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Effect of depolarizing field on domain structure of an improper ferroelectric
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We show that, contrary to common belief, the depolarizing electric field generated by bound charges at thin-
film surfaces can have a substantial impact on the domain structure of an improper ferroelectric with topological
defects. In hexagonal-manganite thin films, we observe in phase-field simulations that through the action of
the depolarizing field, (1) the average magnitude of the polarization decreases, (2) the local magnitude of the
polarization decreases with increasing distance from the domain walls, and (3) there is a significant alteration
of the domain-size distribution and average domain size, which is visualized with the pair-correlation function.
We conclude that, in general, it is not appropriate to ignore the effects of the depolarizing field for thin-film
ferroelectrics.
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I. INTRODUCTION

Thin-film ferroelectric materials are promising ingredients
for a new generation of nanoelectronic devices, includ-
ing memristors [1], magnetoelectronic storage [2,3], and
rewritable circuits of conducting domain walls [4]. All these
functionalities critically depend on the distribution of ferro-
electric domains. Here, we distinguish between two classes
of ferroelectric materials with fundamentally different types
of domain formation and distribution. These are proper ferro-
electrics, where the primary order of the system is the electric
polarization, and improper ferroelectrics, where the primary
order of the system is associated with magnetic or distortive
order that drives the electric polarization as a secondary effect.

For thin films of proper ferroelectrics, the depolarizing
field, a static electric field that is generated by the bound
charges at the surfaces and interfaces of the film, is a major
driving force behind domain formation. Without the electro-
static effect of the depolarizing field, the minimal energy state
for proper ferroelectric thin films would be a single-domain
configuration. This contrasts with the case of improper ferro-
electrics, where the polar domain structure commonly follows
the domain structure of the primary distortive or magnetic
order [5,6]. A depolarizing field is also present, but because
of the dominant influence of the primary order, its influence is
generally neglected.

In this work, we predict that even in improper ferroelectrics
and despite the presence of topological defects pinning the
domains, the depolarizing field can have an unexpected,
significant impact on the domain structure. We perform phase-
field simulations of freestanding thin films of hexagonal
manganites, lattice distortively driven improper ferroelectrics,
and show that the average magnitude of the spontaneous
electric polarization is lowered by the depolarizing field.
Remarkably, the magnitude of the polarization drops with
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increasing distance from the domain walls. Furthermore, the
Fourier-transformed intensities and the cross-correlation func-
tion reveal a significant effect on the domain-size distribution.
Both change from a two-dimensional Gaussian function in the
absence of a depolarizing field to donutlike distribution in its
presence. This demonstrates that it is not generally appropriate
to ignore the depolarizing field in thin-film improper ferro-
electrics.

II. THE LANDAU EXPANSION
OF HEXAGONAL MANGANITES

The spontaneous long-range order of hexagonal mangan-
ites is driven by an inversion-symmetry-breaking tilt of its
MnO5 bipyramids and is visualized in Fig. 1(a). This primary
order is described by a two-dimensional order parameter Q,
which corresponds to the zone-boundary mode K3 [7]. In
polar coordinates, the radius corresponds to Q = |Q|, and the
azimuthal angle of the lattice-trimerizing bipyramidal MnO5

tilt corresponds to �. This primary structural order is then
coupled to a secondary ferroelectric order, which is described
by a displacement field associated with a one-dimensional
order parameter P . The displacement field corresponds to the
polar mode �−

2 , and the order parameter P corresponds to
the amplitude of the associated phonon, with a spontaneous
polarization Ps ∝ P .

The Landau free energy for this order is [5]

F = a

2
Q2 + b

4
Q4 + Q6

6
(c + c′ cos 6�)

− gQ3 P cos3� + g′

2
Q2P2 + aP

2
P2

+ 1

2

∑

i=x,y,z

[
si

Q(∂iQ∂iQ + Q2∂i�∂i�) + si
P ∂iP∂iP

]
.
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FIG. 1. (a) Visualization of the structural order of hexagonal
manganites. The order is given by a tilt of the MnO5 bipyramids
parametrized by the zone-boundary mode K3. The two-dimensional
order parameter is illustrated in polar coordinates, with Q being
the amplitude and � being the azimuthal angle of the MnO5 tilt.
Three neighboring bipyramids form a trimer and tilt towards a com-
mon center, which triples the unit cell [8]. (b) Visualization of the
deformation of the MnO5 bipyramids during a transition from the
paraelectric to the ferroelectric phase. Small asymmetries in this
process cause polarization onset [7]. (c) Schematic drawing of a
conceptual distortive-ferroelectric domain structure. Topologically
protected vortices are formed by the six domain states of the struc-
tural order. The circular symbols denote the improper ferroelectric
out-of-plane polarization, which follows an alternating pattern.

The first line in Eq. (1) corresponds to the Landau ex-
pansion of the primary structural order, and the second line
corresponds to the coupling between the primary structural
and the secondary ferroelectric order. The third line contains
stiffness terms that result in energy penalties for domain walls
(see the Appendix for more details). A schematic domain
pattern resulting from the Landau expansion in Eq. (1) is vi-
sualized in Fig. 1(c). There are six trimerization-polarization
domain states, and the associated domains form vortices of six
domains in a sequence of these states and with an alternating
polarization along the hexagonal axis. The vortices are topo-
logical defects because they are robust to local perturbations
of the domain structure and can be created and annihilated
only in pairs [5].

To model the effect of the electrostatic interaction, we
include an additional term in Eq. (1) [9–11], given by

Felectrostatic = −PsE , (2)

where the electric field E is obtained from Gauss’s law,

∇E = −∇Ps

εbε0
. (3)

Here, ε0 is the vacuum permittivity, and εb is the back-
ground dielectric constant [12,13]. The background dielectric
constant contains the electronic dielectric response and the
dielectric response of all normal modes in the system with
the exception of the mode describing the polarization P. Here,
we choose a background dielectric constant of εb = 1 to make
the electrostatic effects more evident. As shown in the Sup-
plemental Material [14], increasing the background dielectric
constant to the experimental value of εb = 8.9 [10,15] merely
decreases the effect of the depolarizing field and does not
affect the results qualitatively. On the practical side, choosing
the value εb = 1 permits us to reduce the size of our computa-
tional mesh and thus keeping the required computational time
within feasible limits.

The model in Eq. (1) is derived for bulk crystals. Here,
we adapt it to the description of thin films by using peri-
odic boundary conditions in the in-plane directions and open
boundary conditions in the out-of-plane direction, as pre-
viously done in Ref. [9]. Furthermore, we assume that the
system is a perfect insulator and that it is devoid of any free
charges. We choose open boundary conditions over closed-
circuit boundary conditions to bring out the effects of the
electrostatic interaction as clearly as possible and to avoid the
significant complexity and computational time of simulating
free charge carriers and charge currents [11].

As mentioned, we use phase-field simulations to obtain
the domain structure exhibited by the hexagonal manganites
[16–19]. In phase-field simulations, the mesoscopic order and
domain pattern of the system are described as a continuous
field of order parameters. This field is initialized with random
values. The subsequent evolution of the system is given by the
Ginzburg-Landau equation

∂η

∂t
= −δF

δη
, (4)

where η is an order parameter, here Q, �, or P . The ex-
pression δ/δη corresponds to a functional derivative. The
electrostatic field of the system is computed from Gauss’s law
[10]. Finally, we compute the Fourier-transformed intensity
of the polarization-density field by taking the square of the
Fourier transform of the system, in equivalence to scattering
experiments. The Fourier-transformed intensity then gives us
insight on the domain-size distribution. The pair correlation
of the system is computed from an inverse transform of the
intensity to derive typical domain sizes. A detailed description
of the computational details and data analysis can be found
in the Appendix. As shown in the Supplemental Material
[14], the FWHM of the central peak of the pair correlation
is proportional to the average domain size [20].

III. RESULTS

The electrostatic interaction can be divided into two con-
tributions. Bound charges at the surface of the thin film give
rise to the depolarizing field, which is distinguished from the
electric field generated by bound charges at the domain walls.
We treat the effect of the depolarizing field in Figs. 2–4. The
effect of bound charges at the domain walls is treated in Figs. 5
and 6.
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FIG. 2. Dependence of improper-ferroelectric order on depolar-
izing field, visualized with phase-field simulations in real space.
(a) Domain pattern for a simulation that ignores the electrostatic
interaction. (b) Domain pattern for a simulation that includes the
electrostatic interaction assuming a background dielectric constant
εb = 1 (see the text regarding this choice). (c) Close-up of the green
paths through (a) (left) and (b) (right). (d) Domain size along the
green path for the simulations without (top) and with (bottom) the
depolarizing field. (e) and (f) Polarization profile along a section,
shown by the yellow lines in (a) and (b). The gradient and resulting
dip in polarization are clearly visible in (f).

FIG. 3. Histogram of the polarization per point in the computa-
tional mesh for a simulation (a) without and (b) with consideration
of the electrostatic term. The means of positive and negative values
are shown by red vertical bars. For both histograms, the data from
Fig. 2 have been used. The average magnitude of the polarization is
lower in (b) compared to (a), which illustrates the influence of the
depolarizing field.

Figure 2 shows domain patterns obtained by simulations
with and without including the electrostatic interactions, with
both cases starting from the same initial configuration. In
Figs. 2–4, only the depolarizing field contributes to electro-
static interactions because the domain walls are parallel to
the polarization and harbor no bound charges. A number of
differences are immediately visible. Without consideration of
electrostatic effects, our simulation results in typical domain
patterns of hexagonal manganites [5,21]. The magnitude of
the polarization is constant all across the expansion of the
domain outside the region of the domain walls [9,19]. In the
simulation including the electrostatic interactions in Eq. (1),
however, there is a decline in polarization that deepens the
farther the distance to the domain walls is. This is further
illustrated in the polarization profiles in Figs. 2(e) and 2(f)
along the yellow cuts in Figs. 2(a) and 2(b). This remarkable
variation of the polarization distribution is a consequence of
the nonlocal nature of the electrostatic interaction. Close to a
domain wall, the electrostatic contributions from the domains
on the two sides of the domain wall cancel partially, so the net
electrostatic field is weak, resulting in a higher polarization
magnitude. If, on the other hand, a point is far away from
a domain wall, the electrostatic field is increased, resulting
in the observed decline in polarization away from the walls
with a dip in the approximate center of the domain. In Fig. 3,
we present the distribution of the local polarization of our
system. Comparing Figs. 3(a) and 3(b), we can see that the
electrostatic interaction lowers the average magnitude of the
polarization of the system but does not completely suppress
it.

In Fig. 4, the Fourier-transformed intensities and the pair
correlation of the polarization are computed by summing the
result of 20 simulations with different initial fields. We further
perform data augmentation. This computation is equivalent to
the simulation of a scattering experiment, and its technical
details are described in the Appendix. Figures 4(a)–4(c) show
the exponentially decaying intensity and pair correlation of
a system that does not include the electrostatic interaction.
The intensity is indicative of a broad domain-size distribution
that is typical for hexagonal manganites in bulk [21] or for
thin films for which the depolarizing field is fully screened
[19,22]. This contrasts strikingly with the intensity distribu-
tion in simulations that include the electrostatic interaction.
The observed ring in Fig. 4(d) and the pair correlation in
Figs. 4(e) and 4(f), which takes the form of a spherical wave,
reveal a narrowing of the domain-size distribution, whereas a
smaller width of the central peak corresponds to a decrease in
the average domain size, an aspect that is further discussed
in the Supplemental Material [14]. This change in the do-
main patterns is further illustrated in real space in Fig. 2(c),
which shows an illustrative path exemplifying the change in
the shape of the domains, and in Fig. 2(d), which shows the
associated change in domain-size distribution.

Finally, in Fig. 5 we show that the electric field generated
by bound charges at domain walls tends to align domain walls
parallel to the z axis. Figure 5(a) shows a simulation of a
film that is thicker than in the previous simulations to the
extent that domain walls are no longer exclusively aligned
parallel to the z direction. Instead, they start to bend towards
the xy plane, which indicates a crossover from the thin-film
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(a)

FIG. 4. Fourier-transformed intensity and pair correlation of 20 combined simulations for (a)–(c) systems without electrostatic interaction
and (d)–(f) systems with electrostatic interaction. (a) Fourier-transformed intensity and (b) and (c) pair correlation with two scaling ranges.
(d)–(f) Same as (a)–(c), but with electrostatic interaction for εb = 1. Note that data augmentation was used for this analysis (see the Appendix).
The anisotropy of the plot results from the quadratic simulation mesh and the artifacts its size limitation introduces. If electrostatic interaction
and hence a depolarizing field are present, the ringlike intensity in (d) and the spherical wave in (e) and (f) indicate a narrowing of the
domain-size distribution, whereas a smaller width of the central peak corresponds to a decrease in the average domain size.

regime to the bulk regime. If the electrostatic interaction is
considered, as in Fig. 5(b), the alignment along z is drastically
enhanced, and most domain-wall sections lie parallel to the z
direction. On domain walls perpendicular to the z direction,
and hence perpendicular to the polarization, bound charges

FIG. 5. Three-dimensional distribution of domain walls in sim-
ulations of thin films with and without electrostatic interaction.
The color signifies the magnitude of the polarization in the adja-
cent domain. (a) Simulation ignoring electrostatic interaction and
(b) simulation including electrostatic interaction. In (b), the addi-
tional electrostatic penalty for domain walls perpendicular to the
z direction causes a much stronger alignment of the domain walls
along the z axis than in (a).

will accumulate at head-to-head and tail-to-tail domain walls.
These bound charges generate an electric field that increases
the energy penalty for such domain walls significantly.

The influence of the electric field generated by bound
charges at domain walls on the wall alignment is further

FIG. 6. Fraction of domain-wall sections oriented perpendicular
to the z direction for simulations of thin films of different thickness.
The electrostatic interaction suppresses this orientation, as shown
above. An error (gray region) of about 1.5% for thin-film simula-
tions with a low number of computational mesh cells stems from
numerical errors of the Poisson equation solver.
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illustrated in the quantitative analysis shown in Fig. 6. We plot
the fraction of domain-wall sections that are oriented perpen-
dicular to the z direction of systems with varying thickness
for simulations with and without the electrostatic interaction
(computational details are given in the Appendix). In films
that are very thin, all domain walls are aligned along the z
direction for both scenarios because the anisotropic stiffness
terms in Eq. (1) are sufficient to fully align the domain walls.
As the film becomes thicker and more similar to a bulk crystal,
more domain-wall sections align perpendicular to the z di-
rection. The ratio of perpendicular sections rises significantly
more slowly for systems that include electrostatic energy
contributions because of the energy penalty from charged do-
main walls. Because the phase-field model is a freely scalable
model, this crossover effect from thin film to bulk may be
observed at different length scales in a real laboratory material
compared to the scale of our simulation.

IV. DISCUSSION

In Figs. 2–5, we show that there are three effects that are
caused by the depolarizing field exerted by bound charges at
surfaces and interfaces of thin films. (1) The average mag-
nitude of the polarization is lowered, (2) the polarization
declines away from the domain walls with a dip in polariza-
tion in the approximate center of the domain, and (3) a flat
domain-size distribution and a large average domain size for
simulations where the depolarizing field is ignored contrast
with a distribution with a clear peak and a smaller average
domain size for simulations that include the depolarizing field.
Furthermore, due to the electric field generated by bound
charges at domain walls, domain walls have a stronger ten-
dency to align parallel to the z axis if the electrostatic energy
is considered, as shown in Figs. 5 and 6.

Note that modification of the domain-size shape and
distribution is even more surprising considering that the fer-
roelectricity in hexagonal manganites not only is improper
but also exhibits topological defects. Despite this twofold
opposition to the action of the depolarizing field, it manifests
itself with unprecedented clarity in the Fourier-transformed
intensity and cross correlation. Our work shows that the de-
polarizing field can have a significant effect on the domain
structure of improper ferroelectrics, even if topological de-
fects are present, and that, in general, it is not appropriate to
ignore this field.

Further, the depolarizing field lowers but does not fully
suppress the polarization of the system. This is characteristic
of improper ferroelectrics and was shown for a simplified
Landau expansion of YMnO3 by Sai et al. [23]. This result
can be extended to Eq. (1), that is, the full Landau expansion
of hexagonal manganites, and therefore, our simulations also
show this characteristic behavior. This contrasts with proper
ferroelectrics, where a strong depolarizing field can prevent a
polarization from emerging in the first place.

As mentioned in Sec. II, our choice of εb = 1 enhances
the effect of the depolarizing field in our simulations with-
out changing these effects qualitatively. In the Supplemental
Material [14], we show a series of simulations between the
physical limit of εb = 1 and the experimental value of εb =
8.9, and show how the influence of the depolarizing field

decreases with increasing εb. While it may be argued that the
depolarizing-field correction may eventually become negligi-
ble, we point out that even a small correction is likely to have
an effect on domain formation in the first place, as it occurs at
the point of instability when crossing the Curie temperature.

V. CONCLUSION

In this work, we showed that the depolarizing field has
a significant effect on the domain pattern of both the pri-
mary lattice-distortive and the secondary ferroelectric orders
in thin-film hexagonal manganites. We found that the average
magnitude of the polarization in the domains is reduced, the
system exhibits local variations in polarization, and there is a
significant change in the domain-size distribution and the av-
erage domain size. Furthermore, the energy penalty of charged
domain walls causes the domain walls to align parallel to the
direction of the polarization.

The emergence of these effects shows that although the
primary order and the topological defects are still the main
driving force behind the domain structure, the effect of the de-
polarizing field is significant and, in general, non-negligible.
We also showed that these effects are inconspicuous and re-
veal themselves clearly only in reciprocal space, in contrast to
the domain structure related to the topological defects which
is apparent in real space. This may explain why these effects
have not been considered in previous work.

Control of ferroelectric domains is a requirement for thin-
film ferroelectric devices, which is particularly challenging
in improper ferroelectrics because the ferroelectric domain
structure is pinned to the primary order. Topological defects
make control even more challenging. Known avenues of con-
trol have been pinning due to local interface effects [9] and
application of strain [24,25]. Here, we showed that the depo-
larizing field, despite directly acting on only the secondary
ferroelectric order, also couples to the primary order and has
a significant, global effect on the domain pattern of the pri-
mary order. Unlike strain, the depolarizing field preserves the
isotropy in the ab plane and does not affect the topological
defects. We speculate that in a strained thin film, the depo-
larizing field may affect the stripe domains in qualitatively the
same way as in isotropic domains of an unstrained sample and
may change the width and onset of the domain stripes. This
opens an additional avenue for control of domain patterns and
the prospect of thin-film devices of improper ferroelectrics.
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APPENDIX: DETAILED NUMERICAL METHODS

Terms and parameters of the Landau expansion. We use
the Landau expansion as given by Artyukhin et al. [5]. The
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structural mode of the system is described by the terms

Fstructural = a

2
Q2 + b

4
Q4 + Q6

6
(c + c′cos 6�), (A1)

where Q and � are the amplitude and azimuthal angle of the
structural mode, respectively, and a, b, c, and c′ are param-
eters of the Landau expansion. Here, we use the values a =
−2.626 eV Å−2, b = 3.375 eV Å−4, c = 0.117 eV Å−6, and
c′ = 0.108 eV Å−3 [5].

The structural order couples to the ferroelectric order. This
is described by the Landau terms

FFerroelectric = −gQ3P cos3� + g′

2
Q2P2 + aP

2
P2, (A2)

with parameters g = 1.945 eV Å−4, g′ = 9.931 eV Å−4, and
aP = 0.866 eV Å−2 [5]. Because aP is positive, the polar
mode P cannot emerge on its own in the absence of structural
order. The structural order causes the ferroelectric order, so
the latter is improper.

The gradient terms of the system are given by

Fgradient = 1

2

∑

i=x,y,z

[
si

Q(∂iQ∂iQ + Q2∂i�∂i�) + si
P ∂iP∂iP

]
,

(A3)

with parameters sz
Q = 15.40 eV, sx

Q = 5.14 eV, sz
P =

50.70 eV, and sx
P = 8.88 eV [5] Here, sx

P has been chosen
differently than in [5] in order to ensure the stability of the
system. In [19], this choice was validated to give physical
results consistent with the parameters in [5]. The gradient
term corresponds to a penalty for nonhomogeneous systems
and therefore is responsible for the domain-wall energy.

Finally, the term

Felectrostatic = −PE (A4)

is added, where P = P × 9.031|e|365.15 Å3 is the polariza-
tion of the system [5] and |e| is the elemental charge. The
electric field E is computed via Gauss’s law. We assume
that our system is a perfect insulator, and hence, the total
charge density ρ is given by bound charges only according to
ρ = −∇P. From the charge density, the electrostatic potential
is computed via the Poisson equation 	ϕ = −ρ/εbε0. The
background dielectric constant contains all dielectric contri-
butions that are not caused by the spontaneous polarization
Ps, that is, electronic responses and responses from all normal
modes except �−

2 [10]. Finally, from the electrostatic poten-
tial, the electric field can be obtained via E = −∇ϕ.

Computational details. We obtain the Ginzburg-Landau
equations by transforming Eq. (1) to Cartesian coordinates
and computing its variational derivative. We choose the
parameter L = 1. We assume open boundary conditions
along the hexagonal axis and periodic boundary condi-
tions in the plane perpendicular to the hexagonal axis. In
particular, we assume E = 0 outside the thin film, which
corresponds to open-electrostatic or open-circuit boundary
conditions.

We initialize the order parameters Qx = Q cos�, Qy =
Q sin�, and P with a random, uniform distribution on the
interval [−0.1, 0.1]. Qualitatively, the domain pattern is in-
dependent of the initial random configuration. Quantitatively,

however, the specific domain pattern depends on the initial
configuration. The Ginzburg-Landau equations are then in-
tegrated in a finite difference scheme with a Runge-Kutta
4 integrator. For the main results in Figs. 2–4, we sim-
ulate a system of size nx × ny × nz = 128 × 128 × 3 with
lattice spacing 	x = 	y = 0.1 nm and 	z = 0.3 nm. Al-
though phase-field simulations are a freely scalable model, it
is still reasonable to choose a physically meaningful scale for
the simulations. Here, the thickness of the simulated film in
z direction has been chosen to approximately correspond to a
single monolayer, which is the limit of the physically mean-
ingful range. With this choice, all domain walls are parallel
to the z direction, and there are no charged domain walls.
Bound charges accumulate only at the surfaces of the thin
films, and all electrostatic effects stem from the depolarizing
field. We use a time step of 	t = 5 × 10−4. The background
dielectric constant of the material εb = 1 is chosen as de-
scribed in the main text and the Supplemental Material [14].
The system was iterated for n = 104 time steps. The Poisson
equation to obtain the electrostatic potential is solved using
a custom V-multigrid solver using Jacobi iterations. Simula-
tions of thick films in Fig. 5 were performed with a system
of size nx × ny × nz = 128 × 128 × 15 with lattice spacing
	x = 	y = 0.2 nm and 	z = 0.3 nm and with a time step
of 	t = 5 × 10−4. Simulations including the electrostatic en-
ergy were iterated for n = 105 time steps, and εb = 1. The
system that ignores electrostatic interactions was iterated for
n = 4.7 × 104 time steps to obtain domains of similar size.
For the quantitative analysis of thick films in Fig. 6, simula-
tions with a system of size nx × ny = 128 × 128 with variable
nz were performed, with lattice spacing 	x = 	y = 0.2 nm
and 	z = 0.3 nm. For the thinnest films, we chose nz = 3,
which approximately corresponds to the thickness of a single
monolayer. The time step was set to 	t = 5 × 10−4. The
system was iterated for n = 105 time steps for simulations
that include and that ignore the electrostatic interaction. For
the simulations with electrostatic interaction, we set εb = 1.

Data analysis. We compute the Fourier-transformed inten-
sity of the system by first taking a slice of the computational
mesh of the thin film at z = 0. We first subtract the average
of the polarization from the system and then compute the
two-dimensional Fourier transform of the domain pattern:

F (k) = F[P(r) − Pav]. (A5)

Here, F (k) corresponds to the structure factor, F denotes the
Fourier transform, and Pav denotes the average polarization.
We square the absolute values of the structure factor to obtain
the Fourier-transformed intensity of the system,

I (k) = |F (k)|2. (A6)

Fourier-transformed intensities of 20 simulations are com-
bined to obtain better statistics. Furthermore, we perform data
augmentation by applying a 90◦ rotation, a mirror opera-
tion, and a combined 90◦ rotation and mirror operation. The
pair correlation is obtained by then transforming the Fourier-
transformed intensity back to real space:

A(r) = F−1[I (k)] = F−1[|F (k)|2]. (A7)
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As shown in the Supplemental Material [14], the FWHM of
the pair correlation is proportional to the average domain size
of the system.

We compute the domain-wall section ratio as in [9]. The
number of domain walls Nw is computed by counting the
number of sign changes of the polar mode P (x, y, z) along the
x, y, and z axes. The ratio of domain walls ρz in the z direction

is then computed with

ρz = 1

Nw

Lx,Ly∑

x,y=1

Lz−1∑

z=1

|H (P (x, y, z + 1)) − H (P (x, y, z))|,

(A8)
where H is the Heaviside step function.
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