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Haldane graphene billiards versus relativistic neutrino billiards
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We study fluctuation properties in the energy spectra of finite-size honeycomb lattices—graphene billiards—
subject to the Haldane-model on-site potential and next-nearest-neighbor tunneling at critical points, referred to
as Haldane graphene billiards in the following. The billiards have the shapes of a rectangular billiard with inte-
grable dynamics, one with chaotic dynamics, and one whose shape has, in addition, threefold rotational symme-
try. It had been shown that the spectral properties of the graphene billiards coincide with those of the nonrelativis-
tic quantum billiard with the corresponding shape, both at the band edges and in the region of low-energy excita-
tions around the Dirac points at zero energy. There, the dispersion relation is linear and, accordingly, the spectrum
is described by the same relativistic Dirac equation for massless spin-1/2 particles as relativistic neutrino bil-
liards, whose spectral properties agree with those of nonrelativistic quantum billiards with violated time-reversal
invariance. Deviations from the expected behavior are attributed to differing boundary conditions and backscat-
tering at the boundary, which leads to a mixing of valley states corresponding to the two Dirac points, that are
mapped into each other through time reversal. We employ a Haldane model to introduce a gap at one of the two
Dirac points so that backscattering is suppressed in the energy region of the gap and demonstrate that there the
correlations in the spectra comply with those of the neutrino billiard of the corresponding shape. Here, the phase
transition from nonrelativistic to relativistic quantum behavior is achieved by adjusting the Haldane parameters.
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I. INTRODUCTION

Because of the extraordinary band structure of graphene—
a crystalline monolayer of carbon atoms arranged on a
honeycomb lattice [1,2]—which entails relativistic phenom-
ena [3,4], its pioneering fabrication [5] induced numerous
experimental and theoretical investigations. Namely, the con-
duction and valence bands touch each other conically at the
Fermi energy [3,4], implying a linear dispersion relation, so
that in these regions the electronic properties of graphene are
described by the Dirac equation for massless Dirac fermions
[6,7]. Thus, even though the Fermi velocity of the electrons is
by a factor of 300 smaller than that of light, it features rela-
tivistic phenomena [3,4,8–10]. Accordingly, the touch points
are commonly referred to as Dirac points. The conical struc-
ture of the bands touching at the Dirac points leads to unusual
transmission properties such as pseudodiffusive transport and
Zitterbewegung [11–13], and as well as particular features of
edge states [12,14,15].

The band structure of graphene originates from the hexag-
onal lattice structure, which is formed by two independent,
interpenetrating triangular lattices with threefold rotational
(C3) symmetry. The Dirac points, K and K ′, associated with
the two triangular lattices, are at the corners of the Bril-
louin zone. Because of the relativistic features exhibited by
graphene in the regions around the Dirac points, these are
referred to as relativistic regions [4,16]. At the center of the
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Brillouin zone, the � point, the conduction band has a max-
imum and the valence band has a minimum and their shapes
are parabolic implying that the Dirac equation is no longer
applicable. Accordingly, the band structure can be divided into
nonrelativistic regions around the � points [16] and relativis-
tic ones around the K and K ′ points. At its saddle points,
a topological transition from the conically to the paraboli-
cally shaped band structure, that is, from the relativistic to
the nonrelativistic regions takes place [16]. There the group
velocity vanishes for an infinitely extended graphene sheet
and the density of states exhibits a logarithmic divergence
[4]. These are Van Hove singularities that generally occur in
two-dimensional crystals with a periodic structure [17].

The linear dispersion relation of graphene arises from the
symmetry properties of its honeycomb structure [18], partic-
ularly time-reversal (T ) symmetry, inversion symmetry, and
C3 symmetry. Thus, any system subject to a spatially periodic
potential with hexagonal structure like, e.g., a photonic crystal
[19,20], may comprise energy regions, where they are effec-
tively described by the relativistic Dirac equation for spin-1/2
particles. Indeed, numerous realizations of artificial graphene
[21] popped up soon after the fabrication of graphene. Exam-
ples are two-dimensional electron gases subject to a potential
on a honeycomb lattice [22,23], molecular assemblies ar-
ranged on a copper surface [24], ultracold atoms in optical
lattices [25,26], and photonic crystals [13,14,27–35].

In Refs. [16,36–38] several thousands of eigenfrequencies
of superconducting microwave photonic crystals, so-called
“Dirac microwave billiards”, were determined experimentally.
Such devices emulate finite-size artificial graphene billiards
(GBs) introduced in [39,40] as a model for graphene quantum
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dots [41–46], that became of interest because they exhibit
nonrelativistic and relativistic features [3–5,8–12,41,42,47].
Graphene billiards are constructed by cutting out of an ex-
tended honeycomb lattice a sheet with corresponding shape
and their eigenstates are computed based on a tight-binding
model with Dirichlet boundary conditions on the next-nearest-
outer sites along the boundary. Their properties have been
shown to agree with those of the Dirac microwave billiards
in [16,36–38] when taking into account up to third-nearest-
neighbor hopping. Actually to be more precise, Dirac billiards
exhibit two Dirac points and emulate the properties of a com-
bination of a honeycomb and kagome lattice [48,49]. Yet, it
was demonstrated in these studies and in Refs. [36–38] that
around the lower Dirac point the properties of their eigenstates
are well described by those of the GB of corresponding shape.

The microwave Dirac billiards considered in [16,36–38]
had the shapes of an integrable rectangular billiard, a chaotic
Africa billiard and a chaotic one with a C3 symmetry. The
objective of the experiments was to investigate in the con-
text of quantum chaos the spectral properties of GBs in the
relativistic region, for which complete and long eigenvalue
sequences are needed. A classical billiard (CB) is a bounded
two-dimensional domain, in which a point particle moves
freely and is reflected specularly at the boundary. Since the
classical dynamics of billiards only depend on the shape of
their domain [50–52], they provide a paradigm model for the
search of signatures of classical chaos in the corresponding
quantum system, which is the primary objective of quantum
chaos. The eigenstates of the corresponding nonrelativistic
quantum billiard (QB) are obtained from the solutions of the
Schrödinger equation for a free particle by imposing Dirichlet
boundary conditions on the wave functions. Berry and Mon-
dragon proposed relativistic neutrino billiards [53] (NBs).
Their spinor eigenstates are solutions of the Dirac equation for
a massless spin-1/2 particle with the boundary condition that
there is no outgoing flow.

The central question of studies with such billiard systems
was whether the spectral properties comply with those of
typical quantum systems with integrable or chaotic dynam-
ics. One key aspect of quantum chaos are the fluctuation
properties in the eigenvalue spectrum of a quantum system,
and their connection to the properties of the dynamics of
the corresponding classical system. Berry and Tabor showed
[54] that the eigenvalues of typical integrable systems [55]
exhibit the same fluctuation properties as Poissonian ran-
dom numbers. It was speculated in Refs. [56,57] and then
stated in a conjecture by Bohigas, Giannoni, and Schmit
[58] that the spectral properties of typical quantum systems
with chaotic classical dynamics are well described by those
of random matrices from the Gaussian ensembles of cor-
responding universality class [59–62], namely the Gaussian
orthogonal (GOE) and unitary (GUE) ensemble, when the T
invariance is preserved and violated, respectively. Recently,
tight-binding billiards, also called discretized billiards, like
the artificial-graphene billiards considered in the present pa-
per, have become increasingly popular [63–65]. Generally,
these tight-binding billiards are constructed by cutting the
shape of the billiard out of a square lattice. In the lower
part of the eigenvalue spectrum—away from the unavoid-
able van Hove singularities—their spectral properties coincide

with those of the QB of corresponding shape, yet the deter-
mination of the eigenvalues involve the diagonalization of
the associated tight-binding matrix, and thus is much sim-
pler than for QBs. Besides these single-particle billiards with
hard walls, atom-optics QBs that are realized with a billiard-
shaped optical potential have been studied theoretically and
experimentally [66,67]. Bose-Einstein condensates confined
to a quantum billiard have been employed to investigate the
thermalization of interacting many-body systems [68,69], also
billiards formed from a honeycomb optical lattice [25,70].

The Dirac Hamiltonian associated with NBs is not T in-
variant. Therefore, the spectral properties of typical NBs with
the shapes of chaotic CBs and no geometric symmetry agree
well with those of random matrices from the GUE [53]. Since
GBs are governed in the conical valley regions around the
Dirac points by this Dirac Hamiltonian, their spectral prop-
erties were expected to exhibit similar features as the NB of
the corresponding shape, that is, GUE statistics if the shape is
that of a chaotic CB. This assumption was confirmed in ex-
periments with graphene quantum dots [42,45,71]. However,
numerical studies [39,40] and the experimental investigations
with superconducting microwave Dirac billiards [16,36–38]
revealed that they conform with those of the nonrelativistic
QBs of corresponding shape, that is, with GOE statistics.

The discrepancies were attributed to the boundary condi-
tions [72,73] and to back scattering at the boundary, which
leads to a mixing of valley states around the K and K ′ points
[40]. To be more explicit, T invariance is violated in each
solitary Dirac cone, where the electronic excitations are effec-
tively described by the same relativistic Weyl equation [74],
also referred to as two-dimensional Dirac equation [3], for
spin-1/2 particles as in a NB. However, it is restored in GBs
because of the occurrence of two independent Dirac cones
that are mapped into each other when applying the associated
time-reversal operator T̂ . Therefore, agreement with GOE
statistics is expected for GBs with a chaotic shape, because the
back scattering at the boundary induces an intervalley scatter-
ing [72]. If this indeed is the reason, then the properties should
coincide with those of a relativistic NB, if the scattering from
one Dirac cone to the other one is prevented.

The objective of the present paper is to demonstrate that
the spectral properties of GBs coincide with those of the
corresponding NB, when introducing a gap at the K ′ point,
implicating that within the energy range of the gap the eigen-
states are confined to the conical valley around the K point.
This is achieved based on the Haldane model [75] on a
honeycomb lattice, which has the particular property that
nonzero quantization of the Hall conductance occurs even
though no external magnetic field is applied. Indeed, similar
to NBs, the Haldane model explicitly breaks time-reversal
symmetry because of a purely imaginary next-to-nearest-
neighbor tunneling term. In order to realize a GB exhibiting
near the Fermi energy the properties of a relativistic NB of
corresponding shape, we employ a finite-size version of the
Haldane lattice structure, named Haldane GBs in the fol-
lowing. Note that the celebrated Haldane model has been
realized experimentally in condensed-matter systems [76], in
photonic systems [77,78], or in combinations of photonics and
condensed-matter systems [79]. We expect that our theoretical
study will motivate the experimental realization of relativistic
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FIG. 1. Sketch of the rectangular billiard, the billiards with the shape of Africa and a shape exhibiting C3 symmetry. Here, the red-dashed
lines indicate a possible separation into three fundamental domains.

NBs [53], especially with those based on the photonic
analogs.

To demonstrate that Haldane GBs indeed exhibit the fea-
tures of NBs, we analyze the fluctuation properties in the
spectra of Haldane GBs with various geometries and compare
them to those of the corresponding GB and NB. In Sec. II
we briefly introduce the honeycomb-lattice-based Haldane
model. In Sec. III we briefly review the numerical methods
that were applied to obtain eigenstates of the QBs, NB2, and
Haldane GBs. In Sec. IV we present numerical results for
Haldane GBs with the shape of a rectangular, a Africa and
a C3-symmetric CB illustrated in Fig. 1. Finally, in Sec. V we
discuss our results and comment on a possible experimental
realization of the Haldane model.

II. HALDANE MODEL

The Haldane model was originally introduced by Dun-
can Haldane in [75] based on the tight-binding model for
graphene. It provides the simplest 2D model that acquires
the quantum Hall effect (QHE), despite the absence of an
external magnetic field and the associated Landau levels. Kane
and Mele [80] generalized it and thereby developed the sim-
plest model for a topological insulator exhibiting the spin
Hall effect by doubling the Haldane model. Interestingly, for
a particular choice of the Haldane mass M and the purely
imaginary next-to-nearest-tunneling parameter t̃2 = it2 with
t2 ∈ R, the band structure generated within the Haldane model
shows only a single Dirac cone at the K or the K ′ point and
is gapped at the other one. Accordingly, we expected that for
such critical values within the energy range of the gap, the
spectral properties of a Haldane GB are similar to those of the
NB [53] of the corresponding shapes. We will illustrate for
three geometries of Haldane GBs that this indeed is the case.
This section summarizes the tight-binding construction of the
Haldane model for self-contained purposes.

A. Tight-binding model of graphene

We begin with the tight-binding model of graphene [4],
illustrated in Fig. 2(a), which is formed by two triangular
sublattices A and B. The vectors ai are defined as a1 =
(a, 0), a2 = (− a

2 ,
√

3a
2 ), a3 = (− a

2 ,−
√

3a
2 ), where a is the

distance between neighboring sites of the honeycomb lattice.
In the numerical simulations, we set it to unity, a = 1. The
tight-binding Hamiltonian of graphene is given by [4]

Ĥ0 = t1
∑
〈i, j〉

(â†
i b̂ j + H.c.). (1)

Here, âi and b̂ j denote the operators that annihilate an elec-
tron at sites Ai and Bj , respectively, and the notation 〈i, j〉
indicates that summations are performed over the nearest-
neighbor sites. In the momentum space, the Hamiltonian in
the basis ψT = (ψA(k), ψB(k)) becomes [81]

Ĥ0(k) = t1
∑3

i=1
(σ̂x cos(k · ai ) − σ̂y sin(k · ai )), (2)

where σ̂x, σ̂y, σ̂z denote the Pauli matrices. The associated dis-
persion exhibits a particle-hole symmetry [4]. Near the Dirac
cone K = ( 2π

3a , 2π

3
√

3a
) in the momentum space, the effective

wave equation of electrons is given in terms of the Dirac
Hamiltonian for a spin-1/2 particle,

Ĥ0
K (q) = 3t1a

2
σ̂ · q, (k = K + q) (3)

with σ̂ = (σ̂x, σ̂y). Similarly, near the Dirac cone K′ = −K it
is given by

Ĥ0
K ′ (q) = 3t1a

2
σ̂∗ · q, (k = K′ + q), (4)

where σ̂∗ denotes complex conjugation of σ̂. The appearance
of the two Dirac cones is protected by time-reversal symmetry,

FIG. 2. (a) The honeycomb structure of graphene. (b) The
nearest-neighbor hopping term t1 and the purely imaginary next-to-
nearest neighbor Haldane tunneling term it2.
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FIG. 3. Integrated spectral density N (E ) (left) and density of states ρ(E ) (right) of the Haldane GB with mass M = 0.3 and the shape of
an Africa billiard. Its lattice consists of N = 65199 sites. The density of states exhibits a jump at E = ±2M, that is at the value where the
conduction and valence bands exhibit a minimum and maximum, respectively, at the K ′ point (see Fig. 5).

inversion symmetry, and the discrete rotational symmetry C3

of the honeycomb-lattice structure [3,82].

B. Haldane tunneling and mass terms

The extension to the Haldane model is illustrated in
Fig. 2(b). Here, the next-to-nearest-neighbor site vectors
are b1 = (0,

√
3a), b2 = (− 3a

2 ,−
√

3a
2 ), b3 = ( 3a

2 ,−
√

3a
2 ).

Following Haldane, we introduce, in addition to the
nearest-neighbor hopping, a nonzero purely imaginary
next-to-nearest-neighbor tunneling parameter it2 [75].
Furthermore, we introduce on-site potentials M with M > 0
on all sites of sublattice A and −M on all sites of sublattice B.
In momentum space, the resulting Hamiltonian is given by

Ĥ (k) = Ĥ0(k) +
⎛
⎝M − 2t2

3∑
j=1

sin(k · b j )

⎞
⎠σ̂z. (5)

The first term in the rounded brackets is the inversion-
breaking mass term and the second one induces time-reversal
invariance violation. The effective Hamiltonian near the K and
the K ′ points, respectively, becomes

ĤK (q) = 3t1a

2
σ̂ · q + (M − 3

√
3t2)σ̂z, (6)

ĤK ′ (q) = 3t1a

2
σ̂∗ · q + (M + 3

√
3t2)σ̂z. (7)

In the trivial insulator phase of the Haldane model, |t2| < M
3
√

3
,

both Dirac cones are gapped. For |t2| > M
3
√

3
, the Haldane

model is in a nontrivial topological phase—the Chern in-
sulator phase—where both Dirac cones are gapped, but the
Chern number is nonzero. Yet, at the critical point t2 = M

3
√

3
,

one Dirac cone, namely that at the K ′ point is gapped out
with the effective mass 2M and that at the K point survives.
Accordingly, in the low-energy limit |E | < 2M, there is only
one Dirac cone at the K ′ point. Vice versa, when t2 = − M

3
√

3
,

the Dirac cone at the K point is gapped out and there is a single
Dirac cone at the K ′ point. Thus, we expect that at the criti-
cal points t2 = ± M

3
√

3
the fluctuation properties in the energy

spectrum of a Haldane GB, which is obtained by cutting out of
the honeycomb lattice a sheet with the shape of a certain GB,
coincide in the energy window |E | � min(|t1|/2, 2M ) with

those of the corresponding neutrino billiard. In the numerical
simulations, we will study the Haldane model at the critical
point t2 = M

3
√

3
, and we set t1 = 1 and 0 < M < 1/2, so that

min(|t1|/2, 2M ) = 2M.
The eigenstates of a Haldane GB with N sites are ob-

tained by diagonalizing the N × N-dimensional tight-binding
Hamiltonian in configuration space. The integrated spectral
density N (E ) = ∑N

n=1 θ (E − En) with θ denoting the Heavi-
side step function, that is, the number of ordered eigenenergies
En, E1 � E2 � · · · � EN , below E is shown in Fig. 3 together
with the density of states, ρ(E ) = π2

N
dN (E )

dE = π2

N

∑N
n=1 δ(E −

En), for the Haldane GB with the shape of an Africa billiard
[83] (black line). The red-solid line shows the smoothed den-
sity of states, which is obtained by replacing the δ functions
by Lorentzians of finite width �L,

ρsmooth(E ) = π

N

∑
n

�L

(E − En)2 + �2
L

, (8)

where we chose �L = 0.01. The density of states exhibits
a jump at E = ±2M, that is, at the edges of the band gap
appearing at the K ′ point. The band structure is shown in
Fig. 5 below. It was determined based on the momentum
distributions Mn(kx, ky), which is the Fourier transform of the
eigenfunctions 	n(x, y) associated with the eigenvalues En,
from configurational space (x, y) to quasimomentum space
(kx, ky) [36],

Mn(kx, ky) =
ˆ




	n(x, y)e−i(kxx+kyy)dxdy, (9)

where 
 is the billiard domain. It exhibits maxima at the wave
vector k = kn corresponding to the eigenvalue En [36]. In
Fig. 4 we show examples for momentum distributions of the
Africa-shaped Haldane GB with M = 0.3 for eigenstates in
the relativistic region, one close to the Dirac point and another
one close to, but outside the gap region, E � 0.6. Around the
Dirac point, Mn(kx, ky) is nonvanishing only at the K points,
whereas outside the gap region it is also nonvanishing in the
region of the K ′ point. In Fig. 5 is plotted the band structure of
a Haldane GB with the shape of an Africa billiard and masses
M = 0.1 and M = 0.3. Here, we chose paths k̃ = (k̃x, k̃y) in
the quasimomentum plane starting at the � point at (k̃x, k̃y) =
(0, 0) and continuing via the saddle point at M = ( 2π

3a , 0) and

094305-4



HALDANE GRAPHENE BILLIARDS VERSUS … PHYSICAL REVIEW B 110, 094305 (2024)

FIG. 4. (a) Momentum distribution of an eigenstate near E ∼ 0 for the Africa-shaped Haldane GB with M = 0.3. Here we chose one that
is invariant under rotation by 2π

3 . It is nonvanishing only in the K valley. (b) Same as (a) for an eigenstate near E � 2M. Contributions come
from the K and K ′ valleys as expected from the energy spectrum of the critical Haldane model.

the K point (green crosses for M = 0.1 and black circles
for M = 0.3), respectively, the K ′ point (red dashed lines for
M = 0.1 and blue dashed lines for M = 0.3) back to the �

point and computed Mn(k̃x, k̃y) for each eigenstate. Plotted
is the energy value E∗ of the eigenstate corresponding to the
maximal momentum distribution at k̃ versus the length of the
traversed path.

III. NUMERICAL METHODS

We performed numerical simulations with Haldane
GBs with the shapes of a rectangular, Africa, and C3-
symmetric billiard for masses 0 � M � 0.4. The results are

FIG. 5. Band structure of the Africa GB. We obtained it by
computing for each eigenstate of the GB the momentum distribu-
tion M(kx, ky ), where we chose the quasimomentum values (k̃x, k̃y )
along the path starting from the � point (purple dots) via the saddle
point(purple diamond) and Dirac point (purple square) K (black
circles for M = 0.3 and green crosses for M = 0.1), respectively
K ′ (blue-dashed curves for M = 0.3 and red-dashed curves for M =
0.1) back to the � point. Then we determined for each of the quasi-
momentum vectors the eigenstate, i.e., n, for which Mn(k̃x, k̃y ) is
maximal. Shown is the associated eigenvalue En = E∗(k̃x, k̃y ) vs the
length s(k̃x, k̃y ) of the traversed path.

summarized in Sec. IV. We analyzed their spectral proper-
ties and compared them to those of nonrelativistic quantum
billiards (QBs) and relativistic neutrino billiards (NBs). The
domain 
 of the billiard is defined in a Cartesian coor-
dinate system in polar coordinates, r = [x(r, ϕ), y(r, ϕ)], or
in the complex plane, w(r, ϕ) = x(r, ϕ) + iy(r, ϕ), with ϕ ∈
[0, 2π ), r ∈ [0, r0], where the boundary ∂
 is obtained by
setting r = r0.

The wave equation of nonrelativistic QBs is given by the
Schrödinger equation of a free particle with Dirichlet bound-
ary conditions along ∂
,

Ĥψm(r, ϕ) = −(r,ϕ)ψm(r, ϕ) = k2
mψm(r, ϕ), (10)

ψm(r, ϕ)|r=r0 = 0.

Here, ψm(r, ϕ) and km denote the eigenfunctions and
wavenumbers associated with the eigenvalues Em = k2

m of the
Hamiltonian Ĥ . Neutrino billiards [53] are governed by the
Weyl equation [74] for a noninteracting spin-1/2 particle of
mass m0, commonly referred to as Dirac equation in that
context,

ĤDψ = [cσ̂ · p̂ + m0c2σ̂z]ψ = Eψ, ψ =
(

ψ1

ψ2

)
, (11)

with the boundary condition

ψ2(ϕ) = ieiα(ϕ)ψ1(ϕ). (12)

Here, p̂ = −ih̄∇ is the momentum of the particle, ĤD the
Dirac Hamiltonian, and E = h̄ckE = h̄ck

√
1 + β2 with k de-

noting the free-space wave vector and β = m0c
h̄k is the ratio of

the rest-energy momentum and free-space momentum. Fur-
thermore, α(ϕ) is the angle of the outward-pointing normal
vector n = [cos α(ϕ), sin α(ϕ)] at w(r0, ϕ) with respect to the
x axis. The boundary condition arises from the requirement
that the normal component of the local current, that is, of the
expectation value of the current operator û = ∇pĤD = cσ̂,

n · u(r) = cn · [ψ†σ̂ψ], (13)
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is zero along the boundary. In Ref. [53] only the ultrarelativis-
tic case m0 = 0 was considered. In Refs. [49,84] the transition
to the nonrelativistic limit was analyzed, which is reached for
E 	 m0c2 [85], that is, for β 
 1.

We computed the eigenvalues and eigenfunctions of the
QB and NB by employing the corresponding boundary-
integral equation (BIE), which for the QB is given by [86]

u(ϕ′) =
ˆ 2π

0
dϕ|w′(ϕ)|QQB(k; ϕ, ϕ′)u(ϕ), (14)

with

QQB(k; ϕ, ϕ′) = i
k

2
cos[α(ϕ′) − ξ (ϕ, ϕ′)]H (1)

1 (kρ). (15)

Here, we introduced the notations w′(ϕ) = dw(ϕ)
dϕ

, L for
the perimeter, and ξ and ρ for the phase and modulus of
the distance vector r(ϕ, ϕ′) between two points along the
boundary, given in the complex plane parametrization as

eiξ (ϕ,ϕ′ ) = w(ϕ) − w(ϕ′)
|w(ϕ) − w(ϕ′)| , ρ(ϕ, ϕ′) = |w(ϕ) − w(ϕ′)|.

(16)

Furthermore, H (1)
m (x) is the Hankel function of the first kind of

order m [87] and u(s) = ∂nψ (s) refers to the normal derivative
of the wave function ψ (s), with s the arc-length parameter,

s(ϕ) =
ˆ ϕ

0
|w′(ϕ̃)|dϕ̃, s ∈ [0,L], ds = |w′(ϕ)|dϕ. (17)

The BIE for the first spinor eigenfunction of the NB is
given by [84,88]

(1 − sin θβ )ψ∗
1 (ϕ′) = ik

4

 2π

0
dϕ|w′(ϕ)|ei �(ϕ,ϕ′ )

2

× QNB
1 (k; ϕ, ϕ′)ψ∗

1 (ϕ), (18)

QNB
1 (k; ϕ, ϕ′) = cos θβ[ei(α(φ′ )−α(φ)) − 1]H (1)

0 (kρ)

+{[1 − sin θβ]ei(ξ (φ,φ′ )−α(φ))

+ [1 + sin θβ]e−i(ξ (φ,φ′ )−α(φ′ ))}H (1)
1 (kρ), (19)

with �(ϕ, ϕ′) = α(ϕ′ )−α(ϕ)
2 and sin θβ = β√

1+β2
. At φ = φ′,

i.e., ρ = 0, H (1)
0 (kρ) and H (1)

1 (kρ) have a logarithmic and
a 1/ρ singularity, respectively. In (15) it is compensated by
the prefactor, whereas in (18) the integral over these singu-
larities leads to the sin θβ term on the left-hand side of the
equation [88]. Accordingly, an interval [φ′ − δφ, φ′ + δφ],
where δφ is arbitrarily small, is excluded from the integration
range on the right-hand side. The corresponding equations for
ψ∗

2 (ϕ′) and QNB
2 (k; ϕ, ϕ′) are obtained with (12) by multiply-

ing the integrand with e−i�(ϕ,ϕ′ ).
For a QB with a mirror symmetry, the eigenfunctions can

be separated into symmetric and antisymmetric ones with
respect to the symmetry axes, and they fulfill either Neumann
or Dirichlet boundary conditions along these lines. This is not
possible for NBs. Yet, like the eigenfunctions of QBs and
GBs, the spinor components of the eigenfunctions of NBs
with shapes that exhibit a Q-fold rotational symmetry can be
separated according to their transformation properties under

rotation by 2π
Q into symmetry classes [49]. The boundary func-

tion of billiards with such a shape exhibits a 2π
Q periodicity,

w

(
ϕ + λ

2π

Q

)
= eiλ 2π

Q w(ϕ), (20)

eiα(ϕ+λ 2π
Q ) = eiλ 2π

Q eiα(ϕ), (21)

with λ = 0, 1, 2, . . . , Q − 1. The eigenstates of the cor-
responding nonrelativistic QB can be separated into Q
subspaces labeled by l = 0, . . . , Q − 1 according to their
transformation properties under the rotation operator R̂λ

[89,90], which produces a rotation by 2π
Q . The eigenfunctions

of the QB are characterized by the property

R̂λψ (l )
m (r, ϕ) = ψ (l )

m

(
r, ϕ − 2π

Q
λ

)
= eil 2π

Q λ
ψ (l )

m (r, ϕ). (22)

This transformation property implies that only the eigenfunc-
tions corresponding to l = 0 and, for even Q also those with
l = Q/2, are real and thus invariant under the conventional
time-reversal operator T̂ = Ĉ with Ĉ denoting the complex
conjugation operator [62]. For l �= 0, Q/2 they are complex
and

T̂ ψ (l )
m (r, ϕ) = ψ (Q−l )

m (r, ϕ), (23)

implying that ψ (l )
m (r, ϕ) and ψ (Q−l )

m (r, ϕ) are eigenfunctions
with the same eigenvalue k2

m, because the billiard system
is invariant under T violation. Accordingly, the eigenvalue
spectrum of nonrelativistic QBs with a C3 symmetry can
be separated into nondegenerate eigenvalues (singlets) with
l = 0, Q

2 and pairwise degenerate ones (doublets) with labels
l, Q − l . Furthermore, if the corresponding classical dynamics
is chaotic and if the billiard boundary has no additional geo-
metric symmetries, the spectral properties of the singlets show
GOE behavior, while those of the doublet partners exhibit
GUE statistics [90].

As mentioned above, the spinor components of the
eigenstates of the corresponding NB can also be classified
according to their transformation properties under a rotation
by 2π

Q into Q − 1 subspaces [89–92]; however, they belong to
different ones [49,93]. Namely, if the first component of the
mth spinor eigenfunction belongs to the subspace l ,

R̂ψ1,m(r) = eil 2π
Q ψ1,m(r), (24)

then the second one belongs to the subspace l̃ = (l − 1),

R̂ψ2,m(r) = ei(l−1) 2π
Q ψ2,m(r), (25)

where l̃ = −1 corresponds to l = Q − 1. This intermixture of
symmetry classes originates from the additional spin degree
of freedom [49,93] and is a consequence of the boundary
condition (12). For all subspaces, the spectral properties of
a NB with Q-fold symmetry are well described by the GUE,
if it has the shape of a billiard with chaotic dynamics and no
mirror symmetries. Furthermore, since the Dirac Hamiltonian
is not invariant under application of the T̂ , the eigenvalues
belonging to subspaces l and Q − l are not degenerate. In
Refs. [49,94] properties of the eigenstates of GBs with three-
fold and fourfold symmetry were compared to those of NBs
and QBs of corresponding shape, and agreement with those
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FIG. 6. Examples for wave-function intensity distributions of the rectangular GB (Haldane GB with mass M = 0.0) in the region E � −0.5
below the Dirac point. The color changes from blue for vanishing intensity to red with increasing intensity.

of QBs were found in the nonrelativistic and the relativistic
regions.

IV. SPECTRAL PROPERTIES OF HALDANE GBs
WITH THREE DIFFERENT SHAPES

To gain information on universal spectral properties,
system-specific ones need to be extracted. This is done by
unfolding the eigenvalues to a uniform spectral density, that
is, constant mean-spacing unity [62]. For the unfolding of the
eigenvalues of Haldane GBs, we proceeded as in [49] and
shifted them such that the smallest eigenvalue equals zero
and then replaced the resulting eigenvalues Ẽm by the smooth
part of the integrated spectral density, εm = N smooth(Ẽm),
which was determined by fitting a second-order polynomial
to N (Ẽm) [36]. Similarly, the ordered eigenwavenumbers km

of the QBs and NBs were unfolded to mean-spacing unity by
replacing them by the smooth part of the integrated spectral
density, εm = N smooth(km), which is given by Weyl’s formula
[95], NWeyl (km) = A

4π
k2

m − L
4π

km + C0, with A denoting the
area. For massless NBs the perimeter term is absent [53].
We present results for the Dyson-Mehta statistics 3(L) of
the spectrum [59], which is defined as the least-squares de-
viation of the integrated spectral density of the unfolded
eigenvalues from the straight line best fitting it in the inter-
val L and provides a measure for the degree of rigidity of
a level sequence. Furthermore, we analyzed the distribution
of the ratios [96,97] of consecutive spacings between nearest
neighbors, rm = εm+1−εm

εm−εm−1
, which are dimensionless so that no

unfolding is needed [96–98]. Analytical results have been
obtained for the average ratios 〈r〉, and also for the average
value of r̃m = min(rm, 1

rm
) in Ref. [98], 〈r〉 	 1.75, 1.36 and

〈r̃〉 	 0.54, 0.60 for the GOE and GUE, respectively, and for
Poissonian random numbers 〈r〉 = ∞ and 〈r̃〉 	 0.39.

We analyzed the spectral properties of the Haldane GBs
around the band edges and the Dirac point. The density of
states is symmetric with respect to the Dirac point. Therefore,
we are restricted to the eigenvalues at the lower band edge
and above the Dirac point, respectively. Here, we excluded the
edge states, that are present for the case M = 0 around E = 0,
and lead to an exceptionally high density of states around that
energy value [40,99]. Their contributions are nonuniversal
owing to the localization properties of the associated wave

functions, implicating deviations from random-matrix theory
predictions [36,37] for GBs with the shape of a chaotic CB.

A. Haldane GBs with rectangular shape

Rectangular Haldane billiards have two mirror symmetries
and a twofold rotational symmetry. Accordingly, the eigen-
functions of the QB and GB, and the spinor components
of the eigenfunctions of the NB can be classified according
to their transformation properties under rotation by π

2 [49].
We exploited this property in [100] and found out that the
spectral properties of the symmetry-projected eigenstates of
rectangular NBs corresponding to either of the two symmetry
classes exhibit semi-Poisson statistics, whereas they agree
with Poisson statistics when we consider the whole spectrum
irrespective of the symmetries. Here, a sequence of random
numbers with semi-Poisson statistics is obtained from one
with Poisson statistics by sorting the numbers by size and
deleting every second one. The nearest-neighbor-spacing dis-
tribution of the eigenvalues of rectangular QBs, whose ratio of
side lengths is a rational number, exhibit gaps, that is, they are
untypical integrable systems. In order to realize a rectangular
QB whose eigenvalue spectrum exhibits short-range corre-
lations that comply with Poisson statistics, the ratio of side
lengths needs to be an irrational number [101]. The long-range
correlations, on the other hand, approach Poisson statistics
with an increasing number of eigenvalues for rational and
irrational ratios [102,103].

The ratio of the side lengths Ly and Lx was chosen equal

to the golden mean, Ly

Lx
= 1+√

5
2 , and Lx was chosen such that

a honeycomb lattice with 49 608 sites fits into the billiard
domain. Figure 6 depicts four examples of wave functions
of the Haldane GB for M = 0.0 around E � −0.5 below
the Dirac point. The wave functions exhibit patterns that are
typical for the QB of corresponding shape. This changes
drastically when turning on the mass term, M � 0. In Fig. 7
we show for M = 0.3 eight examples for wave functions
around E 	 −0.5, that is, close to the lower critical value,
E � −2M = −0.6, with one Dirac cone at the K point and
no excitations at the K ′ point. In the first and second rows of
the first three columns, we show wave functions that seem to
be symmetry related, and in the last column and bottom row
one example for a trivial eigenmode, that bounces back and
forth between the two longer sides. In Fig. 8 examples of the
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FIG. 7. Examples for wave-function intensity distributions of the rectangular Haldane GB with mass M = 0.3 in the region E � −0.5
below the Dirac point, where the band structure is gapped at the K ′ point. The color changes from blue for vanishing intensity to red with
increasing intensity.

modulus of the local current defined in (13) across the billiard
area are plotted for the corresponding NB, that exhibit similar
pattern structures as the wave functions in Fig. 7. In the upper

row we show examples for which the first spinor component is
symmetric and the second one is antisymmetric under rotation
by π , whereas in the second one, it is antisymmetric for the

FIG. 8. Modulus of the local current for six spinor eigenfunctions of the rectangular NB with mass M = 0.3. In the first row, we show
examples for which the first spinor component is symmetric, the second one is antisymmetric with respect to rotation by π , in the second row
examples for which the first one is antisymmetric and the second one is symmetric. The color changes from blue for vanishing intensity to red
with increasing intensity.
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FIG. 9. (Upper row) Density of states of the rectangular Haldane
GB with the ratio of side lengths equal to the golden mean. (Lower
row) Corresponding average ratios 〈r̃〉. The black-dashed, solid, and
dash-dotted lines mark the values for GUE, GOE, and Poisson, re-
spectively, and the blue dash-dash-dotted line that for semi-Poisson.
For M = 0.0 they agree with Poisson, and for M � 0.2 − 0.4 they
are close to semi-Poisson around the Dirac point.

first spinor component and symmetric for the second one.
Since the local current depends on the products of the first
and second one, it is in all cases antisymmetric under rotation
by π as confirmed by its phase distribution (not shown).
An observation is warranted here. For the Haldane GB, we
encounter a loss of C2 symmetry alongside a disruption of the
valley symmetry, evident in the pattern of the wave functions.

The upper row of Fig. 9 exhibits the density of states for
M = 0.1 − 0.4. The peak at the Dirac point, visible at E = 0
for M = 0, results from the edge states that are localized at
the zigzag edges. At |E | = 2M the density of states exhibits a
jump. Below that value, conical band touching is only present
at the K point, as in the case illustrated in Fig. 5 for a Haldane
GB with the shape of a Africa billiard. Indeed, this feature is
observed, independently for all considered shapes, as outlined
below. The lower row shows the corresponding average ratios
〈r̃〉. The dashed, solid, and dash-dotted lines mark the values
for GUE, GOE, and Poisson, respectively. For M = 0 they
agree with that of Poissonian random numbers, whereas, when
increasing E starting from the lower band edge or decreasing
it starting from the upper one 〈r̃〉 takes a value intermediate
between that for semi-Poisson statistics (blue dash-dash-
dotted line) and GOE statistics. For M = 0.2−0.4 it ap-
proaches the semi-Poisson value in the region with |E | � 2M.

Similar results are obtained for other statistical measures of
short- and long-range correlations in the eigenvalue spectra. In
Fig. 10 we show the results for the Dyson-Mehta statistics.
Here, the sequences comprised 500 eigenvalues around the
band edge, and in the region of linear dispersion around the
K point for M = 0 they contained 200 levels, also for M =
0.2−0.4. However, for M = 0.1 there are only 100 eigenval-
ues in the region of linear dispersion for |E | � 2M. Accord-
ingly, around the K point the statistics is worse than around the
band edges. Yet, with increasing M the curve approaches the
black dash-dot-dot line showing the result for the symmetry-

FIG. 10. Dyson-Mehta statistics for the rectangular Haldane GB
with the ratio of side lengths equal to the golden mean around the
band edge (orange circles) and around the Dirac point (red squares).
The green crosses and blue stars show 3(L) for the quantum and
neutrino billiard, respectively, with the same ratio of side lengths
Ly

Lx
= 1+√

5
2 . The number of eigenvalues is only 100 around the Dirac

point for M = 0.1, whereas for the other cases it equals 200. We
obtain the interesting result for the energy spectrum around the
Dirac point, that with increasing mass a transition from Poisson to
semi-Poisson takes place. The black-dashed, solid, and dash-dotted
lines mark the values for GUE, GOE, and Poisson, respectively. The
black dash-dot-dot line shows the result for the symmetry-projected
states of the rectangular NB with l = 0, which is close to that for
semi-Poisson statistics (see main text).

projected eigenstates of the corresponding NB, which exhibits
semi-Poisson statistics [100]. Indeed, introducing the mass M
and the T -violating term, implicating the disappearance of the
Dirac cone at either the K or the K ′ point, corresponds to a
symmetry-projection onto one of the pseudospins.

B. Haldane GBs with the shape of an Africa billiard

Africa-shaped billiards provide a paradigm system for the
study of the spectral properties of fully chaotic systems, since
their boundary does not comprise regions where bouncing-
ball orbits [104] may exist that bounce back and forth between
opposite sides or orbits that are confined to a fractional part
of the available phase space. Such orbits do not feel the
chaoticity of the dynamics generated by the boundary and
lead to scarred wave functions in the corresponding quantum
system and, therefore, to deviations of the spectral properties
from random-matrix theory predictions [105] of the QB, also
of the NB [49] of corresponding shape. The domain of the
Africa billiard [53,83] is defined by the parametrization

x(r, φ) + iy(r, φ) = w(r, φ) = r[ζ + 0.2ζ 2 + 0.2ζ 3ei π
3 ],

φ ∈ [0, 2π ), r ∈ [0, r0], (26)

where we introduced the notation ζ (φ) = eiφ . Here, r0 was
chosen such that a honeycomb lattice with 65 199 sites fits
into the billiard domain.

The upper row of Fig. 11 shows the density of states of
the Haldane GB with that shape, the lower one the average
ratios 〈r̃〉. For M = 0 the density of states exhibits a peak at
E = 0, which is caused by edge states at zigzag edges of the
Haldane GB [99]. Again, a jump is visible at E = ±2M for
all masses. The average ratios fluctuate about the value for the
GOE for M = 0, also for |E | � 2 and around that for the GUE
otherwise for M � 0.1. Figure 12 exhibits the Dyson-Mehta
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FIG. 11. Same as Fig. 9 for the Africa shape. For M = 0.0 the
average ratios agree with GOE, for M � 0.1 with GUE for |E | � 2,
with GOE around the band edges at |E | 	 3, whereas their statistics
is between GOE and GUE otherwise.

statistics 3(L) for the Haldane GB with the shape of a Africa
billiard for M = 0, 0.1, 0.3 around the band edges (orange cir-
cles) and around the Dirac point (red squares). Furthermore,
the results for the QB (green crosses) and the NB (blue stars)
are plotted. Around the Dirac point and for M � 0.1 it agrees
well with the GUE curve. In [49,94] we also computed the
eigenstates for massive NBs and showed that agreement with
the spectral properties of GBs of corresponding shape are only
found for large masses kβ � 100, that is, in the nonrelativistic
limit. In Fig. 12 we include the results for the much smaller
mass kβ = 3, for which we find good agreement with those of
the massless NB and also the Haldane GB.

C. Haldane GBs whose shape has a C3 symmetry

The domain of the Haldane GB with C3 symmetry, referred
to as “C3 Haldane GB” in the following, is defined in the (x, y)

FIG. 12. Same as Fig. 10 for the Africa shape. It agrees with
GOE for all three masses around the band edge. Around the Dirac
point the 3 statistics agrees with GOE for M = 0.0, for M = 0.1 it
is between GOE and GUE, and for M = 0.3 it agrees with GUE. The
cyan dots show an example of the massive NB with mass kβ = 3. It
is close to the GUE curve and also agrees well with the result for the
Haldane GB.

FIG. 13. Relative distances |E (l=1)
m −E (l=2)

m |
|E (l=1)

m +E (l=2)
m | between corresponding

eigenvalues of the C3 Haldane GB from the symmetry-projected
subspectra with l = 1 and l = 2, respectively, for M = 0.2. In the
nonrelativistic region around the band edges at |E | = 3 they are
degenerate. In contrast, in the relativistic region around the K point
at E = 0 the degeneracy is clearly lifted as expected for systems
governed by the Dirac equation (11), like for NBs (see Sec. III).

plane by the parametrization

x(r, φ) + iy(r, φ) = w(r, φ) = R(r, φ)eiφ,

φ ∈ [0, 2π ), r ∈ [0, r0], (27)

with

R(r, φ) = r f (φ), (28)

f (φ) = 1 + 0.2 cos(3φ) − 0.2 sin(6φ). (29)

Here, r0 was chosen such that a honeycomb lattice with 3 ×
24189 sites fits into the billiard domain.

Because of the C3-rotational symmetry, the eigenstates
of the QB can be separated into three symmetry classes
labeled by l = 0, 1, 2. For l = 0 the eigenfunctions are in-
variant under rotation by 2π

3 and for l = 1, 2 the eigenstates
are turned into each other when applying T̂ . Accordingly,
the eigenvalue spectrum can be separated into singlets with
l = 0 and pairs of degenerate eigenvalues corresponding to
l = 1, 2, that exhibit GOE and GUE statistics, respectively.
Similarly, the spinor components can be separated into three
symmetry classes labeled by l = 0, 1, 2. Here, for l = 0 the
first spinor component of ψ is invariant under rotation by
2π
3 . Since T invariance is violated, the symmetry-projected

spectra corresponding to l = 1 and l = 2 are not degener-
ate and the spectral properties agree with GUE statistics for
all three symmetry classes. Figure 13 exhibits the difference
between corresponding eigenvalues for l = 1 and l = 2 for
mass M = 0.2. For |E | � 1.0 the eigenvalues are degenerate
as in the case of the corresponding QB. However, in the
relativistic region |E | � 1 the degeneracy is clearly lifted as
for the NB of the corresponding shape. In Fig. 14 we show
the density of states and ratios for l = 1. The density of states
exhibits the same features as for the Africa-shaped Haldane
GB (see Fig. 11) whereas the ratios coincide with GUE for
all masses. On the contrary, as illustrated in Fig. 15, for l = 0
the ratios are close to the GOE for M = 0.0 and close to the
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FIG. 14. Same as Fig. 11 for the C3 Haldane GB for the symme-
try class l = 1. The average ratios agree with GUE for all masses.

GUE for |E | � 2 and M � 0.1. In Fig. 16 we compare the
spectral properties of the Haldane GB around the band edges
(orange circles) and Dirac point (red squares) with those of
the nonrelativistic QB (green crosses), the massless NB (blue
stars) and for a small mass kβ = 5 (cyan dots). For M � 0.1
the curve for the Haldane GB is closer to that for the massless
NB than to that for the massive one. Thus we again find good
agreement between the spectral properties for the Haldane GB
with M � 0.1 and the massless NB.

V. CONCLUSIONS

In summary, we introduced the honeycomb-lattice-based
Haldane model as an alternative to GBs for the simulation
of universal features of the eigenstates of relativistic neutrino

FIG. 15. Same as Fig. 14 for the C3 Haldane GB for the symme-
try class l = 0. For M = 0.0 the average ratios agree with GOE, for
M = 0.1 with GOE below |E | � 2.5, and with GUE otherwise, for
M � 0.2 they agree with GUE.

FIG. 16. Same as Fig. 12 for the C3 Haldane GB for the symme-
try class l = 0. It agrees with GOE for all three masses around the
band edge. Around the Dirac point the 3 statistics agrees with GOE
for M = 0.0, for M = 0.1 it is close to GUE, and saturates at L 	 2,
the reason being that there we have only 100 eigenvalues, and for
M = 0.3 it agrees with GUE. The cyan dots show an example of the
massive NB with mass kβ = 5. It is close to the GUE curve and also
agrees well with the result for the Haldane GB.

billiards. The Haldane model offers a more suitable frame-
work as it suppresses intervalley scattering inherent in the
finite-size artificial-graphene model. We explore numerically
the critical Haldane model behavior on rectangular, Africa,
and C3 shapes. These simulations demonstrate a phase tran-
sition from nonrelativistic to relativistic quantum behavior
upon adjusting the Haldane tunneling parameters, thereby
affirming the efficacy of the critical Haldane model in mim-
icking relativistic neutrino phenomena within a tight-binding
framework. With the recent proposals to simulate the Haldane
model with photonic crystals [77,78], we expect the feasi-
bility of generating energy spectra exhibiting the particular
phenomena of NBs experimentally. The analog of the Haldane
model on a square lattice with the band structure exhibit-
ing under certain conditions Dirac points was considered in
Refs. [106] and [107]. We expect a phase transition similar to
the one observed in our Haldane billiard system around these
Dirac points when tuning the inverse symmetry-breaking
on-site potential and the time-reversal symmetry-breaking
next-to-nearest-neighbor hopping in these square lattice mod-
els. With that one and the honeycomb-lattice based model,
experimentalists have more options to simulate the proper-
ties of Haldane GBs and thus to realize an experimental NB
analog.

In forthcoming research, we aim to investigate the non-
critical Haldane model precisely when t2 �= M

3
√

3
, offering the

potential to simulate neutrino dynamics incorporating the
mass term that can be finely tuned employing the control
parameters t2 and M of the Haldane model. Additionally,
we plan to delve deeper into the tight-binding model of
A-B stacking bilayer graphene, anticipating quadratic band
intersections at low energy limits [108], thereby enabling sim-
ulations of a new type of quantum billiards.
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