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Interpretation of phonon spectroscopic data at atomic resolution
in scanning transmission electron microscopy
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We provide a theory for atomic resolution phonon spectroscopy in scanning transmission electron microscopy.
This formulation goes beyond a recently proposed simple approach to atomic-scale phonon spectroscopy by
explicitly including the dependence on probe position in the inelastic scattering cross section itself and considers
the contribution to the spectrum from individual atoms. An application is made to existing experimental data
that demonstrates how a direct comparison of the data with phonon densities of states projected onto individual
atoms can be made and also the importance of contributions to the energy-loss spectrum on a particular atomic
site from surrounding atoms due to probe spreading.
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I. INTRODUCTION

Monochromated electron sources have facilitated the char-
acterization of the vibrational states of materials at the atomic
scale using electron energy-loss spectroscopy (EELS) in scan-
ning transmission electron microscopy (STEM) [1]. Several
experiments have been carried out, mainly on thin samples
containing light elements, for example Refs. [2–13]. Thicker
specimens containing heavier elements have also been exam-
ined using STEM phonon EELS, for example Refs. [14–16].
A variety of approaches have been employed to understand the
underlying physics of the experimental results [2,8,10,17–28].
The relationship between a subset of these approaches was
explored in a paper by Zeiger et al. [29] and the importance
of being able to correctly account for the channeling (multiple
elastic scattering of the probing electrons), particularly in the
case of thicker specimens, was pointed out.

A simple approach to simulating the phonon sector in
EELS was recently proposed [30]. The physics encapsulated
in the dispersion curves, due to correlated motion of the
atoms, was incorporated in an integrated way via the phonon
density of states (PDOS), which is a function of phonon
energy. For a given PDOS, a spectral distribution function
was derived and this function distributes the total inelastic
phonon scattering, which can be calculated using the quantum
excitation of phonons model [20], into an energy-loss and gain
spectrum. The usefulness of this approach was illustrated in
the case of silicon. This model does not predict any variation
of the shape of the spectrum as one scans the probe across
columns containing different elements, whereas that intro-
duced here does.

The approach in this paper explicitly includes the de-
pendence on probe position in the inelastic scattering cross
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section itself and considers the contribution to the spectrum
from individual atoms. This allows for a change of shape in
the spectrum as a function of probe position for specimens
containing different atomic species. The advantages of the
model presented here will be demonstrated by its application
to the pioneering recent work of Xu et al. [13] addressing
single-atom vibrational spectroscopy with chemical-bonding
sensitivity for graphene containing Si and N impurities. This
example will show how the theory presented facilitates com-
parison of energy-loss spectra and the PDOS and how one
might deduce the PDOS projected on individual atoms from
STEM EELS recorded with atomic-scale resolution. The
ability to access the projected PDOS at an atomic level ex-
perimentally and compare the data to theoretical models,
at the same level, extends what is possible using the usual
approaches to measure the overall PDOS of a sample by
inelastic neutron scattering, which is averaged over large
volumes [31].

II. THEORY

A. Inelastic scattering cross section

We take as our starting point the following equation de-
scribing an inelastic scattering event that occurs at a specific
depth zi into the specimen [32–34], measured from the en-
trance surface of the specimen and along the optical axis:

ψn(R, r, zi ) = −iσnHn0(r, zi )ψ0(R, r, zi ). (1)

The wave function ψ0 incident on the slice at the depth zi

depends on the coordinate r in a plane perpendicular to the
optical axis. The functional dependence denoted by R spec-
ifies the probe position on the surface of the specimen. The
projected inelastic transition potential Hn0 describes an inelas-
tic phonon transition, via a Coulomb interaction, at the depth
zi from an initial state of the specimen labeled 0 to a final state
labeled n and, for an incident plane wave, its modulus squared
gives the probability that that transition will occur [33]. Here
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σn = m/2π h̄2kn is the interaction constant for the fast electron
after energy loss, in which m is the relativistic mass of the
electron and kn is the wave number of the fast electron after
the inelastic transition.

After an inelastic transition has occurred, the wave function
of the fast electron can be considered to be one of the final
states in the set {ψn}. Not only is the energy of the fast elec-
tron probe reduced by the inelastic scattering but, since the
transition potential Hn0(r, zi ) is complex, the amplitude and
phase of the wave function also changes. Fourier transforming
Eq. (1) we obtain

�n(R, g, zi )=−iσn

∫
Hn0(r, zi )ψ0(R, r, zi )e

−2π ig·rdr. (2)

Now let us discuss scanning transmission electron mi-
croscopy. There is no post specimen imaging lens; instead a
detector (spectrometer) is positioned in the far-field diffrac-
tion plane. We note that for a large enough acceptance
angle on the detector, the subtleties due to the subsequent
channelling of the inelastically scattered electron are inte-
grated over [35,36] and a similar result can be obtained via
a free space propagation to the detector. In that case the
wave function in the diffraction (detector) plane is given
directly by Eq. (2). The recorded signal (scattering cross
section) is obtained by taking the modulus squared, multi-
plying by a current conversion factor kn/k0 [37], taking into
account the pertinent final states, and integrating over the
appropriate detector aperture D in the diffraction plane. This
yields

I (R, zi ) =
∑
n �=0

σ 2
n

kn

k0

∫ ∫
�∗

0 (R, h, zi )�0(R, g, zi )

×
∫

D
H∗

n0(q − h, zi )Hn0(q − g, zi ) dq dh dg, (3)

where the transition potentials in Eq. (2) have been Fourier
transformed. For phonon excitation, kn ≈ k0, which will be
used later.

Ignoring the post transition channeling, the total signal
from inelastic transitions at different depths zi is the incoher-
ent sum

I (R) =
∑

i

I (R, zi ). (4)

Let us briefly consider what all this means for phonon exci-
tation. We consider a slice at depth zi over which we must
calculate the projected transition potentials Hn0(q, zi ) for all
pertinent final states for a range of energy losses for the
fast electron. Then we incoherently sum the contributions
from all slices in the specimen. However, without further
loss of generality, we will focus on a particular slice and, in
what follows, we will drop writing the explicit dependence
on zi.

B. Transition potentials for phonon excitation

A transition potential describing inelastic phonon scatter-
ing can be written in the reciprocal space as a function of the

scattering vector q as [20,22,24]

Hn0(q) = h2

2πm

∑
κ

e−2π iq·Rκ f κ
e (q)

×
∏

j

[
−i

√
πh

mκω j
εκ

j · q
]n j

√
n j!

e
− πh

2mκ ω j
(εκ

j ·q)2

, (5)

where the sum is over all atoms κ in the supercell with
masses mκ at positions Rκ and with electron scattering factors
f κ
e (q). The (real) polarization vectors per atom κ and for each

normal mode j of the lattice dynamical eigenvalue problem
are denoted by εκ

j . The index j enumerates all phonon wave
vectors in one half of the first Brillouin zone and, for each of
these wave vectors, the pertinent branches of the dispersion
relations in two classes of normal modes [19]. The prefactor
before the summation contains the relativistic mass m of the
probing electron. Equation (5) describes an excitation from
the ground state to an excited state with quantum numbers n j

(elements of the vector n, previously labeled simply with the
generic index n) at phonon frequencies ω j [24].

We assume that it suffices to consider only single phonon
excitations, i.e., excitations where only one of the quantum
numbers n j equals 1, e.g., n j′ = 1, and the others are zero.
Equation (5) then simplifies to

H(1 j′ )0(q) = h2

2πm

∑
κ

e−2π iq·Rκ f κ
e (q)

×
[
−i

√
πh

mκω j′
εκ

j′ ·q
] ∏

j

e
− πh

2mκ ω j
(εκ

j ·q)2

, (6)

where the label 1 j′ indicates that the final state includes
a single excitation of only the j′th mode. The product of
exponentials at the end of the second line in Eq. (6) is the well-
known Debye-Waller factor (DWF), which is often simplified
further by assuming that the system is effectively isotropic.
Explicitly, we have

∏
j

e
− πh

2mκ ω j
(εκ

j ·q)2 = exp

[
− πh

2mκ

∑
j

1

ω j
(εκ

j · q)2

]

≈ exp
( − 2π2q2

〈
u2

x

〉κ) = exp(−Bκ q2/4), (7)

with q = |q|, 〈u2
x〉κ the mean square displacement (MSD) of

atom κ along one dimension and Bκ the temperature factor.
The second line assumes approximate isotropy. Equation (7)
implicitly assumes that the system is initially at absolute
zero, i.e., T = 0 K, and the motion parameterized by the
MSD is due to the zero-point energy. We will consider tem-
peratures T > 0 K later. It is convenient in what follows to
absorb the DWF and the factor 1/

√
mκ in the term preceding

the DWF in Eq. (6) into the electron scattering factors and
define

f̃ κ
e (q) = f κ

e (q) exp(−Bκ q2/4)/
√

mκ . (8)

C. Cross section and PDOS

We now make the approximation that cross terms between
atoms can be ignored, i.e., we assume that the atoms in the
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specimen contribute to the energy-loss spectrum incoherently.
This approximation can be justified in the case of STEM,
where the electron probe mainly illuminates a single atom
so that cross terms are expected to be small. The products
of transition potentials in Eq. (3) can then be written, using
Eqs. (6)–(8), in the form

H∗
(1 j′ )0(q − h)H(1 j′ )0(q − g)

= h4

4π2m2

∑
κ

exp[−2π i(g − h)·Rκ ] f̃ κ
e (q − h) f̃ κ

e (q − g)

× πh

2ω j′

[
(q − h)·εκ

j′
][

(q − g)·εκ
j′
]

(9)

and where effectively one of the terms in the sum over atoms
κ dominates, depending on which atom is mainly illuminated
by the atomic-scale STEM probe.

In addition to the above, we assume an off-axis detector
such that the scattering vectors q in the detector are large
compared to the g and h in the probe forming aperture. An off-
axis detector satisfying this constraint is preferred in atomic
resolution phonon spectroscopy [6]. We can then make the
approximations that

[
(q − h) · εκ

j′
][

(q − g) · εκ
j′
] ≈ (

q · εκ
j′
)2

(10)

and

f̃ κ
e (q − h) f̃ κ

e (q − g) ≈ [
f̃ κ
e (q)

]2
. (11)

Then summing over all final states j′ we obtain

∑
j′

H∗
(1 j′ )0(q − h)H(1 j′ )0(q − g)

≈ h5

8πm2

∑
κ

exp[−2π i(g − h)·Rκ ]
[

f̃ κ
e (q)

]2

×
∑

j′

1

ω j′

(
q · εκ

j′
)2

. (12)

Now

∑
j′

1

ω j′

(
q · εκ

j′
)2 = q2

∫
dω

1

ω

∑
j′

δ(ω − ω j′ )
(
q̂ · εκ

j′
)2

= q2
∫

dω
1

ω
gκ (ω, q̂), (13)

where the quantity

gκ (ω, q̂) ≡
∑

j′
δ(ω − ω j′ )

(
q̂ · εκ

j′
)2 ≈ gκ (ω) (14)

is the PDOS projected onto the atom κ along the direction of
the unit vector q̂. In an isotropic system we can assume that
the PDOS is independent of the direction defined by q̂ and, as
indicated in Eq. (14), we have a contribution of gκ (ω) for each
in-plane direction for the PDOS projected onto the atom κ .

Therefore, we can write Eq. (12) as∑
j′

H∗
(1 j′ )0(q − h)H(1 j′ )0(q − g)

≈ h5

8πm2

∑
κ

exp[−2π i(g − h)·Rκ ]
[

f̃ κ
e (q)

]2

× q2
∫

dω
1

ω
gκ (ω). (15)

Differentiating Eq. (15) with respect to ω, and referring back
to Eq. (3), we can write an inelastic differential cross sec-
tion for single phonon excitation as a function of frequency
ω as follows:

I (R, ω)

dω
≈ πh

2ωk2
0

∑
κ

gκ (ω)
∫

D

[
f̃ κ
e (q)

]2
q2 dq

×
∫ ∫

�∗
0 (R, h)�0(R, g)

× exp[−2π i(g − h)·Rκ ] dh dg, (16)

where we have used kn ≈ k0. The last two lines of Eq. (16)
are the inverse Fourier transform of |�0(R, Rκ )|2, so that it
reduces to the simple and intuitive form

I (R, ω)

dω
≈ πh

2ωk2
0

∑
κ

|�0(R, Rκ )|2gκ (ω)
∫

D

[
f̃ κ
e (q)

]2
q2 dq.

(17)

This frequency-dependent cross section describes the energy-
loss spectrum for a given probe position R. The shape of
the spectrum is determined by the projected PDOS of each
atom and is further modulated by the 1/ω term. The con-
tribution of each atom is weighted by the intensity of the
probe |�0(R, Rκ )|2 at the atomic position Rκ for a given
probe position R. This R-dependent admixture from different
atomic sites allows the spectrum to change in both shape
and amplitude when scanning the probe across the sample,
in particular when atoms of different types are present. The
contribution to the signal from an atom κ is also determined
by the term integrating over the detector in Eq. (17). Referring
back to Eq. (8), we remind ourselves that this term depends on
the detector geometry, the electron scattering factor, the mass
of the atom and a DWF as defined in Eq. (7).

At this point we account for the effect due to a finite
temperature of the sample T > 0 K, where phonon modes
can be occupied. This is achieved by modifying Eq. (17) as
follows [30]:

I (R, E )

dE
≈ h2

4Ek2
0

exp(E/kBT )

exp(E/kBT ) − 1

×
∑

κ

|�0(R, Rκ )|2gκ (E )
∫

D

[
f̃ κ
e (q)

]2
q2 dq.

(18)

In Eq. (18) we have formulated the differential cross sec-
tion in terms of the phonon energy E = ω/h̄. We also note
that gκ (E ) = gκ (ω)/h̄. The additional, temperature-dependent
factor applies to a description of single-phonon excitation
processes leading to an energy loss of the probing electron
that corresponds to the phonon energy. A different factor
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applies for de-excitation processes leading to energy gain,
respectively.

For its application it is useful to write Eq. (18) in the form
I (R, E )

dE
≈ FT (E )

∑
κ

ακ (R)gκ (E ), (19)

where

FT (E ) = h2

4Ek2
0

exp(E/kBT )

exp(E/kBT ) − 1
(20)

and

ακ (R) = |�0(R, Rκ )|2
∫

D

[
f̃ κ
e (q)

]2
q2 dq. (21)

The factor FT (E ), as given by Eq. (20), modulates the shape of
the energy-loss spectrum relative to the shape of the PDOS. In
general, intensities at low energy losses are amplified. Equa-
tion (21) makes clear that, when the STEM probe is at position
R, the contribution to the spectrum from atom κ is determined
by the weighting function ακ (R).

III. EXAMPLE

Now let us illustrate the use of Eq. (19) by applying it to
the experimental work of Xu et al. on single-atom vibrational
EELS [13]. They used a 60 keV STEM probe with a probe
forming aperture of 32 mrad and an off-axis detector with a
12 mrad acceptance angle placed just outside the bright field
disk. This tests the limit of the approximation relying on an
EELS detector placed sufficiently off-axis such that the q in
the detector are large compared to the g and h in the probe
forming aperture. Initially we focus on the phonon spectral
data for a Si-C3 defect in graphene shown in Fig. 2(e) in
Ref. [13]. The impurity Si atom can be slightly out of plane
compared to the graphene layer, which is not expected to
significantly affect the inelastic electron scattering and the
following analysis. The theoretical calculations by Xu et al.
have also not indicated a major influence of buckling of the
Si-C3 configuration on the phonon properties. In the projected
structure, as shown in Fig. 1(a), the nearest-neighbor C atoms
(labeled “1st C”) and next-nearest neighbors (labeled “2nd
C”) to the Si atom are distinguished from the remaining C
atoms of the graphene lattice as groups with different vibra-
tional properties.

The measured energy-loss spectrum is obtained by scan-
ning the probe over several probe positions R in an area in
the vicinity of the Si atom, indicated schematically by the
orange circles in Fig. 1. In each panel of Fig. 1 we plot the
quantity ακ (R) defined in Eq. (21), which shows, in the case
of a spectrum recorded from the Si atom, that contributions to
the signal can also come from surrounding atoms, especially
those designated as 1st C. So, denoting the Si atom by κ ′, we
can write an expression, using Eq. (19), for the measured spec-
trum integrated over the probe positions in the orange circle,
taking into account the contribution from all atoms κ , as

Iκ ′
(E )

dE
= FT (E )

∑
κ

βκ ′,κgκ (E ), (22)

where

βκ ′,κ =
∫

κ ′
ακ (R) dR. (23)

FIG. 1. (a) Si-C3 impurity in graphene, with nearest neighbors
to the Si atom designated 1st C and next-nearest-neighbors 2nd
C. The atomic positions are indicated by dots in a super cell of
size 12.78 Å × 9.84 Å in the plane of projection. The background
is the quantity ακ (R) defined in Eq. (21) for the atoms designated
as graphene (black dots). (b) ακ (R) for 2nd C atoms at positions
marked in panel (a) by green dots. (c) ακ (R) for 1st C carbon atoms
(red dots). (d) ακ (R) for the Si atom (purple dot). Each ακ (R) is
plotted on its own gray scale. The orange circle is centered at the
Si position and indicates the applied integration area. The maps are
calculated by scanning a 60 keV STEM probe with 32 mrad probe
semi-convergence angle. The effect of a finite source size of 1 Å
(HWHM) is included by convolution with a Gaussian distribution
function.

In Eq. (23) the κ ′ notation for the area of integration
implies integration over the orange circle in Fig. 1(a),
which is centered on the atom κ ′, the Si atom in this case.
The important feature of Eq. (22) is that it allows for a
contribution to the measured signal from surrounding atoms,
in other words for atoms with κ �= κ ′.

To facilitate a comparison between experimental and theo-
retical data for the Si-C3 defect in Ref. [13], including possible
linear combinations of calculated PDOS projected on individ-
ual atoms, we recast Eq. (22) in the following form:

Ĩκ ′
(E )

dE
= 1

FT (E )

Iκ ′
(E )

dE
=

∑
κ

βκ ′,κgκ (E ). (24)

For a given experiment the function FT (E ), defined by
Eq. (20), is known. Therefore, we can process the experi-
mentally measured energy-loss spectrum by multiplying by its
inverse. We see that the experimental data, processed in this
way, is a linear sum of gκ (E ) contributing to the spectral data
taken in the vicinity of a particular atom. As an aside, we note
that applying the reciprocal factor 1/FT (E ) to the energy-loss
spectrum is numerically more stable than applying FT (E ) to
the weighted sum of projected PDOSs in Eq. (22), since a
division by small energy losses E is avoided. The fundamental
quantities of interest are the projected PDOSs, an advantage
of working with the processed data in Eq. (24).

There are two ways to proceed. First, we can use calculated
PDOSs gκ (E ) projected onto the atoms κ and then calculate
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FIG. 2. Experimental energy-loss data (black dots) from Xu et al. [13] [Fig. 2(e)] for probe positions (a) on graphene, (b) on 2nd C atoms,
(c) on 1st C atoms, and (d) on the Si impurity after processing per Eq. (24) by applying the factor 1/FT (E ). Theoretical projected phonon
densities of states (black curves) from Ref. [13] [Fig. 2(f)] are plotted after normalization as

∫
gκ (E ) dE = 1. For the case of Si in panel (d) a

contribution from 1st C atoms is assumed in a mixed density of states (thicker red curve) with 0.55g1stC(E ) + 0.45gSi(E ). Experimental results
have been scaled for comparison to the theory and to the mixed result in panel (d).

the quantities on the right-hand side (r.h.s.) of Eq. (24) to
compare with processed experimental data on the left-hand
side (l.h.s.) of Eq. (24). The second possibility is that, since
Eq. (24) is a linear system of equations, it can be inverted at
each energy loss to obtain the separate gκ (E ) per atom from
experiment. This assumes, that the coefficients βκ ′,κ can be
calculated based on prior knowledge of some experimental
parameters and the atomic structure, including a good estimate
for the MSD 〈u2

x,T 〉κ of each atom. In the following we apply
the first approach to the EELS results recorded by Xu et al.
[13] and compare this to their calculated PDOS data. We
then demonstrate how the second approach can be applied
to remove mixing from EELS data and compare these results
also to the calculations by Hage et al. [10].

For the Si-C3 impurity that we have been discussing, we
obtain results as shown in Fig. 2. In each case the probe
was positioned in the vicinity of atoms of the type/group
indicated. We see in Fig. 2(a) that the processed experimental
data corresponding to the l.h.s. of Eq. (24) agrees well with
the calculated PDOS projected onto a single C atom in pristine
graphene over the full available range of energy losses. Good
qualitative agreement is also obtained for the 2nd and 1st C
atoms surrounding the Si impurity. Some discrepancy in the
vicinity of the energy-loss ranges <50 meV and >200 meV

used for EELS background estimation and subtraction are
expected. In Fig. 2(b) we see that for the 2nd C atoms the
discrepancy between experiment and theory may be indicative
of some mixing from 1st C atoms. Figure 2(c) shows that,
when the probe is in the vicinity of a 1st C atom, a discrepancy
between experiment and theory is more evident. However,
with the probe in the vicinity of the Si atom, it is completely
clear that experiment and theory are in disagreement between
100 to 200 meV. This disagreement was not so obvious when
comparing energy-loss spectra with calculated PDOS pro-
jected on this atom, as presented by Xu et al. [13]. When
processing the experimental data via Eq. (24), to put them
in the form of a linear combination of projected PDOSs, the
factor in 1/FT (E ), cf. Eq. (20), enhances the processed data
with respect to the original energy-loss data for larger E . It is
not sufficient to consider only the contribution from gSi(E ) to
describe the processed data acquired in the vicinity of the Si
impurity.

As already discussed, when the probe is scanned in the
vicinity of the Si atom indicated by the orange circle in
Fig. 1, the tails of the probe are also interacting with the
set of three 1st C atoms. Figure 2(d) shows a much better
agreement between theory and experiment for a mixing given
by the linear combination 0.55g1stC(E ) + 0.45gSi(E ), with
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TABLE I. Mixing parameters βκ ′,κ , κ ′ = Si.

κ = Gr κ = 2nd C κ = 1st C κ = Si

0.03 0.18 0.35 0.44

projected PDOS data as provided in Ref. [13] and normalized
as

∫
gκ (E ) dE = 1 on each atom, for consistency with the

theory presented here. We note that the theoretical PDOS data
provided by Xu et al. [13] are normalized to take into account
the number of 1st C atoms (three in this case) and the number
of 2nd C atoms (nine), while the normalization for graphene
and Si are for single atoms.

Let us now investigate whether the mixing applied
to achieve an agreement with the experimental data in
Fig. 2(d) can be further justified. From Supplemental Material
Fig. S7(b) of Ref. [13], we estimate that the radius of the inte-
gration area for the signal on the Si atom is 0.7 Å. In reality,
the ideal probe implied by a probe-forming aperture of 32
mrad has aberrations, e.g., defocus and twofold astigmatism
and there is also some spatial incoherence. We have taken
this into account in a global way by convolving the probe
with a Gaussian function of 1 Å half width at half maximum
(HWHM). We have then calculated the quantities ακ (R) in
Eq. (21) as displayed in Fig. 1 for each group of atoms in
the defect structure indicated in Fig. 1(a). It is clear that
integration over the area around the Si atom, the orange circle
in each case, yields a nontrivial contribution to the signal, in
particular from atoms designated 1st C, and only to a lesser
degree from the other groups of C atoms. The estimated values
of βκ ′,κ , summed over all atoms in each group, are listed in
Table I.

The applied mixing is consistent with the weights listed
in Table I when assigning the sum of all C weights (0.56) to
the 1st C atoms. In other words, assuming a contribution from
1st C atoms only, there is an additional effective component
included that mocks up the contribution from graphene and
2nd C atoms. In fact, due to the similarity of the PDOS
projected on the different C groups, the summed PDOS using
all four weights in Table I is very close to the curve assuming
an admixture of only 1st C atoms with weight 0.55 in Fig. 2(d)
and an additional plot is not warranted.

In Fig. 3 we consider some of the experimental energy loss
data shown in Figs. 2(b) and 4(b) in Xu et al. [13]. Once again
this has been processed as per Eq. (24). Figure 3(a) shows the
results for the probe nominally in the vicinity of the Si atom
for a Si-C4 impurity. The linear combination 0.6g1stC(E ) +
0.4gSi(E ), with the theoretical projected PDOS normalized
to unity, again achieves a better agreement over a wide en-
ergy loss range than the theoretical curve calculated for the
Si atom alone. However, an unexplained difference between
experiment and theory remains in the region >200 meV.

Figure 3(b) shows processed results for an N atom in an
N-C3 impurity. We have again mixed in a contribution from
the 1st C atoms as 0.67g1stC(E ) + 0.33gN(E ), obtaining a
better agreement between theory and experiment than for the
calculated PDOS projected on the N atom only. The point
to note is that this causes a shift in the position of the main
peak, bringing it into better alignment with the experimental

FIG. 3. Processed energy-loss data (black dots) from
Figs. 2(b) and 4(b) in Xu et al. [13] with the probe in the
vicinity of the impurity atom for each defect. Panel (a) is for the Si
atom in a Si-C4 impurity and (b) an N atom in an N-C3 impurity.
The theoretical projected phonon density of states from Ref. [13] is
shown in each case (black curves). The experimental data is further
compared with a linear combination of densities of states including
a contribution from 1st C atoms. In panel (a) this combination
is 0.6g1stC(E ) + 0.4gSi(E ) (thicker red curve), in panel (b) we
have assumed 0.67g1stC(E ) + 0.33gN(E ). Theoretical results are
normalized as

∫
gκ (E ) dE = 1. Experimental results are scaled for

comparison with the mixed result in each case.

observation and also considerably improves agreement be-
tween experiment and theory to the right of the peak. We note
that processing the data moved a peak at 157 to 165 meV
(mainly a consequence of a multiplication by E ). The peak in
gN(E ) is at 155 meV but in the mixed PDOS it is at 161 meV.

An inversion of the mixing approach as applied above can
be formulated by making use of the linear relations between
the preprocessed EELS data on the l.h.s. and the PDOS pro-
jected on individual atom (types) on the r.h.s. of Eq. (24). This
set of linear equations can be inverted by multiplying both
sides by the inverse of the matrix β formed by the coefficients
βκ ′,κ . We can thus write Eq. (24) and its inversion in matrix
form as

Ĩ(E )

dE
= β g(E ), (25)

g(E ) = β−1 Ĩ(E )

dE
, (26)
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FIG. 4. PDOS projected on the single Si atom as extracted from
the experimental data by unmixing (dots) and compared to the theo-
retical calculations in Refs. [10,13] (curves).

with vectors Ĩ(E )/dE representing the processed EELS data
for each integration area κ ′ in the 2D EELS scan, and g(E ) is
the list of projected PDOSs for all contributing atoms κ .

For demonstration purpose, we consider the mixing factors
used previously for the results shown in Fig. 2(d), which
effectively is just a two-dimensional problem of mixing Si
and 1st C PDOSs to compare to the EELS data recorded on
the Si position. The respective two-dimensional matrix β and
its inverse are

β =
(

0.45 0.55
0.0 1.0

)
and β−1 =

(
2.22 −1.22
0.0 1.0

)
, (27)

with the system set up such that the first item of each vector
corresponds to Si and the 2nd to 1st C.

The Si PDOS obtained from applying this unmixing pro-
cedure to the experimental EELS data is plotted in Fig. 4
and compared to the respective theoretical results taken from
Hage et al. [10] and Xu et al. [13]. The theoretical PDOS of
Hage et al. has been smoothed by an energy distribution with
a width of 18 meV (FWHM), corresponding to the smoothing
applied by Xu et al. to accommodate the energy resolution of
their experiment. Both theoretical calculations agree reason-
ably well with the experiment in the energy-loss range where
artifacts from background subtraction are expected to be min-
imal. An exception is the region around 100 meV, where both
calculations somewhat overestimate the experimental PDOS
data, with the result obtained by Hage et al. agreeing slightly
better.

IV. DISCUSSION AND CONCLUSIONS

We have introduced a theory of phonon spectroscopy in
atomic resolution STEM which explicitly includes the de-
pendence on probe position in the inelastic scattering cross
section itself and considers the contribution to the spectrum
from individual atoms. This caters for a change of shape in
the spectrum as a function of probe position for specimens
containing different atomic species. The approach presented
facilitates a more direct comparison between energy-loss
spectra and PDOSs and suggests how one might deduce
PDOSs projected on single atoms from experimental EELS
data. Multiple scattering of the electron probe was not taken

into account here. We expect that this effect can modify
the mixing factors of the individual atomic contributions of
thicker samples to vibrational STEM-EELS data in a nontriv-
ial way, leading to complications for an analysis aiming at
atomic-scale resolution. However, this effect can be neglected
for very thin samples, such as for the impurities in single-layer
graphene discussed here, for which single electron scattering
will clearly dominate.

For an atomic-scale probe nominally in the vicinity of a
particular atom, we have demonstrated that contributions to a
spectrum from surrounding atoms due to the probe spreading
can be significant and are important for correctly modeling
the shape of a spectrum and also when using peak positions
as an analytical tool. Nevertheless, roughly speaking, mainly
one atom at a time is illuminated by the probe such that
the interference effects between atoms are likely small and
the assumption of atoms contributing incoherently is reason-
able. Furthermore, the integration of interference terms over a
large detector area usually leads to further cancellations.

It is interesting to note that integrating Eq. (17) over fre-
quency ω yields an expression for the inelastic scattering
cross section at the probe position R which is proportional
to atomic MSDs. A similar result is obtained in the context
of an Einstein model [29] and this has been used in a much
simpler model for vibrational EELS [30]. Once we are at
the level of MSDs, the information that is contained in a
correlated phonon model and encapsulated in the projected
PDOS on individual atoms is no longer evident. Furthermore,
our assumption here that different atoms contribute incoher-
ently to the scattering cross section is inherent in the Einstein
model and the convergence of the two approaches is not
unexpected. Nevertheless, the Einstein model is successful in
predicting cross sections integrated over energy loss [22]. This
is a further argument supporting our assumption of incoherent
contributions from different atoms made in the present model.

Another key assumption is that we have an EELS detec-
tor placed sufficiently far off-axis. This assumption, together
with that of incoherent contributions from different atoms,
has allowed us to arrive at an approach where we do not
have to consider the details of phonon modes in the disper-
sion surfaces but where a PDOS projected onto each atom
suffices.

Further investigations could be undertaken to check
whether the approximations in our model are still reasonable
under more general circumstances, such as in a multislice
approach for a sample that is tens of nanometers thick and
that would take into account multiple elastic scattering of
the probe, which may become significantly dispersed. This
could pave the way toward extracting projected PDOSs at
atomic resolution for thicker specimens. Deconvolution of the
multiple scattering of the probe to obtain projected PDOSs
per atom could be possible similarly to how this was done for
core-loss EELS [38], because Eq. (17) is structurally similar
to the simulation of inner-shell EELS in terms of a local
potential that represents the inelastic scattering [39]. The de-
pendence on the z coordinate, which has been omitted here for
better clarity, needs to be taken into account when describing
the dynamics of multiple elastic scattering of the probe in
a thicker sample and the possible structural differences of
atomic planes perpendicular to the incident beam direction
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for more complex crystals. A prerequisite of this approach
is knowledge of the atomic structure, sample thickness and
other experimental parameters. Although the target of the

deconvolution is to determine the projected PDOS of each
atom type, a good a priori estimate of the related mean-square
displacements would also be needed.
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