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Recently, a single two-dimensional gapless Dirac cone has been experimentally observed on the surface of a
semimagnetic topological insulator, providing a platform to study the physics of a single Dirac fermion. Here,
we focus on Landau levels (LLs) in the presence of Anderson disorder. We find that the particle-hole (PH)
asymmetric term is essential for determining the evolution of LLs with magnetic flux and disorder. With particle-
hole symmetry (PHS), the zeroth LL E0 is pinned at the charge-neutrality point and independent of magnetic field
and weak disorder. However, with PHS broken, E0 either ascends or descends depending on the sign of the PH
asymmetric term. Furthermore, neighboring LLs En �=0 adhere to the antilevitation scenario for a vanishing or
small PH asymmetric term. In contrast, for a sufficiently large PH asymmetric term, LLs above and below E0

exhibit different behaviors. We also propose a theoretical method to understand these evolutionary behaviors of
disordered LLs based on self-consistent Born approximation. Finally, we find that a rare-region-like effect occurs
for a small disorder concentration, leading to rich scenarios. In particular, the zeroth LL E0 becomes dependent
on magnetic flux, and its dependence on disorder strength becomes nonmonotonic. Our findings offer valuable
insights for understanding disordered LLs of Dirac fermions and provide guidance for experiments involving
topological insulators in strong magnetic fields.
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I. INTRODUCTION

Landau levels (LLs) are discrete energy levels that will
form in the two-dimensional electron gas (2DEG) subjected to
a strong perpendicular magnetic field. These discrete LLs will
be broadened by disorder to form separated bands, where all
the states are localized except those lying in the center of each
LL [1,2]. In fact, it is these extended states that carry nonzero
Chern numbers and lead to the integer quantum Hall effect
(IQHE). The evolution of these extended states determines the
global phase diagram of IQHE [3–6] and is closely related to
the localization-delocalization transition [7]. Therefore, it has
been an essential issue to answer how these extended states
behave at a strong disorder or equivalently a weak magnetic
field.

Indeed, the evolution of disordered LLs for the con-
ventional 2DEG has garnered intensive attentions over the
decades [8–16]. There exist two well-known scenarios for
this evolution: levitation and antilevitation. In a continuous
model, the levitation scenario is found to be approximated
by En = εn[1 + 1/(ωcτ )2] [8,9], in which En (εn) is the LL
in the presence (absence) of disorder, ωc is the magnetic
cyclotron frequency, and τ is the scattering time due to dis-
order. This scenario suggests that LLs at the band edge float
up to the higher-energy regime with increasing disorder or
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decreasing magnetic fields. In contrast, numerical simulations
in tight-binding (TB) models offer another possibility: the
antilevitation scenario [5,10,15]. In this circumstance, LLs at
the band center float towards the edge with increasing disorder
until they meet and annihilate with LLs of opposite Chern
number at the edge.

With the discovery of graphene [17–19], the study of dis-
ordered LLs has sparked renewed interests in Dirac fermions
[20–29]. It has been found that LLs En (n �= 0) follow the lev-
itation scenario for the TB model with two Dirac cones [20],
while antilevitation scenario exists in the continuous model
with a single Dirac cone [21]. Therefore, it seems that the
conventional scenarios apply to disordered LLs as well. Nev-
ertheless, the zeroth LL E0, which is unique to Dirac fermions,
contradicts both levitation and antilevitation scenarios. It is
pinned at the Dirac point and remains extended even under
strong disorder for the single Dirac cone case [21]. However,
in the presence of two Dirac cones, the intervalley scattering
causes the two degenerate zeroth LLs to move away from each
other [20]. This seems to be consistent with the prediction that
the disordered graphene without magnetic field behaves as
an insulator in the presence of intervalley scattering [30,31],
while it remains metallic if there is only the intravalley scat-
tering [32,33]. Apart from the inconsistent results concerning
single and double Dirac cones, particle-hole symmetry (PHS)
has been overlooked in previous studies. PHS is not only
an important intrinsic symmetry for classifying topological
materials [34], but also plays a key role in understanding the
band renormalization of topological systems [35,36]. So far,
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the effect of PHS breaking on disordered LLs has not been
addressed either in a single or two Dirac cones system.

In this work, we find that breaking PHS significantly alters
the evolutionary behaviors of both the zeroth and other LLs
in the presence of disorder. We begin with a TB model of
the semimagnetic topological insulator (TI) [37–39], featuring
a single gapless Dirac cone, and introduce onsite Ander-
son disorder with concentrations of 100% and 5%. Then,
we study how LLs evolve with the PH asymmetric term,
strength and concentration of disorder, and magnetic flux.
We demonstrate that the zeroth LL E0, situated at the Dirac
point, remains independent of magnetic flux. It is pinned at
the charge-neutrality point even as disorder increases if PHS is
preserved. Meanwhile, the neighboring higher LLs adhere to
the antilevitation scenario. On the contrary, E0 moves upward
(downward) with increasing disorder for a positive (negative)
PH asymmetric term. In this scenario, the neighboring higher
LLs may exhibit levitation and antilevitation, depending on
the PH asymmetric term. Meanwhile, the neighboring higher
LLs adhere to the antilevitation scenario in the presence of
weak PH asymmetry. However, LLs at the edges of the con-
duction and valence bands will follow different scenarios if
the PH asymmetric term is sufficiently large. Remarkably,
with the introduction of a small concentration of disorder,
a rare-region-like effect emerges, causing E0 to become de-
pendent on magnetic flux and exhibit a nonmonotonic change
with disorder strength.

The rest of the paper is organized as follows. Section II
describes the model Hamiltonian of the semimagnetic TI and
the numerical methods. Section III is the numerical results and
discussions. Finally, a brief summary is given in Sec. IV.

II. MODEL AND METHOD

A. Model Hamiltonian

The Hamiltonian of a three-dimensional TI discretized in a
cubic lattice is written as [40]

H =
∑

n

ψ†
n T0ψn +

∑
n; j∈{x,y,z}

(ψ†
n Tjψn+δ j + H.c.), (1)

where ψ†
n = (c†

n1↑, c†
n2↑, c†

n1↓, c†
n2↓) with c†

nτσ (cnτσ ) creating
(annihilating) an electron on site n with orbital τ and spin σ .
(n + δ j ) denotes the site nearest to site n along j direction.
The Hamiltonian matrix is given as

T0 = (m0 − 2B1 − 4B2)σ0τ3 + (C + 6D + εn)σ0τ0, (2a)

Tx = −iA2σ1τ1/2 + B2σ0τ3 − Dσ0τ0, (2b)

Ty = −iA2σ2τ1/2 + B2σ0τ3 − Dσ0τ0, (2c)

Tz = −iA1σ3τ1/2 + B1σ0τ3 − Dσ0τ0, (2d)

in which Pauli matrix σ (τ ) acts on spin (orbital) index.
The effect of disorder is accounted for by adding a random
onsite energy εnσ0τ0 at each site seating an impurity, where
σ0 and τ0 are 2 × 2 identity matrices. The onsite energy εn

is uniformly distributed in the region [−W
2 , W

2 ], with W rep-
resenting the strength of disorder. Here, cN impurities are
randomly distributed among N lattice sites, corresponding to
an impurity density of c. In experiments, the disorder can
be realized in realistic materials with a number of randomly

distributed impurities or defects. In this work, the concentra-
tion c describes the ratio of the impurity number to the lattice
site number, while W is used to denote the disorder strength
for a given impurity. The randomness of the disorder for the
whole sample can be estimated via measuring the electron
mobility in the experiment [16]. Moreover, we note that, in the
case of dilute impurities, the concentration not only functions
as disorder strength but also contributes extra effects, such as
rare-region effect [41,42].

To obtain two-dimensional (2D) Dirac cones, the open
boundary condition is applied in the z direction. Then, an
onsite Zeeman term Mtσ3τ0 is added on each site of the top
surface to realize the semimagnetic TI. This can be realized
by doping or connecting to a ferromagnetic material in exper-
iments [39]. It gives rise to a gapped topological surface state
on the top surface, while a gapless surface state retains on the
bottom surface. As a result, we obtain an effective 2D model
with only a single gapless Dirac cone.

Additionally, a perpendicular magnetic field is applied
along the z direction to obtain LLs. According to Peierls
substitution, the hopping matrix Ti, j between the ith and jth

sites is replaced by Ti, je
i e

h̄

∫ i
j

�A(�r)·d�r , in which e is the electron
charge, h̄ is the reduced Planck constant, and �A is the vec-
tor potential. If an electron hops around a minimum square,
magnetic field contributes a phase φ = e

h̄

∮ �A(�r) · d�r = e
h̄
,

which is proportional to the corresponding magnetic flux 
.
For simplicity, we call φ as magnetic flux in the following.

In the numerical calculations, we have set Nz = 4,C =
0, m0 = 1, A1 = A2 = 1.1, A3 = 1, B1 = B2 = 0.5, and Mt =
0.7. The PH operation is P̂ = iσ2τ2K , in which K is
the operator for complex conjugate. PHS is preserved
with P̂H (�k)P̂−1 = −H (−�k) for D = 0, while broken for a
nonzero D.

B. Numerical methods

The transfer matrix (TM) method [43] is used to calcu-
late the localization length λ. The system is taken as a long
bar with cross section Nx × Nz and length Ny. Periodic and
open boundary conditions are adopted in x and z directions,
respectively. It is in fact a quasi-one-dimensional system and
the width Nx is hereinafter abbreviated as N . We have set
the length Ny = 104 and repeated the simulation 100 times
with independent disorder configurations. QR factorizations
have been performed every 6 TM multiplications. The initial
incident wave vector is randomized by performing 200 TM
multiplications [44].

The self-consistent Born approximation (SCBA) method
[35] is used to determine the Hamiltonian of the effective
medium for a disorder strength W < 4. For Anderson disorder
with no spatial correlation, the renormalized self-energy is
momentum independent and given by

�(E ) = cW 2

12

∫∫
dkxdky

(2π )2

1

E − H (�k) − �(E )
, (3)

where E is the Fermi energy, W is the strength of disorder
and c the concentration of disorder. All the sites along z
direction are taken as orbital freedom since the open boundary
condition is set in this direction.
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FIG. 1. (a) LL fan diagram with a disorder strength W = 1. Dashed blue lines correspond to the case with W = 0. (b) Phase diagram in
the E -W plane with a flux φ = 0.02π . Dashed blue lines are obtained by SCBA. (c)–(f) The normalized localization length � versus Fermi
energy E , flux φ, and disorder strength W , respectively. Parameters: D = 0, c = 100%. Other parameters given in main text.

LLs can be obtained based on SCBA method as well in
the presence of Anderson disorder. In detail, we get an ef-
fective Hamiltonian corresponding to each point (W, E ) in
the absence of magnetic flux. Then we add a certain flux φ

and diagonalize the Hamiltonian to obtain the nth LL En for
each point (W, E ), which is in fact a surface En = En(W, E ).
Finally, we get the LL En(W ) by solving En(W, E ) = E .

III. NUMERICAL RESULTS AND DISCUSSIONS

A. PH symmetric case with c = 100%

The numerical results of the normalized localization length
� = λ/N , along with the corresponding evolution of LLs,
are depicted in Fig. 1. The system preserves PHS by setting
D = 0, and the Dirac point is located at the energy E = 0.
This symmetry is illustrated in Fig. 1(c), where the curves
exhibit symmetry around E = 0 as PHS is also preserved for
quantities averaged among different disorder configurations.
Therefore, we study only the E > 0 regime in the following if
PHS exists.

In general, � = λ/N increases with size N in the metallic
phase, decreases with N in the insulating phase, and remains
independent of N at the critical point. In the IQHE, the system
forms discrete LLs, and they will be broadened by disorder
in a finite-size sample since disorder introduces localized
in-gap states near the LLs [1,2]. As a result, there forms a
peak feature of � and it can be also observed as the peak
of the longitudinal conductance or density of states in the
experiment [45]. Meanwhile, due to Anderson localization, all
states are localized except for a few critical points at the peak
centers, which correspond to LL centers. The peak width be-
comes smaller with increasing the sample size, while the peak
center remains unchanged. It indicates that this broadening
is a finite-size effect, and the peak will be quite sharp in the
thermodynamic limit.

In Fig. 1(c), a series of critical points are observed at the
peaks denoted as E0, E±1, and E±2, respectively. Here E0 is
the zeroth LL and E±1,±2 are other neighboring ones. Further,
LLs also appear as peaks in Figs. 1(d)–1(f), which show the
evolution of � against Fermi energy E , magnetic flux φ, and
disorder strength W , respectively. We note that it is difficult to
distinguish the peaks of LLs at high-energy regime as shown
in Fig. 1(d), weak magnetic field regime in Fig. 1(e), and large
W regime in Fig. 1(f). In these regimes, we have � > 1 and
it seems to be independent of the bar’s width for N = 16, 24,

and 32. The reason may be that the width N = 32 is no longer
large enough to distinguish the peak features of � for the LLs,
where disorder-induced broadening of the LLs exceeds their
spacing. Additionally, in Fig. 1(e), log(�) depends linearly on
log(φ) once φ being small enough, indicative of “divergent”
value of � for φ = 0. It may suggest that the system recovers
a Dirac metal behavior with a nonzero disorder W = 1 at a
vanishing magnetic flux.

Repeating the calculation of renormalized localization
length for several sample sizes at different values of φ and
W , we map out the evolution of LLs with magnetic flux φ

for W = 1 and with disorder strength W for φ = 0.02π in
Figs. 1(a) and 1(b), respectively. We find that the zeroth LL
E0 remains located at E = 0, regardless of magnetic flux and
disorder strength, at least within the regime W ∈ (0, 4). This
is because E0 is pinned by PHS at the charge-neutrality point.
It is consistent with the continuous model of a single-coned
Dirac semimetal [21], but different from the two-Dirac-cones
case of graphene [20] where intervalley scatterings will split
the peak at E = 0.

Furthermore, we find that LLs E1,2,3 for W = 1 move
closer to E = 0 in comparison with the clean case for W = 0,
where LLs are shown as dashed lines in Fig. 1(a) as well.
This feature is also found in Fig. 1(b), where LLs E1,2 move
downward to E = 0 with disorder increasing in the regime
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FIG. 2. (a) LL fan diagram with a disorder strength W = 1. Dashed blue lines correspond to the case with W = 0. (b) Phase diagram in
the E -W plane with a fixed flux φ = 0.02π . Dashed blue lines are obtained by SCBA. (c)–(e) The normalized localization length � versus
E , φ,W , respectively. Parameters: D = 0.1, c = 100%. Other parameters given in main text.

W ∈ (0, 2) for φ = 0.02π . This feature is consistent with the
antilevitation scenario, in which LLs at the band edge move
away from the band center with increasing disorder due to
the mixing between LLs [10]. But it is different from the
continuous model of a single-coned Dirac semimetal, where
the neighboring LLs E±1,±2 will move away from E0 [21].
This inconsistency may originate from the difference between
the lattice and continuous models since it is similar to the
case of 2DEG, where LLs also float up in the continuous
model while plunge down in the lattice model with enhancing
disorder [8–13]. The evolution of E0,1,2 can be fitted well by
numerical results obtained by SCBA, which are displayed as
dashed blue lines in Fig. 1(b). Therefore, we conclude that
disordered LLs of the gapless Dirac cone with PHS in a lattice
model exhibit a unique feature: the zeroth LL remains located
at E = 0, regardless of magnetic flux and disorder strength,
while higher LLs manifest an antilevitation scenario.

B. PH asymmetric case with c = 100%

To investigate the PHS-broken case, we set D = 0.1, and
the Dirac point is shifted to ED = C + D

B1
m0 = 0.2 for param-

eters used in this work [46,47]. The zeroth LL is located at
Dirac point E0 = ED, and the other LLs are also shifted by
PH asymmetric term D in the absence of disorder.

In Fig. 2(c), we delve into the study of the normalized
localization length as a function of Fermi energy for a disor-
der strength W = 1 and magnetic flux φ = 0.02π . The LLs,
denoted as E0,±1,±2, can be distinguished by the peaks in
the panel. We observe that the zeroth LL, which is situated
at E0 = ED = 0.2 in the clean case, undergoes a shift to
approximately E0 ≈ 0.21 due to disorder. Furthermore, we

note that the localization length is nearly symmetric about E0,
albeit not precisely. By repeating this procedure at different
values of φ, we obtain Fig. 2(a), which displays the LL fan
diagram for disorder W = 1. This diagram closely resembles
that of the PHS preserved case in Fig. 1(a), except for the
flux-independent zeroth LL, which is shifted to E0 ≈ 0.21.
Moreover, the dependence on flux coincides with the clean
case, where LLs are shown as dashed blue lines in Fig. 2(a).

To gain further insights into disordered LLs, the evolution
of LLs with varying disorder strength is shown in Fig. 2(b) for
φ = 0.02π . Notably, we find that E0 floats up with increasing
disorder contrasting with the PHS case depicted in Fig. 1(b)
and the case of a continuous model [21] where E0 is pinned
at E = 0. Meanwhile, the neighboring LLs, E−1,−2, float up
with disorder, moving away from the center of the valence
band. This aligns with the antilevitation scenario observed in
the PHS case. Nevertheless, the two LLs above Dirac points
E1 and E2 remain nearly independent of W in the regime
W ∈ (0, 2). This unique behavior differs from both the levi-
tation and antilevitation scenarios, contrasting with the case
of PHS. Therefore, we conclude that PH asymmetric term is
essential to determine disordered LLs. Besides, the peak of E0

is still clear until W = 4 while those of higher LLs have been
smeared for the chosen sample width as shown in Fig. 2(e). E0

is a well-formed peak at a stronger disorder or smaller sample
size, while higher LLs are smeared more easily, as shown in
Figs. 1(d), 1(f), and 2(e), respectively.

In order to gain important analytical insights, we perform
the SCBA calculation. It is found that the evolution of LLs
with disorder is fitted well by LLs obtained by SCBA, which
are displayed as dashed blue lines in Fig. 2(b). Especially, the
dependence of E0 on disorder strength W 2 is also shown in
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Fig. 3(a). We find that the results from TM method and SCBA
can both be fitted to the function

δE0 ≈ 0.01W 2, (4)

where δE0 = E0(W ) − E0(W = 0) describes the disorder-
induced shift of the zeroth LL E0, away from the value of
clean case.

To uncover the nature of the shift, we display the corre-
sponding renormalized parameters of the effective Hamilto-
nian in Fig. 3(b). We find that real components of δC and
δm depend linearly on W 2 for W < 4, while the correspond-
ing imaginary components keep consistently vanishing. Since
these parameters change gradually with increasing disorder,
it is expected that Dirac point exists and evolves gradually
with disorder as well, at least in the weak disorder regime.
Since the Dirac point is given by ED ≈ C + D

B1
m0 for the clean

case, the modification is described by δED = δC + D
B1

δm,
with numerical results shown in Fig. 3(a). We find that the
modification of Dirac point δED well follows δE0 determined
by TM method for W � 4. The imaginary components of
renormalized parameters are also negligible in this regime.
These results suggest that the gapless Dirac cone still exists
even in the presence of disorder, resulting in a nearly sym-
metric � about E0 as shown in Fig. 2(c) and a divergent � for
φ → 0 as shown in Fig. 2(d). Similar with the clean case, E0 is
located at Dirac point and therefore keeps independent of flux
at a finite disorder as shown in Fig. 2(a), even though PHS has
been broken. This is also consistent with the prediction that
a single gapless Dirac cone in graphene remains delocalized
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FIG. 4. (a) The evolution of LLs with the PH asymmetric term D.
(b) Renormalized localization length as a function of Fermi energy
�(E ) for D = 0.1. �(−E ) is displayed for D = −0.1. Parameters:
φ = 0.02π,W = 1, c = 100%. N = 32 in (b). Other parameters
given in main text.

under weak disorder, where the disorder does not mix differ-
ent valleys [32,33]. Therefore, we conclude that the evolution
of LLs for the PH asymmetric case in the presence of weak
disorder can also be well understood by the SCBA theory.

Lastly, let us discuss the effect of the PH asymmetric term
on the evolution of LLs, as shown in Fig. 4. According to the
PH transformation P̂H (D)P̂−1 = −H (−D), the correspond-
ing eigenvectors are related as ψ−E ,−D = P̂ψE ,D. Therefore,
the localization lengths are identical for states at energy E
with parameter D and those at −E with the opposite param-
eter −D. As shown in Fig. 4(b), we verify that �(E , D) =
�(−E ,−D) after averaging over 100 disorder configurations.
As a result, the behavior of LLs, whether they ascend or
descend, depends on the sign of the PH asymmetric term D.
In the light of this relation, we have shown only the evolution
of LLs with positive D in Fig. 4(a). We find that LLs E0,±1,±2

will move upward as D increases, both in the absence (dashed
blue lines) and presence (lines with symbols) of weak disor-
der. For D > 0, we consistently find that E0(W = 1) always
lies to the right of E0(W = 0), indicating that E0 floats up
for D > 0 due to disorder. However, a more comprehensive
picture is found for neighboring LLs. For the case of D =
0.05, a weak disorder will drive E±1,±2 towards E0, consistent
with the antilevitation scenario observed for D = 0. On the
other hand, for D = 0.15, both E−1,−2 and E1,2 will move
upward, resulting in antilevitation for E−1,−2 but levitation for
E1,2. The crossover from antilevitation to levitation for E1,2

occurs at approximately D = 0.1. Further, the case of D = 0.2
is similar with that of D = 0.15 except E−2, which moves
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downward. In fact, further analysis, which is based on the LL
fan diagram of a clean system and the spatial distribution of
the LL, indicates that E−2 is a LL arising from the bulk states
of the sample, rather than from the surface state after the kink
shown in the dashed line in Fig. 4(a). The distance between
E−1 and E−2 for D = 0.2 is smaller, and the level repulsion
becomes dominant to push E−2 downward in the presence of
disorder.

The crossover from antilevitation to levitation for E1,2

could be understood by SCBA together with the effective
Hamiltonian of the surface state. The effective Hamiltonian
is written as [46,47]

Hss = C + Dm0

B1
+ D

(
1 − B2

B1

)
k2

+ A2

√
1 − D2

B2
1

(σxky − σykx ). (5)

According to SCBA, which is carried out in a quasi-2D system
in the absence of magnetic flux, disorder shifts the surface
state only by changing C and m0. Therefore, the shift of the
nth LL En can be approximated as

δEn = (δC)n + D

B1
(δm0)n, (6)

in which the index n on the right side is to note that the
renormalized parameter, defined originally on the E -W plane,
is now defined only for the nth LL, which is the curve E =
En(W ). Numerical results, displayed in Fig. 5, show that there
is always (δC)n < 0 and (δm0)n > 0 for D = 0, 0.1, 0.15 and
n = 1, 2, with the imaginary components negligible for a
weak disorder. Therefore, the shift depends on the interplay
of the first and second terms of Eq. (6). We notice that the first
term weakens with D rising, and the second term is nearly
directly proportional to D since δm0 is not sensitive to D.
Therefore, enhancing D from zero to a large value will surely
change the sign of δE1,2 at a certain value of D and result in the

(a)

(b)

FIG. 6. (a) The zeroth LL E0 against disorder strength for several
magnetic flux. The pink dashed curve is the fitted curve E0 = 0.2 +
0.01 cW 2 from SCBA. (b) Renormalized localization length for sev-
eral disorder strengths. Parameters: D = 0.1, c = 5%. φ = 0.02π in
(b). Other parameters given in main text.

crossover from antilevitation to levitation, which is D ≈ 0.1
for parameters chosen here.

The PH asymmetric term tunes the Dirac point, and it
corresponds to the asymmetric band structure, which is com-
monplace in TIs [39,40]. Generally speaking, the asymmetric
band structure can be tuned by band engineering [48,49], such
as strain modulation and doping. Especially for the semi-
magnetic 3DTI film Cr-doped (Bi1−x, Sbx )2Te3, it has been
verified that the Dirac point for the bottom surface is tunable
by changing the Bi:Sb ratio x [39]. The levitation or antilevi-
tation behaviors could be measured by detecting the evolution
of LLs at a vanishing magnetic flux, such as the evolution of
longitudinal magnetoresistance minima [16], the Hall plateau
transitions [50], and scanning tunneling spectroscopy [28].

C. PH asymmetric case with diluted disorder

In this section, we aim to investigate the impact of disorder
concentration by focusing on the behavior of the zeroth LL,
E0, at a low disorder concentration. According to the SCBA
theory, the evolution of E0 can be approximated as E0 ≈
ED + 0.01cW 2, obtained by replacing W 2 with cW 2 in Eq. (4).
Initially, it may appear that a lower disorder concentration
corresponds to a weaker disorder strength. However, further
calculations using the TM method reveal a more complex
scenario.

Figure 6(a) depicts the evolution of E0 with disorder
strength for various magnetic fluxes. In the weak disorder
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regime (W � 5), E0 typically increases with disorder strength,
although the degree of this increase varies with magnetic flux.
E0 exhibits a more rapid increase compared to the prediction
by SCBA (displayed as the pink curve) for small flux values
such as φ = 0.005π and 0.01π . Subsequently, the rate of
increase diminishes for larger flux values like φ = 0.02π .
Ultimately, for φ = 0.04π and 0.05π, E0 tends to stabilize or
even experiences a slight decrease within this regime.

In the range 5 < W < 9, E0 decreases rapidly and becomes
approximately smaller than ED = 0.2 at W = 6, irrespec-
tive of the magnetic flux. Figure 6(b) shows that for W = 5
and 7, E−1 moves downward, while E1 upward, comparing
with the W = 3 case. This is different from the result in
the case of c = 100% shown in Fig. 2(b), where E−1 moves
upward while E1 remains constant. It may suggest that the
level-mixing effect between neighboring LLs becomes strong
to push the zeroth LL down. By further increasing W to
the regime 9 < W < 100, E0 moves upward and converges
at 0.2. As depicted in Fig. 6(b), there still exist LLs for
disorder as strong as W = 100. It indicates that a disorder
concentration as low as c = 5% cannot induce an Anderson
phase transition even in a strong disorder limit. When W is
sufficiently large, sites with disorder are broken effectively
and can be viewed as hard-wall boundaries. According to
the percolation theory [51], the probability of undoped sites
being 0.95 is large enough to create a connected region
spanning the entire sample. Consequently, electrons are not
localized and can transport in the clean region. This also
explains why E0 converges approximately at 0.2. Since this
convergence value is less than the maximum located approxi-
mately at W = 5, there will exist a nonmonotonic dependence
on W .

E0 varies with flux for c = 5%, while this dependence on
flux is absent in the case with c = 100%, and this suggests a
breakdown of the SCBA theory in the low disorder concentra-
tion case. It may be understood by dividing the sample with
diluted disorder into two parts, similar with the rare-region
effect [41,42]. The sample is considered to be composed of
two effective mediums: the doped medium with disorder and
the clean medium without disorder. Specifically, the doped
medium is a set of several small regions. Each small region
contains an impurity at its center and is approximately the size
of the magnetic length, which is necessary for the formation
of LLs. If two such regions come into contact, they will
merge into a larger region. As for the clean medium, it simply
consists of all lattice sites that do not belong to the doped
medium. With raising flux, magnetic length decreases and LLs
will form in a smaller region, which reduces the ratio of the
doped medium to the clean one. In the clean medium, we have
E0 = ED = 0.2, but E0 is shifted by disorder in the doped
medium. The shift of E0 of the entire sample, which depends
on the ratio of these two mediums, is therefore quantitatively
influenced by the magnetic flux, while the qualitative trend,
either upward or downward, is unaffected by flux. As a result,
E0 converges closer to ED with increasing flux, as the doped
medium diminishes and the clean medium becomes dominant.

We have further studied the effect of disorder concentration
on this nonmonotonic dependence on W . Numerical results,
displayed in Fig. 7, show that this nonmonotonic behavior
occurs for c = 10% and 20% as well. We notice that the

FIG. 7. The zeroth LL E0 against disorder strength W for several
disorder concentrations c. Parameters: φ = 0.02π, D = 0.1, others
given in main text.

transition occurs in the regime 5 < W < 6 for all these three
concentrations c = 5%, 10%, and 20%, indicating no obvious
dependence on disorder concentration. And raising c enlarges
the shift of E0 but no nonmonotonic dependence on c is ob-
served at least for c < 20%. It further suggests the breakdown
of SCBA in the case of diluted disorder since c is intertwined
with W in the SCBA theory. The effect of disorder concen-
tration could be understood by the proposal of two effective
mediums. In the diluted limit, the doped medium consists of
small regions separated from each other. Approximately, δE0

is equal in each small region, and it is taken as the shift of
the doped medium. The value of δE0 in the diluted limit is
estimated from the data for c = 5% displayed in Fig. 7. We
have δE0 > 0 for W < 5, δE0 ≈ 0 for W = 6, and δE0 < 0
for 7 < W < 20 in the doped regime, respectively. As the
concentration increases, the percentage of doped medium in-
creases as well, quantitatively enhancing the shift of E0, and
no nonmonotonic dependence on c is expected. It explains
why E0 arrives at its maximum or minimum at the same
disorder strength W , irrespective of disorder concentration c.
This picture remains valid as long as the assumption of two
effective mediums holds, and our numerical findings suggest
that it is valid at least for c = 20%.

IV. CONCLUSION

In summary, we have studied the evolution of LLs with
Anderson disorder and magnetic flux in a single-cone gapless
Dirac system. We find that E0 lies at the single-cone Dirac
point, which is robust against weak disorder. PH asymmetric
term D is important to determine the evolution of LLs with
disorder. With PHS, E0 is pinned at the charge-neutrality point
and independent of weak disorder. With PHS broken, E0 floats
up or shrinks down monotonously for positive or negative
D, respectively. LLs neighboring to E0 are greatly affected
by E0 to show more complex behaviors inconsistent with
conventional 2DEG. In the case with PHS or PH asymmetric
term D is weak, the evolution of E±1,±2 is consistent with
antilevitation scenario that LLs at band edge moves away
from the band center. With enhancing D, it changes gradually
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into the levitation scenario for E1,2 (E−1,−2) while it is still
antilevitation for E−1,−2 (E1,2) if D > 0 (D < 0). Therefore,
LLs may follow different scenarios in the gapless Dirac sys-
tem. As for the dependence on magnetic flux, we find that
E0 is independent of flux while both E−1,−2 and E1,2 move
close to E0 with flux decreasing. This is consistent with the
clean case. Besides, we have also studied the effect of the
disorder concentration. We find that a rare-region-like effect
emerges for diluted disorder. It makes E0 depend on both
magnetic flux and disorder strength. E0 can not be localized by
enhancing disorder strength for the diluted disorder case, and
its dependence on disorder strength becomes nonmonotonic,
which may be understood by our proposal of dividing the
system into two effective mediums.
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