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Polarization textures in crystal supercells with topological bands
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Two-dimensional materials are a highly tunable platform for studying the momentum space topology of
the electronic wavefunctions and real space topology in terms of skyrmions, merons, and vortices of an order
parameter. Such textures for electronic polarization can exist in moiré heterostructures. A quantum-mechanical
definition of local polarization textures in insulating supercells was recently proposed. Here, we propose a
definition for local polarization that is also valid for systems with topologically nontrivial bands. We introduce
semilocal hybrid polarizations, which are valid even when the Wannier functions in a system cannot be made
exponentially localized in all dimensions. We use this definition to explicitly show that nontrivial real-space
polarization textures can exist in topologically nontrivial systems with nonzero Chern number under (1) an
external superlattice potential, and (2) under a stacking-induced moiré potential. In the latter, we find that while
the magnitude of the local polarization decreases discontinuously across a topological phase transition from
trivial to topologically nontrivial, the polarization does not completely vanish. Our findings suggest that band
topology and real-space polar topology may coexist in real materials.
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I. INTRODUCTION

The understanding and control of exotic electronic states
of matter is one of the central aims of condensed matter
physics. One notable avenue in this regard is the study of
topological materials, hosting anomalous bulk and boundary
effects and protected edge currents [1,2]. Topological insu-
lators and semimetals are promised to affect technological
advancements, with applications ranging from spintronics to
possibly providing platforms for quantum computing [3,4].
This field was arguably initiated by the observation that even
without a net magnetic field, Hall responses can be achieved in
the form of quantum anomalous Hall effects (QAHE) [5]. In
such QAH systems, wavefunctions exhibit a nontrivial wind-
ing characterized by a topological invariant known as a Chern
class, which is an archetypal example of a characteristic class
associated with complex vector bundles.

On a seemingly different note, there has been a lot of recent
interest in engineering exotic states via stacking engineering
of layered materials. Combining layers with relative twist
angles or lattice mismatches to form superlattice structures
known as moiré materials [6] can lead to interesting phenom-
ena such as superconductivity [7–9], Mott-insulating behavior
[10], ferroelectricity [11–15], nontrivial topology, both of
bands [16–20] and real space quantities including polarization
[21,22], twist fields [23], and magnetic fields [24]. A favor-
able aspect of such stacking-engineered phases is that they
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can in principle be tuned through the supercell period (twist
angle or lattice mismatch), number of layers, and chemistry
(changing the materials). Topological states can be engineered
with constituent materials which are ordinarily trivial, such as
transition-metal dichalcogenides (TMDs), e.g., MoS2, WSe2,
etc. [25–27], where fractional Chern states at zero magnetic
field have also been predicted [28,29] and recently experimen-
tally observed [30–32]. Moreover, because of the additional
length scale of the superlattice potential, locally nonzero
Chern numbers can be found in different stacking domains
within the moiré superlattice [33–37]. The idea that such a
topological invariant can be attributed to regions in real space,
which we refer to as “Chern domains,” is very intriguing for
applications. For example, knowledge of such domains, and
the ability to engineer domains with different Chern numbers
implies that edge currents can be induced and controlled on
the domain walls separating them. The topological nature of a
Chern domain is locally reflected by the presence of QAHE
at the domain walls [33] and they can be computationally
characterized by Chern markers [38,39].

In moiré heterostructures of nonelemental compounds, the
crystalline superlattices can very naturally break the inversion
symmetry I within a domain, offering a natural platform
for the development of polarization textures, which also can
support topological features therein. Such topological polar-
ization textures realizing merons or skyrmions, corresponding
topologically to the π2[S2] ∼= Z homotopy, were predicted in
stacked bilayers of hexagonal boron nitride (hBN) under twist
or strain [21,22]. Similar topological polar textures are also
commonly observed in perovskite nanostructures [40], and
were recently also realized in perovskites layered under moiré
geometry [41]. Currently, it is not clear whether topological
polarization textures can coexist with momentum-space band
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topological features. For example, the notion of localizability
breaks down in topologically nontrivial bands in two or higher
dimensions, where one cannot describe the electronic states
using a basis of exponentially localized Wannier functions. As
a result, the definition of local polarization textures, as applied
to a trivial insulator [22], is no longer applicable.

In this work, we address this problem by proposing a
definition of local electronic contribution to polarization in a
Chern insulator, and showing that the real-space polar topol-
ogy can coexist with band topology. Our formulation is a
natural extension to the definition of local polarization in a
crystal supercell [22], which is not straightforward, as the
Berry phase capturing the electronic contribution to the elec-
tric polarization is a global property of the system, in contrast
to the ionic core contributions to the electric polarization,
which take the form of local dipole moments, consistent with
classical electromagnetism [42–45]. We formulate the local
polarization by decomposing the Berry phase in terms of
semilocal hybrid polarizations (SHPs), while also making a
connection to Chern topology [46]. In particular, we consider
the evolution of the local polarization in a crystal superlattice
and elucidate the correspondences between the local polariza-
tion textures, local polarization jumps [47], and the changes
of the bulk state topology realized in minibands. We show
that, across a topological phase transition (TPT), the local
polarization in a texture, although decreasing in magnitude,
does not vanish entirely.

II. RESULTS

Since our aim is to define local polarization in a peri-
odic solid, the most natural setting is to consider a system
experiencing a superlattice potential (via moiré engineering
or external potential) [48], such that within the supercell
the polarization can acquire spatial dependence and its local
definition is meaningful. The local polarization in a crystal
supercell can be defined as the total change in the Berry phase
of the supercell, subject to a local depolarizing perturbation
in a given subcell starting from a nonpolar reference cell
configuration [22]. Equivalently, the corresponding local po-
larization can be computed by integrating the Born effective
charges along a path of phonon displacements which connect
the atomic configurations in each cell. Alternatively, the local
polarization can be recast as the change in all the Wannier
centers in the system with respect to the local perturbations
in a given cell, as long as the Wannierized bands are topolog-
ically trivial. For topologically trivial systems, the Wannier
functions can be made exponentially localized, and the Wan-
nier centers for each band are essentially the Berry phases, but
with units of length [42,43,49–51]. We briefly review these
definitions of local polarization in Appendix A. It should be
stressed that, contrary to the first two approaches of Ref. [22],
the third way via Wannier functions is not directly applicable
to topological systems, which is an issue that we resolve in
this work.

As mentioned above, for topologically nontrivial systems,
there is an obstruction to obtaining exponentially localized
Wannier functions, and the Wannier centers cannot be ob-
tained [46]. However, we can describe the winding of the
Bloch states, which is equivalent to the Berry phase, using

(a)

(b)

FIG. 1. Benchmarking the gauge-independent formulation of the
local polarization in crystal supercells with topological bands. The
local polarization Pβ (r j ) is defined componentwise as a sum of the
semilocal hybrid polarizations (SHPs) Ph

β (r j, k⊥) over the perpen-
dicular quasimomenta k⊥. SHPs are constituted by the shifts of the
hybrid Wannier charge center (HWCCs), subject to local depolariz-
ing perturbations x(r j ). In particular, the shifts in HWCCs at every
fixed k⊥ can be induced by a superlattice potential VSL. (a) A HWCC
localized in the x direction, shifting across the supercell on applying
a perturbation to the central subcell, and defining Pβ (r j = 0). (b) The
Wilson loop representing the winding of Berry phase φ(k⊥) in two-
dimensional supercell. The Berry phase is equivalent to the total sum
of HWCCs corresponding to the occupied bands, which indicates a
total polarization in the supercell. On the other hand, its winding
reflects the nonvanishing Chern number in the occupied topological
bands. As captured by Eq. (7); for supercells with topological bands
there is indeed a net winding of the total hybrid polarization Ph

β (k⊥)
as a function of k⊥, when all occupied HWCCs are summed.

hybrid Wannier charge centers (HWCCs) or Wilson loops (see
Fig. 1). The HWCCs can be obtained as the expectation values
of a single component of position operator r̂β :

w̄h
n,β (k⊥) ≡ 〈

wh
n (k⊥)

∣∣r̂β

∣∣wh
n (k⊥)

〉
, (1)

using a basis of hybrid Wannier functions |wh
n (k⊥)〉 (HWFs),

which are obtained by Fourier transforming the Bloch states
only in the direction β (for more details, see Appendix B). In
the case of more than two spatial dimensions, to deduce the
local polarization, the Fourier transform in only one direction
to obtain HWFs is similarly required. Here, k⊥ are the wave
numbers in the direction orthogonal to β. The total hybrid
polarization in a supercell can be defined in terms of HWCCs
summed over the occupied band indices n,

Ph
β (k⊥) = − e f

�sc

occ∑
n

w̄h
n,β (k⊥), (2)

where f is an occupation factor, �sc is the supercell volume,
and the HWCCs are localized in the direction β. Analogously,
for the purposes of defining the local polarization in a topo-
logical, non-Wannierizable crystal supercell, it is useful to
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introduce

Ph
β (r j, k⊥) = − e f

�0

occ∑
n

∫ x(r j )

0
∂x′

κ,α
w̄h

n,β (k⊥) dx′
κ,α, (3)

which we define as the semilocal hybrid polarization (SHP),
where �0 is a subcell volume (see Appendix B for more
details). In the spirit of Ref. [22], here, the integral repre-
sents the change of hybrid polarizations on introducing local
displacements/reparametrizations: x(r j ) = {xκ,α}, where κ

labels the atoms and α specifies the perturbation direction.
Additionally, the Einstein summation convention was as-
sumed. In order to deduce Ph

β (r j, k⊥), the local perturbations
are imposed only in a subcell r j of a supercell, bringing its
configuration to the nonpolar reference state x(r j ) = 0. The
intuitive meaning of SHPs is the change of the position of
the hybrid charge centers in direction β, as captured by the
flow of the previously defined polarization currents across the
supercell, as the local perturbations x(r j ) are introduced. We
further propose that the introduction of the semilocal hybrid
polarizations allows us to evaluate the local polarization in a
topological supercell as

Pβ (r j ) =
∮
C

Ph
β (r j, k⊥) dk⊥, (4)

where C is a closed loop in the BZ, starting from k0
⊥ and of

length of the superlattice reciprocal vector b⊥. By substituting
Eq. (3) into Eq. (4), we obtain

Pβ (r j ) = − e f

�0

occ∑
n

∮
C

∫ x(r j )

0
∂x′

κ,α
w̄h

n,β (k⊥) dx′
κ,α dk⊥, (5)

which is a natural extension to the method of computing
the local polarization in terms of the Wannier functions.
However, contrary to the previous definition [22] (see also
Appendix A), Eq. (5) is valid for both topological and triv-
ial bands. The above relation states that local polarization
in a system with topologically nontrivial bands can be ob-
tained componentwise, i.e., a certain polarization component
is simply the projection of the flow of hybrid Wannier center
that is exponentially localized along the same direction. This
definition is motivated by the fact that change in polariza-
tion is the physical quantity that is fundamentally related
to the polarization currents jP ≡ dP/dt flowing through the
system as it is adiabatically evolved from an initial to the
final state (	P ≡ ∫

jP dt = P f − Pi) [52]. Importantly, that
relation shows that electronic contribution to the electric po-
larization is quantum-mechanically defined as a change of
net polarization induced by the flow of polarization currents,
subject to an adiabatic variation of the polarization-controlling
parameter, as introduced in Ref. [52]. This relation can also
be resolved componentwise, allowing us to construct hybrid
Wannier functions that are maximally localized in only one
direction and observing their flow as the polarization currents
evolve (see Appendix B for more details). The formulation
of local polarization central to this work aims to reflect this
intuitive picture in a maximally local manner, as the evolving
exponentially localized HWCCs constituting the SHPs reflect
the local charge flow, on having introduced the polarization-
inducing local perturbations in the considered supercells.

We note that for the two-dimensional case of, e.g., Chern
insulators, β = x, y specifies the in-plane directions. Here,
k0
⊥ should be chosen consistently for finding polarization

changes, e.g., Ph
β (r j, k0

⊥) = 0, when x(r j ) = 0, which, upon
choosing a maximally smooth gauge, should ensure a vanish-
ing polarization for nonpolar configurations [22]. Importantly,
the point (k0

x , k0
y ) needs to be chosen consistently for the

evaluation of P(r j ) = (Px(r j ), Py(r j )), with the real-space in-
tegration limits of Eq. (5), which define initial and final states
with respect to which the local polarization is computed as
a change (P ≡ 	P = P f − Pi) [52]. If the k-space integral
is performed inconsistently in the initial and final real-space
states, the resulting polarizations acquire an erroneous term
depending on the shift in the integration endpoints and the
Chern number C, as was pointed out for arbitrary Chern
insulators in Ref. [46]. The above definition is analogous to
the Berry-phase formulation of the total polarization in Chern
insulators [46] as a global quantity. Indeed, upon relating
HWCCs to Berry phases

φn(kγ ) = i
∮

k⊥=kγ

〈
un,k

∣∣∂kβ
un,k

〉
dkβ, (6)

our definition is consistent with the previous formulations
of electric polarization in Chern insulators [46] that obtains
the total polarization of a topological system, without parti-
tioning into any local contributions to the net electric dipole
moment present in a supercell.

Furthermore, we can relate the SHPs to band topology in
crystal supercells, therefore settling whether any information
about the topological character of the minibands can be in-
ferred from Ph

β (r j, k⊥). It is known that the Chern number C
of a system can be calculated from the winding of HWCCs
[53], or equivalently, hybrid polarization, along the quasimo-
mentum component (here kγ ). Essentially, it is the winding of
Berry phases φn(kγ ) across a Wilson loop,

C =
occ∑
n

1

Lβ

[
w̄h

n,β (k⊥ = 2π ) − w̄h
n,β (k⊥ = 0)

]

= − 1

e f Lβ

[
Ph

β (k⊥ = 2π ) − Ph
β (k⊥ = 0)

]
, (7)

where we impose L⊥ = 1 for simplicity. We propose a further
variant of this correspondence for the local perturbations in a
supercell, namely,

	C({r j}) = − 1

e f Lβ

∑
j∈{r j }

[
Ph

β (r j, k⊥ = 2π )−Ph
β (r j, k⊥ = 0)

]

= − 1

e f Lβ

∑
j∈{r j }

Ph
β (r j, k⊥)|k0

⊥+b⊥
k0
⊥

. (8)

The natural interpretation of 	C({r j}) is the change of the
total Chern number in the supercell minibands, as induced
by a depolarizing perturbation imposed in the chosen cells
{r j}. In particular, to induce a nontrivial change 	C({r j}), the
gap between minibands close to the Fermi level must be very
small, in order to admit topological phase transitions (TPTs)
that cross an intermediate metallic state. Realizations of such
band gaps can be naturally achieved by applying a superlattice
potential to a Chern insulator, bringing it close to the critical
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FIG. 2. (a) Sketch of the Haldane model. A bipartite lattice with
nearest neighbor hopping t1 and second nearest neighbor hopping
±it2. (b) Illustration of the superlattice potential VSL. (c) Local po-
larization field in the N = 51 super-Haldane model calculated using
Eq. (5). The local polarization is defined as a change determined
by the integration limits of SHPs, and is expressed in the units of
the quantum of polarization [22]. (d) Quantized 	C({r j}) numbers
for the N = 51 super-Haldane model, calculated using Eq. (8) for
depolarizing perturbations of size 11 × 11 cells around each cell j.
(e) Conventional Chern markers C(r j ) for the N = 51 super-Haldane
model.

point associated with a TPT. Under such circumstances, local
displacements induced by finite-size probes, or an additional
local depolarizing potential, could change the Chern number
of the supercell ground state; see Fig. 2(d) for reference.

Due to the local nature of this close-to-critical setup, it is
also interesting to compare it with the local Chern markers
C(r j ) [39], which are a real space decomposition of the total
Chern number present in the minibands, reflecting the local
anomalous Hall conductivity (see Appendix C for a review).
Contrary to the conventional Chern marker C(r j ), 	C({r j})
is necessarily quantized, although restricted to supercells, i.e.,
it cannot be efficiently applied to amorphous, or arbitrarily
disordered systems, unless a finite size of systems supercell
is assumed. The reason for quantization is that k⊥ = 0 and
k⊥ = 2π physically correspond to the same value over a
compact BZ, thus also identifying the corresponding states.
Hence, the HWCC flows captured by Ph

β (r j, k⊥ = 2π ) need
to be integer in Lβ , or otherwise k⊥ = 0 and k⊥ = 2π would
be physically distinguishable. It should be noted that the re-
gions for both quantities in Figs. 2(d) and 2(e) do not exactly
coincide, despite both of the quantities being related to the
band topology of the system. The reason for that difference
is that the Chern marker is a local indicator of the topology
of the system, and is not quantized locally, unlike 	C({r j}),
which is necessarily quantized. 	C(r j ) indicates the quan-
tized changes in the Chern number of the supercell, reflecting

the changes in the band topology, subject to an addition of
depolarizing perturbations inducing TPTs.

III. MODEL REALIZATIONS

We utilize the above theory and illustrate our findings using
two examples: (i) a Chernful supercell in the presence of a su-
perlattice potential, and (ii) a twisted moiré system with Chern
topology, realizing a supercell with spatially modulated inter-
layer tunneling. In the first case, we consider a simple Chern
insulator, namely the Haldane model [see Fig. 2(a)], subject
to an addition of a superlattice potential with magnitude VSL

[see Fig. 2(b)], which we refer to as the super-Haldane model.
We first consider a honeycomb lattice with nearest (t1) and
second-nearest (± it2) neighbor hoppings, and onsite mass
± m on a bipartite lattice of atoms A, B. Further to this, within
the orbital basis A, B, we impose the superlattice potential

VA j = −VB j = VSL cos ( πx
N ) cos ( πy

N ), where the unit cell j re-
sides at fractional coordinates 0 < x, y < N . The Hamiltonian
for the super-Haldane model is given by

H = −t1
∑
〈i,i′〉

(c†
AicBi′ + H.c.)

− i|t2|
∑
〈〈i,i′〉〉

(c†
AicAi′ + c†

BicBi′ + H.c.)

+
∑

j

[(VB j − m)c†
B jcB j + (VA j + m)c†

A jcA j], (9)

where c†
A/B j and cA/B j are the creation and annihilation op-

erators for an electron in orbital A/B in the cell located at
r j . Here, 〈. . . 〉 denotes first neighbors, and 〈〈. . . 〉〉 denotes
second neighbors, see also Fig. 2(a). For the charge neutrality
of the system to be ensured, we consider each sublattice A
and B contributing one electron and hosting a core with a
static ionic charge Z = +1. While we focus on the electronic
contribution to the electric polarization, it is important to
stress that the total gauge-invariant electric polarization of any
physical system is constituted by the sum of the contributions
due to electrons and ionic cores [45]. In the considered lattice
models based on the Haldane model, we assume a background
of positively-charged cores at all sublattice sites, with the
unbalanced onsite energies and hoppings introducing a net
electric polarization through the electronic contribution. Ad-
ditionally, we note that in the context of the lattice models, the
change of (hybrid) polarizations, as given by Eqs. (3) and (5),
is evaluated on introducing local reparametrizations: x(r j ), in
the place of local displacements. Here, the reference config-
uration amounts to setting the onsite energy at sublattices of
given cell r j to vanish, for more details see Appendix A.

We find that the model realizes a polarization tex-
ture [Fig. 2(c)], and there is a sharp change of the local
polarization across the boundary, where the superlattice po-
tential combined with onsite mass m approaches the value
of the topological mass imposed with t2. The texture in
Fig. 2(c) was obtained using Eq. (5) for the parametriza-
tion (t1, t2, m,VSL ) = (1, 1, 0.5, 10) of the model introduced
in Eq. (9), with the supercell size, N = 51. Notably, the
texture demonstrates that the local polarization discontinu-
ously flips on moving away from the supercell center, as the
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Haldane mass t2 dominates m combined with the modulated
VSL. Hence, the local polarization forms a circular domain sur-
rounded by a visible ring, consistently with the discontinuities
found between Chern and trivial insulators realized without
supercells [47,54]. Furthermore, we find that when superlat-
tice potential dominates the hopping locally—effectively as
a local onsite, or Semenoff [55], mass term—a reduction of
the local Hall conductivity occurs. We support this finding by
calculating the local Chern marker C(r j ) [Fig. 2(d)], which we
contrast with the quantized 	C({r j}) [Fig. 2(e)] introduced in
the previous section. The changes in local Chern markers are
in close correspondence with the trivialization of the SHP in-
dicated by 	C({r j}), corresponding to topological transitions
in response to depolarizing perturbations.

Furthermore, we examine the connection between SHPs
and band topology in another example, by stacking two mono-
layer copies of the Haldane model and introducing a relative
twist between the layers. We refer to this system as twisted
bilayer Haldanium [56], see Appendix D for more details. The
effective tight-binding model adapted for the studied twisted
Haldanium bilayer can be compactly written as

HtHB =
[

m − t2

3∑
i=1

sin(k · bi)

]
τz ⊗ 12 + [tkτ+ ⊗ 12 + H.c.]

+ [T (k, x) ⊗ σ+ + H.c.]. (10)

Here, τi are Pauli matrices acting in the single-layer or-
bital basis (A, B), whereas the Pauli matrices σi act in
the top/bottom layer basis (l = t, b), with τ+ = 1

2 (τx + iτy),
and analogously for σ+. Additionally, ⊗ denotes a Kro-
necker product, and bi correspond to the second-neighbor
hopping vectors. Importantly, tk represents the nearest-
neighbor intralayer hopping, while T (k, x) is a 2 × 2 local
stacking/configuration-dependent interlayer hopping matrix
representing the tunneling of electrons between the layers,
as expressed explicitly in Appendix D. Finally, in addition
to the adapted tight-binding model, for more general possi-
ble studies of low-energy physics associated with topological
fermions on a bilayer consisting of a honeycomb lattice, an
effective continuum model of twisted Haldanium can be for-
mulated. The model reads

Hmoiré =
∑
l=t,b

∫
ψ

†
l

[(
m + b

(
∂rβ

+ ∂Dl,γ

∂rβ

∂rγ

)2)
τ3

− iv

(
τβ + ∂Dl,β

∂rγ

τ γ

)
∂rβ

+ v
(
K · ∂rβ

Dl
)
τβ

]
ψl d2r

+
∫

ψ†
t T (Dt − Db)ψb d2r + H.c., (11)

per valley; here, without loss of generality, we consider the K
valley (see also Appendix D). Consistently with Refs. [22,57],
we introduce Dl as a deformation field in layer l , ψ

†
l (r),

ψl (r) are the fermion creation/annihilation operators, m/b
are the trivial and topological masses, while T (Dt − Db)
represents the interlayer tunneling. The model holds beyond
the configuration space approximation [21,58], hence as with
the super-Haldane model, the polarization texture can be ob-
tained by generalizing Eq. (10) to the continuum model, see

Appendix D for details. As shown in Fig. 3, by tuning the
Haldane mass [5] (t2) and the Semenoff mass [55] (m), we find
that the nontrivial band topology can modify the polarization
texture. Correspondingly, the local polarization constituting
the polarization texture can be discontinuously reduced, while
preserving the topological character, i.e., the winding number.
In other words; despite a significant change in the magni-
tude of the polarization across the TPT, the vorticity of the
polarization texture is preserved. Here, the winding Q of the
polarization texture is given by [21]

Q = 1

4π

∫
P̂(x) · (∂xP̂(x) × ∂yP̂(x)

)
d2x, (12)

where P̂ is the normalized local polarization, and the in-
tegration is performed over an individual polar domain.
Correspondingly, Q = ±1/2 indicates a presence of the
merons/antimerons in the triangular domain spanned between
AA stacking points. Instead, it should be noted that rather
than trivializing the merons across TPTs, such real-space
topological polarization features survive discontinuous jumps,
and are retrieved across a metallic critical point. In particular,
at every stacking configuration, apart from the nonpolar AA,
where the local polarization is always identically zero, the
polarization approximately retains its direction respecting the
stacking geometry, see Fig. 3.

IV. DISCUSSION

Our findings, supported by analytical arguments and nu-
merical model validation, not only offer a well-defined way
of capturing local polarization in crystal supercells with topo-
logical bands, but also provide a natural connection to the
band topology of the supercell, while also going beyond
the configuration space approximation used in the previous
works [21,22]. The localization of hybrid Wannier functions
central to our method provides a very natural picture and
intuition for the polarization components as sums of hybrid
Wannier charge center (HWCC) contributions. While in a
real material calculation, it might be more convenient to use
the definition using Born charges within density functional
perturbation theory (DFPT), the language of the hybrid Wan-
nier functions directly indicates the band topology central
to this work through the winding of SHPs, unlike the Born
charges. Contrary to the previous formulation of the local
polarization in terms of the local configuration-dependent
Berry phase [21,22], which requires a full momentum-space
integration to obtain the local polarization, our definition is
in a sense more local, with one momentum-space integration
excluded by introducing HWCCs, which further supports the
intuition behind our definition, conceptually consistent with
the notion of locality. On the other hand, we stress that it
is not possible to completely exclude the momentum-space
integration, as under a full Wannierization, the nontrivial
band topology requires that the Wannier functions are not
exponentially localized, and Wannier centers are ill-defined,
contrary to the HWCCs. Additionally, we stress that despite
the reference to the notion of a local configuration, the com-
putation of local polarization P(r j ) or SHP Ph

β (r j, k⊥) does
not require the configuration space approximation. This is a
crucial distinction, given that the topological states obtained
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FIG. 3. (a) Phase diagram of the twisted Haldanium bilayer with topological winding numbers Q of polarization textures. For |m| < 3
√

3t2,
each of the layers acquires a Chern number, giving a total of |C| = 2. (b) In-plane local polarization (	P||(r)) along the s direction connecting
AA and AB stackings in twisted Haldanium bilayer with θ ≈ 5◦, as indicated in plots (c) and (d). The TPT occurs at |t2| ≈ 0.43, abruptly
changing the magnitude of the polarization, while preserving the real-space topology of the texture. For an additional plot of 	P||(r) vs. t2, see
Appendix D. (c) Polarization texture in twisted Haldanium bilayer for topologically-trivial phase (|C| = 0), realized with the parameters
(m, t2) = (2.25, 0). The emergent polarization merons are consistent with the findings in twisted hBN bilayers [59] with trivial bands.
(d) Twisted Haldanium bilayer with topological bands (|C| = 2), at the point (m, t2) = (2.25, 0.8) of the phase diagram. The polarization
texture preserves the winding, but the magnitude of the local polarization is significantly reduced across the TPT, upon the addition of
next-nearest neighbor hoppings which experience staggered magnetic fluxes. The local polarization was expressed in the units of the quantum
of polarization [22].

under such approximations might be Wannierizable in con-
figuration space, despite the non-Wannierizability of the
minibands in real space. In particular, such a scenario arguably
occurs in twisted TMDs such as t-MoTe2 with Chern bands,
while the commensurate homobilayers MoTe2 are deemed
topologically trivial (in the 1T′ phase) [60]. As we show, our
formulations do not suffer from such kind of ambiguities,
and furthermore allow to explicitly study TPTs which may
occur in crystal supercells. While the links between topolog-
ical phase transitions and associated changes in polarization
captured by the geometric Berry phases according to the
modern theory of polarization [43,46] have been established
in simple systems without supercells [47,61], we report an
analogous effect in crystal supercells, e.g., provided by polar
heterostructures supporting topologically nontrivial polariza-
tion textures in real space. It is important to note that for the
other types of band topologies, i.e., upon the inclusion of addi-
tional symmetries, such as time-reversal in quantum spin Hall
insulators, the bands are completely Wannierizable, if a gauge
is chosen to not respect the symmetry protecting the invariant.
However, if a gauge satisfying the symmetry is chosen, the
non-Wannierizability issue for defining the local polarization
can be tackled similarly to the framework proposed here for
the Chernful supercells. The study of polarization textures in
the context of other band topologies is left as a subject of
future research.

In the context of the topology of Chernful supercells, it
should be stressed that our definition of 	C({r j}), Eq. (8),
captures how the total Chern number changes with respect
to local perturbations in the individual parts of a supercell.
It is naturally quantized, quantifying changes of the total
anomalous Hall response of an insulating supercell, and hence
is well-defined. We note that such quantum electronic transi-
tions, as induced in the presence of a superlattice potential,
may be of technological interest, given that it shows that the

Chern topology, partial or local in the form of a domain in
a supercell, can be controlled with an external potential, thus
changing the anomalous Hall conductivity locally. A change
in the magnitude of the polarization texture is associated with
this type of trivialization. This is consistent with the finding of
the polarization jumps on trivializing topology by changing
the Hamiltonian parameters in the Haldane model without a
superlattice potential [47].

Finally, we note that our findings are not limited to the
Haldane model, but are expected in any Chern insulator with
additional supercell length scales and with local inversion
symmetry breaking. It should be noted, however, that the
Haldane model is of particular relevance for the real materials,
and was realized experimentally in monolayer hBN [62] most
recently. Therefore, the polar twisted Haldanium heterostruc-
tures considered in this work can be in principle engineered in
real material setup. Furthermore, we note that the presence of
additional symmetries such as time reversal [63] may lead to
invariants beyond Chern numbers, as captured by the tenfold
way [64,65], or by further taking into account the role of crys-
talline symmetries [66–73], possibly culminating in multi-gap
topologies [74–79]. The interplay of such symmetries within
the above context of polarization textures presents indeed an
interesting future pursuit in itself.

V. CONCLUSIONS

In this work, we show how local polarization textures can
be defined in crystal supercells with topologically nontrivial
bands. We introduce the concept of semilocal hybrid polar-
ization (SHP), the winding of which captures the quantized
Chern numbers across TPTs within supercells. We demon-
strate our findings with models for Chern insulators under
superlattice potentials imposed externally, or internally, by
an adequate stacking of a moiré structure. We verify these

085429-6



POLARIZATION TEXTURES IN CRYSTAL SUPERCELLS … PHYSICAL REVIEW B 110, 085429 (2024)

concepts using two examples, namely a Chern insulator in a
superlattice potential, and two Chern insulators with a stack-
ing mismatch, forming a moiré superlattice. By calculating
the polarization textures on both sides of a TPT, we find that
the magnitude of the local polarization decreases when going
from a trivial to a nontrivial phase, but it does not vanish
completely. Our findings show that local polarization textures
may persist in systems with nontrivial band topology, and that
band topology and polar topology in real space may coexist.

Additionally, we show that one can change the band topol-
ogy of a supercell, purely by the local perturbations imposed
on its subsystems. As a consequence, one could also control
the presence of associated edge currents by the use of an
external superlattice potential combined with local probes,
which may be of interest for applications of novel electronics
involving Chern insulators.

Our theoretical results are of relevance for real polar
materials with Chern bands, such as twisted MoTe2 het-
erostructures. Engineering the parameter tuning to manipulate
polarization textures with external superlattice potentials, or
within moiré materials with nontrivial band topology, may
be of potential use in optical or electronic devices. Finally,
our theoretical framework is generalizable to other topological
multilayers.
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APPENDIX A: LOCAL POLARIZATION IN
WANNIERIZABLE SUPERCELLS

Here, we review the formalism of gauge-invariant local
polarization in crystal superlattices, introduced in our pre-
vious work [22]. We start with the equivalent definitions in
terms of Wannier charge centers (WCC) and Born effective
charges. Both definitions were crucial for studying the local
polarization in moiré polar heterostructures [13,14,21,22], and
were based on the introduction of the local displacements
x(r j ) = {xκ,α}, which correspond to perturbing atoms κ in the
directions α. Accordingly, for the local polarization P(r j ) in
the unit cell at r j , we could write

P(r j ) = − e f

�0

occ∑
n

∫ x(r j )

0
∂x′

κ,α
w̄n dx′

κ,α, (A1)

where the Einstein summation convention for the indices
κ and α was used, n ∈ occ are the band indices of occu-
pied bands, and WCC are defined as w̄n ≡ 〈wn,0|r̂|wn,0〉 in
terms of the Wannier functions represented by the states

[42,43,49–51],

|wn,R〉 = �sc

(2π )3

∮
scBZ

e−ik·R|ψn,k〉 dk. (A2)

Here, �sc denotes the real-space supercell volume, scBZ is the
corresponding Brillouin zone associated with the superlattice,
and R is a supercell position vector. Equivalently, we can
express the local polarization in an alternative form, using
dynamical Born effective charges. Componentwise, it reads

Pβ (r j ) = 1

�0

∫ x(r j )

0
Z∗

κ,αβ (x′) dx′
κ,α, (A3)

with Born charges defined as Z∗
κ,αβ = �sc

∂Pβ

∂xκ,α
, which in terms

of the bands and phonon displacements of atoms κ in direction
a, xκ,α , can be expressed as [80,81]

Z∗
κ,αβ (x(r j )) = −2ie f �sc

(2π )3

occ∑
n

∮
scBZ

〈
∂xκ,α

un,k
∣∣∂kβ

un,k
〉

dk.

(A4)

Hence, consistently with the previous expression, in the Wan-
nierizable systems, we retrieve

Z∗
κ,αβ (x) = − e f

�0

occ∑
n

∂xκ,α
w̄n,β . (A5)

Here, �0 is the volume of a unit cell, with x(r j ) corresponding
to a set of displacements of cores in unit cell r j . Last, we note
that in the context of real materials, the Born charge definition
can be naturally extended by the use of the nonadiabatic Born
effective charges (NABECs) introduced in Ref. [82]. Here,
under the implementation of NABECs to deduce the local
polarization at r j , an analogous integration to the one adapted
for the regular Born charges in Ref. [22] could be performed,
i.e.,

Pβ (r j ) = 1

�

∫ x(r j )

0
Z∗

κ,αβ (ω → 0, x(r j )) dxκ,α, (A6)

which for insulators, in the ω → 0 limit, coincides with the
Eq. (A3). Here, the NABECs at the frequency ω are given by
Z∗

κ,αβ (ω) [82] in the context of a two-dimensional, as relevant
to this work, topologically nontrivial system, amounting to

Z∗
κ,αβ (ω) = − Im limη→0+

∫
BZ

d2k
(2π )2

∑
n �=m

fnk − fmk

Enk − Emk + ω + iη

× 〈
un,k

∣∣∂ka um,k
〉〈um,k|∂xκ,α

H |un,k〉. (A7)

To obtain the NABECs, the bands |un,k〉 with energies Enk
and Fermi-Dirac occupation factors fnk are used, and the
derivatives of the Hamiltonian subject to the local phonon
displacements ∂xκ,α

H are evaluated. It should be noted that
here, as in the rest of the work, only the electronic contri-
bution to the polarization is considered, while the ion (core)
contribution (which trivially obtains a dipole moment of core
charges) is not included.

APPENDIX B: SEMILOCAL HYBRID POLARIZATION

In this section, we extend our definition of local polariza-
tion to non-Wannierizable systems, such as Chern insulators,
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FIG. 4. (a) HWCC in the reference configuration (x(r j ) = 0) under the consistently choosen gauge (fixing k0). (b) Flow of the HWCC
subject to the sliding (x(r j ) �= 0), which allows to reconstruct the local polarization in a subcell of a given configuration.

in further detail. As Wannier functions are not exponentially
localized in such cases, the polarization in terms of WCC
is ill-defined for arbitrary gauges [46,47]. However, hybrid
Wannier functions (HWFs) exponentially localized in one
direction, which we denote as ||, can be defined,

∣∣wh
n,R(k⊥)

〉 = �sc

(2π )2

∮
scBZ

e−ik||(R)|| |ψn,k〉 dk||. (B1)

Here, (R)|| is the component of a superlattice vector R, which
is parallel to the direction, in which the polarization compo-
nent is to be deduced. Analogously, the hybrid Wannier charge
centers (HWCC) can be introduced. On introducing a shortcut
notation, |wh

n (k⊥)〉 ≡ |wh
n,0(k⊥)〉, we have,

w̄h
n,β (k⊥) ≡ 〈

wh
n (k⊥)

∣∣r̂β

∣∣wh
n (k⊥)

〉
, (B2)

with r̂β , the position operator components. Before defining the
semilocal version of the hybrid polarization with the intro-
duced HWCCs, we define the total hybrid polarization itself.
Componentwise, it reads

Ph
β (k⊥) = − e f

�sc

occ∑
n

w̄h
n,β (k⊥). (B3)

On introducing the notion of local configuration for defining
the local polarization, consistently with Ref. [22], we can
now define the semilocal hybrid polarizations (SHPs), see
also Fig. 4. Namely, using phonon displacements, or equiv-
alently, depolarizing perturbations (e.g., in the super-Haldane
model—equivalent to setting the vanishing onsite potential),
which directly encode the local configuration x(r j ), we write

Ph
β (r j, k⊥) = − e f

�0

occ∑
n

∫ x(r j )

0
∂x′

κ,α
w̄h

n (k⊥) dx′
κ,α. (B4)

It should be noted that, with Ph
β (r j, k⊥) introduced as a change

in the gauge-invariant sum of the HWCCs over occupied
band indices (or equivalently, change of the Berry phase), the
SHPs are definitionally gauge-invariant objects. Furthermore,
we know that physically, on adding up electric dipole mo-
ments associated with local polarizations, one obtains the total

polarization Ptot,

Ptot = 1

Ntot

Ntot∑
j

P(r j ), (B5)

which is also consistent with the additivity of phonon dis-
placements in the integral limits x(r j ). Ntot is the total number
of subcells contained in a supercell (Ntot = NxNy, for two
spatial dimensions). By an analogous argument, we have

Ph
β (k⊥) = 1

Ntot

Ntot∑
j

Ph
β (r j, k⊥). (B6)

which, on summing over k⊥ as detailed in the main text,
provides an adequate decomposition of the chosen total polar-
ization component into contributions associated with distinct
unit subcells. Here, it should be noted that all polarizations
in this work considered under periodic boundary conditions,
are defined modulo a quantum of polarization respecting the
superlattice vector R. In the context of local polarizations
within crystal supercells, such modular character, intrinsically
due to the gauge ambiguity, was in fact discussed in detail
in Ref. [22]. Next, we remark on the relations between the
hybrid polarizations (or equivalently HWCCs), the polariza-
tion currents jP = Ṗ, and Berry phases φn(k⊥) defined in the
main text, which further justify the proposed construction
of the local polarization definition utilizing SHPs. Within an
independent-particle picture, the time-dependent polarization
current can generally be decomposed in a two-dimensional
system into individual contributions as [45,56]

jP(t ) = f
occ∑
n

∫
d2k

(2π )2
jnk(t ), (B7)

where f is the occupation factor in the valence bands ( f = 2
for spin-degenerate systems in zero-temperature limit). In
terms of the individual contributions under an adiabatic
current-inducing perturbation, we obtain to first order

jnk(t ) = − e〈un,k|v̂|un,k〉

− ieh̄
∑
m �=n

[ 〈u̇n,k|um,k〉〈um,k|v̂|un,k〉
Enk − Emk

− c.c.

]
, (B8)
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where v̂ = 1
h̄∇kH (k) is the velocity operator, and H (k) is the

Bloch Hamiltonian. On further recognizing that for n �= m,
〈un,k|∇kum,k〉 = 〈un,k|∇kH |um,k〉

Emk−Enk
, one obtains

jnk(t ) = −e〈un,k|v̂|un,k〉 − ie[〈u̇n,k|∇kun,k〉 − c.c.]. (B9)

Furthermore, on substituting to 	P ≡ ∫
jP dt, which was in-

troduced in the main text, the Eq. (B8) results in

	Pβ = −e f
∫ 1

0
dλ

occ∑
n

∫
d2k

(2π )2
i
[〈
∂λun,k

∣∣∂kβ
un,k

〉 − c.c.
]
,

(B10)

consistently with the seminal formula of Ref. [42]. Here, the
variables were changed from t to λ, with λ parametrizing the
time-dependent adiabatic switching of the perturbation which
induces the polarization. We quote the general result from
Ref. [45]: w̄h

n,β (k⊥) = Lβ

2π
φn(k⊥), which we combine with

Eq. (6), φn(kγ ) ≡ i
∮

k⊥=kγ
〈un,k|∂kβ

un,k〉 dkβ , and a choice of
the adiabatic perturbations λ ≡ {xκ,α}, equivalent to the local
displacements x(r j ). Upon direct insertion of these identities,
we finally obtain Eq. (5),

	Pβ (r j ) = − e f

�0

occ∑
n

∮
C

∫ x(r j )

0
∂x′

κ,α
w̄h

n,β (k⊥) dx′
κ,α dk⊥.

(B11)

This concludes the derivation, which we include to expose the
correspondences between polarization currents, Berry phases,
and HWCCs that were used to define the hybrid polarizations.
Manifestly, we note that the Eq. (5), which directly captures
the local polarization in the supercells with Chern bands, can
be partitioned into the semilocal hybrid polarizations, as was
explicitly presented in the Eq. (4) of the main text.

APPENDIX C: CONVENTIONAL CHERN MARKERS

Importantly, a superlattice potential (or even more generi-
cally, a random potential disorder, which defines a supercell of
infinite size) changes/removes the periodicity of the system.
In the case of systems realizing crystalline superlattices, the
topological invariants may become computationally costly to
evaluate, or in the latter case, may be no longer possible
to deduce as k-integrals over a well-defined BZ. Therefore,
under the settings of such kinds: local, real-space indicators
(markers) for bulk topology are in demand.

For the Chern topology central to this work, the Chern
markers satisfying these conditions can be defined [39,83,84]
under both periodic and open boundary conditions. To achieve
this goal, we follow the derivation by Bianco and Resta [39],
that starts by recognizing that

C = − 1

π
Im

Nocc∑
n=1

∞∑
m=Nocc+1

∫
BZ

d2k
〈
∂kx un,k

∣∣um,k
〉〈

um,k
∣∣∂ky un,k

〉
,

(C1)

where Nocc denotes the number of occupied bands, and on
substituting the identity for n �= m, with |ψn,k〉 = eik·r|un,k〉,

〈un,k|∇kum,k〉 = −i〈ψn,k|r̂|ψm,k〉, (C2)

the expression for the Chern number can be rearranged into

C = − A

4π3
Im

Nocc∑
n=1

∞∑
m=Nocc+1

∫
BZ

d2k d2k′

× 〈ψn,k|x̂|ψm,k′ 〉〈ψm,k′ |ŷ|ψn,k〉. (C3)

Here, A represents the unit cell area of the system, and the
vanishing of the matrix elements for k′ �= k is exploited. On
defining the projectors onto occupied and unoccupied states
(P̂ + Q̂ = 1), which can be written as

P̂ = A

(2π )2

Nocc∑
n=1

∫
BZ

d2k |ψn,k〉〈ψn,k|, (C4)

Q̂ = A

(2π )2

∞∑
m=Nocc+1

∫
BZ

d2k′ |ψm,k′ 〉〈ψm,k′ |, (C5)

one finally arrives at the Chern marker formula, after having
inserted the resolution of the identity in the localized orbital
basis (1 = ∑

j,a |r j,a〉〈r j,a|),

C(r j ) = −4π

A
Im

∑
a∈cell

〈r j,a|P̂x̂Q̂ŷ|r j,a〉

≡ 4π

A
ImTrcell{P̂x̂P̂ŷ}. (C6)

In particular, under periodic boundary conditions,
C = 1

Ntot

∑
j C(r j ), which in a continuum limit can be written

as C = 1
Atot

∫
d2r C(r j ), with Atot = ∫

d2r. Numerically, one
can average Chern markers over multiple unit cells, obtaining
local Chern numbers (LCN), which should converge to
the Chern numbers on inclusion of a sufficient number of
cells. We adapt an implementation of the projectors used
for evaluating the markers, consistently with Ref. [85]. It
should be noted that while definition Eq. (C6) appears to be
ill-behaved in systems under periodic boundary conditions,
which we consider in this work, it can be manifestly recast in
a well-defined way [84],

C(r j ) = −4π

A
Im

∑
a∈cell

〈r j,a|P̂[x̂, P̂][ŷ, P̂]|r j,a〉, (C7)

where it is recognized that the commutators [x̂, P̂] and [ŷ, P̂]
are well-behaved. Ultimately, for the evaluation included in
Fig. 2(e), we apply the Chern markers under open boundary
conditions, with the superpotential applied to a bulk subsys-
tem of size 51 × 51 subcells, within a slab of size 71 × 71.
The boundary of the 71 × 71 system hosts values of the
marker, which cancel the bulk contributions after a complete
summation over the entire system, consistently with the gen-
eral expectation of the method [39].

APPENDIX D: EFFECTIVE MODELS FOR TWISTED
HALDANIUM BILAYER

We here elaborate on the models for twisted Haldanium
bilayer realizing topological bands. First, we introduce an
effective tight-binding (TB) model, which is based on the
configuration space approximation picture [21]. Finally, we
conclude by introducing a continuum Bistritzer-MacDonald
(BM) model for the low-energy physics of the model.
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1. Tight binding model

The local polarization in moiré bilayers can be obtained
from a simple TB model, as shown in Ref. [86]. How-
ever, the simplicity comes at the cost of the configuration
space approximation. In the case of moiré hBN bilayers,
effectively, one can model such insulators by considering
four bands (|uvt ,k〉, |uvb,k〉, |uct ,k〉, |ucb,k〉), i.e. valence and
conduction bands of two uncoupled layers. Following the
Ref. [86], the monolayer gap can be approximated as 	Ek =
Ect ,k − Evt ,k ≈ Ecb,k − Evb,k, and the interlayer tunneling can
be treated perturbatively, to second order, hybridizing bands as∣∣ũvt/b,k

〉 ≈
(

1 − 1

2

∣∣∣∣ tvt/bcb/t ,k

	Ek

∣∣∣∣
2)∣∣uvt/b,k

〉 − tvt/bcb/t ,k

	Ek

∣∣ucb/t ,k
〉
,

(D1)∣∣ũct/b,k
〉 ≈

(
1 − 1

2

∣∣∣∣ tvb/t ct/b,k

	Ek

∣∣∣∣
2)∣∣uct/b,k

〉 + t∗
vb/t ct/b,k

	Ek

∣∣ucb/t ,k
〉
.

(D2)

Here, tvt/bcb/t ,k are matrix elements providing intergap
interlayer coupling and the convention for the interlayer
coupling (that satisfies the above perturbation relations) is
tvt/bcb/t ,k = 〈ucb/t ,k|H |uvt/b,k〉. Due to the Fermi occupation of
states, the effects of tc/vt/bc/vt/b,k are negligible at second order.
Crucially, tvt/bcb/t ,k varies between configurations described by
different sliding vectors x and can be computed from a TB
Hamiltonian Hmoiré,TB:

Hmoiré,TB =

⎛
⎜⎜⎜⎜⎝

m̃k tk tAt Ab,k tAt Bb,k

t∗
k −m̃k tBt Ab,k tBt Bb,k

t∗
At Ab,k t∗

Bt Ab,k m̃k tk

t∗
At Bb,k t∗

Bt Bb,k t∗
k −m̃k

⎞
⎟⎟⎟⎟⎠, (D3)

where the off-diagonal 2 × 2 blocks define the orbital and
stacking-dependent tunneling T (k, x). In particular, T (k, x)
corresponds to the top-right 2 × 2 block, while the bottom-
left block constitutes T †(k, x). Here, we label atoms in top
and bottom layers as (At , Bt , Ab, Bb) (which defines the basis
of the Bloch states of the two atomic species), and contrary to
Ref. [86], we consider a combined Semenoff m and Haldane
mass t2 in the form of m̃k = m − 2

∑
i t2 sin(k · bi ), with bi

the vectors corresponding to the second-neighbor hoppings.
On the other hand, the in-plane nearest-neighbor hoppings
read tk = 〈uA|H |uB〉 = t1

∑3
i=1 eik·	Ri , where 	Ri label

nearest-neighbor displacements (from the A to B species
according to the convention used for tk). Out-of-plane
displacements are given by 	RAbAt = 	RBbBt = x,
	RAbBt ,i = x + 	Ri, 	RBbAt ,i = x − 	Ri. Note that here,
x can be chosen to lie in the Wigner-Seitz unit cell of
a B atom. On the same order of approximation as the
intralayer nearest-neighbor coupling series truncation, it is
sufficient to consider coupling with atoms connected by the
aforementioned out-of-plane displacements, since only these
atoms can lie inside the Wigner-Seitz unit cell for any x. From
solving the monolayer problem first, one obtains unperturbed
bands |uc/vt/b,k〉 in terms of |uAt/b〉 and |uBt/b〉 (the periodic
parts of the A and B atomic monolayer Bloch orbitals),∣∣uct/b,k

〉 = cAk
∣∣uAt/b

〉 + cBk
∣∣uBt/b

〉
, (D4)∣∣uvt/b,k

〉 = (c∗
Bk )

∣∣uAt/b

〉 − cAk
∣∣uBt/b

〉
, (D5)

where from a single-layer problem unperturbed by tunneling,
one obtains the corresponding coefficients:

cAk =
m̃k +

√
m̃2

k + |tk|2√(
m̃k +

√
m̃2

k + |tk|2
)2 + |tk|2

, (D6)

cBk = t∗
k√(

m̃k +
√

m̃2
k + |tk|2

)2 + |tk|2
. (D7)

Furthermore, these yield tvt/bcb/t ,k(x) = 〈wcb/t |H |wvt/b〉, where
|wcb/t 〉 is the Wannier function obtained from |ucb/t 〉,

tvt cb,k(x) = eik·x
[

cAkc∗
Bk

(
tAbAt (x) − tBbBt (x)

)

+ (c∗
Bk )2

3∑
i=1

(
tBbAt ,i(x)e−ik·	Ri

)

− c2
Ak

3∑
i=1

(
tAbBt ,i(x)eik·	Ri

)]
, (D8)

tvbct ,k(x) = e−ik·x
[

cAkc∗
Bk

(
t∗
AbAt

(x) − t∗
BbBt

(x)
)

+ (c∗
Bk )2

3∑
i=1

(
t∗
AbBt ,i(x)e−ik·	Ri

)

− c2
Ak

3∑
i=1

(
t∗
BbAt ,i(x)eik·	Ri

)]
. (D9)

Here, tAbBt ,i(x) = 〈wAb |H |wBt 〉 and Ab and Bt are separated
by 	RAbBt ,i (as earlier, |wA/Bb/t

〉 is the Wannier function for
|uA/Bb/t

〉). Writing in the explicit dependence of tAbBt ,i(x) on x,

tAbBt ,i(x) =
{

t0
AbBt ,ie

−|	RAbBt ,i (x)|/λAB if
∣∣	RAbBt ,i(x)

∣∣ < |	Ri|,
0 otherwise,

(D10)

with λAB a layer-separation dependent regularization of the
hopping amplitudes, reflecting the overlaps of the orbitals
between which the hopping occurs. The stacking-dependent
interlayer hoppings for the other three orbital flavour combi-
nations were regularized analogously. To obtain the results in
Fig. 3, the values chosen for the various tight-binding parame-
ters are as follows: m = 2.25, t1 = 2.4, t0

AbBt ,i = t0
BbAt ,i = 1.28,

t0
AbAt ,i = 0.8, t0

BbBt ,i = 0.6, λAB = λBA = 1.32, λAA = 1.36, and
λBB = 1.27, providing a faithful representation of the twisted
hBN bilayer [86], subject to an addition of the second neigh-
bor hoppings, which experience staggered magnetic fluxes.

With the evaluated interlayer coupling constants, the per-
turbed bands |ũv/ct/b,k〉 can be found within the perturbation
theory, as described earlier. Finally, to deduce the in-plane po-
larization, the Berry connection can be furthermore obtained.
Namely, the resulting Berry connection in the calculated
bands reads

Acc/vv (k) = −i
〈
ũc/vt/b,k

∣∣∇kũc/vt/b,k
〉
, (D11)

which can be further integrated over k-space to obtain the
Berry phase and polarization, consistently with the main text,
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FIG. 5. The in-plane local polarization 	P||(r) at different stack-
ings x as a function of t2. The chosen stackings x ≡ x(r) =
{1/6, 1/2, 3/4} correspond to the fractional coordinates along the
s direction, with s = 0 and s = 1 corresponding to the AA bilayer
stacking, see Fig. 3 for further reference. We emphasize that the
model breaks down in the proximity of the critical points (|t2| ≈ 0.4),
where the gap becomes too small for the second order perturbation
theory to yield reliable values of the local electric polarization.

Eqs. (5) and (6). Crucially, our model goes beyond the con-
figuration space tight-binding adaptation of Ref. [86]. In our
effective model, the hoppings, which are stacking-dependent,
are regularized by both out-of-plane and in-plane distances.
This modification more accurately reflects an overlap of the
corresponding basis orbitals, which electrons experience on
hopping. For completeness, we accordingly include a plot
(Fig. 5) of the in-plane local polarization 	P||(r) as a function
of t2, which was realized and computed within the model
described above. We show 	P||(r) for different stackings x,
that were defined along the direction s; see also Fig. 3 for
reference. We note that close to t2 = 0.43 corresponding to
the metallic critical point, the local polarization is ill-defined
and diverges, as the perturbative model considered here breaks
down for small gaps 	Ek. On the contrary, Figs. 3(c) and
3(d) were obtained on both sides away from the critical point,
where the gap is well-preserved.

2. Continuum model

Last, we elaborate on the continuum model for topological
fermions, which captures the low-energy physics, including
the electric polarization, in the twisted Haldanium bilayer.
Following the continuum formulation of the local polariza-
tion introduced in our previous work Ref. [22], we start by
recognizing that, if the two layers are twisted, with θ denoting
the angle of the twist, this change can be described with a
deformation field given by

Dt(r) = −Db(r) = θ

2
ẑ × r. (D12)

Here, each layer experiences a deformation field Dl , and
l = t,b is the layer index. As a result of a small deformation

in each individual layer, the ψ electron field, introduced in the
main text, is correspondingly modified as [57]

ψl (r) = (1 − ∇ · Dl (r))1/2ψl (x(r))e−iK·Dl (r), (D13)

in addition to the consistent transformation of the integration
measure. Here, K is the momentum at the Dirac point, corre-
sponding to an individual valley. The continuum Hamiltonian
of the decoupled topological bilayers can be obtained as [57]

HBL =
∑
l=t,b

∫
ψ

†
l

[(
m + b

(
∂rβ

+ ∂Dl,γ

∂rβ

∂rγ

)2)
τ3

− iv

(
τβ + ∂Dl,β

∂rγ

τ γ

)
∂rβ

+ v(K · ∂rβ
Dl )τ

β

]
ψl d2r,

(D14)

where Einstein summation convention is implied and τ γ are
the Pauli matrices. Here, we kept terms only linear in the
deformation field and introduced v as the Fermi velocity of the
Dirac fermions, which were further gapped by the trivial and
topological masses m and b. In particular, in the context of the
Haldane model, we recognize that b = 3

√
3t2 for each valley.

Having defined a continuum theory for an uncoupled Hal-
danium bilayer, we further introduce an interlayer coupling
under a twisted stacking. In that case, an additional interlayer
tunneling term described by

Htun =
∫

ψ†
t T (Dt − Db)ψb d2r + H.c., (D15)

needs to be included, where we expand T (Dt − Db) =∑
G TGeiG·(Dt−Db ), G are the reciprocal lattice vectors of the

monolayer, and TG are the tunneling amplitudes, which de-
pend on the layer separation. Hence, ultimately we arrive at
the final expression, introduced in the main text, on combining
two terms,

Hmoiré = HBL + Htun. (D16)

The complete continuum Hamiltonian Hmoiré, yields the
moiré bands |un

D,G(k)〉 as eigenfunctions, which within the
parametrization by the deformation field D = (Dt ,Dl ), fully
encode the local polarization. In particular, the local polariza-
tion is heavily dependent on the stacking-induced deformation
field D, influencing the Berry phases in the topological bands
obtained from the bilayer Hamiltonian. Namely,

P(D(r))= −2ie f

(2π )2

occ∑
n

∫ D(r)

0

∮
mBZ

〈
∂Dun

D,G(k)
∣∣∂kun

D,G(k)
〉
dDd2k,

(D17)

which is expected to change correspondingly across the topo-
logical phase transitions controlled by the mass parameters m
and b, where b combined with the Laplacian act effectively as
the further second-neighbor hopping t2.
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