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Xiaoqi Zhou,* Weixuan Zhang ,*,† Hao Yuan , and Xiangdong Zhang ‡

Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory
of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China

(Received 24 April 2024; revised 18 July 2024; accepted 19 August 2024; published 3 September 2024)

Non-Abelian anyons, which correspond to collective excitations possessing multiple fusion channels and
noncommuting braiding statistics, serve as the fundamental constituents for topological quantum computation.
Here, we reveal the exotic Bloch oscillations (BOs) induced by non-Abelian fusion of Fibonacci anyons. It is
shown that the interplay between fusion-dependent internal energy levels and external forces can induce BOs and
Bloch-Zener oscillations (BZOs) of coupled fusion degrees with varying periods. In this case, the golden ratio of
the fusion matrix can be determined by the period of BOs or BZOs in conjunction with external forces, giving rise
to an effective way to unravel non-Abelian fusion. Furthermore, we experimentally simulate non-Abelian fusion
BOs by mapping the Schrödinger equation of two Fibonacci anyons onto the dynamical equation of electric
circuits. Through the measurement of impedance spectra and voltage evolution, both fusion-dependent BZOs
and BOs are simulated. Our findings establish a connection between BOs and non-Abelian fusion, providing a
versatile platform for simulating numerous intriguing phenomena associated with non-Abelian physics.
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I. INTRODUCTION

Quantum computing has garnered significant attention in
recent decades due to its potential for exponential acceler-
ation over classical computers in solving specific problems.
The principle challenges in the development of quantum
computing lie in addressing noise and decoherence. Topo-
logical quantum computation presents a promising approach
to solving these obstacles by utilizing non-Abelian anyons
for encoding and manipulating quantum qubits in a nonlocal
manner, where quantum gates are implemented by braiding of
non-Abelian anyons and the measurement of quantum qubits
is accomplished through fusion of anyons [1–5]. In con-
trast with fermions and bosons, the exchange of non-Abelian
anyons is governed by unitary transformations. In addition,
there are multiple possible outcomes upon fusion (merging) of
two non-Abelian anyons, being different from other elemen-
tary particles that have only one fusion outcome. These two
fundamental properties of non-Abelian anyons form the basis
for topological quantum computation. Given their significant
applications, extensive research has been conducted to iden-
tify physical systems capable of hosting non-Abelian anyons.

Two promising platforms for non-Abelian anyons are the
Fibonacci and Ising anyon models, both exhibiting non-
Abelian braiding statistics and fusion roles [1–25]. Specifi-
cally, Ising anyons have been predicted to exist as Majorana
zero modes in topological superconductors [6–9], low-energy
excitations of fractional quantum Hall states [12,13], Kitaev
materials [14–16], and dense quark matter [17]. In addition,
the vortex-bounded Dirac fermionic mode is proposed to
be among the Ising anyons [18–22]. However, Ising anyons
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alone are insufficient for universal quantum computations;
therefore, incorporating nontopological processes becomes
necessary [2]. In contrast, Fibonacci anyons offer a promis-
ing platform for universal topological quantum computation
where all quantum gates are implemented through braiding
manipulation in a topologically protected manner [23], and
several candidates have been proposed to host Fibonacci
anyons, including the fractional quantum Hall state with
ν = 12

5 [24], interacting Majorana fermions [25], and so on
[26–30]. In addition, some recent investigations have shown
that anyonic statistics could trigger the appearance of many in-
teresting effects [31–34]. It has been pointed out that quantum
statistics could dramatically affect the Bloch oscillation (BO)
of two Abelian anyons, where the oscillation frequency of two
pseudofermions with a statistical angle of π becomes half of
that for two bosons [31,32]. Motivated by the properties of
anyonic BOs, it is intriguing to inquire whether non-Abelian
statistics can give rise to more exotic BOs.

In this paper, we firstly investigate the non-Abelian fu-
sion BOs and Bloch-Zener oscillations (BZOs) of Fibonacci
anyons in a one-dimensional (1D) lattice subject to external
forces. It is shown that, by adjusting the external forcing, it is
possible to achieve either two or a single Wannier-Stack lad-
der of two Fibonacci anyons with a fusion-dependent internal
energy level. When a single Wannier-Stack ladder accompa-
nied with BOs emerges, the corresponding values of external
force can determine the golden ratio for the fusion matrix of
Fibonacci anyons. As for the case of three Fibonacci anyons,
there are a pair of internal energy levels, making BZOs appear
under a suitable value of external force. Furthermore, we
design and fabricate resistor-capacitor (RC) circuits to experi-
mentally simulate BOs and BZOs of Fibonacci anyons. In this
paper, we establish a connection between BO dynamics and
non-Abelian fusion, suggesting a useful way to characterize
non-Abelian fusion.
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FIG. 1. The schematic diagram for the lattice model of two Fibonacci anyons under the external force F. (a) The fusion tree with a Fibonacci
anyon at the first site and the other Fibonacci anyon at the second site. (b) By applying the ℱ-symbol transformation, the fusion chain basis
is transformed into a basis that displays the direct fusion channel of two Fibonacci anyons located at the first and second positions. (c) The
fusion tree corresponding to a Fibonacci anyon at the first site and the other Fibonacci anyon at the third site. (d) By applying the ℱ-symbol
transformation, the fusion chain basis is transformed into a basis that displays the direct fusion channel of two Fibonacci anyons located at
the first and third positions. The label xl (yl ) corresponds to the outcome resulting from merging xl−1 (yl−1) with its preceding non-Abelian
anyon at (l − 1)th site Al−1, being expressed as Al−1 ⊗ xl−1(yl−1) = xl (yl ), where Al−1 can be either the vacuum particle I or the non-Abelian
anyon τ .

II. THEORY OF CHARACTERIZING NON-ABELIAN
FUSION OF FIBONACCI ANYONS BY BOs AND BZOs

Previous investigations have shown that Fibonacci anyons
can be described by the SU(2)3 Chern-Simons theories
[35,36] according to the fusion rule of τ ⊗ τ = τ ⊕ I , with
τ and I representing a Fibonacci anyon and a vacuum state,
respectively. In recent years, the lattice models of Fibonacci
anyons with finite filling factors have been wildly explored,
giving rise to various exotic many-body phenomena related
to non-Abelian fusion [37–40]. Here, following the SU(2)3
theory with the above fusion role, we consider a pair of Fi-
bonacci anyons moving along a 1D chain under the influence
of an external force F. Specifically, the system consists of
two Fibonacci anyons and L − 2 vacuum states, where L
represents the length of the lattice, as depicted in Fig. 1(a).
Here, Jt is the single-anyon hopping rate, and J is the inter-
action strength of Fibonacci anyons. The label xl corresponds
to a non-Abelian anyon resulting from combining xl−1 with
its preceding non-Abelian anyon at the (l − 1)th lattice site
as Al−1 ⊗ xl−1 = xl , where Al−1 can be either the vacuum
particle I or the non-Abelian anyon τ . In this case, different
two-anyon states within the Hilbert space should not only be
characterized by positions of Fibonacci anyons but also by la-
bels xl . There are five possible values of x1, x2, . . . , xL+1 when
positions of two Fibonacci anyons are fixed (see Appendix A
for details). Therefore, each two-anyon configuration in our

model exhibits five internal degrees of freedom arising from
the fusion of two Fibonacci anyons, being called fusion de-
grees. The probability amplitude of a two-anyon state with
one Fibonacci anyon at the mth lattice site and the other at the
nth lattice site, along with the αth fusion degree (α = 1, 2, 3,
4, and 5), can be denoted as Cα

m,n.
In addition, Fibonacci anyons in our model possess the

effective interaction (J), which can be quantized by the ℱ-
symbol transformation, serving as a basis transformation
between different representations of fusion trees [37–40]. By
applying the ℱ-symbol transformation, we can transform the
fusion chain basis depicted in Fig. 1(a) to a basis that ex-
hibits the direct fusion channel of two Fibonacci anyons, as
indicated in Fig. 1(b) with the label x̃L. Thus, analogous to
the Heisenberg interaction of electrons, the interaction among
Fibonacci anyons can be obtained by projecting the fusion
outcome onto a vacuum state I. Thus, the fusion matrix is
denoted by

HJ = −J

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 φ−2 φ−3/2

0 0 0 φ−3/2 φ−1

⎞⎟⎟⎟⎟⎠, (1)

where φ = (
√

5 + 1)/2 is the golden ratio of the fusion ma-
trix. Details for the derivation of the fusion matrix HJ are
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provided in Appendix B. It is noteworthy that the external
force F can act on each non-Abelian fusion degree. In this
scenario, the impact of external force can be reinterpreted
as the gradient potential F (m + n)I5×5 with two Fibonacci
anyons at the mth and nth sites.

Except for the fusion interaction of Fibonacci anyons, each
anyon can also transport from one site to an adjacent vacant
site. When a Fibonacci anyon is hopping from the second to
the third site, the corresponding fusion tree of the final state
is also changed, as illustrated in Fig. 1(c). Similarly, we can
apply the ℱ symbol to transform the fusion chain basis repre-
sented in Fig. 1(c) to the basis that displays the direct fusion
channel of two Fibonacci anyons, as indicated in Fig. 1(d).
In this case, the coupling matrix between the initial and fi-
nal two-anyon states is described by Ht = −Jt I5×5. Thus,
the time-dependent Schrödinger equation of two Fibonacci
anyons can be expressed as (h̄ = 1)

i
d

dt
ψm,n = Ht

[
ψm±1,n + ψm,n±1

]
+ [HJ + F (m + n)I5×5]ψm,n, (2)

with ψm,n = [C1
m,n,C2

m,n,C3
m,n,C4

m,n,C5
m,n]

T
. Here, Cα

m,n corre-
sponds to the probability amplitude with one Fibonacci anyon
at the mth site and the other at the nth site, along with the
αth fusion degree (α = 1, 2, 3, 4, and 5). Also, ψm,n is
the state vector composed of Cα

m,n for five fusion degrees,
and Ht = −Jt I5×5 is the coupling matrix between a pair of
two-anyon states, with Jt being the single-anyon hopping rate.
Specifically, the first two terms on the right-hand side of
Eq. (2) correspond to scenarios where one of two Fibonacci
anyons transitions from the mth site to either the (m + 1)th
or (m − 1)th site, or from the nth site to either the (n + 1)th or
(n − 1)th site. Here, HJ is the fusion matrix. The impact of the
external force F can be reinterpreted as the gradient potential
F (m + n)I5×5.

Next, we study the eigenspectra and dynamics of two
Fibonacci anyons based on Eq. (2). It is noted that fusion
degrees of C1

m,n, C2
m,n, and C3

m,n are all decoupled from other
fusion degrees. In this case, two Fibonacci anyons with these
three fusion degrees behave as two noninteracting particles
hopping on a 1D chain under an external force F, with the
effective on-site potential of each particle being −J, 0, and 0
for the cases of C1

m,n, C2
m,n, and C3

m,n, respectively. In this case,
the two-anyon eigenspectra can exhibit the Wannier-Stark lad-
der ε1

mn = −J + (m + n)F related to C1
m,n and ε2

mn = ε3
mn =

(m + n)F for C2
m,n and C3

m,n. The difference between the two
adjacent eigenenergies equals δε1,2,3 = F (see Appendix C
for the numerical results of ε1

mn as a function of F).
In contrast with the first, second, and third fusion degrees,

it is noted that the fourth and fifth fusion degrees are intri-
cately coupled with each other, involving the golden ratio φ

associated with Fibonacci anyons. In such a case, both the ex-
ternal force and non-Abelian fusion can influence the energy
levels ε4,5

m,n related to two nonseparable fusion degrees C4
m,n

and C5
m,n for two Fibonacci anyons. To clarify the property of

the energy level for ε4,5
m,n, we first consider the case with F =

0. The interval energy level of fourth and fifth fusion degrees

can be obtained by solving eigenvalues of

H4,5
J = −J

(
φ−2 φ−3/2

φ−3/2 φ−1

)
,

where ε4,5
a = 0 and ε4,5

b = 1. Thus, the fusion-dependent in-
ternal energy gap of ε4,5

m,n equals δε4,5
f = 1. Hence, two distinct

Wannier-Stack ladders with energy gaps being δε1
4,5 = ε4,5

b −
ε4,5

a and δε2
4,5 = F − (ε4,5

b − ε4,5
a ) are obtained with F � 1.

We anticipate the occurrence of BZOs with two noncoincident
Wannier-Stack ladders [41]. In other words, the presence of
two-anyon BZOs would serve as confirmation for the exis-
tence of the non-Abelian fusion. The period of BZOs, denoted
as TBZO, equals the least common multiple of T1 = 2π/δε1

4,5

and T2 = 2π/δε2
4,5. Interestingly, it is noted that two Wannier-

Stack ladders can also form a superposition pattern with
δε1

4,5 = δε2
4,5 at F = 0.5, 1, and 2 (see Appendix C), triggering

the appearance of BOs [42–45] for two coupled fusion de-
grees. Based on the values of external forces that can trigger
BOs, we can determine the golden ratio φ for the fusion matrix
of Fibonacci anyons, making BOs act as an effective way to
resolve the non-Abelian fusion.

To demonstrate the emergence of BZOs and BOs result-
ing from fusion energy levels of ε4,5

mn at different external
forces, we calculate the temporal evolution of two-anyon
states C4

m,n and C5
m,n with L = 20 and Jt = J = −1. At first,

we focus on the BZO in a system with two staggered Wannier-
Stack ladders under F = 1.5. We initialize the two-anyon
state as C5

6,13 = 1 and calculate the evolution of the system.
Figure 2(a) presents the calculated wave dynamics of C5

6,13.
It is clearly shown that the periodic oscillation appears with
TBZO = 12.56, being consistent with the above theoretical pre-
diction. A distinctive feature in the Fibonacci anyon system
is the emergence of coupled fusion degrees, making these
two fusion degrees exhibit coupled BZOs. To illustrate their
oscillatory behaviors, we calculate the time-dependent parti-
cle occupation density Pα

i = ∑L
l=1 |Cα

i,l |2 (i �= l, α = 4, 5) at
different times in Fig. 2(b). Black and red lines correspond
to particle occupation densities associated with the fourth and
fifth fusion degrees, respectively. At t = 0.3 (the red triangle),
the occupation density is observed to be highest for the fifth
fusion degree at the sixth and 13th lattice sites, with a low
particle occupation density of the fourth fusion degree. As
time increases to t = 4.43 (the blue triangle), the occupation
density reaches its peak for the fourth fusion degree at the
sixth and 13th lattice sites, while the occupation density of the
fifth fusion degree is decreased. When t = 6.8 (the yellow tri-
angle), the maximum oscillation range is achieved, with both
fusion degrees exhibiting their highest occupation densities at
the fifth, seventh, 12th, and 14th lattice points. Additionally, a
significant portion of the occupation density has transformed
to the fifth fusion degree. Upon reaching TBZ = 12.56 (the
green triangle), which marks one complete period, it is evident
that both fusion degrees return to the initial distribution. This
periodic modulation in the probability distribution not only
supports our prior theoretical conjectures concerning the BZO
of Fibonacci anyons but also substantiates the existence of
fusion energy levels within them.
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FIG. 2. Numerical results of the Bloch-Zener oscillation (BZO) and Bloch oscillation (BO) for two Fibonacci anyons. (a) The calculated
wave dynamics of the probability amplitude C5

6,13 with the external force being F = 1.5. (b) The evolution of the particle occupation density

Pα
i = ∑L

l=1 |Cα
i,l |2(i �= l, α = 4, 5) at different times with F = 1.5. The black and red lines represent the fourth and fifth fusion degrees,

respectively. (c) The calculated wave dynamics of probability amplitude C5
6,13 with the external force being F = 2. (d) The evolution of the

particle occupation density at different times with F = 2.

Next, we direct our attention to the behavior of two-anyon
BOs with F = 2. We initialize the system with C5

6,13 = 1.
Figure 2(c) illustrates the temporal evolution of the probability
amplitude C5

6,13. The calculated period of BOs is found to be
6.28, in agreement with the predicted value. Furthermore, we
evaluate the evolution of particle occupation densities to ob-
serve the mutual transformation between two coupled fusion
degrees during BOs, as depicted in Fig. 2(d). At t = 0.3, the
occupation density is highest for the fifth fusion degree at
the sixth and 13th lattice site, while the occupation density
for the fourth fusion degree starts to increase. A continuous
transformation occurs between these two fusion degrees, and
at t = 1.64, both degrees of freedom exhibit nearly equal
occupation densities, reaching maximum values at the fifth,
seventh, 12th, and 14th lattice points. At this moment, BOs
of two fusion degrees reach their maximum range. As time
increases to 3.134, the transformation between these mutually
coupled degrees reaches its peak level. The occupation density
is highest for the fourth fusion degree at lattice points six and
13, while it decreases for the fifth fusion degree of freedom
at those same lattice points. When time reaches TBO = 6.28,
we observe that the initial state oscillates back to the sixth
and 13th lattice points with an occupation density being zero
for the fourth fusion degree, confirming our previous theoret-
ical prediction. Above results clearly show that the reciprocal
transformations among coupled fusion degrees appear during
BZOs and BOs of two Fibonacci anyons.

It is noticed that the fusion degrees in the 1D chain are
related to the number of Fibonacci anyons. Thus, we further
consider the lattice model with three Fibonacci anyons. The
fusion matrix of three Fibonacci anyons can be derived as (see
Appendix D for details)

H3,J = −J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 φ−2 φ−2 −φ5/2

0 0 0 0 0 φ−2 φ−2 −φ−5/2

0 0 0 0 0 −φ−5/2 −φ−5/2 −φ−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3)

The coupling matrix of the three-anyon model is H3,t =
−Jt I8×8. Here, Cα

m,n,q is used to represent the probability
amplitude of the αth fusion degree when the first anyon is
at position m, the second anyon is at position n, and the
third anyon is at position q. The time-dependent Schrödinger
equation of three-anyon state Cα

m,n,q can be found in
Appendix E.

For the three Fibonacci anyon system, we find that there
are eight fusion degrees, where the first five fusion degrees
are decoupled from others and last three degrees are coupled
together. In this case, we focus on analyzing the impact of
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FIG. 3. Numerical results of the Bloch-Zener oscillation (BZO) for three Fibonacci anyons. (a) The temporal evolution of the probability
amplitude C6

5,10,15 with the external force being F = 2.3153. (b) The evolution of the particle occupation densities of three fusion degrees at
different times. Black, red, and blue lines correspond to results of the sixth, seventh, and eighth fusion degrees of three Fibonacci anyons,
respectively.

three coupled fusion degrees on the BZO. The eigenvalues
of

H6,7,8
3,J = −J

⎛⎝ φ−2 φ−2 −φ5/2

φ−2 φ−2 −φ−5/2

−φ−5/2 −φ−5/2 −φ−3

⎞⎠
are equal to ε1 = −0.8937, ε2 = 0, and ε3 = 1.4216, mak-
ing the internal fusion energy levels become δε1

f = 0.8937
and δε2

f = 1.4216. In this case, two staggered Wannier-
Stack ladders with energy gaps being 	E1 = F−δε2

f = δε1
f

and 	E2 = F−δε1
f = δε2

f can appear with F = 2.3153
(see Appendix E for details). Thus, it is anticipated that the
BZOs can appear in the three-Fibonacci anyon systems with
the oscillation period being TBZO = r 2π

	E1
= s 2π

	E2
(where r

and s are a pair of prime numbers).
We calculate the evolution of three coupled fusion degrees

with the initial state being C6
5,10,15 = 1. Figure 3(a) illustrates

the temporal evolution of C6
5,10,15. Other parameters are L =

20 and Jt = J = −1. It is shown that the oscillation period is
equal to 35.26, which is consistent with the theoretical predic-
tion. Within one period, the waveform is symmetric about t =
17.63. We compute the particle occupation densities of three
fusion degrees at different times, as shown in Fig. 3(b). Black,
red, and blue lines correspond to results of the sixth, seventh,

and eighth fusion degrees, respectively. At t = 0.3, it can be
observed that the sixth fusion degree has the highest particle
occupation density, while the particle occupation densities of
the seventh and eighth fusion degrees are nearly zero. As time
increases to 6.73, the occupation density of the sixth fusion
degree completely transforms into the occupation density of
the seventh and eighth fusion degrees. At t = 10.86, the par-
ticle occupation density of the sixth fusion degree increases,
and the seventh fusion degree has a lower occupation density,
while the particle density for the eighth fusion degree becomes
zero. At t = 17.63, the sixth and seventh fusion degrees have
the highest particle occupation density, but the eighth degree
of freedom has a lower particle occupation density. The mu-
tual transformation of internal coupled fusion degrees during
BZO provides strong evidence for the existence of internal
energy levels of the three Fibonacci anyon systems. It is worth
noting that, as for other values of F, the system possesses
three different internal energy levels, and the overall oscil-
lation period should be the least common multiple of three
periods related to these three energy levels (see Appendix F
for details). In this scenario, an increase in the number of
Fibonacci anyons leads to an increment of distinct internal
energy levels, thereby significantly extending the period of
fusion dynamics and disrupting the emergence of BOs and
BZOs in the thermodynamic limit.
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FIG. 4. Experimental simulation of Wannier-Stark ladders for two Fibonacci anyons by impedance spectra. (a) The schematic diagram
of the designed resistor-capacitor circuit simulator. The voltages at pink and blue (gray and white) circuit nodes are labeled by V 4

m,n and V 5
m,n

(V ′4
m,n and V ′5

m,n). The inset shows the correspondence between the voltages V 4
1,2 and V 5

1,2 and probability amplitudes of the fourth and fifth
fusion degrees with two Fibonacci anyons locating at the first and second lattice sites. (b) The detailed connection pattern of the circuit node
V 5

3,5 to nearby nodes through negative impedance converters. (c) The photographic image of the fabricated circuit (L = 7) around the node
V 5

3,5, with C = 1 µF, Rt = 1000
 (the white symbols), RJ1 = 2618
, RJ2 = 2058
 (the orange symbol), RJ3 = 1618
 (the blue symbol), and
RF = 1500
 (the blue symbol). Measured impedance spectra of Z5

3,4, Z4
3,5, and Z5

3,5 for the circuit simulator with (d) F = 1.5 and (e) F = 2.

III. EXPERIMENTAL SIMULATION OF NON-ABELIAN
FUSION OF FIBONACCI ANYONS DYNAMICS BY

ELECTRIC CIRCUITS

Motivated by previous experimental breakthroughs in
simulating few-body quantum systems by electric circuits
[32,46,47], optical waveguides [48] and fiber networks [49],
in this part, we experimentally simulate the non-Abelian fu-
sion BOs and BZOs of two Fibonacci anyons by mapping
the Schrödinger equation of two Fibonacci anyons [Eq. (2)]
onto the dynamical equation of our designed RC circuits.
Figure 4(a) displays the schematic diagram of the RC circuit
simulator. The voltages at pink and blue (gray and white)
circuit nodes are labeled by V 4

m,n and V 5
m,n (V ′4m,n and V ′5m,n),

which can be mapped to the probability amplitudes c4
m,n and

c5
m,n (c′4m,n and c′5m,n) of a 1D lattice chain with two Fibonacci

anyons. For example, the voltages V 4
1,2 and V 5

1,2 correspond
to the probability amplitudes of the fourth and fifth fusion

degrees with two Fibonacci anyons locating at the first and
second lattice sites, as illustrated in the inset. The effective
coupling between different two-anyon states can be realized
by designing the node connection in the circuit. Figure 4(b)
plots the connection pattern from the circuit node V 5

3,5 to its
nearby nodes of V ′5

2,5, V ′5
3,4, V ′4

3,5, V ′5
3,5, V ′5

3,6, and V ′5
4,5 through neg-

ative impedance converters (INICs) valued ±Rt , ±Rt , ±RJ2 ,
±RJ3 + RF (m + n), ±Rt , and ±Rt . In addition, the circuit
node V 4

3,5 is connected to V ′4
2,5, V ′4

3,4, V ′5
3,5, V ′4

3,5, V ′4
3,6, and V ′4

4,5
through ±Rt , ±Rt , ±RJ2 , ±RJ1 + RF (m + n), ±Rt , and ±Rt .
Each node is also connected to the ground by a capacitor C.
In this case, the eigenequation of the voltage evolution can be
derived as (see Appendix G for details)

d

dt
Vm,n = 1

CRt

{
H′

t [V
′
m±1,n + V′

m,n±1]

+
[

H′
J + 1

RF (m + n)
I2×2

]
V′

m,n

}
d

dt
V′

m,n
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= − 1

CRt

{
H′

t [V
′
m±1,n + V′

m,n±1]

+
[

H′
J + 1

RF (m + n)
I2×2

]
Vm,n

}
, (4)

with Vm,n = [V 4
m,n, V 5

m,n]
T

, V′
m,n = [V ′4

m,nV
′5

m,n]T , H′
t = I2×2

and

H′
J =

(
1

RJ1

1
RJ2

1
RJ2

1
RJ3

)
.

We can write the circuit eigenequation of Eq. (4) in
the matrix form of i∂t |V(t)〉 = �|V(t)〉, with |V (t )〉 =
[V 4

1,2(t ),V 5
1,2(t ), . . . ,V 4

L−1,L(t ),V 5
L−1,L(t ),V ′4

1,2(t ),V ′5
1,2(t ), . . . ,

V ′4
L−1,L(t ),V ′5

L−1,L(t )]
T

and � = i( 0 H
−H 0 ). Here, if circuit

elements satisfy F = 1
CRt RF (m+n) , φ−2 = 1

CRt RJ1
, φ−3/2 =

1
CRt RJ2

, and φ−1 = 1
CRt RJ3

, H can be mapped to the Hamiltonian

matrix of the fourth and fifth fusion degrees of two Fibonacci
anyons. Thus, the eigenenergy (ε4,5

mn ) of two Fibonacci anyons
is directly mapped to the eigenfrequency ( f ) of the circuit
as ε4,5

mn = 2π f RtC (see Appendix G), so that the designed
RC circuit can be used to simulate the 1D lattice model with
two Fibonacci anyons. Figure 4(c) provides the photographic
image of the fabricated circuit (L = 7) around the node V 5

3,5
with C = 1 µF, Rt = 1000
, RJ1 = 2618
, RJ2 = 2058
,
RJ3 = 1618
, and RF = 1500
 (F = 1.5). Details on the
sample fabrication are provided in Appendix H.

It is noted that the impedance response of a circuit node
is related to the local density of states of the mapped quan-
tum lattice model. Thus, to illustrate the eigenspectrum of
the circuit simulator, we measure impedance spectra of three
circuit nodes (V 5

3,4, V 4
3,5, and V 5

3,5), as illustrated by blue,
black, and red lines in Fig. 4(d). It is shown that there are
multiple impedance peaks of each circuit node, where each
peak can be mapped to an eigenenergy of the two-anyon
eigenspectrum. Interestingly, we can find that there are two
intervals (marked by dash lines) between adjacent peaks,
equaling δ f1 = 0.15 kHz and δ f2 = 0.08 kHz, respectively.
This is consistent with the existence of two Wannier-Stark
ladders in the mapped lattice model with δε1 = 1 and δε2 =
0.5. Compared with simulation results (see Appendix I), the
large width of measured impedance peak results from the
loss effect of the circuit sample. Moreover, the frequency
deviation of impedance peaks is attributed to disorder effect.
In addition, we also fabricate the other circuit simulator with
RF = 2000
, corresponding to F = 2. Figure 4(e) presents
the measured impedance spectra of Z5

3,4, Z4
3,5, and Z5

3,5. It can
be observed that the interval between two adjacent impedance
peaks is equally spaced with δ f = 0.159 kHz. This indicates
the existence of a single Wannier-Stark ladder in the mapped
lattice model, being consistent with theoretical analysis.

To further simulate the fusion-dependent BZO and BO
in our circuit simulators, we conduct time-domain measure-
ments of voltage dynamics. Firstly, we measure the voltage
evolution in the fabricated circuit with F = 1.5. The initial
voltage is set as V 5

3,5(t = 0) = 1 V. Figure 5(a) displays the
measured voltage signal of V 5

3,5(t ). It can be observed that
the oscillation period of the voltage signal equals 12.5 ms,

which is consistent with the simulation (see Appendix J).
The decay of the recovered voltage peak is due to loss
and disorder effects in the circuit sample. In addition, we
can define the effective occupation density at the ith site as
Pα

i = ∑L
l=1 |V α

i,l |2(i �= l, α = 4, 5). Figure 5(b) illustrates the
evolution of the effective occupation density of two fusion de-
grees, where black and red lines represent results of the fourth
and fifth fusion degrees, respectively. It is clearly shown that
the mutual transformation of two coupled fusion degrees ex-
ists during the BZO, being consistent with the theoretical
prediction.

Then we turn to the fabricated circuit with F = 2,
and the initial voltage is also given by V 5

3,5(t = 0) = 1 V.
Figure 5(c) displays the measured voltage signal of V 5

3,5(t ). It
can be observed that the voltage signal initially decreases, then
experiences a slight recovery, reaching its maximum value at
t = 6.284 ms. Thus, the period of BO is 6.284 ms, which is
also consistent with the simulation (see Appendix J). Simi-
larly, the deviation between the experimental and theoretical
waveforms is due to the loss and disorder effects in the circuit
sample. Additionally, we further present the evolution of the
effective occupation density in the circuit simulator, as shown
in Fig. 5(d). It is seen that there is a continuous transformation
between two fusion degrees, and the experimental measure-
ments are in accord with theoretical results. It is noted that
the above experiments only focus on BOs and BZOs of two
Fibonacci anyons. Based on the same method, we can also
design electric circuits to simulate fusion-dependent BZOs of
three Fibonacci anyons.

IV. CONCLUSIONS

In conclusion, we have proposed an approach to charac-
terize the non-Abelian fusion of Fibonacci anyons through
the utilization of BOs and BZOs. Specifically, we found
that, by manipulating external forces, it becomes feasible to
achieve either a dual or singular Wannier-Stack ladder of
two Fibonacci anyons. Remarkably, when a Wannier-Stack
ladder emerges alongside BOs, the corresponding values of
external force can precisely determine the golden ratio for
the fusion matrix. In addition, in scenarios involving three
Fibonacci anyons, a pair of internal energy levels arises under
a suitable value of external force leading to the manifesta-
tion of BZOs of three Fibonacci anyons. Furthermore, we
have experimentally fabricated RC circuits to simulate the
fusion-dependent BOs and BZOs of two Fibonacci anyons.
It is worth noting that, unlike electrons, Fibonacci anyons
do not exhibit a constant force in the presence of an elec-
tric field. It is possible to realize an effective external force
by linearly increasing the on-site potential along the lattice
model of anyons. The potential methods include the strain
engineering techniques [50–52] and designing the frequency
difference between two coupling optical fields in the cold-
atom system [53,54], which sustain non-Abelian anyons [2].
Our findings establish a profound connection between BOs
and the intricate realm of non-Abelian fusion and provide a
versatile platform for simulating a myriad of captivating phe-
nomena associated with the fascinating field of non-Abelian
physics.
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FIG. 5. Experimental simulation of the Bloch-Zener oscillation (BZO) and Bloch oscillation (BO) for two Fibonacci anyons by voltage
measurements. (a) The measured voltage signal of V 5

3,5 in the circuit simulator with F = 1.5. (b) The evolution of the effective occupation
density of two fusion degrees in the circuit simulator with F = 1.5. The black and red lines represent the fourth and fifth fusion degrees,
respectively. (c) The measured voltage signal of V 5

3,5 in the circuit simulator with F = 2. (d) The evolution of the effective occupation density
of two fusion degrees in the circuit simulator with F = 2. Here, the initial voltage is always set as V 5

3,5(t = 0) = 1 V.
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APPENDIX A: DETAILS ON BASIS VECTORS OF
THE SYSTEM WITH TWO FIBONACCI ANYONS

In this section, we provide a detailed explanation of
the basis vectors in our model consisting of two Fibonacci
anyons. Figure 6(a) illustrates the fusion tree for our 1D
lattice model (L = 5) with two Fibonacci anyons, denoted as
xi�{I, τ}. Due to the non-Abelian nature of their fusion, there
exist multiple possible fusion trees when the positions of these
anyons are fixed. As depicted in Figs. 6(b1)–6(b5), we present
five potential fusion trees corresponding to two Fibonacci
anyons located at the first and second sites, resulting
in five internal basis vectors of |x1, x2, x3, x4, x5, x6〉 =
|I, τ, I, I, I, I〉|I, τ, τ, I, I, I〉|τ, τ, I, I, I, I〉|τ, I, τ, I, I, I〉 and
| τ, τ, τ, τ, τ 〉 induced by non-Abelian fusion.

APPENDIX B: DETAILS ON THE DERIVATION OF THE
FUSION MATRIX FOR TWO FIBONACCI ANYONS

In this section, we give a detailed derivation of the fusion
matrix HJ . First, let us introduce what theℱmatrix is: a matrix
that describes the fusion properties of anyons. In a system
composed of multiple anyons, the Hilbert space resulting from
the fusion of anyons is independent of the order of fusion.
However, different fusion orders can lead to distinct basis vec-
tors for the system. The ℱ matrix is a unitary transformation
matrix that describes the relationship between basis vectors
resulting from different fusion orders. In the following, we
provide details on deriving the ℱ matrix.

In the arrangement of three particles from left to right, the
two leftmost particles fuse first and then fuse with the right-
most particle, as shown in Fig. 7(a), resulting in five different
fusion outcomes and five distinct basis vectors, denoted as
Basis 1. Similarly, if the two rightmost particles fuse first, as
shown in Fig. 7(b), there are also five possible fusion scenar-
ios, resulting in five basis vectors, denoted as Basis 2. The
transformation from Basis 1 to Basis 2 can be accomplished
using the ℱ matrix. In this case, the transformation between
different basis vectors can be described using the ℱ matrix,
as shown in Fig. 7(c). Here, [ℱi jk

m ]pq represents the matrix
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FIG. 6. (a) Fibonacci anyonic fusion trees with L = 5. (b1)–(b5) Five potential fusion trees corresponding to two Fibonacci anyons located
at the first and second sites.

element of the ℱ matrix, which can transform the fusion tree
with the first (i) and second ( j) anyons being fused initially to
the fusion tree with the second ( j) and third (k) anyons being
fused initially. Here, these two fusion trees can be expressed

as |[(i, j)p, k]
m
〉 and |[i, ( j, k)q]

m
〉. Thus, we have

|[(i, j)p, k]
m
〉 =

∑
q

[
ℱ

i jk
m

]
pq|[i, ( j, k)q]

m
〉. (B1)

FIG. 7. (a) Schematic diagram of the fusion trees with the leftmost two particles fuse first and then fuse with the rightmost particle.
(b) Schematic diagram of the fusion trees with the rightmost two particles fuse first and then fuse with the leftmost particle. (c) The
transformation between different basis states.
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FIG. 8. Schematic representation of the basis transformation resulting from the fusion process of two Fibonacci anyons.

It has been demonstrated that, if at least one of
four labels i, j, k, and m of [ℱi jk

m ]pq is a vacuum
state (I), as shown in Fig. 8(a), then we always have
[ℱIττ

I ]
τ I , [ℱτττ

I ]
ττ

, and [ℱIττ
τ ]ττ = 1. In this case, other val-

ues of [ℱi jk
m ]pq are all zero. In addition, when these four labels

of [ℱi jk
m ]pq are all Fibonacci anyons (τ ), as shown in Fig. 8(b),

the value of [ℱi jk
m ]pq depends on the detailed fusion role of

Fibonacci anyons. Next, we focus on the derivation the ℱ
matrix related to [ℱτττ

τ ]pq.
First, the ℱ matrix should be a unitary matrix with ℱℱ+ =

I. Thus, we have [
ℱ

τττ
τ

]2
II + [

ℱ
τττ
τ

]2
Iτ = 1, (B2)[

ℱ
τττ
τ

]
II

[
ℱ

τττ
τ

]
τ I + [

ℱ
τττ
τ

]
Iτ

[
ℱ

τττ
τ

]
ττ

= 0, (B3)[
ℱ

τττ
τ

]2
τ I + [

ℱ
τττ
τ

]2
ττ

= 1. (B4)

Then based on Eq. (B1), we have

| {τ, [τ, (τ, τ )I ]τ }I〉 = [ℱτττ
τ

]
II
| {τ, [(τ, τ )I , τ ]τ }I〉

+ [
ℱ

τττ
τ

]
Iτ |{τ, [(τ, τ )τ , τ ]τ }I〉. (B5)

Using the relationship of |[(τ, τ )τ , τ ]τ 〉 = |[τ, (τ, τ )τ ]τ 〉,
Eq. (B5) can be re-expressed as

| {τ, [τ, (τ, τ )I ]τ }I〉 = [ℱτττ
τ

]
II
| {τ, [(τ, τ )I , τ ]τ }I〉

+ [
ℱ

τττ
τ

]
Iτ

| {[τ, (τ, τ )τ ], τ }I〉 . (B6)

Applying Eqs. (B1) to (B6), we have

| {τ, [τ, (τ, τ )I ]τ }I〉
= [

ℱ
τττ
τ

]
II

∑
j

[
ℱ

τττ
τ

]
I j |{[(τ, τ ) j, τ ]

τ
, τ }

I
〉

+ [
ℱ

τττ
τ

]
Iτ

∑
j

[
ℱ

τττ
τ

]
I j |{[(τ, τ ) j, τ ]

τ
, τ }

I
〉

=
∑

j

([
ℱ

τττ
τ

]
II

[
ℱ

τττ
τ

]
I j + [

ℱ
τττ
τ

]
Iτ

[
ℱ

τττ
τ

]
τ j

)
× |{[(τ, τ ) j, τ ]

τ
, τ }

I
〉, (B7)

with j being either I or τ . In addition, we have

|{τ, [τ, (τ, τ )I ]τ }I〉 = |[(τ, τ )I , (τ, τ )I ]I〉
= |{[(τ, τ )I , τ ]τ , τ }I〉. (B8)

Comparing Eqs. (B7) and (B8), we can obtain[
ℱ

τττ
τ

]
II

[
ℱ

τττ
τ

]
II + [

ℱ
τττ
τ

]
Iτ

[
ℱ

τττ
τ

]
τ I = 1, (B9)[

ℱ
τττ
τ

]
Iτ

([
ℱ

τττ
τ

]
II + [

ℱ
τττ
τ

]
ττ

) = 0. (B10)

Similarly, we can obtain

|{τ, [τ, (τ, τ )τ ]I}τ 〉
=
∑

j

([
ℱ

τττ
τ

]
τ I

[
ℱ

τττ
τ

]
I j + [

ℱ
τττ
τ

]
ττ

[
ℱ

τττ
τ

]
τ j

)
× |{[(τ, τ ) j, τ ]

I
, τ }

τ
〉, (B11)

|{τ, [τ, (τ, τ )τ ]I}τ 〉 = |{[(τ, τ )τ , τ ]I , τ }τ 〉 (B12)

Finally, the pentagon diagram related to five different fu-
sion trees, as shown in Fig. 9, should also be applied to obtain
other required equations of matrix elements [ℱi jk

m ]pq.
The results obtained from the paths in the upper or lower

half of the pentagon diagram are the same ℱ2 = ℱ
3. From the

pentagon equation, we can obtain[
ℱ

τττ
τ

]
ττ

[
ℱ

τττ
τ

]
ττ

=
∑

e

[
ℱ

τττ
τ

]
eτ

[
ℱ

τττ
τ

]
ττ

[
ℱ

τττ
τ

]
τe

= [
ℱ

τττ
τ

]
Iτ

[
ℱ

τ Iτ
τ

]
ττ

[
ℱ

τττ
τ

]
τ I

+ [
ℱ

τττ
τ

]
ττ

[
ℱ

τττ
τ

]
ττ

[
ℱ

τττ
τ

]
ττ

. (B13)

This equation is known as the pentagon equation. It is
worth noting that, due to the fusion rules, the variable e
in Fig. 9 can take the values of either I or τ . Hence, we
have [

ℱ
τττ
τ

]2
ττ

= [
ℱ

τττ
τ

]
τ I

[
ℱ

τττ
τ

]
Iτ + [

ℱ
τττ
τ

]3
ττ

(B14)

094301-10



BLOCH OSCILLATIONS OF FIBONACCI ANYONS PHYSICAL REVIEW B 110, 094301 (2024)

FIG. 9. The pentagon diagram illustration.

Combining Eqs. (B2)–(B14), we can obtain detailed values
of [ℱτττ

τ ]pq as

[
ℱ

τττ
τ

]
ττ

= −φ−1,
[
ℱ

τττ
τ

]
II = φ−1,[

ℱ
τττ
τ

]
Iτ

= φ−1/2,
[
ℱ

τττ
τ

]
τ I

= φ−1/2, (B15)

where φ = (
√

5 + 1)/2 is the golden ratio. Thus, the matrix
form of the transformation ℱ matrix between the two sets of
basis vectors in Fig. 8 is given by

ℱ =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 φ−1 φ−1/2

0 0 0 φ−1/2 −φ−1

⎞⎟⎟⎟⎟⎠. (B16)

Using the ℱ matrix, we can further derive the fusion ma-
trix HJ . Here, we consider the case with L = 5, where two
Fibonacci anyons τ and three vacuum states I exist. Like the
Heisenberg interaction between spins, the interaction between
Fibonacci anyons can be expressed as

HFibonacci
Heisenberg = −J

∑
〈i j〉

𝒫
I
i j, (B17)

where 𝒫
I
i j is the projection operator acting on the fusion

outcome being I.
Now let us write the fusion Hamiltonian for two Fibonacci

anyon systems. First, we consider the scenario where two
Fibonacci anyons locate at first and second sites. The process
of five anyons fusing together is shown in Figs. 10(a)–10(e).
For this model, we consider long-range interactions, meaning
a tendency for all anyons to fuse into a vacuum state I, as
shown in Fig. 10(e). To achieve this, we need to perform
four basis transformations. The beginning basis is given by

|x1, x2, x3, x4, x5, x6〉 as

| Iτ IIII〉, |ττ IIII〉, | Iτττττ 〉, |τ Iτ III〉, |ττττττ 〉 .

(B18)

The ℱ1 matrix is written as

ℱ1 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 φ−1 φ−1/2

0 0 0 φ−1/2 −φ−1

⎞⎟⎟⎟⎟⎠, (B19)

changing |x1, x2, x3, x4, x5, x6〉 to the basis |x1, x̃2, x3, x4,

x5, x6〉 of

| IIIIII〉, |ττ IIII〉, | Iτττττ 〉, |τ Iττττ 〉, |ττττττ 〉.
(B20)

Then the ℱ2 matrix is written as

ℱ2 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠, (B21)

changing |x1, x̃2, x3, x4, x5, x6〉 to the basis |x1, x̃2, x̃3, x4,

x5, x6〉:
| IIIIII〉, |τττ III〉, | Iτττττ 〉, |τ IIτττ 〉, |ττττττ 〉.

(B22)

The ℱ3 matrix is written as

ℱ3 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠, (B23)
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FIG. 10. The fusion trees corresponding to a Fibonacci anyon at the first site and the other Fibonacci anyon at the second site. By applying
the ℱ1-symbol transformation, the fusion chain basis of (a) is transformed into the fusion chain basis of (b). By applying the ℱ2-symbol
transformation, the fusion chain basis of (b) is transformed into the fusion chain basis of (c). By applying the ℱ3-symbol transformation, the
fusion chain basis of (c) is transformed into the fusion chain basis of (d). By applying the ℱ4-symbol transformation, the fusion chain basis of
(d) is transformed into the fusion chain basis of (e). The label xl , xl−1 can be either the vacuum particle I or the Fibonacci anyon τ .

changing |x1, x̃2, x̃3, x4, x5, x6〉 to the basis |x1, x̃2, x̃3, x̃4,

x5, x6〉:

| IIIIII〉, |ττττ II〉, | Iτττττ 〉, |τ IIIττ 〉, |ττττττ 〉.
(B24)

The ℱ4 matrix is written as

ℱ4 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠, (B25)

changing |x1, x̃2, x̃3, x̃4, x5, x6〉 to the basis |x1, x̃2, x̃3, x̃4,

x̃5, x6〉:

| IIIIII〉, |τττττ I〉, | Iτττττ 〉, |τ IIIIτ 〉, |ττττττ 〉.
(B26)

Combined with the projector 𝒫I = diag(1, 0, 0, 1, 0), the
Hamiltonian matrix then becomes

HJ = −Jℱ1ℱ2ℱ3ℱ4𝒫
I
ℱ4ℱ3ℱ2ℱ1

= −J

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 φ−2 φ−3/2

0 0 0 φ−3/2 φ−1

⎞⎟⎟⎟⎟⎠. (B27)

Following the same process, we can also consider the sce-
nario where two Fibonacci anyons are at positions one and
three. For this model, we also need four basis transformations
to achieve the fusion of all anyons into a vacuum state I, as
shown in Figs. 11(a)–11(e). The beginning basis is given by
|y1, y2, y3, y4, y5, y6〉:
| Iττ III〉, |τττ III〉, | Iτττττ 〉, |τ IIτττ 〉, |ττττττ 〉 .

(B28)

The ℱ1 matrix is written as

ℱ1 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠, (B29)
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FIG. 11. The fusion trees corresponding to a Fibonacci anyon at the first site and the other Fibonacci anyon at the third site. By applying
the ℱ1-symbol transformation, the fusion chain basis of (a) is transformed into the fusion chain basis of (b). By applying the ℱ2-symbol
transformation, the fusion chain basis of (b) is transformed into the fusion chain basis of (c). By applying the ℱ3-symbol transformation, the
fusion chain basis of (c) is transformed into the fusion chain basis of (d). By applying the ℱ4-symbol transformation, the fusion chain basis of
(d) is transformed into the fusion chain basis of (e). The label yl , yl−1 can be either the vacuum particle I or the Fibonacci anyon τ .

changing the basis |y1, y2, y3, y4, y5, y6〉 to the basis |y1, ỹ2, y3,

y4, y5, y6〉 of

| Iττ III〉, |τττ III〉, | Iτττττ 〉, |ττ Iτττ 〉, |ττττττ 〉 .

(B30)

Then the ℱ2 matrix is written as

ℱ2 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 φ−1 φ−1/2

0 0 0 φ−1/2 −φ−1

⎞⎟⎟⎟⎟⎠, (B31)

changing |y1, ỹ2, y3, y4, y5, y6〉 to the basis |y1, ỹ2, ỹ3, y4,

y5, y6〉:
| Iτ IIII〉, |τττ III〉, | Iτττττ 〉, |ττ Iτττ 〉, |ττττττ 〉 .

(B32)

The ℱ3 matrix is written as

ℱ3 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠, (B33)

changing |y1, ỹ2, ỹ3, y4, y5, y6〉 to the basis |y1, ỹ2, ỹ3, ỹ4,

y5, y6〉:

| Iτ IIII〉, |ττττ II〉, | Iτττττ 〉, |ττ IIττ 〉, |ττττττ 〉 .
(B34)

The ℱ4 matrix is written as

ℱ4 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠, (B35)

changing |y1, ỹ2, ỹ3, ỹ4, y5, y6〉 to the basis |y1, ỹ2, ỹ3, ỹ4,

ỹ5, y6〉:

| Iτ IIII〉, |τττττ I〉, | Iτττττ 〉, |ττ IIIτ 〉, |ττττττ 〉.
(B36)
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FIG. 12. (a) Calculated eigenenergies ε1
mn related to the fusion

degree C1
m,n as a function of F. (b) Calculated eigenenergies ε4,5

mn

related to the fusion degree C4,5
m,n as a function of F. The blue and red

dots correspond to eigenenergies ε4,5
mn of F = 1.5 and 2, respectively.

Combined with the projector 𝒫I = diag(1, 0, 0, 1, 0), the
Hamiltonian matrix can be expressed as

HJ = − Jℱ1ℱ2ℱ3ℱ4𝒫
I
ℱ4ℱ3ℱ2ℱ1

= − J

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 φ−2 φ−3/2

0 0 0 φ−3/2 φ−1

⎞⎟⎟⎟⎟⎠. (B37)

Using the same method, regardless of the positions of the
two Fibonacci anyons, we can derive the fusion Hamiltonian.

APPENDIX C: EVOLUTION OF EIGENENERGIES
FOR TWO FIBONACCI ANYONS AS A FUNCTION

OF THE EXTERNAL FORCE F

In this section, we calculate the evolution of eigenenergies
ε1

mn related to the fusion degree C1
m,n as a function of F with

J = −1, Jt = −1, and L = 20, as shown in Fig. 12(a). It
is shown that the two-anyon eigenspectra can exhibit the
Wannier-Stark ladder ε1

mn = −J + (m + n)F at each value of
F, and the difference between two contiguous eigenenergies
equals δε1 = F . Similarly, the eigenspectrum of C2

m,n or C3
m,n

is also in the form of a Wannier-Stark ladder with ε2
mn = ε3

mn =
(m + n)F . It is noted that the appearance of a Wannier-Stark
ladder is expected to induce BO of two anyons. Next, we
calculate the variation of eigenspectrum ε4,5

mn as a function of
the external force, as shown in Fig. 12(b). Clearly, except for
the case of F = 2 (red nodes) with a single Wannier-Stack

appearing, there are always two staggered Wannier-Stack lad-
ders at other values of F, as seen in F = 1.5 (blue nodes).

APPENDIX D: DETAILS FOR THE DERIVATION OF THE
FUSION MATRIX OF THREE FIBONACCI ANYONS

In this part, let us derive the fusion Hamiltonian for the
three Fibonacci anyon systems. In Supplemental Material
Note 2, we know that the vacuum state I does not affect the
fusion Hamiltonian of the Fibonacci anyon system. Therefore,
here, we only consider the case of three Fibonacci anyons
without the vacuum state, as shown in Fig. 13(a). The process
of aggregating three Fibonacci anyons together is shown in
Fig. 13(a)–13(c). Here, we consider the fusion of three Fi-
bonacci anyons into a vacuum state I, as shown in Fig. 13(c).
To achieve this, we need to perform two basis transformations.
The beginning basis is given by |x1x2x3x4〉 as

| Iττ I〉 , | Iτ Iτ 〉 , | Iτττ 〉 , |τ Iτ I〉 , |τττ I〉 ,
|ττ Iτ 〉 , |τ Iττ 〉 , |ττττ 〉 . (D1)

The ℱ1 matrix is written as

ℱ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 φ−1 φ−1/2 0 0 0
0 0 0 φ−1/2 −φ−1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 φ−1 φ−1/2

0 0 0 0 0 0 φ−1/2 −φ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(D2)

changing the basis |x1x2x3x4〉 to the basis |x1x̃2x3x4〉 of

| Iττ I〉 , | IIIτ 〉 , | Iτττ 〉 , |τ Iτ I〉 , |τττ I〉 ,
|ττ Iτ 〉 , |τ Iττ 〉 , |ττττ 〉 . (D3)

Then the ℱ2 matrix is written as

ℱ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 φ−1 0 φ−1/2

0 0 0 0 0 0 1 0
0 0 0 0 0 φ−1/2 0 −φ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (D4)

FIG. 13. The process of three Fibonacci anyons fusing together. By applying the ℱ1-symbol transformation, the fusion chain basis of (a)
is transformed into the fusion chain basis of (b). By applying the ℱ2-symbol transformation, the fusion chain basis of (b) is transformed into
the fusion chain basis of (c). The label xl , xl−1 can be either the vacuum particle I or the Fibonacci anyon τ .
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changing the basis |x1x̃2x3x4〉 to the basis |x1x̃2x̃3x4〉:
| Iτ II〉 , | IIττ 〉 , | Iτττ 〉 , |τ Iτ I〉 , |τττ I〉 ,

|τ Iττ 〉 , |ττ Iτ 〉 , |ττττ 〉 . (D5)

Combined with the projector 𝒫
3,I = diag(1, 0, 0, 0,

0, 1, 0, 0), the Hamiltonian matrix then becomes

H3,J = −J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 φ−2 φ−2 −φ−5/2

0 0 0 0 0 φ−2 φ−2 −φ−5/2

0 0 0 0 0 −φ−5/2 −φ−5/2 −φ−3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(D6)

APPENDIX E: THE TIME-DEPENDENT SCHRÖDINGER
EQUATION OF THREE FIBONACCI ANYONS

In this part, we give the evolution equation for the ampli-
tudes Cα

m,n,q of three Fibonacci anyons. Here, Cα
m,n,q is used to

represent the probability amplitude of the αth fusion degree
when the first anyon is at position m, the second anyon is
at position n, and the third anyon is at position q. The evo-
lution equation for the amplitude Cα

m,n,q obtained from the
Schrödinger equation i∂t |ψ〉 = Ĥ |ψ〉 (h̄ = 1) is as follows:

i
d

dt
ψm,n,q = H3,t [ψm±1,n,q + ψm,n±1,q + ψm,n,q±1]

+ [H3,J + F (m + n + q)I8×8]ψm,n,q, (E1)

with ψm,n,q = [C1
m,n,q,C2

m,n,q,C3
m,n,q,C4

m,n,q,C5
m,n,q,C6

m,n,q,

C7
m,n,q,C8

m,n,q]T . In the case of the three Fibonacci anyon
system, it is observed that there exist eight fusion degrees.

APPENDIX F: EIGENSPECTRA OF THREE FIBONACCI
ANYONS AND THE ANALYSIS OF THE OVERALL
OSCILLATION PERIOD WITH THREE INTERNAL

ENERGY LEVELS

In this part, our analysis primarily concentrates on the
eigenspectra of three Fibonacci anyons and the overall oscilla-
tion period with three internal energy levels. The eigenvalues
of

H6,7,8
3,J = −J

⎛⎝ φ−2 φ−2 −φ5/2

φ−2 φ−2 −φ−5/2

−φ−5/2 −φ−5/2 −φ−3

⎞⎠
equal ε1 = −0.8937, ε2 = 0, and ε3 = 1.4216, making the
internal fusion energy levels become δε1

f = 0.8937 and δε2
f =

1.4216. In this case, two staggered Wannier-Stack ladders
with energy gaps being 	E1 = F−δε2

f = δε1
f and 	E2 =

F−δε1
f = δε2

f can appear with F = 2.3153. To elucidate this
phenomenon further, Fig. 14 illustrates the eigenenergies of
three Fibonacci anyons at various values of F with J = −1
and Jt = −1. It is shown that two staggered Wannier-Stack
ladders appear at F = 2.3153 (marked by green dots), be-
ing consistent with the above discussion. For other values

FIG. 14. Calculated eigenenergies ε678
m,n,q related to the fusion de-

gree C678
m,n,q as a function of F.

of F, the system possesses three internal energy levels, and
their oscillation periods should be reconstructed by three pe-
riods related to these energy levels. Hence, if the external
force satisfies the relationship of F > 2.3152, three distinct
Wannier-Stack ladders with energy gaps being 	E1 = δε1

f =
0.8937, 	E2 = δε2

f = 1.4216, and 	E3 = F − (δε1
f + δε2

f )
are obtained. If 2.3152 > F > 0.8937, energy gaps of three
distinct Wannier-Stack ladders are 	E1 = F , 	E2 = F−δε1

f ,
and 	E3 = δε2

f . If F < 0.8937, energy gaps of three distinct
Wannier-Stack ladders are 	E1 = δε1

f , 	E2 = F−δε1
f , and

	E3 = (δε1
f + δε2

f ) − F . The three subperiods of the system

are T1 = 2π
	E1

, T2 = q 2π
	E3

, and T3 = 2π
	E3

. Therefore, the oscil-
lation period of the three Fibonacci anyon system should be
the least common multiple of T1, T2, and T3.

APPENDIX G: DETAILS OF THE DESIGNED RC CIRCUIT
AND DERIVATION OF THE CIRCUIT EIGENEQUATIONS

In this section, we present details of the designed RC cir-
cuit and the derivation of the circuit eigenequations. Circuit
nodes V 4

m,n and V 5
m,n are grounded using a capacitor C and

an INIC with effective resistance Rm,n, while circuit nodes
V ′4

m,n and V ′5
m,n are grounded using a capacitor C and a reg-

ular resistor R′
m,n. They are respectively marked with green

and pink dashed boxes in Fig. 15(a). By appropriately set-
ting the grounding INICs (resistances) as 1

R4
m,n

= 4 + 1
RJ1

+
1

RF (m+n) [ 1
R5

m,n
= 4 + 1

RJ3
+ 1

RF (m+n) ] and grounding resistances

as 1
R′4

m,n
= 4 + 1

RJ1
+ 1

RF (m+n) [ 1
R′5

m,n
= 4 + 1

RJ3
+ 1

RF (m+n) ], this

satisfies the condition that the diagonal elements of the circuit
Hamiltonian

 = i

(
0 −H
H 0

)
are zero. The designed INID for achieving the grounding of
node V α

m,n (Rm,n), single-particle hopping of two Fibonacci
anyons (Rt ), coupled interactions between the fourth and fifth
fusion degrees (RJ2 ), as well as self-coupling and external
forcing [RJ1 (RJ3 ) + RF (m + n)] is depicted in Fig. 15(b) with
arrows in green, black, orange, and blue, respectively. In
Figs. 15(c) and 15(d), we provide complete photographs of
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FIG. 15. (a) Schematic diagram of the grounding connection in the designed resistor-capacitor circuit. In the pink box are the grounding
connections for circuit nodes V 4

m,n and V 5
m,n. In the green box are the grounding connections for f circuit nodes V ′4

m,n and V ′5
m,n. (b) Internal

connection structure of negative impedance converters (INICs). The photographic image of the fabricated circuit (L = 7) with (c) F = 1.5 and
(d) F = 2.

the experimental circuits with external forces of 1.5 and 2, respectively. The type of op-amp is LT1363, in which the value of
R0 = 100
.

Next, we give a detailed derivation of the circuit eigenequation. Carrying out Kirchhoff’s law on circuit nodes of V 4
m,n, V 5

m,n,
V ′4

m,n, and V ′5
m,n, we get the following equations:

C
dV 4

m,n

dt
= 1

Rt

{(
V ′4

m,n−1 − V 4
m,n

)+ (
V ′4

m,n+1 − V 4
m,n

)+ (
V ′4

m−1,n − V 4
m,n

)+ (
V ′4

m+1,n − V 4
m,n

)+ V ′5
m,n − V 4

m,n

RJ2

+
[

1

RF (m + n)
+ 1

RJ1

](
V ′4

m,n − V 4
m,n

)− V 4
m,n

R4
m,n

}
, (G1)

C
dV 5

m,n

dt
= 1

Rt

{(
V ′5

m,n−1 − V 5
m,n

)+ (
V ′5

m,n+1 − V 5
m,n

)+ (
V ′5

m−1,n − V 5
m,n

)+ (
V ′5

m+1,n − V 5
m,n

)+ V ′4
m,n − V 5

m,n

RJ2

+
[

1

RF (m + n)
+ 1

RJ3

](
V ′5

m,n − V 5
m,n

)− V 5
m,n

R5
m,n

}
, (G2)

C
dV ′4

m,n

dt
= − 1

Rt

{(
V 4

m,n−1 − V ′4
m,n

)+ (
V 4

m,n+1 − V ′4
m,n

)+ (
V 4

m−1,n − V ′4
m,n

)+ (
V 4

m+1,n − V ′4
m,n

)+V 5
m,n − V ′4

m,n

RJ2

+
[

1

RF (m + n)
+ 1

RJ1

](
V 4

m,n − V ′4
m,n

)− V ′4
m,n

R′4
m,n

}
, (G3)

C
dV ′5

m,n

dt
= − 1

Rt

{(
V 5

m,n−1 − V ′5
m,n

)+ (
V 5

m,n+1 − V ′5
m,n

)+ (
V 5

m−1,n − V ′5
m,n

)+ (
V 5

m+1,n − V ′5
m,n

)+V 4
m,n − V ′5

m,n

RJ2

+
[

1

RF (m + n)
+ 1

RJ3

](
V 5

m,n − V ′5
m,n

)− V ′5
m,n

R′5
m,n

}
. (G4)
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Simplifying the above Eqs. (G1)–(G4), we can obtain

dV 4
m,n

dt
= 1

CRt

{[
V ′4

m,n−1 + V ′4
m,n+1 + V ′4

m−1,n + V ′4
m+1,n

]+ 1

RJ2

V ′5
m,n+

[
1

RF (m + n)
+ 1

RJ1

]
V ′4

m,n

−
[

4 + 1

RF (m + n)
+ 1

RJ1

− 1

R4
m,n

]
V 4

m,n

}
, (G5)

dV 5
m,n

dt
= 1

CRt

{[
V ′5

m,n−1 + V ′5
m,n+1 + V ′5

m−1,n + V ′5
m+1,n

]+ 1

RJ2

V ′4
m,n+

[
1

R5
F (m+n)

+ 1

RJ3

]
V ′5

m,n

−
[

4 + 1

RF (m + n)
+ 1

RJ3

− 1

R5
m,n

]
V 5

m,n

}
, (G6)

dV ′4
m,n

dt
= 1

CRt

{
−[V 4

m,n−1 + V 4
m,n+1 + V 4

m−1,n + V 4
m+1,n

]− 1

RJ2

V 5
m,n−

[
1

RF (m + n)
+ 1

RJ1

]
V 4

m,n

−
[
−4 − 1

RF (m + n)
− 1

RJ1

+ 1

R′4
m,n

]
V ′4m,n

}
, (G7)

dV ′5
m,n

dt
= 1

CRt

{
−[V 5

m,n−1 + V 5
m,n+1 + V 5

m−1,n + V 5
m+1,n

]− 1

RJ2

V 4
m,n−

[
1

R5
F (m+n)

+ 1

RJ3

]
V 5

m,n

−
[
−4 − 1

RF (m + n)
− 1

RJ3

+ 1

R′5
m,n

]
V ′5

m,n

}
. (G8)

In this case, the equation of the voltage evolution can be derived as

d

dt
Vm.n = 1

CRt

{
H′

t [V
′
m±1.n + V′

m,n±1] +
[

H′
J + 1

RF (m + n)
I2×2

]
V′

m,n

}
, (G9)

d

dt
V′

m.n = − 1

CRt

{
H′

t [Vm±1.n + Vm,n±1] +
[

H′
J + 1

RF (m + n)
I2×2

]
Vm,n

}
, (G10)

with Vm.n = [V 4
m,n, V 5

m,n]
T

, V′
m.n = [V ′4

m,n, V ′5
m,n]T , H′

t = I2×2,
and

H′
J =

(
1

RJ1

1
RJ2

1
RJ2

1
RJ3

)
.

In this case, the circuit eigenequation can be written
in a matrix form of i∂t |V(t)〉 = �|V(t )〉, with |V(t )〉 =
[V 4

1,2(t ),V 5
1,2(t ), . . . ,V 4

L−1,L(t ),V 5
L−1,L(t ),V ′4

1,2(t ),V ′5
1,2(t ), . . . ,

V ′4
L−1,L(t ),V ′5

L−1,L(t )]T and

� = i

(
0 H

−H 0

)
.

Here, H can be mapped to the Hamiltonian matrix of fourth
and fifth fusion degrees for two Fibonacci anyons if the
circuit elements satisfy the following relationships of F =

1
CRt RF (m+n) , φ−2 = 1

CRt RJ1
, φ−3/2 = 1

CRt RJ2
, and φ−1 = 1

CRt RJ3
.

It is worth noting that the voltage equation in the time domain
corresponds to the extended time-dependent Schrödinger
equation of two Fibonacci anyon systems expressed as

i∂t

(
C
C′

)
= He

(
C
C′

)
, (G11)

with C=[C4
1,2,C5

1,2, . . . ,C4
L−1,L,C5

L−1,L]
T

, C′=[C′4
1,2,C′5

1,2, . . .,

C′4
L−1,L,C′5

L−1,L]T , and

He = i

(
0 H

−H 0

)
.

It is worth knowing that, if we can obtain the evolution of
the state under the action of He, we can derive the evolution
process of the target initial state under the action of H. This is
because we can expand H into the forms of Ha and He:

Ha =
(

H 0
0 −H

)
, He =

(
0 iH

−iH 0

)
. (G12)

Here, Ha and He have the same eigenvalues:

N−1HeN = M−1HaM =

⎡⎢⎣λ1 · · · 0
...

. . .
...

0 · · · λn

⎤⎥⎦, (G13)

where λ1 to λn are eigenvalues of Ha and He, and M =
[W1 W2 . . . Wn] and N = [W ′

1 W ′
2 . . . W ′

n] are the matrixes
composed of eigenvectors Wi and W ′

i of Ha and He, respec-
tively. Hence, Ha and He can be transformed into each other
P−1HaP = He, with

P = MN−1. (G14)
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FIG. 16. The simulated impedance spectra of Z5
3,4, Z4

3,5, and Z5
3,5 for circuit simulators (L = 7) with (a) F = 1.5 and (b) F = 2. The sum of

simulated impedance spectra for 18 circuit nodes (from Z4
12,5 to Z5

15,7) of circuit simulators (L = 20) with (c) F = 1.5 and (d) F = 2.

The time-dependent Schrödinger equation of two anyons is
expressed as

i∂tψ = Hψ. (G15)

Let the state ψ be extended to ϕ = (ψ 0)T , and we can
write the time-dependent Schrödinger equation of extended
Hamiltonian Ha as

i∂t

(
ψ

0

)
= Haϕ =

(
H 0
0 −H

)(
ψ

0

)
=
(

Hψ

0

)
. (G16)

The state ψ also evolves under the Hamiltonian H . Then
let φ = P−1ϕ, and we have

i∂t P
−1ϕ = P−1HaPP−1ϕ = HeP−1ϕ. (G17)

Thus, the state φ evolves under the Schrödinger equation with
the Hamiltonian He:

i∂tφ = Heφ. (G18)

Therefore, the extended time-dependent Schrödinger equation
can simulate the behavior of two Fibonacci anyon systems.

In addition, the eigenfrequencies in the circuit correspond
strictly to the eigenvalues in the lattice system. By assum-
ing the harmonic oscillation of voltage signals, we have

Vm,n(t) = Vm,neiwt . Submitting it into Eqs. (G9) and (G10),
we have

iwVm.n = 1

CRt

{
H′

t [V
′
m±1.n + V′

m,n±1]

+
[

H′
J + 1

RF (m + n)
I2×2

]
V′

m,n

}
, (G19)

iwV′
m,n = − 1

CRt

{
H′

t [Vm±1.n + Vm,n±1]

+
[

H′
J + 1

RF (m + n)
I2×2

]
Vm,n

}
, (G20)

which can be expressed as

RtCω

(
Vm,n

V′
m,n

)
=
(

0 −iH
iH 0

)(
Vm,n

V′
m,n

)
. (G21)

Particularly, the steady-state eigenequation of the circuit
simulator can also be mapped to the extended steady-state
Schrödinger equation of the fourth and fifth fusion degrees
for two Fibonacci anyons:

ε

(
C
C′

)
= He

(
C
C′

)
. (G22)

In this case, Eq. (G21) has the same form as the eigenequa-
tion of Eq. (G22). Hence, the eigenenergy of two Fibonacci
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FIG. 17. The simulated voltage signals of V 5
3,5 in the designed resistor-capacitor circuits (L = 7) with (a) F = 1.5 and (b) F = 2. The

simulated voltage signals of V 5
6,13 in the designed resistor-capacitor circuits (L = 20) with (c) F = 1.5 and (d) F = 2.

anyons are directly mapped to the eigenfrequency of the cir-
cuit as ε = RtCω = 2π f RtC.

APPENDIX H: SAMPLE FABRICATIONS
AND CIRCUIT MEASUREMENTS

The circuit design is conducted using JLCPCB’s EDA pro-
gram software, involving engineering suitable PCB schemat-
ics, stack-up layout, internal layer design, and grounding
design. The designed PCB consists of eight layers, in-
cluding two power layers (±15 V), two grounding layers,
and all internal layers connected through blind holes. To
implement the INIC, we utilize the LT1363 operational am-
plifier (OpAmp), which is powered by external voltages of
±15 V. All capacitors and resistors are packaged in 0603 form
factor for compactness. Additionally, a WK6500B impedance
analyzer is employed to select circuit elements with high accu-
racy (disorder strength of only 1%). The values of all circuit
elements are sufficiently large to neglect any influence from
effective resistances or parasitic capacitances in the circuit
sample. As for the time-domain voltage measurement, one
circuit node needs to be excited, and we set the input signal
of this circuit node to 1 V. In this case, when initializing the
circuit in experiments, each node should be connected to an
external voltage signal of 1 or 0 V. We use the relay model
G6K (Omron) to connect the circuit nodes and the external
voltage sources. The relays are controlled by a mechanical

switch through a 5 V signal. With this setting, external signals
can be removed simultaneously. Thus, we connect the nodes
to an oscilloscope via coaxial cables and measure the voltage
signal after turning off the switch. Additionally, a 4-channel
oscilloscope DSO7104B (Agilent Technologies) is used in
experiments to collect time-domain voltage signals. For each
circuit, we conducted four rounds of measurements, with at
least 20 measurements per round, to verify the reproducibility
of the obtained results.

APPENDIX I: SIMULATION RESULTS OF IMPEDANCE
RESPONSES FOR CIRCUIT SIMULATORS

In this section, we give the simulations results of
impedance responses for circuit simulators using the LTSpice
software. The circuit dimension designed here is L = 7, which
is equivalent to the dimensions used in Fig. 4(c) in the main
text. First, we simulate the circuit simulator with RF = 1500


(F = 1.5). Impedance spectra of three circuit nodes Z5
3,4,

Z4
3,5, and Z5

3,5 are illustrated by blue, black, and red lines in
Fig. 16(a). There are two intervals between adjacent peaks,
equaling δ f1 = 0.16 kHz and δ f2 = 0.08 kHz, respectively.
This is consistent with the existence of two Wannier-Stark
ladders in the mapped lattice model with δε1 = 1 and δε2 =
0.5. We also simulate the other circuit with RF = 2000
,
corresponding to F = 2. Figure 16(b) presents the simulated
impedance spectra of Z5

3,4, Z4
3,5, and Z5

3,5. We can observe the
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interval between two adjacent impedance peaks are equally
spaced with δ f = 0.16 kHz. This phenomenon indicates the
existence of a single Wannier-Stark ladder in the mapped
lattice model, being consistent with theoretical analysis with
δε = 1. It is important to note that a little deviation of the
frequencies of some peaks is due to the finite size effect.

Then we showcase the simulated impedance spectrum of
the circuit simulator with L = 20. Figures 16(c) and 16(d)
show summed impedances of a total of 18 circuit nodes, from
Z4

12,5 to Z5
15,7, with RF = 1500
 and 2000
, respectively. It is

shown that there is no deviation of frequency peaks resulting
from the finite size effect.

APPENDIX J: SIMULATED VOLTAGE DYNAMICS OF THE
TWO FIBONACCI ANYON CIRCUIT SIMULATOR

In this section, we will show the simulation of voltage
dynamics of the two Fibonacci anyon circuit simulator us-
ing LTSpice software. The size of designed circuits is set as
L = 7, which is equivalent to the dimensions used in Fig. 5(a)
in the main text. First, we simulate the voltage evolution
in the designed circuit with F = 1.5. The initial voltage is
set as V 5

3,5(t = 0) = 1 V. Figure 17(a) shows the simulated

voltage signal of V 5
3,5. It can be observed that the oscillation

period of the voltage signal equals 12.56 ms. Then we turn
to the designed circuit with F = 2, and the initial voltage is
also given by V 5

3,5(t = 0) = 1 V. Figure 17(b) displays the
simulated voltage signal of V 5

3,5(t ). Next, we calculate the time
dynamics of the circuit with F = 2, where the initial voltage
distribution is given by V 5

3,5(t = 0) = 1V. The result shows
the oscillation period of the voltage signal equals 6.28 ms.

To evaluate the influence of the finite size effect, we
simulate the voltage dynamics when the size of the circuit
simulator is increased. Here, the size of the designed circuits
is set as L = 20. First, we simulate the voltage evolution
in the designed circuit with F = 1.5. The initial voltage is
set as V 5

6,13(t = 0) = 1 V. Figure 17(c) displays the measured
voltage signal of V 5

6,13. We can find the oscillation period of the
voltage signal equals 12.56 ms. Next, we turn to the designed
circuit with F = 2, and the initial voltage is also given by
V 5

6,13(t = 0) = 1 V. Figure 17(d) shows the simulated voltage
signal of V 5

3,5. It can be observed that the oscillation period of
the voltage signal equals 6.28 ms. From the above results, we
can see that the oscillation periods are nearly unchanged with
L = 7 and 20.
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