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Tunable nonlinear excitonic optical response in biased bilayer graphene
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Biased bilayer graphene (BBG) is an important system for studies of excitonic effects in graphene-based
systems, with its easily tunable band gap. This band gap is governed by an external gate voltage, allowing
one to tune the optical response of the system. In this paper, we study the excitonic linear and nonlinear optical
responses of Bernal-stacked BBG as a function of the gate voltage, both for in-plane (IP) and out-of-plane (OOP)
directions. Based on a semianalytical model of the electronic structure of BBG describing the influence of gate
voltage on excitonic binding energies, we focus our discussion on both the IP and OOP excitonic responses. Both
linear and second harmonic generation nonlinear responses are shown to be very sensitive to the gate voltage,
as both the interband momentum matrix elements and the band gap of the system will vary greatly with bias
potential.
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I. INTRODUCTION

Since the first mechanical isolation of graphene [1], many
different two-dimensional (2D) materials have been stud-
ied [2], such as hexagonal boron nitride (hBN) [3] and
transition metal dichalcogenides (TMDs) [4]. This interest
then recently transitioned into layered materials with broken
vertical symmetry, which have been considered both from
theoretical and experimental perspectives. These materials in-
clude, but are not limited to, buckled monolayers [5–8], Janus
materials [9–13], heterohomobilayers and biased homobilay-
ers [14–17]. In stark contrast to its monolayer counterpart,
biased bilayer graphene (BBG) has a tunable gap which can
be as large as 150 meV [14]. The magnitude of this band gap
can be controlled via an external electric field and dielectric
environment, and allows the formation of tunable excitons,
which have already been both measured experimentally [18]
and described theoretically [14,19–22].

As BBG presents an intrinsic out-of-plane (OOP) asym-
metry due to the interlayer bias potential, one can directly
study the effects of this asymmetry on the excitonic response.
Tuning the interlayer bias potential, one can alter both the
electronic structure of BBG and the interlayer asymmetry,
probing the effects on both in-plane (IP) and OOP optical
responses [23]. The probing of the OOP response, namely,
the OOP nonlinearities, leads to additional degrees of free-
dom useful for vertical photonics structures [24,25], allowing
for novel approaches in the design of ultrafast optical de-
vices [12], such as nonlinear holograms [26], broadband
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ultrafast frequency converters [27,28], miniaturized logic
gates [29,30], among others. Furthermore, the presence of var-
ious nonzero tensor components which include nondiagonal
components also provides a greater freedom when experimen-
tally probing the optical response of BBG.

Recent theoretical works [31] have reviewed the effects
of gate voltage on the free-carrier injection rate and shift
current in AA- and AB- (Bernal-) stacked bilayer graphene,
with many other theoretical works focusing on single-particle
properties of bilayer graphene structures [32–37], especially
when an interlayer twist angle is introduced [38–42]. How-
ever, and as in many layered materials, the optical response
of BBG is dominated by excitons [43] and their effects are,
therefore, fundamental in the study of the optical response
of this material. In this paper, we focus on the effects of
gate voltage on the excitonic optical response of AB-stacked
bilayer graphene at T = 0 K, considering both linear and SHG
nonlinear response. As results for the linear IP response have
been discussed previously in the literature [20,21], we focus
mainly on the linear OOP response as well as the second
harmonic generation (SHG) nonlinear response [44–47].

This paper is organized as follows: We begin, in Sec. II, by
discussing the electronic structure and its dependence on the
external gate voltage. This is then followed by the computa-
tion of the momentum and Berry connection matrix elements,
both for IP and OOP directions. Knowing the momentum ma-
trix elements, we compute the free-carrier linear response for
both the full Hamiltonian and a reduced two-band model. This
allows us to identify the frequency ranges where two bands
are enough to describe the optical response of the system as
a function of the gate voltage. Afterwards, in Sec. III, we
proceed to the computation of the excitonic states through
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FIG. 1. (Left) Band structure of BBG with a large bias (V = 200 meV) near the Dirac points. Colored dashed lines correspond to the band
structure under zero external bias, vertical arrows represent the three direct band gaps. (Right) Evolution of the three distinct direct band gaps
in BBG with increasing external bias near the Dirac points. Vertical dashed lines represent the four different values of V applied in numerical
studies.

solving the Bethe-Salpeter equation. This involves an approx-
imation of the effective screening length in the electron-hole
electrostatic potential, followed by a discussion on the distinc-
tion between intralayer and interlayer phenomena. Finally, in
Sec. IV, we compute the linear and SHG nonlinear excitonic
optical response of BBG. After obtaining the IP and OOP
optical selection rules for both linear and nonlinear responses,
we discuss the effects of gate voltage, as well as the relative
amplitudes of the different elements of the nonlinear conduc-
tivity tensor.

II. SINGLE-PARTICLE BIASED BILAYER
GRAPHENE HAMILTONIAN

In the basis {|1, b〉, |2, b〉, |1, t〉, |2, t〉}, where b (t ) de-
notes the bottom (top) layer and 1 and 2 denote the different
sublattices in each layer, the Hamiltonian of Bernal-stacked
BBG [48] in the Dirac approximation around the Dirac points
(Kx, τKy), with τ = ±1 the valley index, is given by

H =

⎛
⎜⎜⎝

V −γ0 f 0 −iγ3 f ∗
−γ0 f ∗ V γz 0

0 γz −V −γ0 f
iγ3 f 0 −γ0 f ∗ −V

⎞
⎟⎟⎠, (1)

where V is the bias potential applied to the bilayer sys-
tem, γ0 = 3.12 eV is the intralayer nearest-neighbor hopping
parameter, and the interlayer parameters γz = 0.377 eV (in-
terlayer direct vertical coupling), and γ3 = 0.377 eV (skew
coupling parameter). Restricting our analysis to the Dirac
cones K, K ′, we consider k measured from the Dirac points
and write

f (k) ≈
√

3

2
a(kx − iτky)

with h̄vF =
√

3
2 aγ0 the Fermi velocity, the polar angle of k de-

fined as θ = tan−1( ky

kx
), and a = 2.46 Å the lattice parameter.

The interlayer bias potential 2V corresponds to placing the
system in an electric field 2V

ed , with d the interlayer separation.
In this paper we will mainly consider V = 55 meV as it is
at this bias that the dominant peak in the IP linear response
matches with recent experimental results [18].

The band structure under the Dirac approximation is
given by

Eλη
= λ

√
h̄2v2

F k2 + V 2 + 1
2γ 2

z + (2η − 3)�,

� =
√

1
4γ 4

z + h̄2v2
F k2

(
4V 2 + γ 2

z

)
, (2)

where λ = ±1 represents the conduction and valence bands
[λ = +1 will be conduction (c) bands, λ = −1 valence (v)
bands], and η = 1, 2 identifies the band closest (η = 1) and
furthest away (η = 2) from the band gap. Direct substitution
of η = 1, 2 into Eq. (2) leads to a factor of ±1, as expected
for the band structure of this system. This band structure is
presented in Fig. 1. Focusing on direct band gaps, we write
the generic band gap as

E (η,η′ )
g = Ecη

− Evη′ . (3)

Due to the nature of the BBG band structure, the minimum
bandgap between the two η = 1 bands will not occur at k = 0
(see left panel of Fig. 1), instead occurring at

k =
√

2
V

h̄vF

√
2V 2 + γ 2

z

4V 2 + γ 2
z

(4)

measured from the Dirac points. For instance,

E (11)
g = 2V γz√

4V 2 + γ 2
z

≈ 106 meV (5)

for the considered bias potential V = 55 meV. The two larger
direct band gaps, namely, E (12)

g and E (22)
g , will occur at k = 0

and are significantly larger. For V = 55 meV, these take the
values

E (12)
g = V +

√
V 2 + γ 2

z ≈ 436 meV,

E (22)
g = 2

√
V 2 + γ 2

z ≈ 762 meV, (6)

and E (21)
g = E (12)

g . The three distinct band gaps are plotted
in the right panel of Fig. 1 for external bias between 0 and
110 meV. The large difference between the three band gaps
suggests that, as we will see ahead, the two η = 1 bands will
dominate the low-energy response of the system.
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A. In-plane matrix elements

For simplicity, we will discard the contributions from skew
coupling to the eigenvectors, considering it instead as a pertur-
bation when computing dipole matrix elements. In a compact
notation, we define the normalized eigenvectors for future
computations as

|λη(k)〉 =

⎡
⎢⎢⎣

e−2iτθα1,λη
(k)

e−iτθα2,λη
(k)

e−iτθα3,λη
(k)

α4,λη
(k)

⎤
⎥⎥⎦. (7)

This gauge choice will carry a pseudospin [14,20,49–52] fac-
tor of ms = −2 in the τ = 1 valley. For compactness in the
expressions for the momentum matrix elements and Berry
connections, the k dependence in the eigenvector components
will be suppressed.

To compute the IP interband momentum matrix elements,
chosen without loss of generality in the x direction, we must
analyze

Px
vηcη′ k = m0

h̄

〈
vη

∣∣∣∣∂H∂kx

∣∣∣∣cη′

〉
, (8)

where m0 is the free-electron mass. The operator ∂H
∂kx

can be
readily computed and is given by

∂H
∂kx

=

⎛
⎜⎜⎝

0 −h̄vF 0 −i γ3

γ0
h̄vF

−h̄vF 0 0 0
0 0 0 −h̄vF

i γ3

γ0
h̄vF 0 −h̄vF 0

⎞
⎟⎟⎠.

Yet, obtaining the matrix elements taking into account
skew coupling due to finite γ3 in the eigenvectors becomes
extremely unwieldy. As a consequence, we consider an ap-
proximation where γ3 is taken as a small perturbation to the
Dirac BBG system and, therefore, its only effect will be in-
troducing additional terms in the momentum matrix elements
proportional to γ3

γ0
h̄vF , as presented in ∂H

∂kx
. This follows the

approach previously outlined in a similar study of the linear
response of BBG [20], where experimental results [18] where
accurately predicted under this same perturbative approach.
This also means that skew coupling will play no part in the
calculation of Berry connections, as it is only dependent on
the eigenvectors defined in Eq. (7).

Focusing only on the η = 1 bands, the exciton momentum
matrix element will be given explicitly as

Px
vηcη′ k = m0vF

[
eiτθ

(
α∗

1,vη
α2,cη′ + α∗

3,vη
α4,cη′

)
+ e−iτθ

(
α∗

2,vη
α1,cη′ + α∗

4,vη
α3,cη′

)
− i

γ3

γ0

(
e2iτθα∗

1,vη
α4,cη′ − e−2iτθα∗

4,vη
α1,cη′

)]
. (9)

In this form, it is also clear from the phase factors that, upon
multiplication by the conjugate and angular integration, the
lowest contribution from skew coupling to the linear response
will be quadratic in |γ3/γ0| ≈ 0.1. As |γ3/γ0| � 1, we will
keep only the dominant term in each expansion. The validity
of this perturbative approach has also been checked against a
full tight-binding numerical calculation.

Comparing both the single-particle Hamiltonian as in
Eq. (1) and the momentum matrix element as given in Eq. (9)
against those used in Ref. [20], one can see that Ref. [20] is
missing the i factor in the skew coupling contribution for both
the Hamiltonian and the momentum matrix element. Although
the lack of this term is of no consequence for the linear
response discussed in Ref. [20] due to the proportionality
to |γ3/γ0|2, this factor is of importance for the IP nonlinear
response as it will be clear when the excitonic matrix elements
are discussed.

A different contribution, namely, trigonal warping, consists
of considering the quadratic term in the series expansion of f ,
leading to [53]

f (k) ≈
√

3a

2
[(kx − iτky) + iζTWa(kx − iτky)2], (10)

where ζTW =
√

3
12 is a fixed numerical factor resulting from the

series expansion of f . Careful analysis of the effects of this
quadratic term on the momentum matrix elements via Eq. (8)
reveals that the phase factor associated will be e±2iτθ , identical
to the contribution from skew coupling in Eq. (9). Further-
more, upon computation of the excitonic matrix elements, this
quadratic correction proves to be negligible when compared
against that originating from skew coupling and, therefore, it
will be ignored.

In the kx direction, the matrix elements of the Berry con-
nection between bands nη and mη′ read as

�x
nηmη′k = i〈nη| ∂

∂kx
|mη′〉. (11)

The exact form of the Berry connection will be needed when
computing generalized derivatives [54] and �x

cηcη′ k will be
given in terms of the eigenvector components as

�x
cηcη′ k = i cos θ

(
α∗

1,cη

∂α1,cη′

∂k
+ α∗

2,cη

∂α3,cη′

∂k

+α∗
3,cη

∂α3,cη′

∂k
+ α∗

4,cη

∂α4,cη′

∂k

)

− τ

k
sin θ

(
2α∗

1,cη
α1,cη′ + α∗

2,cη
α1,cη′ + α∗

3,cη
α3,cη′

)
,

(12)

and �x
vηvη′ k will be defined analogously for the valence bands.

B. Out-of-plane matrix elements

Before computing the single-particle linear optical re-
sponse, we will discuss the OOP momentum and Berry
connection. To this end, we begin by defining the matrix
elements of z from the extension of d

2 σz [55] to a bilayer
system, with σz the diagonal Pauli matrix, as

znηmη′k = 1
2 〈nη|diag[d, d,−d,−d]|mη′ 〉. (13)

The interlayer separation d has been previously discussed in
the literature [56–59], with reported values for d ≈ 3.46 Å.
The momentum matrix element then reads as

Pz
vηcη′ k = m0

ih̄
Ecη′ vηkzvηcη′ k. (14)
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Explicitly computing zvηcη′ k, we obtain

Pz
vηcη′ k = m0d

2ih̄
Ecη′ vηk

[
α∗

1,vη
α1,cη′ + α∗

2,vη
α2,cη′

− α∗
3,vη

α3,cη′ − α∗
4,vη

α4,cη′
]
. (15)

For the nonlinear response, we must also compute the
matrix elements zcηcη′ k, zvηvη′ k. Similarly to zvηcη′ k, we write
these in terms of the radial components of the eigenvectors as

zcηcη′ k = d

2

[
α∗

1,cη
α1,cη′ + α∗

2,cη
α2,cη′ − α∗

3,cη
α3,cη′ − α∗

4,cη
α4,cη′

]
,

and analogous for zvηvη′ . Hence, we obtain the Berry connec-
tion as [54]

�z
cηcη′ k − �z

vηvη′ k = zcηcη′ k − zvηvη′ k. (16)

C. Single-particle linear optical response

In a clean semiconductor at zero temperature, the diagonal
optical response reads as [54,60–63]

σββ (ω) = e2h̄2ω

iπ2m2
0

∑
c,v

∫ ∣∣Pβ

cvk

∣∣2
Ecvk

(
E2

cvk − h̄2ω2
)d2k, (17)

where
∑

c,v sums over all conduction and valence bands.
Within the two-band approximation, the sum over valence and
conduction bands is dropped. With the expansion near the
Dirac cones, integration will now be over the infinite Dirac
cones and a sum over valleys must also be made.

Inspecting Eq. (9), one sees that the angular integration
is trivial. Although the radial integration proves much more
complicated, one can easily perform it numerically by em-
ploying a simple numerical quadrature in a tangent grid q =
tan(x π

2 ) with 1500 points x ∈ [0, 1], following the procedure
already outlined several times in the literature, namely, in
Refs. [20,64–66]. Introducing a broadening parameter via the
transformation h̄ω → h̄ω + ih̄� with h̄� = 5 meV, we obtain
both the free-carrier IP (top) and OOP (bottom) linear optical
response as depicted in Fig. 2, with σ0 = e2/4h̄.

While the free-carrier response can be easily computed
for the full four-band system, the same is not true when
one wishes to obtain the excitonic response. The four pos-
sible combinations of valence and conduction bands would
lead to a drastic increase in the computational complexity of
both solving the Bethe-Salpeter equation and of obtaining the
excitonic momentum matrix elements [20,52,67]. Hence, it
becomes crucial to reduce the system to a two-band problem
when one wants to consider its excitonic properties. As seen
in Fig. 2, and as expected from the large separation of the
higher-energy bands, we observe minimal differences in the
real part of the linear response between the four- and two-
band responses if h̄ω � 400 meV, consistent with previous
results [20,66]. Hence, we will consider only the two η = 1
bands from this point onward. This will, however, introduce
issues when the imaginary part of σ is relevant (i.e., when
considering the magnitude of the various components of the
conductivity tensor). This is because, while the real part of σ

only gets contributions from transitions resonant with h̄ω (i.e.,
remote bands do not contribute substantially), the imaginary
part, in contrast, presents contributions from remote bands

ReRe

ImIm

ImIm

ReRe

FIG. 2. Comparison between full four-band calculation and cal-
culation with only the two lowest bands of both IP (top) and
OOP (bottom) free-carrier linear optical response for biased bilayer
graphene with a bias potential V = 55 meV and broadening h̄� =
5 meV. Real part represented in blue, denoted Ren, and imaginary
part in orange, denoted Imn, for the n-band calculation. Vertical
dashed lines represent the various band gaps of the system, from left
to right E (11)

g , E (12)
g , E (22)

g .

as it behaves as 1/(ω − Enm). Therefore, while a two-band
approximation can accurately model the real part of σ for
low frequencies, it quickly fails for the imaginary part as
seen in Fig. 2. Additionally, as only the two η = 1 bands
have an effect on the real part of the conductivity up to
h̄ω ≈ E (12)

g (for V = 55 meV, up to h̄ω ≈ 400 meV), one
can expect minimal effects on the real part of the SHG non-
linear conductivity up to h̄ω ≈ E (12)

g /2. The imaginary part
will, however, be significantly different from the four-band
calculation much earlier due to both the longer range of the
peaks in the imaginary part and the presence of resonances
at 2h̄ω.

III. BETHE-SALPETER EQUATION

As discussed in the preceding section, we will focus
on the dominant response from the two bands closest to
the band gap c1, v1, which we denote c, v. Hence, we are
only interested in the eigenvalues Ec/v and their respective
eigenvectors |c/v〉. Additionally, we will ignore contribu-
tions to eigenvectors from the skew coupling parameter, as
this will allow us to transform the Bethe-Salpeter equa-
tion (BSE) from a 2D integral equation into a 1D integral
equation.

Before discussing the excitonic conductivity, we must
first compute the excitonic states. To compute the exci-
tonic wave functions and binding energies, we will solve the
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FIG. 3. Evolution of the effective screening length r0 as a func-
tion of external bias V , as computed in a dipole approximation via
Eq. (20).

BSE [51,53,63,68,69], given in momentum space by

Enψ
(n)
cvk = Ecvkψ

(n)
cvk +

∑
q

V (|k − q|)〈ck|cq〉〈vq|vk〉ψ (n)
cvq

(18)
where En is the exciton energy of state n, V (k) is the attractive
electrostatic potential coupling the electron and the hole, and
ψ

(n)
cvk is the wave function of the exciton. For our system,

we consider V (k) to be the Rytova-Keldysh potential [70,71],

given in momentum space by

V (k) = −2π h̄cα
1

k(ε + r0k)
, (19)

with α the fine-structure constant, ε the mean dielectric con-
stant of the media surrounding the bilayer, and r0 as an
in-plane screening length [72] related to the polarizability of
the material and usually obtained from DFT calculations [73].
The effective screening length can be taken as a first approx-
imation from the dipolar transition amplitudes and is given
by [72]

r0 = h̄3cα

πm2
0

∫ ∣∣〈ck
∣∣Px

cvk

∣∣vk
〉∣∣2

E3
cvk

d2k. (20)

This effective screening length is very sensitive to the external
bias, falling quickly as V increases, as can be seen in Fig. 3.
For the considered bias potential, r0 ≈ 103 Å. Similarly to
previous studies [20], the dielectric constant is set at ε = 6.9
which corresponds to the the case of BBG encapsulated in
hBN at the zero-frequency limit [74].

We then consider the excitonic wave function to have a
well-defined angular momentum �n, writing it as

ψ
(n)
cvk = f (n)

cvkei�nθk . (21)

As the band’s structure is isotropic, we replace Ecvk → Ecvk ,
allowing us to rewrite the Bethe-Salpeter equation converting
the sum into an integral as

En f (n)
cvk = Ecvk f (n)

cvk + 1

4π2

2∑
�=−2

∫ +∞

0

∫ 2π

0
V (|k − q|)A�(k, q)ei�τϕ f (n)

cvqei�nϕdϕ q dq, (22)

where ϕ = θq − θk . The radial component of the form fac-
tor can then be written by analyzing the expansion of
〈ck|cq〉〈vq|vk〉 as in terms of the � factors in the complex expo-
nential of the form ei�τϕ in Eq. (22). This then fixes the ranges
on the sum over � present in Eq. (22). For a monolayer system,
the form factor reads as, in a somewhat abusive notation,

A�(k, q)ei�τϕ = 〈ck|cq〉〈vq|vk〉, (23)

identical to what is present in Eq. (18). However, when one
wishes to consider a bilayer system where there is a distinc-
tion between interlayer and intralayer phenomena, one must
compute the form factor more carefully. Recalling the eigen-
vectors from Eq. (7), separated into top- and bottom-layer
components as

|λ〉 =
[|λt 〉
|λb〉

]
, (24)

we explicitly introduce a distinction between intralayer and
interlayer interactions by writing the form factor as

A�(k, q)ei�τϕ = 〈
ct

k

∣∣ct
q

〉〈
vt

q

∣∣vt
k

〉 + 〈
cb

k

∣∣cb
q

〉〈
vb

q

∣∣vb
k

〉
+ e−d|k−q|[〈ct

k

∣∣ct
q

〉〈
vb

q

∣∣vb
k

〉 + 〈
cb

k

∣∣cb
q

〉〈
vt

q

∣∣vt
k

〉]
,

(25)

where d ≈ 3.46 Å is the interlayer separation between the two
graphene layers [56–59]. The extra e−d|k−q| factor present in

Eq. (25) in fact originates from the Rytova-Keldysh potential,
as written in Eq. (19), corresponding to the charges being
separated in the z direction. It is, however, simpler to write
this factor in the form factor as to explicitly couple only
eigenvector components from opposing layers. As required,
when the interlayer separation vanishes there will no longer be
a vertical separation of the charges and the form factor exactly
matches Eq. (23).

Finally, Eq. (22) is solved numerically via the same numer-
ical procedure as described in Sec. II, namely, by considering
a tangent grid q = tan(x π

2 ) with 1500 points x ∈ [0, 1], fol-
lowing the procedure already outlined several times in the
literature, namely, in Refs. [20,64–66]. Additionally, due to
the introduction of the e−d|k−q| in Eq. (25), the angular integral
in Eq. (22) is done numerically in a uniform grid with 1500
points ϕ ∈ [0, 2π ].

When discussing excitonic states, we will use a similar
nomenclature as in the 2D hydrogen atom [75] to distinguish
the different angular momentum states (i.e., s, p±, d± states).
In Fig. 4, we plot the binding energy of the first four states
of the s, p−, and d− series. As the bias potential V increases,
the energies of the first s and p− states approach each other,
eventually crossing in the same way as presented in current
ab initio computations [21]. In the model considered in
this paper, this crossing occurs for a bias potential Vs−p− ≈
180 meV and will lead to a swap of the first two peaks of the
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FIG. 4. Evolution of the binding energies of the first four s, p−,
and d− series excitons as a function of external bias V , as obtained
from the solution of the BSE as presented in Eqs. (22)–(25).

linear conductivity, as seen in Ref. [21]. The second crossing,
involving s and d− states, will occur at Vs−d− ≈ 245 meV,
and will lead to the dominant resonance for the linear OOP
response being at a lower energy than the 1s resonance of the
linear IP response.

IV. EXCITONIC OPTICAL RESPONSE

Having discussed the method for solving the BSE in a BBG
system, we now proceed to the study of the excitonic optical

conductivity, writing the linear conductivity as [53,63]

σαβ (ω)

σ0
= −ih̄2

2π3m2
0

∑
n

[
EnX α

0nX β

n0

En − h̄ω
− (ω → −ω)∗

]
, (26)

where σ0 = e2

4h̄ is the conductivity of monolayer graphene.
The excitonic matrix elements are defined as [53,55,63]

X α
0n = i

∫
ψ

(n)
cvk

Pα
vck

Ecvk
d2k. (27)

For the nonlinear conductivity, we define σ2 = e3a
4Egh̄ and write

the SHG (ωp = ωq) nonlinear conductivity [53,63] as

σ SHG
αβγ (ω)

σ2
= −iEgh̄2

2aπ3m2
0

∑
n,m

[
EnX α

0nQβ
nmX γ

m0

(En − 2h̄ω)(Em − h̄ω)

− EnX α
n0Qβ

mnX γ

0m

(En + 2h̄ω)(Em + h̄ω)

− (En − Em)X α
0nQβ

nmX γ

m0

(En + h̄ω)(Em − h̄ω)

]
, (28)

where Eg is the band gap of the material. As we are only
considering effects from the two η = 1 bands, we will take
the band gap Eg as E (11)

g , as discussed earlier. The two-state
excitonic matrix elements are defined as [53,55,63]

Qα
nm = i

∫
ψ

(n)∗
cvk

[
ψ

(m)
cvk

]
;kα

d2k, (29)

R
e

R
e

FIG. 5. (Left) Real part of the linear IP (top) and OOP (bottom) optical responses for εmedium = 6.9, with h̄�p− = h̄�d− = 1.3 meV and
h̄�s = 0.4 meV. Orange curve corresponds to the excitonic bound states, while blue line also includes continuum states. Vertical dashed line
represents the band gap E (11)

g of the system, dotted-dashed line represents 2V = 110 meV. In the IP legend, γ3 and γ0 identify which matrix
elements allow for the transition in question. (Right) Diagram of dominant excitonic angular momentum selection rules in the τ = 1 valley for
linear IP (top) and OOP (bottom) optical responses. Transitions allowed with (without) skew coupling are shown in dashed (solid) lines.
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FIG. 6. Real part of the linear IP (top) and OOP (bottom) optical
responses for ε = 6.9, with h̄�p− = h̄�d− = 1.3 meV and h̄�s =
0.4 meV, for values of the bias potential V between 20 and 100 meV.
Vertical dashed lines represent the band gap E (11)

g of the system for
each value of the bias potential V , dotted-dashed lines represent the
gap at k = 0, equal to 2V .

where [ψ (m)
cvk];kα

is the generalized derivative [54] in the α

direction of the exciton wave function for the state m given
in terms of the Berry connection �α

i jk, defined as [63]

[
ψ

(m)
cvk

]
;kα

= ∂ψ
(m)
cvk

∂kα

− i
(
�α

cck − �α
vvk

)
ψ

(m)
cvk . (30)

As the excitonic wave function will be independent of kz, the
∂

∂kz
ψ

(m)
cvk term is dropped, meaning that Qz

nm reads as [55]

Qz
nm =

∫
ψ

(n)∗
cvk

(
�z

cck − �z
vvk

)
ψ

(m)
cvkd2k. (31)

A. In-plane linear response

Recalling Eq. (27), the excitonic selection rules for IP lin-
ear response are obtained directly by considering the angular
integral

∫ 2π

0
ei�nθPx

vckdθ, (32)

where Px
vck is as defined in Eq. (9). Direct inspection of this

integral tells us that the terms proportional to γ0 will lead to
contributions from states with �n = ±τ , while the presence of
skew coupling γ3 allows transitions to states where �n = ±2τ .
This means that the X x

0n matrix element can be written, in a

somewhat abusive but concise form, as

X x
0n = X x

�n+τ=0 + X x
�n−τ=0 − i

γ3

γ0

[
X x

�n+2τ=0 − X x
�n−2τ=0

]
,

(33)

where the new indices restrict each term to the Kronecker δ’s
resulting from the different angular integrals. Taking |X x

0n|2
as in Eq. (26), the presence of the various Kronecker δ’s
originating from each of the angular integrals means that non-
vanishing contributions from γ3 to the linear response must be
proportional to |γ3|2. Therefore, the inclusion of an i factor in
the Hamiltonian will not alter the results when compared to
previous studies [20]. It will, however, affect the nonlinear re-
sponse as it will be linear in γ3 (in this simple approximation)
and, therefore, the i factor proves to be important.

Following from the results of Ref. [18], we will assume
the broadening to be dependent on the excitonic state n.
Specifically, we set the broadening as dependent on the angu-
lar momentum series, given by h̄�p− = 1.3 meV and h̄�s =
0.4 meV. With the broadening set, we plot the IP linear re-
sponse for V = 55 meV in the top panel of Fig. 5. Varying the
bias potential V , we can observe the tunability of the IP linear
response in the top panel of Fig. 6. Similarly to what was
observed in Refs. [20,21], the dominant peak for the IP linear
response quickly increases as the bias potential increases.
Additionally, the location of the peak corresponding to the 1s
resonance approaches that of the dominant 2p− resonance, as
indicated by the evolution of the binding energies in Fig. 4.

B. In-plane nonlinear response

Now for the nonlinear optical response, we recall Eqs. (29)
and (30) and write the integrand present in the two-state mo-
mentum matrix element as

ψ
(n)∗
cvk

[
∂ψ

(m)
cvk

∂kx
− i

(
�x

cck − �x
vvk

)
ψ

(m)
cvk

]
. (34)

Focusing on the angular integration of this expression, and
recalling the definition of the Berry connection present in
Eq. (12), one obtains that only transitions with �m − �n = ±1
are allowed. In a similar notation to Eq. (33), this means that
the Berry connection up to zeroth order in γ3

γ0
can be written as

Qx
nm = Qx

|�m−�n|=1. (35)

Multiplication of the angular momentum Kronecker δ’s from
Eqs. (33)–(35) leads to four nonzero matrix elements which
will be linear in γ3

γ0
. We denote these nonzero matrix elements

by the oscillator strength defined, for compactness, as

σ�n;�m ≡ X x
�n

Qx
�n,�m

X x
�m

. (36)

Explicitly, the transitions allowed by Eqs. (32)–(34) will be

σs;p− , σp−;s,

σ f−;g− σg−; f− , (37)

where the left column corresponds to those where
�m − �n = −1 and the right column to those where
�m − �n = 1.

Careful inspection of the matrix elements tells us that σs;p−
and σp−;s will be the dominant contributions to the SHG
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FIG. 7. (Left) Real part of the SHG optical response of BBG with diagonal IP (top), diagonal OOP (middle), and nondiagonal OOP
(bottom) conductivity for εmedium = 6.9 and h̄� = 1.5 meV. Orange curve corresponds to only excitonic bound states, while blue line also
includes continuum states. Vertical (dotted) dashed black lines represent (half) the band gap E (11)

g of the system. (Right) Diagram of dominant
excitonic angular momentum selection rules in the τ = 1 valley for each component. Transitions allowed with (without) skew coupling are
shown in dashed (solid) lines. Arrow direction and color represent the specific resonance when multiple contributions are present.

nonlinear response up to linear order in γ3

γ0
. The real part of

the SHG nonlinear response is then plotted in the top panel
of Fig. 7. Similarly to previous results [55], we see that the
dominant contribution will originate from the excitonic states
with the smallest angular momentum.

C. Out-of-plane linear response

Recalling Eq. (27), the dipole transition amplitude for the
excitonic state n with angular momentum quantum number �n

reads as

X z
0n =

∫ ∞

0

f (n)
cvk

Ecvk
k dk

∫ 2π

0
ei�nθPz

vckdθ (38)

which immediately leads to the optical selection rule �n = 0
for the linear response when one recalls the definition of
Pz

vck from Eq. (15). Inspecting this equation also tells us

that the OOP linear optical response will have a quadratic
dependence on the interlayer spacing, originating directly
from | ∫ 2π

0 ei�nθPz
vck dθ |2. Additionally, a more complex de-

pendence on d will be implicitly present in the excitonic wave
function f (n)

cvk due to the exponential e−d|k−q| in the form factor
present in Eq. (25).

The real part of the OOP linear excitonic optical response is
plotted in the bottom panel of Fig. 5, together with the diagram
of the allowed transitions in the τ = 1 valley. Although it is
not labeled in the figure due to its much weaker amplitude, the
4d− transition is still allowed. Contrary to what was computed
for the OOP linear response of a buckled monolayer [55], we
observe that the conductivity quickly stabilizes to a constant
value for h̄ω > E (11)

g , while in a buckled monolayer an appar-
ently linear growth with h̄ω was observed in the same regime.
The observed behavior also matches with the results for the
free-carrier conductivity, present in the bottom panel of Fig. 2,
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FIG. 8. Real (blue) and imaginary (red) parts, as well as absolute value (black) of the xxx (left), zzz (middle), and zxx (right) tensor elements
of the excitonic SHG nonlinear conductivity for εmedium = 6.9 and h̄� = 1.5 meV. Vertical (dotted) dashed black lines represent (half) the band
gap E (11)

g of the system.

in the region where the two-band approximation is valid.
Additionally, in the bottom panel of Fig. 6, we present the
OOP optical response for various values of the bias potential
V between 20 and 100 meV. In this figure, we can see the
much larger effect of the bias potential on the OOP optical
response in comparison to the IP response. This is most no-
ticeable between V = 20 and 55 meV, where the maximum
of the linear response for the IP and OOP linear response in-
creases by factors of approximately 3× and 5×, respectively.

D. Out-of-plane nonlinear response

Focusing now on the OOP nonlinear regime, we recall the
expression for Qz

nm from Eq. (31) as

Qz
nm =

∫
ψ

(n)∗
cvk

(
�z

cck − �z
vvk

)
ψ

(m)
cvkd2k. (39)

With this expression in mind, careful analysis of Eq. (16) leads
immediately to the selection rules

�n = �m. (40)

This selection rule is rather unrestrictive, meaning that it will
be X z

0n which will determine the allowed transitions.
Focusing first on the diagonal σzzz response, the selection

rules follow immediately from analysis of X z
0n and Qz

nm as

�n = �m = 0. (41)

Recalling the pseudospin factor, this means that the transitions
present will be associated with d− series states. Knowing the
selection rules, we can compute the SHG conductivity, plotted
in the middle panel of Fig. 7. The matrix elements X z

0n (around
1
5 the magnitude of X x

0n) and Qz
nm (around 1

4 the magnitude of
the analogous matrix element in Qx

nm) are significantly smaller
than those present in σ SHG

xxx . This, in conjunction with the cubic
dependence [55] on the ratio d/a ≈ 0.7, means that the peak
amplitude of σ SHG

zzz is close to 800 times smaller than that of
σ SHG

xxx . A big difference can also be observed in the qualitative

behavior of σ SHG
zzz versus its analogous counterpart in a buck-

led monolayer [55]: while in the buckled monolayer the σ SHG
zzz

response above the band gap remains close to its maximum, in
BBG we observe that it quickly tends to a much smaller value,
similarly to what is observed in the σ SHG

xxx response.
Second, we focus our attention on the off-diagonal σzxx

response. While the presence of X z
0n means immediately that

�n = 0, we must now carefully analyze Eqs. (9)–(32), as well
as Eqs. (12)–(34). From Qx

nm, we immediately get that

|�m − �n| = 1 ⇒ �m = ±1,

both allowed by the selection rules for X x
m0. Hence, we are

restricted to states

�n = 0, �m = ±1.

Again recalling the pseudospin factor, we can immediately
associate the selection rules with transitions between d− states
and both p− and f− states. Careful inspection of the oscillator
strength for the two distinct selection rules reveals that, as one
would intuitively expect from the lower angular momentum,
resonances associated with the matrix elements σd−;p− domi-
nate. The off-diagonal σ SHG

zxx SHG response is then plotted in
the bottom panel of Fig. 7.

For better readability and to facilitate comparisons with
experimental results, the real and imaginary parts of the three
tensor elements presented in Fig. 7 are presented separately in
Fig. 8, together with the absolute value of each tensor element
for a bias voltage V = 55 meV. This specific bias voltage
is chosen so that the band gap E (11)

g is still much smaller
than the excitonic resonances associated with the second band
gap, namely, close to 2h̄ω = E (12)

g , meaning that the effects
of these missing resonances on the imaginary part will be
minimized. It is important to note that, while the two-band
BSE results for the imaginary part will drift away from the
four-band results at higher energies, as discussed previously
in Sec. II, these will be qualitatively correct in regards to the
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FIG. 9. Real part of the SHG IP (top), diagonal OOP (middle),
and nondiagonal OOP (bottom) optical responses for ε = 6.9, with
broadening h̄� = 1.5 meV, for values of the bias potential V between
20 and 100 meV. Vertical dashed lines represent the band gap E (11)

g

of the system for each value of the bias potential V , dotted-dashed
lines represent the gap at k = 0, equal to 2V . Leftmost vertical lines
correspond to response at 2h̄ω, rightmost vertical lines correspond to
response at h̄ω.

location of the resonances for the frequency range consid-
ered. The imaginary part and absolute value can, therefore,
prove themselves useful for comparison against experimental
results [44–47].

Finally, in Fig. 9, we present the SHG IP (top), diagonal
OOP (middle), and nondiagonal OOP (bottom) optical re-
sponses for three different values of the bias potential V . In
this figure, we keep a constant broadening h̄� = 1.5 meV as to
more easily observe the effects of tuning the bias potential. For
the lowest value of the bias potential, V = 20 meV, the lowest
band gap E (11)

g = 39.8 meV is very close to 2V = 40 meV, we
only keep the vertical lines associated with E (11)

g and E (11)
g /2

for improved readability. Starting with the IP response σ SHG
xxx ,

we can observe that, at V = 20 meV, the proximity between
the multiple resonances leads to a sharp increase in intensity
when compared with the response at V = 55 and 100 meV.
Additionally, the much larger separation between the

2h̄ω = En and the h̄ω = En regions of the plot (i.e., E (11)
g /2 �

h̄ω � E (11)
g ) and the specific form of the IP generalized deriva-

tive as defined in Eq. (30) leads to the slight decrease of
the IP σ SHG

xxx with increasing bias potential. For the diagonal
OOP response σ SHG

zzz , we observe that the magnitude of the
excitonic response quickly grows with the bias potential V .
This follows what is expected, as it is the OOP anisotropy
due to the bias potential that leads to a nonzero OOP re-
sponse. Lastly, the nondiagonal OOP response σ SHG

zxx also
presents an increasing magnitude with the bias potential V ,
as expected from the growing OOP anisotropy. The nature
of the nondiagonal response, with its mixing of IP and OOP
components, means that the response at low bias potential
(see V = 20 meV regime) does not vanish as quickly as the
σ SHG

zzz component. Additionally, direct comparison between
top and bottom panels of Fig. 9 shows that, as bias potential
increases, the magnitude of the nondiagonal OOP response
approaches that of the IP response, with the maximum of
σ SHG

zxx approximately 1
2 that of σ SHG

xxx for V = 100 meV.

V. SUMMARY

In this paper, we studied the excitonic linear and nonlinear
optical responses of Bernal-stacked BBG as a function of the
gate voltage, both for in-plane (IP) and out-of-plane (OOP)
directions. Starting with the electronic structure of BBG, we
consider the influence of gate voltage on the band structure of
the system. Taking into account the three distinct band gaps
present, we introduce a two-band approximation that greatly
simplifies the numerical complexity of the problem. Outlin-
ing the generic form of the momentum matrix elements and
Berry connections, we compute the linear IP and OOP free-
carrier optical responses for both the two-band approximation
and the full four-band Hamiltonian. The large separation of
the higher-energy bands (for V = 55 meV, the lowest band
gap is E (11)

g = 106 meV while the second lowest is E (12)
g =

436 meV) means that, for frequency below E (12)
g , the real part

of the optical response is very accurately described by the
two-band approximation.

Under this two-band approximation, we then computed the
excitonic states in the system by numerical diagonalization
of the Bethe-Salpeter equation, studying the evolution of the
excitonic binding energies as a function of external bias po-
tential.

Knowing the excitonic states, together with the momentum
matrix elements and Berry connections, allowed us to then
explicitly discuss the excitonic selection rules of the system
for both the IP and OOP excitonic responses. The inclusion
of skew coupling in the momentum matrix elements proves
fundamental in obtaining a nonzero IP nonlinear response,
as well as introducing s-series resonances in the IP linear
response. For the OOP linear response the OOP anisotropy
proves to be sufficient for obtaining a nonzero linear and
nonlinear response.

Both linear and SHG nonlinear responses are very sensitive
to the tuning of the bias voltage, where the effects of tuning
the bias voltage on the linear IP response have been discussed
previously in the literature [20,21]. First, tuning the bias po-
tential will directly affect the band gap of the system, leading
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to a tuning of the excitonic binding energies and, therefore, the
location of the resonant peaks in the optical response, as well
as on the interband momentum matrix elements. Additionally,
as the OOP anisotropy is controlled by the bias potential, its
effects on the OOP response are not as simple as those on the
IP response.

ACKNOWLEDGMENTS

M.F.C.M.Q. acknowledges the International Iberian
Nanotechnology Laboratory (INL) and the Portuguese

Foundation for Science and Technology (FCT) for
the Quantum Portugal Initiative (QPI) Grant No.
SFRH/BD/151114/2021. N.M.R.P. acknowledges support
by the Portuguese Foundation for Science and Technology
(FCT) in the framework of the Strategic Funding
UIDB/04650/2020, COMPETE 2020, PORTUGAL
2020, FEDER, and FCT through projects PTDC/FIS-
MAC/2045/2021 and EXPL/FIS-MAC/0953/2021.
N.M.R.P. also acknowledges the Independent Research
Fund Denmark (Grant No. 2032-00045B) and the Danish
National Research Foundation (Project No. DNRF165).

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Electric field effect in atomically thin carbon films, Science 306,
666 (2004).

[2] A. Taghizadeh, K. S. Thygesen, and T. G. Pedersen, Two-
dimensional materials with giant optical nonlinearities near the
theoretical upper limit, ACS Nano 15, 7155 (2021).

[3] J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B.
Gil, and D. N. Basov, Photonics with hexagonal boron nitride,
Nat. Rev. Mater. 4, 552 (2019).

[4] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie,
T. Amand, and B. Urbaszek, Colloquium: Excitons in atomi-
cally thin transition metal dichalcogenides, Rev. Mod. Phys. 90,
021001 (2018).

[5] H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk,
R. T. Senger, and S. Ciraci, Monolayer honeycomb structures
of group-IV elements and III-V binary compounds: First-
principles calculations, Phys. Rev. B 80, 155453 (2009).

[6] H. K. Avetissian and G. F. Mkrtchian, Higher harmonic genera-
tion by massive carriers in buckled two-dimensional hexagonal
nanostructures, Phys. Rev. B 99, 085432 (2019).

[7] M.-Q. Le, H.-T. Nguyen, and T.-L. Bui, Fracture of 28 buckled
two-dimensional hexagonal sheets, Mech. Adv. Mater. Struct.
29, 4993 (2022).

[8] R. Y. Kezerashvili and A. Spiridonova, Effects of parallel
electric and magnetic fields on Rydberg excitons in buckled
two-dimensional materials, Phys. Rev. B 103, 165410 (2021).

[9] A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu,
C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Y. Wang, D.
Sokaras, D. Nordlund, P. Yang, D. A. Muller, M.-Y. Chou,
X. Zhang, and L.-J. Li, Janus monolayers of transition metal
dichalcogenides, Nat. Nanotechnol. 12, 744 (2017).

[10] J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H.
Guo, Z. Jin, V. B. Shenoy, L. Shi, and J. Lou, Janus monolayer
transition-metal dichalcogenides, ACS Nano 11, 8192 (2017).

[11] T. Zheng, Y.-C. Lin, Y. Yu, P. Valencia-Acuna, A. A. Puretzky,
R. Torsi, C. Liu, I. N. Ivanov, G. Duscher, D. B. Geohegan, Z.
Ni, K. Xiao, and H. Zhao, Excitonic dynamics in janus MoSSe
and WSSe monolayers, Nano Lett. 21, 931 (2021).

[12] O. Dogadov, C. Trovatello, B. Yao, G. Soavi, and G. Cerullo,
Parametric nonlinear optics with layered materials and related
heterostructures, Laser Photon. Rev. 16, 2100726 (2022).

[13] J. Shi, H. Xu, C. Heide, C. HuangFu, C. Xia, F. de Quesada,
H. Shen, T. Zhang, L. Yu, A. Johnson, F. Liu, E. Shi, L.
Jiao, T. Heinz, S. Ghimire, J. Li, J. Kong, Y. Guo, and A. M.

Lindenberg, Giant room-temperature nonlinearities in a mono-
layer janus topological semiconductor, Nat. Commun. 14, 4953
(2023).

[14] C.-H. Park and S. G. Louie, Tunable excitons in biased bilayer
graphene, Nano Lett. 10, 426 (2010).

[15] Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G.
Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B.-
K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M.
Ajayan, Vertical and in-plane heterostructures from WS2/MoS2

monolayers, Nat. Mater. 13, 1135 (2014).
[16] P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G.

Mandrus, W. Yao, and X. Xu, Valley-polarized exciton dynam-
ics in a 2D semiconductor heterostructure, Science 351, 688
(2016).

[17] S. J. Brun and T. G. Pedersen, Intense and tunable second-
harmonic generation in biased bilayer graphene, Phys. Rev. B
91, 205405 (2015).

[18] L. Ju, L. Wang, T. Cao, T. Taniguchi, K. Watanabe, S. G. Louie,
F. Rana, J. Park, J. Hone, F. Wang, and P. L. McEuen, Tunable
excitons in bilayer graphene, Science 358, 907 (2017).

[19] A. A. Avetisyan, A. P. Djotyan, and K. Moulopoulos, Tunable
excitons in bilayer graphene with opened energy gap, Phys. At.
Nucl. 81, 799 (2018).

[20] J. C. G. Henriques, I. Epstein, and N. M. R. Peres, Absorption
and optical selection rules of tunable excitons in biased bilayer
graphene, Phys. Rev. B 105, 045411 (2022).

[21] M. O. Sauer and T. G. Pedersen, Exciton absorption, band
structure, and optical emission in biased bilayer graphene, Phys.
Rev. B 105, 115416 (2022).

[22] H. D. Scammell and O. P. Sushkov, Dynamical screening and
excitonic bound states in biased bilayer graphene, Phys. Rev. B
107, 085104 (2023).

[23] T. Ando and M. Koshino, Optical absorption by interlayer
density excitations in bilayer graphene, J. Phys. Soc. Jpn. 78,
104716 (2009).

[24] M.-E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C.
Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs,
J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, Strong-
coupling of WSe2 in ultra-compact plasmonic nanocavities at
room temperature, Nat. Commun. 8, 1296 (2017).

[25] M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B.
Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, Strong
light–matter coupling between plasmons in individual gold
bi-pyramids and excitons in mono- and multilayer WSe2, Nano
Lett. 18, 5938 (2018).

085433-11

https://doi.org/10.1126/science.1102896
https://doi.org/10.1021/acsnano.1c00344
https://doi.org/10.1038/s41578-019-0124-1
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.1103/PhysRevB.80.155453
https://doi.org/10.1103/PhysRevB.99.085432
https://doi.org/10.1080/15376494.2021.1945172
https://doi.org/10.1103/PhysRevB.103.165410
https://doi.org/10.1038/nnano.2017.100
https://doi.org/10.1021/acsnano.7b03186
https://doi.org/10.1021/acs.nanolett.0c03412
https://doi.org/10.1002/lpor.202100726
https://doi.org/10.1038/s41467-023-40373-z
https://doi.org/10.1021/nl902932k
https://doi.org/10.1038/nmat4091
https://doi.org/10.1126/science.aac7820
https://doi.org/10.1103/PhysRevB.91.205405
https://doi.org/10.1126/science.aam9175
https://doi.org/10.1134/S1063778818060042
https://doi.org/10.1103/PhysRevB.105.045411
https://doi.org/10.1103/PhysRevB.105.115416
https://doi.org/10.1103/PhysRevB.107.085104
https://doi.org/10.1143/JPSJ.78.104716
https://doi.org/10.1038/s41467-017-01398-3
https://doi.org/10.1021/acs.nanolett.8b02652


QUINTELA, PERES, AND PEDERSEN PHYSICAL REVIEW B 110, 085433 (2024)

[26] A. Dasgupta, J. Gao, and X. Yang, Atomically thin nonlinear
transition metal dichalcogenide holograms, Nano Lett. 19, 6511
(2019).

[27] G. Soavi, G. Wang, H. Rostami, D. G. Purdie, D. De Fazio,
T. Ma, B. Luo, J. Wang, A. K. Ott, D. Yoon, S. A. Bourelle,
J. E. Muench, I. Goykhman, S. Dal Conte, M. Celebrano, A.
Tomadin, M. Polini, G. Cerullo, and A. C. Ferrari, Broadband,
electrically tunable third-harmonic generation in graphene, Nat.
Nanotechnol. 13, 583 (2018).

[28] S. Klimmer, O. Ghaebi, Z. Gan, A. George, A. Turchanin, G.
Cerullo, and G. Soavi, All-optical polarization and amplitude
modulation of second-harmonic generation in atomically thin
semiconductors, Nat. Photon. 15, 837 (2021).

[29] Y. Zhang, Y. Wang, Y. Dai, X. Bai, X. Hu, L. Du, H. Hu, X.
Yang, D. Li, Q. Dai, T. Hasan, and Z. Sun, Chirality logic gates,
Sci. Adv. 8, eabq8246 (2022).

[30] Y. Li, N. An, Z. Lu, Y. Wang, B. Chang, T. Tan, X. Guo, X.
Xu, J. He, H. Xia, Z. Wu, Y. Su, Y. Liu, Y. Rao, G. Soavi,
and B. Yao, Nonlinear co-generation of graphene plasmons
for optoelectronic logic operations, Nat. Commun. 13, 3138
(2022).

[31] Z. Zheng, K. Chang, and J. L. Cheng, Gate voltage induced in-
jection and shift currents in aa- and ab-stacked bilayer graphene,
Phys. Rev. B 108, 235401 (2023).

[32] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,
Controlling the electronic structure of bilayer graphene, Science
313, 951 (2006).

[33] F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Electronic
states and landau levels in graphene stacks, Phys. Rev. B 73,
245426 (2006).

[34] T. Stauber, N. M. R. Peres, and A. K. Geim, Optical conductiv-
ity of graphene in the visible region of the spectrum, Phys. Rev.
B 78, 085432 (2008).

[35] A. V. Rozhkov, A. O. Sboychakov, A. L. Rakhmanov, and F.
Nori, Electronic properties of graphene-based bilayer systems,
Phys. Rep. 648, 1 (2016).

[36] C. Ortix, Nonlinear hall effect with time-reversal symmetry:
Theory and material realizations, Adv. Quantum Technol. 4,
2100056 (2021).

[37] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres,
J. M. B. L. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and
A. H. C. Neto, Biased bilayer graphene: Semiconductor with
a gap tunable by the electric field effect, Phys. Rev. Lett. 99,
216802 (2007).

[38] J. M. B. L. dos Santos, N. M. R. Peres, and A. H. C. Neto,
Graphene bilayer with a twist: Electronic structure, Phys. Rev.
Lett. 99, 256802 (2007).

[39] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[40] M. M. Quintela, J. Guerra, and S. João, Electronic properties
of twisted bilayer graphene in the presence of a magnetic field,
EPJ Web Conf. 233, 03004 (2020).

[41] E. Y. Andrei and A. H. MacDonald, Graphene bilayers with a
twist, Nat. Mater. 19, 1265 (2020).

[42] L. Di M. Villari and A. Principi, Optotwistronics of bilayer
graphene, Phys. Rev. B 106, 035401 (2022).

[43] H. Yu, X. Cui, X. Xu, and W. Yao, Valley excitons in two-
dimensional semiconductors, Nat. Sci. Rev. 2, 57 (2015).

[44] J. Chen, S. Machida, and Y. Yamanoto, Simultaneous mea-
surement of amplitude and phase in surface second-harmonic
generation, Opt. Lett. 23, 676 (1998).

[45] S. K. Andersson, M. C. Schanne-Klein, and F. Hache, Symme-
try and phase determination of second-harmonic reflection from
calcite surfaces, Phys. Rev. B 59, 3210 (1999).

[46] S. Yazdanfar, L. H. Laiho, and P. T. C. So, Interferometric
second harmonic generation microscopy, Opt. Express 12, 2739
(2004).

[47] K. C. Jena, P. A. Covert, and D. K. Hore, Phase measurement in
nondegenerate three-wave mixing spectroscopy, J. Chem. Phys.
134, 044712 (2011).

[48] E. McCann and M. Koshino, The electronic properties of bi-
layer graphene, Rep. Prog. Phys. 76, 056503 (2013).

[49] S. Di Sabatino, J. A. Berger, and P. Romaniello, Optical spec-
tra of 2D monolayers from time-dependent density functional
theory, Faraday Discuss. 224, 467 (2020).

[50] X. Zhang, W.-Y. Shan, and D. Xiao, Optical selection rule of
excitons in gapped chiral fermion systems, Phys. Rev. Lett. 120,
077401 (2018).

[51] T. Cao, M. Wu, and S. G. Louie, Unifying optical selection rules
for excitons in two dimensions: Band topology and winding
numbers, Phys. Rev. Lett. 120, 087402 (2018).

[52] J. C. G. Henriques, B. Amorim, R. M. Ribeiro, and N. M. R.
Peres, Excitonic response of AA′ and AB stacked hBN bilayers,
Phys. Rev. B 105, 115421 (2022).

[53] A. Taghizadeh and T. G. Pedersen, Nonlinear optical selection
rules of excitons in monolayer transition metal dichalcogenides,
Phys. Rev. B 99, 235433 (2019).

[54] C. Aversa and J. E. Sipe, Nonlinear optical susceptibilities of
semiconductors: Results with a length-gauge analysis, Phys.
Rev. B 52, 14636 (1995).

[55] M. F. C. M. Quintela and T. G. Pedersen, Anisotropic
linear and nonlinear excitonic optical properties of buck-
led monolayer semiconductors, Phys. Rev. B 107, 235416
(2023).

[56] K. Yoshizawa, T. Yumura, T. Yamabe, and S. Bandow,
The role of orbital interactions in determining the interlayer
spacing in graphite slabs, J. Am. Chem. Soc. 122, 11871
(2000).

[57] M. S. Alam, J. Lin, and M. Saito, First-principles calculation of
the interlayer distance of the two-layer graphene, Jpn. J. Appl.
Phys. 50, 080213 (2011).

[58] B. Butz, C. Dolle, F. Niekiel, K. Weber, D. Waldmann, H. B.
Weber, B. Meyer, and E. Spiecker, Dislocations in bilayer
graphene, Nature (London) 505, 533 (2014).

[59] Y. Fukaya, Y. Zhao, H.-W. Kim, J. R. Ahn, H. Fukidome,
and I. Matsuda, Atomic arrangements of quasicrystal bilayer
graphene: Interlayer distance expansion, Phys. Rev. B 104,
L180202 (2021).

[60] V. N. Genkin and P. M. Mednis, Contribution to the theory of
nonlinear effects in crystals with account taken of partially filled
bands, Sov. Phys.–JETP 27, 609 (1968).

[61] B. Kirtman, F. L. Gu, and D. M. Bishop, Extension of the
Genkin and Mednis treatment for dynamic polarizabilities and
hyperpolarizabilities of infinite periodic systems. I. Coupled
perturbed Hartree–Fock theory, J. Chem. Phys. 113, 1294
(2000).

[62] V. A. Margulis, E. E. Muryumin, and E. A. Gaiduk, Optical
second-harmonic generation from two-dimensional hexagonal

085433-12

https://doi.org/10.1021/acs.nanolett.9b02740
https://doi.org/10.1038/s41565-018-0145-8
https://doi.org/10.1038/s41566-021-00859-y
https://doi.org/10.1126/sciadv.abq8246
https://doi.org/10.1038/s41467-022-30901-8
https://doi.org/10.1103/PhysRevB.108.235401
https://doi.org/10.1126/science.1130681
https://doi.org/10.1103/PhysRevB.73.245426
https://doi.org/10.1103/PhysRevB.78.085432
https://doi.org/10.1016/j.physrep.2016.07.003
https://doi.org/10.1002/qute.202100056
https://doi.org/10.1103/PhysRevLett.99.216802
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1038/nature26160
https://doi.org/10.1051/epjconf/202023303004
https://doi.org/10.1038/s41563-020-00840-0
https://doi.org/10.1103/PhysRevB.106.035401
https://doi.org/10.1093/nsr/nwu078
https://doi.org/10.1364/OL.23.000676
https://doi.org/10.1103/PhysRevB.59.3210
https://doi.org/10.1364/OPEX.12.002739
https://doi.org/10.1063/1.3548840
https://doi.org/10.1088/0034-4885/76/5/056503
https://doi.org/10.1039/D0FD00073F
https://doi.org/10.1103/PhysRevLett.120.077401
https://doi.org/10.1103/PhysRevLett.120.087402
https://doi.org/10.1103/PhysRevB.105.115421
https://doi.org/10.1103/PhysRevB.99.235433
https://doi.org/10.1103/PhysRevB.52.14636
https://doi.org/10.1103/PhysRevB.107.235416
https://doi.org/10.1021/ja994457o
https://doi.org/10.1143/JJAP.50.080213
https://doi.org/10.1038/nature12780
https://doi.org/10.1103/PhysRevB.104.L180202
https://doi.org/10.1063/1.481907


TUNABLE NONLINEAR EXCITONIC OPTICAL RESPONSE … PHYSICAL REVIEW B 110, 085433 (2024)

crystals with broken space inversion symmetry, J. Phys.:
Condens. Matter 25, 195302 (2013).

[63] T. G. Pedersen, Intraband effects in excitonic second-harmonic
generation, Phys. Rev. B 92, 235432 (2015).

[64] C. Y.-P. Chao and S. L. Chuang, Analytical and numerical
solutions for a two-dimensional exciton in momentum space,
Phys. Rev. B 43, 6530 (1991).

[65] D. G. W. Parfitt and M. E. Portnoi, The two-dimensional hydro-
gen atom revisited, J. Math. Phys. 43, 4681 (2002).

[66] M. F. C. M. Quintela, J. C. G. Henriques, L. G. M. Tenório, and
N. M. R. Peres, Theoretical methods for excitonic physics in 2D
materials, Phys. Status Solidi B 259, 2200097 (2022).

[67] M. F. C. M. Quintela and N. M. R. Peres, Tunable excitons
in rhombohedral trilayer graphene, Phys. Rev. B 105, 205417
(2022).

[68] G. F. Glinskii and Z. Koinov, Functional formulation of micro-
scopic theory of exciton polaritons, Theor. Math. Phys. 70, 252
(1987).

[69] S. K. Radha, W. R. L. Lambrecht, B. Cunningham, M. Grüning,
D. Pashov, and M. van Schilfgaarde, Optical response and band

structure of LiCoO2 including electron-hole interaction effects,
Phys. Rev. B 104, 115120 (2021).

[70] S. N. Rytova, The screened potential of a point charge in a thin
film, Mosc. Un. Phys. Bul. 3, 30 (1967).

[71] L. V. Keldysh, Coulomb interaction in thin semiconductor and
semimetal films, Sov. J. Exp. Theor. Phys. Lett. 29, 658 (1979).

[72] P. Li and I. Appelbaum, Excitons without effective mass: Biased
bilayer graphene, Phys. Rev. B 99, 035429 (2019).

[73] T. Tian, D. Scullion, D. Hughes, L. H. Li, C.-J. Shih, J.
Coleman, M. Chhowalla, and E. J. G. Santos, Electronic
polarizability as the fundamental variable in the dielectric
properties of two-dimensional materials, Nano Lett. 20, 841
(2020).

[74] A. Laturia, M. L. Van de Put, and W. G. Vandenberghe, Dielec-
tric properties of hexagonal boron nitride and transition metal
dichalcogenides: from monolayer to bulk, npj 2D Mater. Appl.
2, 6 (2018).

[75] X. L. Yang, S. H. Guo, F. T. Chan, K. W. Wong, and W. Y.
Ching, Analytic solution of a two-dimensional hydrogen atom.
I. nonrelativistic theory, Phys. Rev. A 43, 1186 (1991).

085433-13

https://doi.org/10.1088/0953-8984/25/19/195302
https://doi.org/10.1103/PhysRevB.92.235432
https://doi.org/10.1103/PhysRevB.43.6530
https://doi.org/10.1063/1.1503868
https://doi.org/10.1002/pssb.202200097
https://doi.org/10.1103/PhysRevB.105.205417
https://doi.org/10.1007/BF01041002
https://doi.org/10.1103/PhysRevB.104.115120
https://doi.org/10.1103/PhysRevB.99.035429
https://doi.org/10.1021/acs.nanolett.9b02982
https://doi.org/10.1038/s41699-018-0050-x
https://doi.org/10.1103/PhysRevA.43.1186

