory of Quantum Materials and Devices, Southeast University, Ministry of Education, Nanjing, Jiangsu 211189, China

(Received 20 July 2023; revised 16 May 2024; accepted 20 August 2024; published 9 September 2024)

Entanglement entropy characterizes the correlation of multiparticles and unveils the crucial features of open
quantum systems. However, the experimental realization of exploring entanglement in non-Hermitian systems re-
mains a challenge. In parallel, quantum walks have offered the possibility of studying the underlying mechanisms
of non-Hermitian physics, which includes exceptional points, the non-Hermitian skin effect, and non-Bloch
phase transitions. Unfortunately, these studies have only involved and prevailingly focused on the behavior of
a single particle. Here, we propose and experimentally realize quantum walks of two indistinguishable photons
in engineered non-Hermitian photonic lattices. We have successfully observed the unidirectional behavior of
quantum walks in the bulk far from the edges induced by the skin effect. Moreover, we experimentally reveal
the suppression of entanglement that is caused by the skin effect in non-Hermitian systems. Our study may
facilitate a deep understanding of entanglement in open quantum many-body systems that are far from thermal
equilibrium.
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I. INTRODUCTION

Open quantum systems are ubiquitous in nature and
possess unique and complex features unknown to their
closed counterparts. This has led to the development of
the non-Hermitian theory [1–5]. The non-Hermitian theory
has permeated various physical systems, including photonics
[6–10], acoustics [11–14], cold atoms [15–17], and topolelec-
trical circuits [18–20], resulting in significant consequences
and promising applications, such as unidirectional invisibility
[21,22], high-performance lasers [23–25], enhanced sens-
ing [26,27], and topological energy transfers [28,29], etc.
Among these, photonic quantum walks [30] have emerged
as a competent platform to study the underlying mechanism
of non-Hermitian physics. The notable examples include the
non-Hermitian skin effect (NHSE) [31], non-Bloch topolog-
ical invariants [32], non-Bloch parity-time symmetry and
phase transitions [33–35]. Despite these remarkable advances,
it is essential to note that all of these studies have been carried
out through the quantum dynamics of a single-photon wave
packet, which can be explained classically. Notably, when the
evolution of quantum walks involves more than one particle
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[36–39], their dynamics exhibit a hallmark feature of mul-
tiparticle interference and lack a classical analog. A natural
question then arises: What are the effects of non-Hermitian
physics on the quantum walks of multiple particles? Unfor-
tunately, few experiments have been conducted to investi-
gate the quantum walks of many bodies in non-Hermitian
systems.

Furthermore, non-Hermitian theories provide a profound
understanding of many-body behaviors in open quantum sys-
tems, including the dynamics of quantum correlation and
entanglement among many-body particles [40–42]. Although
there have been theoretical studies on the suppression of
entanglement induced by the intrinsic NHSE in open con-
densed matter systems [42], the experimental realization of
exploring this entanglement dynamic in such systems remains
challenging. On the other hand, passive linear photonics sys-
tems, unlike condensed matter systems with untamed and
dazzling electron interactions, offer unique advantages in
the measurement of multiphoton behavior. They have been
the controllable platforms for exploring non-Hermitian be-
haviors [43,44]. Nonetheless, there have been no reports on
experimentally studying the quantum dynamics of correlated
photons in an engineered non-Hermitian system.

In this work, we propose the use of silicon-on-insulator
(SOI) technology to construct a non-Hermitian system
comprising silicon waveguide arrays that can manipulate non-
Bloch behavior. To exhibit the non-Hermitian feature of this
engineered photonic lattice, we first experimentally realize
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FIG. 1. The structured one-dimensional non-Hermitian lattice and Rényi entanglement entropy. (a) The designed system consists of an
array of identical straight waveguides, with the auxiliary waveguide in the middle controlling their coupling. R is the Floquet radius, ϕ is
the geometric phase, T is the period length, and the z axis indicates the propagation direction of waveguides. On the right is the schematic
of effective coupling and dissipations. (b), (d) The asymmetric case with ϕ = 0 and the symmetric case with ϕ = π/2 respectively. (c) The
relevance of the Lyapunov exponent to the geometric phase ϕ. (e) Rényi entropy calculated from the effective Hamiltonian and the master
equation (solid lines). The corresponding results after the similarity transformation with GBZ are shown by the dashed lines. (f) The GBZ
derived from the effective Hamiltonian. All the parameters used in (b) to (f) are R = 0.21 µm, a = 0.9 µm, and T = 40 µm.

quantum walks of single photons and observe the unique
non-Hermitian evolution behavior of the wave dynamics of
single photons in the bulk far from the edge. Crucially, we next
study the quantum walks of two indistinguishable photons
in the bulk and reveal the impact of non-Hermitian prop-
erties on the dynamics of quantum correlations. We finally
explore the suppression of entanglement entropy of correlated
photons in non-Hermitian systems and demonstrate that the
nature of non-Hermicity plays a central role in entanglement
evolution, which has been verified both experimentally and
theoretically.

II. THEORY

A. The engineered non-Hermitian photonic lattices

To obtain a non-Hermitian photonic lattice, we judi-
ciously design a dissipative auxiliary waveguide that links
two straight waveguides, allowing for asymmetric coupling
just as illustrated in Fig. 1(a). Considering that the coupling
coefficient between waveguides exponentially decreases as
the distance increases, these straight waveguides have neg-
ligible couplings when there is sufficient spacing between
them within the limited propagation distance. Nonetheless,
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we can achieve equivalent coupling between these originally
uncoupled straight waveguides with the aid of the auxiliary
waveguide. The shape of the auxiliary waveguide can be de-
scribed as R sin(�z + ϕ), where R,�, and ϕ represent the
amplitude, frequency, and geometric phase of the engineered
auxiliary waveguide, respectively. The variable z denotes
the propagation distance. By introducing an additional loss
through cutting off at the end of each auxiliary waveguide,
we can control the equivalent asymmetric nearest-neighbor
coupling between the straight waveguides, as depicted in the
right panel of Fig. 1(a). For the case of light hopping from
the left straight waveguide to the right one, and vice versa,
the auxiliary waveguides in the middle capture different en-
ergy during one coupling period [45–49]. In short, we utilize
the additional loss in the auxiliary waveguide to create a
non-Hermitian photonic lattice with intentionally designed
asymmetric coupling.

In order to determine the asymmetricity extent in the
non-Hermitian photonic lattice, we employ the Lyapunov ex-
ponent [34]. And the Lyapunov exponent is given by λ =
limz→ ∞

log |ψm (z)|
z , where m is the site of the initial excitation

waveguide. We thus numerically calculate the Lyapunov ex-
ponent for different geometric phases and give the results in
Fig. 1(c). From these results, it is evident that the Lyapunov
exponents are a monotonic function of the geometric phase ϕ

in a range from 0 to π/2. Note that the Lyapunov exponent
describes the asymptotic growth rate of light intensity at the
excitation position [34], which indicates the shifting behavior
of the wave packet in the lattices as it propagates. To visualize
the behavior of the wave packet in the lattice, we show the dy-
namics of the wave packet for the case with ϕ = 0 (ϕ = π/2)
in the top panel of [Figs. 1(b) and 1(d)], which illustrates that
the wave packet exhibits unidirectional (unitary) diffusion in
the photonic lattice with a nonzero (zero) Lyapunov exponent.

B. The master equation for correlated photons in open systems

As one of the most intriguing features of quantum mechan-
ics, entanglement describes nonlocal correlations between
quantum objects and lies at the heart of quantum information
science. To investigate the entanglement of correlated photons
in the open system, we use the density matrix, which requires
the master equation to describe the evolution of multiparticles
[50,51]. Considering our system, we treat the loss as the
interaction with the outer environment and then introduce the
Hamiltonian of the total system, which includes both the envi-
ronment and the interaction. After some algebraic processes in
Appendix A, the density matrix (ρ) governed by the Lindblad
master equation is given as

ρ̇ = −i[H ′, ρ] +
∑

n

anρ(t )an
† − an

†an

2
ρ(t ) − ρ(t )

an
†an

2
,

(1)

where H ′ = −�ω
∑

n a†
nan, an (a†

n) stands for the annihilation
(creation) operator of straight waveguides. The solution of the
Lindblad master equation can be obtained by mapping the
operator in Fock space to the matrix in an extended linear
space [50] (see details in Appendix A).

For the photonic lattice system under consideration, we
adopt second-order Rényi entropy to depict the quantum
entanglement of correlated photons in such non-Hermitian
systems [52–54] because it extracts information about the en-
tanglement attributes from the density matrix [51]. The Rényi
entropy is defined as S2 = −logTrρ2

A, where ρA is the reduced
density matrix after tracing out one particle [51]. Given the
initial state ρ(0) = a†

5a†
6|0〉〈0|a5a6, the evolution of Rényi

entropy of two indistinguishable photons by solving master
Eq. (1) is shown in Fig. 1(e), and it grows from zero during
the propagation, regardless of whether the coupling is sym-
metric or asymmetric. The exciting behavior shows explicitly
after sufficiently long periods of propagation (z > 10T ): the
entropy in the asymmetric photonic lattice (λ �= 0) becomes
lower than that in the symmetric one (λ = 0), and such a
non-Hermitian system with a larger amplitude of Lyapunov
exponent more efficiently suppresses the entropy compared
to the symmetric system. Those behaviors suggest that the
entanglement suppression of correlated photons has a close
relation to the asymmetricity of the system, while such asym-
metry also leads to the presence of NHSE.

C. Entanglement entropy suppressed by NHSE

To reveal the role of NHSE in the entanglement entropy
evolution [Fig. 1(e)], we employ the concept of the effec-
tive Hamiltonian and the generalized Brillouin zone (GBZ)
[2]. We firstly utilize the transmission matrix U of the
single photon [2], and the effective Hamiltonian is then de-
fined as U (T, 0) = e−i

∫ T
0 H (t )dt = e−iHeff T (see discussions in

Appendix B). The Schrodinger equation governed by the
effective Hamiltonian originates from the semiclassical ap-
proximation of the master equation. The results of entropy
evolution calculated from the effective Hamiltonian [Fig. 1(e)]
indicate that such an effective Hamiltonian method is an
appropriate approximation compared to the master equation
method as far as the quantum walks of correlated photons are
concerned.

The GBZ framework is then an approach to analyze the
impact of NHSE in the Rényi entropy, and the GBZ shape is
determined by the effective Hamiltonian obtained above. Note
that a system with the NHSE will render GBZ as a nonunit
circle on the complex β plane [Fig. 1(f)], and the NHSE leads
to unidirectional propagation in bulk [34]. Then, we compare
the energy spectrum of these effective Hamiltonians for both
periodic boundary conditions (PBCs) and open boundary con-
ditions (OBCs) as depicted in the bottom panels of Figs. 1(b)
and 1(d). For all geometric phases except ϕ = π/2, the energy
spectrum for PBCs forms closed loops and encloses a nonva-
nishing area. However, for the case with ϕ = π/2, the energy
spectrum for OBCs becomes a repeated straight line. This
suggests that the NHSE disappears as the phase ϕ approaches
π/2. Additionally, the shape of the GBZ deviates from a unit
circle (|β| < 1) for all phases except ϕ = π/2. From these
observations, we conclude that the magnitude of the asym-
metric hopping and the resulting unidirectional diffusion in
the non-Hermitian photonic lattice can be controlled by tuning
the geometric phase ϕ.

To unveil the critical role of the NHSE in entanglement
entropy suppression, we have exploited the GBZ to transform
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FIG. 2. Quantum walks of single photons. (a)–(l) The comparison of the probability of single photons between experimental (purple) and
numerical (green) results under different evolution periods and Lyapunov exponents. The red dot indicates where single photons are injected.
(m), (n), (o) The shift of the wave pack center of single photons. In experiments, the lattice system has total sites N = 9.

the effective non-Hermitian Hamiltonian into the one without
skin effect. The GBZ of the original lattice model presented
in Fig. 1(f) shows the evenly shrunken (or expanded) circle
compared to the Bloch-Hamiltonian, it naturally leads to the
similarity transform:

H̄ = SHeff S
−1, S = diag{e−1g, e−2g, e−3g, . . . , e−ng}, (2)

where the skin depth g is related to the radius of the GBZ
circle as eg = |β1(2)|.

After performing the transformation on the OBC Hamil-
tonian, we can rotate the spectrum by multiplying i on the
transformed Hamiltonian to make it Hermitian:

H̃ = iH, (3)

H̃ |ψ̄n〉 = iEn|ψ̄n〉. (4)

The similarity transformation contains the effect of NHSE,
and the H̃ (or H̄ ) can interpret the lossy and symmetric hop-
ping lattice model.

We compare the evolution of two indistinguishable pho-
tons in both the original and the transformed Hamiltonian
system [see dashed lines in Fig. 1(e)]. The entropy evolution
of the two systems shows distinct behavior with or without
the NHSE. The entropy is no longer suppressed in the trans-
formed system. This clearly indicates that the skin effect plays
an essential role in manipulating the entropy of multiphotons
walking in non-Hermitian systems: in the asymmetric lattices,
such suppression behavior of Rényi entropy originates from
that the correlated photons bunch toward the edge of the lattice
due to the skin effect; in contrast, for the symmetric lattices the
two photons just dissipate over the real space, and the Rényi
entropy will increase and eventually reach a constant value.
Importantly and fortunately, the Rényi entropy as the entan-
glement indicator can be observed through quantum walks of

correlated photons, and our theory can then be validated by
the experimental results below.

III. EXPERIMENT

A. Quantum walks of single photon and skin effect

In experiments, we use commercial SOI technology to
fabricate the non-Hermitian photonic lattice. To study the evo-
lution of photons within the lattice, we use multiple straight
waveguides as sources to inject photons into the lattice and
select all the straight waveguides as output sources for detect-
ing the photons after passing through the lattice. Considering
that we leverage the loss to achieve asymmetric coupling, the
evolution period in experiments cannot reach a large value.
Thus, we fabricate a series of evolution periods with z =
3T, 4T, 5T, 6T for various types of non-Hermitian lattices,
and the number of the straight waveguide is N = 9. Addi-
tionally, different types of quantum light sources are prepared
using spontaneous parametric down-conversion by pumping a
Type II periodically poled lithium-niobate (PPLN) waveguide
(see detailed methods in Appendix C). For all the data of
coincidence detections in experiments, accidental coincidence
counts are subtracted.

First, we measure the quantum walks of single photons
in the non-Hermitian photonic lattice. Figure 2 shows the
quantum walks of single photons for injecting photons into the
same waveguide site (n0 = 6) in the non-Hermitian photonic
lattice under different Lyapunov exponents and evolution
periods. Moreover, we compare the experimental results
with theoretical results using the similarity measure given
by Q = (

∑
n

√
p(exp)

n · p(thr)
n )2/(

∑
n p(exp)

n · ∑
n p(exp)

n ), where
pn = 〈c+

n cn〉 = |Un,n0 |2, and Un,n0 is the transmission matrix
indicating the amplitude for the transition of a single photon

094308-4



QUANTUM WALKS OF CORRELATED PHOTONS IN … PHYSICAL REVIEW B 110, 094308 (2024)

FIG. 3. The evolution of correlation distribution and Rényi entanglement entropy. (a), (d), (g), (j) In the symmetric cases, the possibility
distribution diffuses from the center. (b), (e), (h), (k) In contrast, the whole distribution moves unidirectionally along the diagonal line due to
asymmetric coupling with the Lyapunov exponent as λ = −0.086. (c), (f), (i), (l) The evolution of the whole distribution with a larger Lyapunov
exponent as λ = −0.157. The red dashed square serves as a reference background for these comparisons under various evolution periods and
Lyapunov exponents. (m) The evolution of the normalized Rényi entropy under various Lyapunov exponents, including theoretical results
(solid lines) calculated from the master equation and experimental results (dots). (n) The normalized entropy with an extended evolutionary
period up to 40 T, and the dashed lines represent corresponding results under similarity transformation.

from the site n0 to site n. And we find that the least sim-
ilarity is still up to 85.3% ± 1.9%. From the measurement
of the probability distribution, the unidirectional movement
of the wave pack clearly proves that such photonic lattices
with a nonzero Lyapunov exponent possess the NHSE. As
we expected from the simulation above, the unidirectional
shift distance depends on the Lyapunov exponent. There is
no shift of the wave packet of single photons in the case of
zero Lyapunov exponent [Fig. 2(m)]. In contrast, when the
magnitude of the Lyapunov exponent increases, there is a
more significant shift of the wave packet during propagation
[Figs. 2(n) and 2(o)].

B. Quantum walks of correlated photons
and entanglement suppression

Next, we study the quantum interferences of correlated
photons by inspecting the two-photon correlation distribu-
tion. In theory, we solve the master Eq. (1) numerically
in the photonic lattice with different Lyapunov exponents
and extract the correlation matrix �nm(t ). The definition is
�nm(t ) = 〈n, m|ρ(t )|n, m〉, where n and m indicate the site
position of the photons. We simulate the two-photon quan-
tum walks with two indistinguishable photons excitation at
the sites n0 = 5 and m0 = 6, meaning that the initial state
is ρ(0) = a†

5a†
6|0〉〈0|a5a6. In the experiment, we inject the

photonic waveguide array with two indistinguishable photons
at corresponding positions and measure the correlation matrix
�nm(t ) under various Lyapunov exponents. We achieve the
measurement of the correlation probability distribution for
evolutionary periods in 3 ∼ 6T .

The comparison between theoretical and experimental
results is shown in Figs. 3(a)–3(l). We find that the pat-
terns of the coincident probability distribution shift towards

the corner in the case of a nonzero Lyapunov exponent.
Additionally, the shifting behavior of the entire pattern be-
comes more pronounced in cases with a larger magnitude
of Lyapunov exponent and longer evolution periods. Obvi-
ously, such behavior of the coincident probability distribution
arises from the unidirectional diffusion in the bulk caused
by the NHSE, which is akin to that of quantum walks of
single photons. Moreover, the similarity between the two
matrices of the simulated and measured ones, defined by
Q = (

∑
nm

√
�

(exp)
nm �(thr)

nm )2/(
∑

nm �
(exp)
nm

∑
nm �(thr)

nm ), validates
that the experimental results are in good agreement with the
theoretical results.

Significantly, the Rényi entropy can be retrieved from the
coincident matrix [52,53] (see details in Appendix D), which
can be observed directly in the experiment. Figure 3(m) shows
the evolution of the Rényi entropy of theoretical and experi-
mental results for evolutionary periods in 3 ∼ 6T . To clearly
illustrate the entropy affected by the NHSE, the entropy in the
asymmetric photonic lattice is normalized by the symmetric
one as: Snorm = S2 − S2|λ=0. The experimental results indi-
cate that the entanglement entropy suppression exists even in
the cases of relatively short evolutionary periods: the Rényi
entropy in the asymmetric photonic lattice (λ �= 0) is lower
than that in the symmetric one (λ = 0), and the entropy in
the asymmetric system is suppressed more heavily as the
evolution proceeds. Although the measurement of correlation
for longer evolution periods is not achievable in current exper-
iments due to the lossy signals, the extended theoretical results
[see Fig. 3(n) for the normalized ones and Fig. 1(e) for the
original ones] show that the suppression of entropy emerges
more profoundly as the propagation continues. These results
further indicate the crucial role of NHSE on the entropy evo-
lution when correlated photon walks among non-Hermitian
lattices.
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IV. DISCUSSION

In conclusion, we have experimentally realized quantum
walks of single photons and two indistinguishable photons in
engineered non-Hermitian photonic lattices. We strategically
utilize the dissipative auxiliary waveguides to manipulate
asymmetric coupling. The unidirectional behavior of quantum
walks caused by the skin effect has been observed. Moreover,
we experimentally study the dynamics of quantum entangle-
ment of correlated photons in non-Hermitian systems and
observe the suppression of entanglement induced by the skin
effect. Our work exploits quantum walks of correlated photons
in silicon photonics as a platform for studying multiparticle
non-Hermitian physics. Currently, we utilize the second-order
Rényi entropy only considering diagonal elements of the
density matrix to depict quantum entanglement of correlated
photons. In the future, with the development of the precise
phase measurement of photons, one can experimentally recon-
struct the complete information of the density matrix, which
can be explored to depict correlated behaviors of multiple
particles using various types of entropy. Moreover, our exper-
imental platform may be utilized to explore more challenging
problems in open quantum systems. Since silicon itself pos-
sesses good nonlinear optical properties, studies covering
sophisticated topics, such as nonlinearity and non-Hermiticity,
have the possibility of being conducted on our experimental
platform.
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APPENDIX A: MASTER EQUATION FORMALISM

In this section, we discuss the general mathematical
method for calculating the transmission behavior of our dissi-
pative model. Given that we are examining an open quantum
system, we employ the master equation of the density matrix
[50,55], and discuss the numerical method for its solution.

In our model, light propagation can be separated into two
distinct processes within a single period. For the phenomena
of interest, we consider the entire waveguide array (including
both straight and auxiliary waveguides) as the system, with
the remaining components of the SOI system treated as the
environment.

We begin by analyzing the first process, corresponding
to the propagation part in Fig. 4. The light, initialized in
a specific state, propagates through both straight and auxil-
iary waveguides until the auxiliary waveguides are truncated.
During this process, the system and the environment are

FIG. 4. Schematic for the theoretical model.

completely decoupled, rendering the density operator of the
total system separatable. The evolution of the density operator
during this process is governed solely by the Hamiltonian of
the system, which is equivalent to the standard Hamiltonian
formalism.

The second process, which we refer to as the dissipation
part in Fig. 4, commences once the auxiliary waveguides are
cut off and continues until the start of the next period. Photons
within the auxiliary waveguide dissipate into the environ-
ment. Thus, the auxiliary waveguides weakly interact with the
environment (indicated by the dashed waveguide in Fig. 4)
while remaining decoupled from the straight waveguides. Ad-
ditionally, we assume that the environment consists of a large
resonant chamber containing multiple electromagnetic eigen-
modes, with which the auxiliary waveguides may interact.

Specifically, the total system has been divided into the
system and the environment, and can be described by the
evolution equation of the density operator in the Schrodinger
picture:

ρ̇tot = −i[Htot, ρtot], Htot = HS + HE + V. (A1)

The HS , HE , and V are the Hamiltonian of the system, the
environment, and the interaction between them, respectively.

For simplicity, the assumption of Hamiltonian of the sys-
tem is depicted as

HS = β0

∑
j

a†
j a j, (A2)

where the subscript j denotes only the index of auxiliary
waveguides. The Hamiltonian of the environment is depicted
as

HE =
∑

k

ωkb†
kbk, (A3)

where b†
k (bk) represents the creation (annihilation) operator

of different electromagnetic modes in the environment. The
interaction between the system and environment is depicted
as

V =
∑
k, j

(gkbk + gkb†
k )(a j + a†

j ). (A4)

Considering that there is no nonlinear term in our system,
we should remove the gkb†

ka†
j and gkbka j terms above. After

transforming into the interaction picture, we obtain

ρ̇tot,I (t ) = −i[VI , ρtot,I (t )], (A5)
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VI (t ) =
∑
k, j

(gke−i(ωk−β0 )t bka†
j + gkei(ωk−β0 )t b†

ka j ). (A6)

After substitution and integration twice, we get the motion
equation in integration form [55]:

ρ̇tot (t ) = −i[V (t ), ρtot (0)] −
∫ t

0
dt1[V (t ), [V (t1), ρtot (t1)]].

(A7)

Omitting the subscription I for simplicity and tracing over
the environment, denoting ρ = T rEρtot , we obtain

ρ̇(t ) = − iT rE [V (t ), ρtot (0)]

−
∫ t

0
dt1T rE [V (t ), [V (t1), ρtot (t1)]]. (A8)

We can substitute the above term into the density matrix
equation and assume that the initial state of the environment
is the vacuum state. The first term of the right-hand side will
be zero:

T rE [V (t ), ρtot (0)] = 0. (A9)

The second term will be simplified into

−
∫ t

0
dt1

∑
j, j′

[�(t − t1)(ρ(t1)a†
j a j′ − a j′ρ(t1)a†

j ) + h.c.],

(A10)

where �(τ ) = ∑
k g2

kei(ωk−β0 )τ 
 ∫
dkρ(k)g2(k)ei(ωk−β0 )τ .

Because the environment works as a resonant chamber, which
is relatively much larger than the cross face of the waveguides,
the spectrum of the mode is approximately continuous, and
one can change the summation into integration. The integrand
with the rapid oscillation term ei(ωk−β0 )τ leads to that �(τ )
sharply peaked at τ = 0. The integrand in the second term
should contribute mainly at t1 = t . The motion equation of
the density matrix will become

ρ̇ = −i�ω

⎡
⎣ρ,

∑
j, j′

a†
j a j′

⎤
⎦ +

∑
j, j′

2γ a jρa†
j′ − γ {ρ, a†

j a j′ },

(A11)

where γ + i�ω = ∫ ∞
0 �(τ )dτ . Here, we ignore the j �= j′

terms in the summation which represent the intercoupling

between the auxiliary waveguides with the help of the envi-
ronment reservoir.

The motion equation of the density matrix of the waveg-
uide array becomes the form of Lindblad master equation,
which describes the loss process from the effective Hamilto-
nian [50]:

ρ̇ = −i[H ′, ρ] +
∑

j

D[
√

2a j]ρ(t ), H ′ = −�ω
∑

j

a†
j a j .

(A12)

The dissipator is defined as D[A]ρ = AρA† − A†A
2 ρ−ρ A†A

2 .
After getting the master equation of the dissipation process,

we introduce the dissipation strength γ :

ρ̇ = − i[H ′, ρ] − i
∑

j

(−iγ a†
j a jρ − iγ ρa†

j a j ) + 2γ a jρa†
j

= − i(H̃ρ − ρH̃†) + 2γ
∑

j

a jρa†
j , (A13)

where H̃ = H ′ − iγ
∑

j a†
j a j , and the uniform onsite potential

in H ′ can be omitted. We can find that H̃ leads to the loss of
the auxiliary waveguides.

Utilizing quantum jump theory, we assume that only m-
particle states (m < n) in the Hilbert space will be possessed
since the initial state only has an n particle. Assuming the
initial state as an arbitrary complex state:

ρ =
∑

k

ck|ψk〉〈ψk |. (A14)

The master equation is

∂tρ =
∑

k

−ick (H̃ |ψk〉〈ψk | − |ψk〉〈ψk |H̃†)

+ 2γ
∑

j,k

a jck|ψk〉〈ψk |a†
j . (A15)

The first term describes the pure state |ψk〉 evolution under
the non-Hermitian Hamiltonian H̃ ; the second term shows the
composition of the state after the quantum jump.

One can denote the time evolution of the pure state under
non-Hermitian Hamiltonian as |ψk (t )〉, and define the state
after the quantum jump |ϕk〉 j = a j |ψk〉.

The dynamic process governed by the Hamiltonian shows

|ψk (t + δt )〉 = (1 − iH̃δt )|ψk (t )〉. (A16)

The normalization is

〈ψk (t + δt )|ψk (t + δt )〉 = 〈ψk (t )|(1 − i(H̃ − H̃†)δt )|ψk (t )〉

=
〈
ψk (t )|

⎛
⎝1 − i

⎛
⎝−2γ i

∑
j

a†
j a j

⎞
⎠δt

⎞
⎠|ψk (t )

〉
= 1 −

∑
j

δp j, (A17)

where δp j = 2δtγ 〈ϕk|ϕk〉 j describes the quantum jump possibility affected by the jth auxiliary waveguide. Moreover, the density
operator shows

ρ(t + δt ) =
∑

k

ck

⎛
⎝

⎛
⎝1 −

∑
j

δp j

⎞
⎠|ψk (t + δt )〉〈ψk (t + δt )| +

∑
j

δp j |ϕk〉 j〈ϕk | j

⎞
⎠. (A18)
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The first term describes the loss governed by the non-Hermitian Hamiltonian H̃ , which introduces lossy on-site energy on
the auxiliary waveguides with the possibility (1−∑

j δp j ). The second term describes the quantum jump process of elimination
photon at jth auxiliary waveguide with the possibility δp j . The density operator cannot possess a state with more particles than
the initial state. After a sufficiently long period of dissipation, all the state components in the density matrix will ultimately decay
to the vacuum state.

For the concern we are studying, we solve the master equation considering the Fock state component only containing the state
no more than two photons:

ρ = c0|0〉〈0| +
∑

n

cn,1|1n〉〈0| +
∑

j

c j,2|0〉〈1 j | +
∑
n, j

cn, j,3|1n〉〈1 j | +
∑
n,m

cn,m,4|2n,m〉〈0|

+
∑

j,l

c j,l,5|0〉〈2 j,l | +
∑
n,m, j

cn,m, j,6|2n,m〉〈1 j | +
∑
n, j,l

cn, j,l,7|1n〉〈2 j,l | +
∑

n,m, j,l

cn,m, j,l,8|2n,m〉〈2 j,l |. (A19)

For the convenience of numerical manipulation, we employ
an alternative scheme that represents the density matrix ρ

as an extended matrix. In this scheme, the left (right) mul-
tiplication of the Hamiltonian operator H̃ and annihilation
operator ai is treated as matrix multiplication. This allows us
to represent the left (right) vector as an N2 + N + 1 dimension
vector, which corresponds to a state containing no more than
two photons. The first N2 components describe the state with
two photons at site n, m; the next N components represent
the single-photon state at site l; and the last component cor-
responds to the vacuum state. An arbitrary density matrix,
expanded by these basis states, can thus be represented by a
matrix of dimension (N2 + N + 1) × (N2 + N + 1), thereby
preserving all the degrees of freedom relevant to our analysis.

We can then express the density matrix of pure states as

ρ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

|n, m〉
...

| l〉
...

|0〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[· · · |n′, m′〉 · · · | l ′〉 · · · |0〉]. (A20)

Followingly, the density matrix of an arbitrary mixed state
is depicted as

ρ =

⎡
⎢⎣[ρ]nm,n′m′ [ρ]nm,l ′ [ρ]nm,0

[ρ]l,n′m′ [ρ]l,l ′ [ρ]l,0

[ρ]0,n′m′ [ρ]0,l ′ ρ00

⎤
⎥⎦. (A21)

The master equation in a single period is separated into two
processes:

Propagation part : ρ̇ = −i(H (t )ρ − ρH (t )), (A22)

Dissipation part : ρ̇ = −i(H̃ρ − ρH̃†) + 2γ
∑

j

a jρa†
j .

(A23)

The Hamiltonian in the new scheme becomes the extended
matrix shown below:

H ⇒
⎡
⎣H ⊗ I + I ⊗ H 0 0

0 H 0
0 0 0

⎤
⎦,

and the annihilation and creation operators in the new scheme
will be the matrix as:

a j ⇒
⎡
⎣ 0 0 0

[Tl,nm] 0 0
0 [Rl ] 0

⎤
⎦,

a†
j ⇒

⎡
⎣ 0 0 0

[Tl,nm] 0 0
0 [Rl ] 0

⎤
⎦,T

where Tl,nm = 1
1+δnm

(δ jnδlm + δ jmδln), Rl = δ jl .
Starting with an initial state of ρ(0), the time-evolved state

ρ(t ) can be determined for each period t = T, 2T, 3T, . . . by
numerically solving the corresponding ordinary differential
equations in the extended linear space. From ρ(t ), the cor-
relation matrix and the second-order Rényi entropy can be
calculated, reflecting the behavior of correlated photons as
they propagate through the dissipative waveguide lattice, as
illustrated in Fig. 1(b).

APPENDIX B: EFFECTIVE NON-HERMITIAN
HAMILTONIAN

In this section, we discuss the numerical tool used to ana-
lyze single photon transmission in a system exhibiting NHSE,
which involves the Schrodinger equation of single photons in
photonic waveguides. We employ the tight-binding model of
a photonic lattice, which leads to the coupled-mode equations
in waveguides [46–49]:

i
dcn

dz
= −κn,n+1cn+1 − κn,n−1cn−1 − βncn, (B1)

where cn is the (complex) amplitude in nth waveguide, and κ j,i

is the effective mode coupling coefficient of the directional
coupler from ith waveguide to jth waveguide, while βn acts
as on-site energy.

We first simulate the propagating mode (TM0) in silicon
waveguides using the COMSOL software. This allows us
to determine the relationship between effective hopping and
waveguides distance. The results indicate that the distance x
between two straight waveguides and the effective coupling κ

follow an exponential relation [48]:

κ = Ae−bx, A = 13.99 µm−1, b = 8.26 µm−1.

Note that the coupling coefficient is reciprocal be-
tween straight waveguides. To get the best nonreciprocal
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TABLE I. All orders of hopping in PBC effective Hamiltonian with the sites number N = 10 and geometric phase ϕ = 0. The real part is
always zero for all the hopping terms.

Coupling order −4 −3 −2 −1 0 1 2 3 4 5

Im(κ )(µm−1) ×10−4 −3.55 −9.70 −29.8 −123 −113 −12.2 −0.240 −0.239 −0.565 −1.38

phenomenon while keeping the robustness of the on-chip
design for SOI technology, we choose the parameters of the
model as a = 0.9 µm, R = 0.21 µm, T = 40 µm.

Since the period length is long enough, we can reasonably
assume that the difference in propagation direction between
the straight and auxiliary waveguides is negligible. As a result,
the exponential relation of the hopping persists along propaga-
tion. Provided the coupling mode equation serves as an analog
to the Schrödinger equation, the Hamiltonian of the system
over a single period becomes time dependent:

id

⎛
⎜⎝

...

cn
...

⎞
⎟⎠/dz = H (z)

⎛
⎜⎝

...

cn
...

⎞
⎟⎠, Hnm(z) =

⎧⎨
⎩

κ (z), n = m ± 1
β0, n = m
0, otherwise

.

(B2)

Considering the energy loss caused by the periodic cut-
off in the auxiliary waveguide, all the energy at auxiliary
waveguides will be lost at the ends of every period when
performing a simulation. Mathematically, we need to project
the transmission matrix onto the subspace containing only
straight waveguides. The transmission matrix (Green func-
tion) satisfying [45]:⎛

⎜⎝
...

cn(T )
...

⎞
⎟⎠

n∈S

= U (T )

⎛
⎜⎝

...

cn
...

(0)

⎞
⎟⎠

n∈S

, (B3)

where S denotes the indices of the subspace of straight waveg-
uides. This subsystem, comprising the straight waveguides,
is clearly non-Hermitian due to energy loss, as discussed in
Appendix A. We can define the effective Hamiltonian for this
non-Hermitian subsystem using the transmission matrix:

U (T ) = e−iT Heff . (B4)

As a critical measure of NHSE, a one-dimensional GBZ
[Fig. 1(f)] can be calculated from the effective Hamiltonian
using a standard method [2]. Besides, the PBC and OBC
spectrum can be obtained from the system with finite site
numbers (N = 30) as shown in Figs. 1(c) and 1(e).

Moreover, we find that the effective Hamiltonian under
PBC not only exhibits nonreciprocal nearest-neighbor cou-
pling terms but also reveals the presence of higher-order
long-distance coupling terms (see details in Table I), which
are not negligible.

For two-photon case, the correlation function can be de-
fined using a reasonable approximation method with the help
of the single-photon transmission matrix:

�
(n,m)
jl = 〈�|c†

j c
†
l c jcl |�〉 = 1

1 + |δ jl | |UjnUlm + UjmUln|2,
(B5)

where n and m represent the inject positions of the two indis-
tinguishable photons. We find that the solution derived from
the single-photon transmission matrix aligns closely with the
results obtained using the master equation method, as demon-
strated in Fig. 1(b).

APPENDIX C: MATERIALS AND
EXPERIMENTAL METHODS

1. Sample fabrication

In the experiments, a structured photonic lattice is fab-
ricated by etching the device layer of an SOI wafer, with
confinement provided by the buried oxide underneath and a
capping oxide above. The thickness of the silicon device layer
is 220 nm, while the buried oxide underneath and the capping
oxide above are both 2-µm-thick silica. The waveguides are
designed to be single-mode, having a width of 450 nm. The
structures are defined by electron beam lithography and dry
etching.

2. Quantum measurement

The silicon lattice contains nine straight waveguides and
eight auxiliary waveguides. Labeling all the straight waveg-
uides with index 1 to 9, we keep 3–7 sites on the one side
as the input and all sites on the other side as the output
[Figs. 5(c) and 5(d)]. For quantum walks of single photons,
we choose one of photon pairs as a heralded photon in-
jected into the designed silicon lattices for evolution, while
another photon acts as a trigger signal. Meanwhile, for the
quantum walk of correlated photons, two photons are simul-
taneously injected into designed silicon lattices for evolution
[Fig. 5(a)]. Both photons are filtered to suppress residual
noise with off-chip filters and finally directed into and de-
tected by superconducting nanowire single-photon detectors
(SNSPDs). Fiber polarization controllers are used to optimize
the polarization of photons for maximum detection efficiency
in SNSPDs. Coincidence measurements are performed using
the time-correlated single photon counting module (Picoquant
PicoHarp 300).

3. Quantum light source and measurement of HOM dip

We generate the single-photon pair at the wavelength of
1550.92 nm via spontaneous parametric down-conversion by
pumping a type-II PPLN waveguide from a continuous wave
fixed at 775.46 nm. The length of the PPLN waveguide is
2 cm. The generated photon pair is separated into two com-
ponents, horizontal and vertical polarization, after passing
through a long-pass filter and a polarized beam splitter. More-
over, after converting the polarization of these types of single
photons from the vertical state to the horizontal state, we find
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FIG. 5. (a) Schematic of the measurement of quantum walks of single photons and two indistinguishable photons. (b) Schematic of
injection and collection of photons. (c), (d) SEM picture of the silicon lattice. Only the straight waveguides are extended out from the lattice.
(c) shows the input side, and five sites of straight waveguides are extended for photon injection. (d) shows the output side, and all nine sites of
straight waveguides are extended for photon collection.

that the deterministically separated identical photon pair has
a very high visibility of the quantum interferences, charac-
terized by a Hong-Ou-Mandel (HOM) dip with 97.32% ±
0.17% visibility.

APPENDIX D: DEFINITION OF RÉNYI
ENTANGLEMENT ENTROPY

In this section, we discuss the derivation of Rényi entangle-
ment entropy [54] from the correlation distribution measured
previously. The Rényi entropy of order n, which depict the
entanglement between two photons, is defined as

En = 1

1 − n
log Trρn

A, (D1)

where ρA is the reduced density matrix, obtained by tracing
out the sub-space corresponding to photon B from the two-
photon density matrix: ρA = T rB|ψ〉〈ψ |. The second-order
Rényi entropy can be calculated from the correlation proba-
bility distribution, following the approach outlined in several
papers [52,53].

Consider the relation of biphoton states in Fork representa-
tion:

|ψ〉 =
∑

i

βii|2i〉 +
∑
i �= j

βi j |1i1 j〉. (D2)

For convenience, here we ignored the superscript denoting
the fixed input ports m, n. Then, taking the trace over one of
the two photons:

ρA = T rBρ

=
∑

i

|βii|2|i〉〈i| +
∑
i �= j

(βi jβ
∗
j j |i〉〈 j| + h.c.)

+
∑

i �= j,i′ �= j

βi jβ
∗
i′ j |i〉〈i′|. (D3)

Second-order Rényi entanglement entropy is defined as
E2 = − log Trρ2

A. Substitute the term with Fork representa-
tion, one can get

TrρA =
∑

i

|βii|2 +
∑

i

fi, (D4)

fi =
i−1∑
j=1

|β ji|2, (D5)

Trρ2
A =

N∑
i=1

|βii|4 + 2
N∑

i=1

fi|βii|2 +
N∑

i=1

f 2
i

+
N∑

i, j=1,i �= j

[ρA]i j[ρA] ji. (D6)

Given that in the quantum optical experiment only the
intensity of each correlation term (βi j) can be measured, we
adopt a reasonable approximation by neglecting the summa-
tion terms where i �= j:

Trρ2
A =

N∑
i=1

|βii|4 + 2
N∑

i=1

fi|βii|2 +
N∑

i=1

f 2
i . (D7)

The diagonal terms in the partial-traced density matrix are
preserved, representing the components of the complex state
within the partial-traced density matrix. From the probabil-
ity distribution of correlation, one can calculate the reduced
second-order Rényi entropy with the formula provided above.
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